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ARTICLE INFO ABSTRACT

Keywords: UV is a significant environmental agent that damages DNA. Translesion synthesis (TLS) is a DNA damage
histone H4 tolerance pathway that utilizes specialized DNA polymerases to replicate through the damaged DNA, often
nucleosome

leading to mutagenesis. In eukaryotic cells, genomic DNA is organized into chromatin that is composed of nu-
cleosomes. To date, if and/or how TLS is regulated by a specific nucleosome feature has been undocumented. We
found that mutations of multiple histone H4 residues mostly or entirely embedded in the nucleosomal LRS (loss
of ribosomal DNA-silencing) domain attenuate UV mutagenesis in Saccharomyces cerevisiae. The attenuation is
not caused by an alteration of ubiquitination or sumoylation of PCNA (proliferating cell nuclear antigen), the
modifications well-known to regulate TLS. Also, the attenuation is not caused by decreased chromatin accessi-
bility, or by alterations of methylation of histone H3 K79, which is at the center of the LRS surface. The
attenuation may result from compromised TLS by both DNA polymerases ¢ and n, in which Rad6 and Rad5 are
but Rad18 is not implicated. We propose that a feature of the LRS is recognized or accessed by the TLS ma-
chineries either during/after a nucleosome is disassembled in front of a lesion-stalled replication fork, or during/
before a nucleosome is reassembled behind a lesion-stalled replication fork.

postreplication repair
translesion synthesis
UV mutagenesis

1. INTRODUCTION

Cells are equipped with multiple pathways, including cell cycle
checkpoints, DNA repair, and damage tolerance, to reduce the delete-
rious consequences of DNA damage caused by endogenous and exoge-
nous agents [1,2]. Ultraviolet (UV) is a significant DNA-damaging agent
that primarily produces cyclobutane pyrimidine dimers (CPDs) and 6-4
photoproducts (6-4PPs). In eukaryotic cells, postreplication repair
(PRR) is a Rad6-dependent DNA damage tolerance pathway that is
activated when single-stranded DNA accumulates at lesion-stalled DNA
replication forks or at gaps created by repriming downstream of the

initial stalling lesion [3,4]. Error-prone translesion synthesis (TLS),
which may result in mutagenesis, and error-free template switching (TS)
are two PRR pathways. In Saccharomyces cerevisiae, TLS is primarily
accomplished by polymerase { (Pol¢) and polymerase n (Poln) [5-7].
Pol¢ is responsible for most DNA damage-induced mutagenesis and a
substantial portion (half or more) of spontaneous mutations by
extending termini across DNA lesions or at mismatches, hairpins or
other structural features of template DNA that are difficult to overcome
by normal replicative DNA polymerases [5]. Poln catalyzes largely
(>90%) error-free TLS of CPDs [8]. Poln can also insert a G opposite the
3’ nucleotide of a 6-4PP, which can then be extended by Pol( to finish
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Fig. 1. The LRS domain of a nucleosome. (A) Structure of a yeast nucleosome (PDB,1ID3). The approximate LRS domain is indicated by the red circle. (B and C) The
LRS domain and surrounding nucleosomal areas shown as surface and cartoon structures, respectively. Histone H4 residues of interest on the nucleosome surface are
shown in green, and those mostly or entirely embedded in the nucleosome are shown in magenta.

bypassing the photoproduct [9]. TS uses a newly synthesized sister
chromatid as a template for synthesis and requires the participations of
homologous recombination proteins Rad51 and Rad52 [10-12].

