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Abstract— The planner-tracker framework is a hierarchical
control scheme wherein a motion plan is generated using a
simplified model, and a tracking controller synthesized offline
keeps the error between the true and simplified model trajecto-
ries small. This paper extends the planner-tracker framework to
accommodate unmodeled input dynamics, described by integral
quadratic constraints (IQCs). A sum-of-squares (SOS) program
is formulated to search for the tracking controller and error
bound, and the method is demonstrated on a vehicle obstacle
avoidance example with input delay.

I. INTRODUCTION

Complex systems, such as autonomous vehicles [1]
and missile guidance systems [2], use hierarchical control
schemes where each control layer uses a different system
model. This approach can enhance computational efficiency,
as the higher-level control layer can use a simpler model to
reduce computation times and to enable control strategies
that may not be possible with the more complex model.
Faster higher-level control can also allow the system to
respond to changing environments in real-time.

Such hierarchical schemes, however, may be unsafe if
the error between the models in different layers is not
accounted for. A high-level motion plan generated using a
simplified model may avoid obstacles that the lower-level
controller is unable to. Thus, for safety, each control layer
must accommodate the error arising from different models.

In the planner-tracker framework [3]-[10], a lower-fidelity
“planning” model is employed for online planning and a
“tracking” controller, synthesized offline, keeps the tracking
error between the high-fidelity (“tracking”) model and the
planning model within a bounded set. System safety is then
guaranteed if the planner constraints, when augmented by
the tracking error bound, lie within the safety constraints.

Tube Model Predictive Control (MPC) is another approach
for handling the error between an uncertain model and a
nominal model used for planning [11]-[19]. Tube MPC is
a robust control strategy where the error between the true
model and a nominal model, free of disturbances, is bounded
within a tube, and MPC is performed on the nominal model

Katherine S. Schweidel is with the Department of Mechanical Engineer-
ing, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
kschweidel @berkeley.edu).

Peter J. Seiler is with the Department of Electrical Engineering and
Computer Science, University of Michigan at Ann Arbor, Ann Arbor, MI
48109 USA (e-mail: pseiler@umich.edu).

Murat Arcak is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA
94720 USA (e-mail: arcak @berkeley.edu).

This work was supported by NSF grants CNS-2111688, ECCS-1906164,
and AFOSR grant FA9550-21-1-0288.

> Tracking controller
Planning u = k(e,Tr, %, 1), -
| controller, where e = ¢(z, 1)
w/ X , u I;
Filter: (4)-(5)
| | Planning
model: (1) L Tracking model: (2)-(3) [,

Fig. 1: Planner-tracker scheme. The planning controller uses the
state £ and constraints X’ and U to generate a reference input .
Using a filter state xr as an additional input, the tracking controller
converts this into a control u which is guaranteed to keep the tracker
state & within state constraints X’. This is accomplished by keeping
the tracking error e within a set O whose volume is minimized.

with state constraints shrunk by the size of the tube. Typi-
cally, the true and nominal models differ by only an additive
disturbance in the true model. However, this may not capture
the total uncertainty in the true model. Besides disturbances,
another source of uncertainty is unmodeled dynamics.

The more sources of uncertainty we can accommodate in
the higher-fidelity model, the more the models will reflect re-
ality. In this paper, we extend the planner-tracker framework
to handle unmodeled dynamics at the input of the tracker
model. We characterize the uncertainty using an Integral
Quadratic Constraint (IQC), which is an essential tool for
ensuring robustness to unmodeled dynamics [20], [21]. In
particular, we use a-IQCs, which contain an exponential
weighting factor compared to standard 1QCs [22]-[24].

These a-IQCs can be used to describe many uncertainties
including unknown delays or unmodeled actuator dynamics.
The Smith predictor [25] is a common compensator for
systems with large delays, but the approach presented here
provides safety guarantees for an unknown delay in a range.

The most closely related works are [23], [24], which also
use a-IQCs to incorporate unmodeled dynamics in shrinking
tube MPC. However, attention is restricted to linear systems,
whereas this paper is applicable to nonlinear systems. In [26],
the tracking error is kept in a funnel without knowledge of
the tracker model, but the control input can grow unbounded.

In Section II, we derive the error dynamics between
the planner and the tracker model with unmodeled input
dynamics. In Section III, we describe conditions that an error
bound set must satisfy, and in Section IV we convert these
conditions into an SOS program. We solve this SOS program
for a vehicle obstacle avoidance example in Section V.