In S. cerevisiae, all branches of PRR have been known to be regulated
by ubiquitination and sumoylation of the proliferating cell nuclear an-
tigen (PCNA), an essential processivity factor for DNA replication and
repair [13,14]. In response to DNA damage, PCNA is
mono-ubiquitinated at K164 by the E3 ubiquitin ligase Rad18 in com-
plex with the E2 ubiquitin conjugase Rad6 [13]. The mono-ubiquitin can
be extended into a regulatory, K63-linked poly-ubiquitin chain by the E3
ubiquitin ligase Rad5 in complex with the E2 ubiquitin conjugase
complex Ubc13-Mms2 [13]. Mono-ubiquitination of PCNA promotes
both Pol¢- and Poln-dependent TLS, while poly-ubiquitination promotes
TS [13,14]. PCNA can also be sumoylated at K164 and K127, which are
completely and partially dependent on the E3 SUMO ligase Sizl,
respectively [13]. The sumoylation of PCNA promotes the recruitment
of Rad18, thereby facilitating damage-induced ubiquitination [10,15].
Sumoylation of PCNA can also lead to the recruitment of Srs2, a DNA
helicase that can disrupt Rad51 presynaptic filaments and thus prevents
TS [16,17].

Eukaryotic genomes are organized into chromatin [18]. The basic
building block of chromatin is the nucleosome, which consists of DNA
wrapped around a histone octamer comprised of one (H3-H4); tetramer
and two H2A-H2B dimers. All cellular events that involve DNA trans-
actions, including DNA replication, repair and transcription, have to
respond to and overcome the constraints of chromatin structures. The
inhibitory effects of chromatin structures on nucleotide excision repair
(NER) [19-21], DNA double strand break repair and damage checkpoint
signaling [22] have been well-documented. Limited studies suggested
that chromatin structures may also inhibit PRR. For example, chromatin
relaxation, either by KAP-1, a transcriptional repressor whose phos-
phorylation relaxes chromatin, or by treatment with trichostatin A, a
histone deacetylase inhibitor, have been shown to promotes PCNA
ubiquitination and TLS [23]. Treatment of cells with DRAQ5, a DNA
intercalating dye that disrupts chromatin structure, causes a dramatic
immobilization of Poln [24]. Also, the chromatin remodeling complexes

INO80 and RSC have been shown to promote PCNA ubiquitination [25,
26] and Rad51-mediated processing of recombination intermediates
[25].

LRS (loss of ribosomal DNA-silencing) is a nucleosome domain
composed of certain residues of histones H3 and H4 (Fig. 1). The LRS has
been known to be required for heterochromatin formation and tran-
scriptional repression at specific yeast loci [27,28]. Here we report that
mutations of histone H4 residues in the LRS domain can attenuate TLS
and UV mutagenesis, without significantly affecting PCNA ubiquitina-
tion or sumoylation. Our finding challenges the traditional view that
chromatin structures just passively inhibit TLS and the TLS machinery
battles to overcome the inhibition. Instead, the chromatin feature
conferred by the LRS may actively promote TLS.

2. MATERIAL AND METHODS
2.1. Plasmids and yeast strains

Plasmids and yeast strains expressing wild type histones used in this
study are shown in Supplementary Tables S1 and S2, respectively. His-
tone H4 LRS mutants and their isogenic wild strains were created by
transforming the pDM9-bearing strains (Supplementary Table S2) with
pHTF2-derivatived plasmids, which express wild type histone H3 and
histone H4 LRS mutants (Supplementary Table S1) and pHTF2, which
expresses wild type histones H3 and H4. Plasmid pDM9 was then
removed from the transformed cells by selection with 5-fluoroorotic
acid.

2.2. UV sensitivity assay

Yeast cells were grown in synthetic dextrose (SD) medium at 30°C to
saturation, sequentially 10-fold diluted and spotted onto YPD (1% yeast
extract, 2% peptone and 2% dextrose) plates. After different doses of UV
irradiation, the plates were incubated in the dark at 30°C for 3-6 days
before being photographed.
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Fig. 2. All the UV sensitive histone H4 LRS mutations, except for the E74M mutation, significantly attenuate UV mutagenesis. (A) UV sensitivities of WT and histone
H4 LRS mutant cells. (B) UV induced Can" mutation frequencies. Top and bottom panels are linear and logarithmic scale plots, respectively. Error bars indicate
standard errors. The mutation frequencies of all the LRS mutant cells are very significantly different (p < 0.01) from those of the WT cells at the corresponding UV

doses, except for those marked with x (p > 0.05) or * (0.01 < p < 0.05).