Notation: For £ € R", R[¢] represents the set of polyno-
mials in { with real coefficients, and R[] and R™*P[¢]



denote all vector and matrix valued polynomial functions.
The subset X[¢] := {p = p7 + P + ... + D% : 1, .., DM €
R[&]} of R[¢] is the set of sum-of-squares polynomials in
&. We say a matrix-valued polynomial P € R™*™[¢] is
in ¥,,[¢] if y" Py € X[¢,y], which implies P is positive
semidefinite for all £&. For a function V' : R™ — R and
a scalar v € R, we denote the ~y-sublevel set of V as
V) = {2 € R": V(z) < ).

II. PROBLEM FORMULATION
A. Planner-Tracker Framework

We now describe the planner-tracker framework, extended
to include unmodeled input dynamics (Figure 1). The low-
fidelity model, called the planning model P, has the form:

&= f(2,2), (1)
where & € X C R and 4 € U C R™ are the state and
control input, respectively, of the planner system.

A higher-fidelity model, referred to as the tracking model,

is used to track the trajectory generated for the planning
model above. The tracking model is of the form:

&= f(z,w) + g(z,w)(u+1), 2)
I =A(u), (3)

where z € X C R"= is the tracker state, w € YW C R"w
is an external disturbance, and u € & C R™ is the control
input which will depend on & and @ with the goal of keeping
the error between the planner and tracker systems small.

An uncertain block A at the tracker input with output
l € R™ is added to the tracker input in (2). This block
encompasses unmodeled dynamics, e.g., delays, where the
resulting signal [ is a function of u and/or x. This is distinct
from the exogeneous disturbance w which does not depend
on z or u and is restricted, a priori, to WW. The presence of A
and [ is what distinguishes this paper from previous works
in the planner-tracker framework literature.

B. Integral Quadratic Constraint

We assume that A satisfies an input-output relationship
called an o Integral Quadratic Constraint (a-IQC) for some
constant scalar av € R. To define this relationship, the input
u is passed through a linear time-invariant filter ' with state
rp € R™ and output z € R"=:

ip = Apxp + Bru, “4)
z=Cpxp+ Dpu. (5

Then A is said to satisfy the a-IQC defined by filter F' if

/T e (x()T 2(8) — 1) TU(E))dt > 0 ©)
0

for all T > 0 and for zp(0) = 0,,.. We write this
compactly as A € IQC(F,a). The a-IQC can be used to
describe uncertainties such as unknown delays or unmodeled
actuators. It allows us to augment the system with F' and
analyze the augmented system with A removed, treating [ as
a free input.
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Fig. 2: Block diagram for the error system E. By analyzing the
system augmented with the filter F', we can ignore A and treat [
as a free input, where z and [ satisfy the a-IQC (6).

There is a more general IQC framework where the filter
has both « and [ as inputs. In this paper, we restrict the filter
input to be the tracker input u so that there is no uncertainty
affecting the filter state x . This allows us to compute z
and use it as an input to the tracking controller.

C. Error System

We define a tracking error e € R™e between the states of
the planner and tracker models:

e = ¢(x, ). @)

We assume ¢ is invertible in x for all Z € X , 1.e., it admits
an inverse, 1, such that e = ¢(z,2) = = = Y(e,&). We
further assume the error dynamics can be written as

é = fele,2,0,w) + ge(e, &, 4, w)(u+1), )
I = A(u), 9

for some functions f.(e, &, 4, w) and g.(e, &, 4, w). Both of
these requirements hold for the simple definition ¢(x, %) =
x — &. They also hold for the example in Section V, where
¢(z,z) = r(2)(z — ), and r(Z) € R™*"= ig invertible for
all € X. We denote this error system as E in Figure 2.

D. Objective

We wish to derive a tracking controller u = k(e, zp, &, 1)
and an associated error bound O C R"e, as small as possible,
for the following closed loop error dynamics:

e= fe(e7£aa7w) + ge(e,aﬁ,a,w)(ﬁ(e,xp,i",ﬂ) + l)’ (10)
l=A(k(e,xp,Z,0)). (11)

O is used for shrinking the planner state constraint X such
that, when e € O, 7 € X guarantees the tracker constraint
x € X. Minimizing the volume of O ensures the constraint
X is minimally restrictive.

III. ERROR BOUND

Finding the error bound O involves two conditions. First,
in Section III-A, we present a condition on the control law
and an associated storage function V' such that the ~y-sublevel
set of V for some scalar 7, denoted Q(V,~), is positively
invariant under the closed loop error dynamics (10)-(11) for
all A € IQC(F,a), & € X, i €U, and w € W. That is,

V(e(0),zr(0)) <v = V(e(t),zp(t)) <y Vt=0. (12)



Next, in Section III-B, we project Q(V,+) into the space of
error variables. O is a bound on this projection, obtained
using a “shape function” with an adjustable parameter that
we use to minimize the volume. We accommodate an initial
condition constraint and an input constraint in Section III-C.

A. Invariance Condition

The following condition ensures that the ~y-sublevel set
of a storage function V' is a positively invariant set for the
closed loop error dynamics (10)-(11) with tracking control
law k. It is motivated by a related result on robust control
barrier functions [22, Lemma 1].

Theorem 1. Given the error dynamics (8)-(9), filter dy-
namics (4)-(5), and IQC A € IQC(F, ), if there exist C!
functions V : R" x R"* — R and k : R™ x R"* x R™ x
R™ — R, and a scalar v > 0 such that
VSV(Q xF)T(fe(e7 -i'a a7 w)
+ ge<€, z,1, ’LU)(KZ(G, TR, T, ﬂ)+l))
+ V., Vie,zr) (Apzr + Br - k(e, zp, &, 1))
+ (Crzp+Drk(e,zp,i,1)) (Crep+Drk(e, xp, &, 1))
— 1"l < —a(V(e,zp) —7)

(13)

Vie X, hel,weW,l eR™ (e,zp) s.t. V(e,zp) <7,

then Q(V,~y) is a positively invariant set for the closed loop
error dynamics with controller k.

Proof. The dynamics of the augmented closed-loop system
with state & := [e; zF]|, inputs (I, &, @, w), and output z are:
: fele, 2,0, w) + ge(e, , 4, w)(k(e, zp, T, 4) + 1)
€= _ O

Apzp + Br - k(e,xp, 2, 1)

=: F(& 1z, 0,w), (14)

z=Cpxp+ Dpk(e,xp,&,0) =: H(, &,1). (15)
Note that condition (13) is equivalent to

VVE)'"F+H H—-1Tl < —a(V() —7). (16)

For simplicity of notation, define F(t) =
F(&(t),1(t), 2(t), a(t),w(t)), and similarly for H. Define
V(t) :== V(&) — v so that V(¢) = 0 when V(£(t)) = .
Now the theorem is proved by contradiction. Assume there
exist a time ¢3 > 0 and signals £(-), Z(-), a(-), I(+), and w(")
such that V(0) < 0 but V (t3) > 0. Then, by continuity of V,
there exists ¢; € [0,¢3) such that V(¢;) = 0, V(¢) < 0 for
t <ty, and V(t) > 0 for t € (t1,t; + €] for some €; > 0.
Then the inequality (13) holds for ¢ < ¢;. Furthermore, since
(13) is a strict inequality, by continuity of V' there exists
€2 > 0 such that for ¢ € [0,¢; + €3], the relaxed, non-strict

version of (13) holds:

VVERNTF@)+H@E)THt) —1(t)T1(t) < —aV(t). (17)
Defining t; = t; + min{e, €2}, we see that (17) holds on
[0,%2] and V'(t2) > 0. Next, note that

% eV ()} = e*{aV (1) + VV(E(t) " F(t)}

< —e“YHE)TH@E) - 1) TI(t). (18)

Integrating (18) from ¢ = 0 to ¢ = ¢, we have
6at2‘7(t2) -

7(0) (19)

<- /tz Ot (H®TH() — 1) T1())dt < 0,
0

where the last inequality used (6). Rearranging, we have
V(ts) < e *2V(0) <0, (20)

which is a contradiction. [

B. Projection Condition

If we find V and & satisfying (13), then Q(V,~) C R™ x
R™F is a positively invariant set. Next we obtain an error
bound O C R™¢ by bounding the projection of Q(V,~) from
the (e, zp)-space into the e-space R"*. O will be used to
shrink planning state constraints X such that & € X implies
x € X. Then safety of the tracker system is guaranteed as
long as the planner constraints are satisfied. We would like
to obtain an error bound O that is as small as possible so
that the constraints on the planner are minimally restrictive.

We introduce a “shape function” P : R™ — R, whose
sublevel sets are regular objects like balls or hyper-rectangles
that can be conveniently used to shrink state constraints.
P need not depend on all error variables (e.g., if the only
constraint in X is for obstacle avoidance, P may just depend
on the position errors). Then we enforce the constraint

projgn. (2(V,7)) € P, ¢) =: O, @21

i.e., the projection onto R™¢ of the ~y-sublevel set of V is
contained within the c-sublevel set of P. By minimizing c,
we can shrink the error bound O as much as possible.

C. Additional Conditions

There are two additional conditions that we may want the
storage function V' and the tracking controller x to satisfy.
First, the initial error e(0) may be known to lie in a set
&y C R™. To ensure this set is included in the invariant set,
we can enforce the constraint

50 X {OnF} - Q(V7 ’7)7

where we used the fact that the filter initial condition is
2p(0) = 0,,. Secondly, we can enforce input constraints
U with the following constraint:

(22)

kle,xp,&,0) €U Vie X, 4 el,
V(e,zp) € R™ x R"F st. V(e,zp) < 7.

IV. SOS OPTIMIZATION

We now formulate an SOS optimization that searches for a
tracking controller x and a storage function V' satisfying (13)
and (21)-(23) while minimizing the volume of the error
bound O.

Finding generic functions V' and & that satisfy (13) is a dif-
ficult problem. Below we show how SOS programming can
be used to search for these functions by restricting to poly-
nomial candidates V' € Rle,zp] and k € R"[e, xp, &, 4.
Besides this restriction, we make the following assumption:

(23)



Assumption 1. The mappings f. € R"=|[(e, &, 4, w)] and
ge € R"=XMu[(e & w)] in (8) are polynomials. Sets &, X,
U, and W are semi-algebraic sets, i.e., there exists py € Rle]
such that & = {e € R po(e) < 0} with similar
definitions for X, U, and W with polynomials p; € R[],
pa € R[], and p,, € R[w]. The control constraint set U is a
hypercube U = {u € R™ : u < u <1}, where u,u € R,

The invariance condition (13) involves the unbounded
variable [ and contains a term that is quadratic in the decision
variable «. The following lemma gives a sufficient condition
for (13) that is suitable for use in an SOS program.

Lemma 1. A sufficient condition for (13) is

_Q(Vv? R,7,Sv,8Xx,SU, SW) S E?nu+l [67 TE, j? ’EL7 w]» (24)

O
gTVeV
Crxr + Dk 0

VeVTg (CF.Z‘F—FDFK,)T
4T 0 ,
—I

where Q =

(25)
and Q11 (V,k,7,5v, sx,50,5w) = VeV (fo + ge - K)
+ Vo VI (Apap + Bpr) + (o — sy) - (V — )

—SX DX —SU"DPU — Sw - Pw T €, e>0. (26)

Proof. We manipulate (13), reproduced below, into an equiv-
alent condition without quadratic terms in decision variables:

VeVT(fe + ge - (k + Z)) + szVT(AFxF + BF'%) (27)
+ (Crzp + DFH)T(CFxF + Dpk) — 1M < —a(V —%)
Vie X, ael,weW,leR™, (e,zp) st Vie,zp) < 7.

Maximizing over the unconstrained variable [ gives a worst-
case value of [* = %gZVeV. Plugging this in yields

VGVT(fe + ge - /‘5) + VxFVT(Apxp + BFH)
+ (CFxF + DFFJ)T(CFJJF + DFH)

1
+ ZVEVTgeg;rVeV < —a(V —7)

(28)

Vie X, ael, wew, (e,zp) st. Vie,zp) < 7.

While (28) only needs to hold for certain values of
(e, &, G, w), the S-procedure [27] is a method that gives
a sufficient condition that holds for all (e, &, ,w), where
constraints such as # € X are encoded via nonnegative
multipliers. We now use the S-procedure to ensure that (28)
holds whenever V < ~, & € 2\?, u e Z], and w € W, and add
€ > 0 to the left hand side so the inequality is non-strict:

VeV (fe+ge - 5)+ Vo,V (Apzr + Bpr)  (29)
+ (CF.’EF + DFKZ)T(CFZL'F + DFKJ)
1
+ VeV 900l VeV + (0= sv)(V = 9)
—Sx -px —Su-pu — Sw - pw +€ <0,

where sy, sx, Sy, and sy are nonnegative multipliers. Note
that (29) has quadratic terms in V.V and x which are both
decision variables, so (29) is not convex in either variable.
Thus, start by applying Schur complements to expand the

term V.V " geg. V.V that is quadratic in V.V. Then (29)
is equivalent to

Q11 + (Crxr + Dpr) T (Cpxr + Dpk)
gTVEV

VEVTg
—471 <0,
(30

where Q11 is defined in (26). Applying Schur complements
a second time to expand the term (Cpzp+Dpk) " (Crap+
Dpk) that is quadratic in &, (30) is equivalent to

Q(Vr? na77SV7SX75U7$W) < 07 (31)

with @ as in (25)-(26). Finally, (31) can be relaxed as the
SOS condition (24). ]

Using Lemma 1 and applying the generalized S-
procedure [27] to the set containment constraints (21)-(23),
we obtain the following SOS optimization problem for
finding V, k, and O:

min B8 —ct (32a)
V,k,7,80,5F
T Yt
071>0,'y>0

s.t. sw, 80 € Xle,zF, T, 1) (32b)

st s, st € e, xp, @, 4], i € {—nu,...,ny} (320)
8(ZTZ) = Q(V, k., 8V, 8%, sty sw) (32d)

S ZQn,u+1[e7 TF, jf‘7 ’a}

(V—=9)=(c*P—1) € X[e,zr] (32e)

so-po+sp-zp—(V—7)€Xle,zp| (32f)

Uy — ki + 5y - (V —7) + 5 - pa (329)
+ st; - pa € Z(e, &, )], i € {1,...,ny}

ki —u,; + s(/i (V=) + s;(i Dz (32h)

+ 55" pa € Sle, 2,a)], i € {1,...,n4}

The variables in (32b) and (32c) are SOS multipliers. Con-
dition (32d) is the result of applying the S-procedure to (13)
(justified in Lemma 1), with an added slack variable &
multiplying (Z 7 Z)I, where Z is the vector of monomials in
Q. Condition (32e) is the result of applying the S-procedure
to (21). Condition (32f) is the result of applying the S-
procedure to (22), where the multiplier sy need not be SOS.
Conditions (32g) and (32h) are the result of applying the S-
procedure to (23) at each vertex of U. The cost function (32a)
is a weighted difference of the slack variable ¢ from (32d)
and the parameter ¢! from (32e) with a weight 3 that the
user can tune. This cost helps to achieve the joint goals of
having the invariance condition (13) hold up to numerical
tolerances, and making the error bound O as small as
possible by maximizing ¢! (i.e., minimizing c). We found
that in practice, formulating the problem in terms of ¢!
rather than c led to a smaller error bound.

Even after removing quadratic terms in V.V and x in
Lemma 1, the SOS program (32) is nonconvex because it
has terms that are bilinear in the decision variables, but it
can be solved by alternately solving convex subproblems
with the decision variables (V,~,6,c, s, sF, s, s/, sw)
and (k, 4, ¢, S0, SF, Str, S, S, S ).



V. NUMERICAL EXAMPLE

We demonstrate the method on an obstacle avoidanc
example, where the planner uses a Dubin’s vehicle model:

Qg cos(Z3)
Qg sin(Zs) | . (372
1y

i‘:

The states are positions (Z1,#2) and heading angle &3, an
the inputs are angular rate %; and longitudinal velocity g

In the tracker model, the input u; is delayed by 7 second:
denoted D, (u1). Using an uncertain block A, the tracke
model can be put into the form of (2)-(3):

ug cos(x3) us cos(x3)
&= |ugsin(zz) | = |ugsin(zs) |, I =A(u1). (B4)
D.,—(ul) uy + l

Thus we have A(u) = D, (u1)—uq, so A is the deviation due
to the delay. The value of the delay is unknown but is known
to lie in the interval 7 € [0, Tmax]- The a-IQC associated with
A is computed as in Section V of [22], using the MATLAB
function fitmagfrd to obtain a filter ' whose Bode plot
upper bounds the Bode plot of all possible values of A.

For simplicity, there is no exogenous disturbance w in this
example. We define the error as

e = R(i3) " (x — &), where R(8) = [z?rgg Z%neg (ﬂ . (35)

Rotating the error into the frame of the planner model gives:
1)162 + U2 COS(63) — 112

7@161 + U2 sin(eg)
up + [ — ﬁl

; l= A(ul)a (36)

and the sin/cos terms can be approximated as polynomials
using a second order Taylor series expansion about ez = 0.

A. SOS Tracking Controller

We solve the SOS program (32) with o = 5,74.x = 0.05s,
Ple) =e?+e3, U = {t e R?: |ul3 <1}, and U = R2
As can be seen in the SOS cost function (32a), larger 3
encourages a small value of § and smaller 5 encourages a
smaller value of c. After searching over several values, 8 =
le3 was selected because it gave the smallest error bound
while still yielding a § value on the order of 1e—4 which was
approximate magnitude of the numerical tolerance from the
SOS solver. Since the dynamics (36) don’t depend on X, we
don’t need to select X’ before solving the SOS program. We
use the SOSTOOLS toolbox [28] in MATLAB with solver
MOSEK [29], and after 15 iterations (28 minutes):

vy=1,6=7x10"*% ¢=10.63

V =0.30¢] + 0.75e1z5 + 0.13€3 + 0.23¢3 + 0.702%
k1 = 0.61lejeq — 0.07extis — 0.28¢sxp — 5.76e3 + 0.82114
ko = —0.001ea@; — 0.67e1 + 0.1145 + 2.01zp.

(37

Terms with coefficient magnitudes less than le-4 have been
omitted. The value ¢ = 10.63 indicates an error bound radius
of \/c = 3.26. Hence, the planner state constraints will be
shrunk by the set O = {e € R?: 2 + €3 < 3.262}.

20 |- RSN = ————
, N |
/ - \ 1
I |, D
515— ) 1 o
= 1 1
c -
S0+ 1
2 Y l
2
>-57
\ /
ol N P m— tracker
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0 5 10 15 20 25 30 35 40 45 50
x-position (m)

Fig. 3: Planner-tracker simulation. The planner trajectory in red
avoids the bloated obstacle (dashed red circles) and reaches the
shrunk target region (dashed red square). The tracker trajectory in
blue tracks the planner and avoids the true obstacles (dashed blue
circles) and reaches the true target region (dashed blue square).

B. MPC Planning Controller

MPC is used as the planning controller to generate a
motion plan for the vehicle that will avoid circular obstacles
(bloated by the error bound) and reach a target region
(shrunk by the error bound). At each time step, the following
optimization is solved. We apply the input u; at the current
time step and we resolve the optimization at the next step.

t+T—1
min

min > (i Rig + 8k — Zaes) T Q&5 — faes)) (382)
Ut - k= ~ ~ ~ ~
e + (S41 — Baes) QT (Begr — Faes)

st.Vee{t,....,t +T—1}:

Trgp1 = &g + db - flag, ug), (38b)
fhEX=XOO, (38¢)
iy €U, (38d)
burEX=X00, (38¢)
&y = &(dt - t) (38f)

The cost (38a) penalizes the control input and the distance
from the desired final point %4 at the center of the target
set. Constraint (38b) is the forward Euler discretized planner
dynamics, and (38c) and (38e) are planner state constraints,
which are tracker obstacle avoidance constraints shrunk by
the error bound . Constraint (38d) restricts the input,
and (38f) ensures that the optimization starts from the current
planner state. We solve the optimization using the toolbox
YALMIP [30] in MATLAB and the solver Ipopt [31], with
parameters 7 = 20, dt = 0.1s, R = 1I,, Q = 1013,
Q = 1003, and Zges = [46m;14m]. X = {z € R3 :
(T1:2 — Tobsj)? > Tgbg,jaj = 1,2}, Tobs,1 = [15m;5m],
Tobs,2 = [30m; 15m], Tobs,1 = Tobs,2 = 2.74m.

C. Results

We simulate the combined planning and tracking control
system for the scenario shown in Figure 3. The planner
trajectory in red avoids the bloated obstacles and reaches the
shrunk target region. The tracker trajectory in blue tracks the
planner trajectory closely; it does intersect with the bloated
obstacles, but not with the true obstacles, preserving safety.
It also reaches the target region. Figure 4 shows the evolution
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Fig. 4: Position error (e1, e2) and the error bound O.

of the error in (e, e2) space and confirms that the error never
leaves the bound O. Note that while (V) is invariant and
its projection lies in O, O itself is not necessarily invariant.

VI. CONCLUSION

This paper used a-IQCs to extend the planner-tracker
framework to accommodate unmodeled dynamics at the input
of the tracker model. An SOS program was formulated to
search for a tracking controller s and an error bound O. The
method was demonstrated on a vehicle obstacle avoidance
example with an MPC planner and an input delay in the
tracker model. Future work includes formally accounting
for the planner discretization error and the error from the
polynomial approximation of trigonometric terms.
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