2.3. UV-induced mutagenesis assay

Cells were cultured in YPD medium to late log phase (ODggp = 1.0),
pelleted, washed with and resuspended in HyO. After irradiation with
different doses of 254 nm UV, the cells were serially 10-fold diluted. To
determine the numbers of viable cells, the diluted cells were plated onto
SD plates without arginine and canavanine. To determine the numbers
of canavanine resistant (Can") mutants, the diluted cells were spread on
SD plates without arginine but with 60 mg/L of canavanine. Plates were
counted after 3-6 days of incubation in the dark at 30°C. At least three
independent mutagenesis experiments were carried out for each of the
yeast strains of interest. The mutation frequencies in the histone H4
mutants were compared with those in the wild type (WT) cells at the
corresponding UV doses by using the two-tailed Student’s t-test.

2.4. Western blot

Cells were cultured to late log phase. If UV irradiation was required,
half of the cultures were irradiated with 120 J/m? of 254 nm UV. The UV
irradiated and unirradiated cells were incubated in YPD medium at
30°C. Aliquots were taken at different times of the incubation. Whole
protein extracts were prepared from the aliquots and proteins of interest
were detected by Western blots using procedures described previously
[29]. Anti-FLAG antibody (M2) was from Sigma. Antibodies against
mono-, di- and tri-methylated H3K79 and total histone H3 were from
Abcam.

2.5. Chromatin accessibility assay

Micrococcal nuclease (MNase) cleavage of chromatin DNA was done
essentially as described previously [30]. Briefly, yeast cells were grown
in SD medium at 30°C to late log phase. Half of the culture was irradi-
ated with 120 J/m? of 254 nm UV followed by incubation at 30°C for 1
hour. Cells from 45 ml of the irradiated and unirradiated samples were
treated with 50 units of Zymolyase (Zymo Research) in 5 ml zymolyase
buffer (50 mM Tris, pH 7.8, 1 M sorbitol, 5 mM p-ME, 0.5 mM PMSF) at
30°C for 40 min. The resulting spheroplasts from each sample were then
suspended in 2 ml of MNase buffer (50 mM Tris, pH 7.8, 1 M sorbitol, 50
mM NacCl, 5 mM MgCly, 1 mM CaCl,, 1 mM B-ME, 0.5 mM PMSF and

0.075% v/v NP-40), divided into 300 pl aliquots and digested with
varying (0, 49, 148, 444, 1333 and 4000) units of MNase for 10 min at
37°C. The reactions were terminated by mixing with 60 pl of stop so-
lution (6% SDS, 250 mM EDTA) and immediately incubated at 65°C for
3 hours. The genomic DNA was isolated from the aliquots and frac-
tionated on 1.2% agarose gels.

3. RESULTS
3.1. Histone H4 LRS mutations can attenuate UV mutagenesis

Through random mutagenesis, we identified multiple UV sensitive or
resistant histone H4 mutations in the nucleosomal LRS domain (Fig. 1)
[31]. We found that the histone H4 H75E mutation significantly atten-
uates global genomic NER and Rad26-independent tran-
scription-coupled NER. However, all the other mutations do not
significantly affect NER or a NER subpathway [31], indicating that most
of the LRS mutations may be implicated in other DNA repair and/or
damage tolerance pathways.

To determine if the LRS mutations are implicated in PRR, we first
measured UV mutagenesis by analyzing Can" mutation frequencies in
WT and the LRS mutant cells. The R67V and T71I mutations, which
mildly increase UV resistance (2-5 fold) (Fig. 2A) [31], did not signifi-
cantly affect the UV mutagenesis (Fig. 2B). In contrast, all the UV sen-
sitive LRS mutations tested, except for the E74M mutation, significantly
attenuated the UV mutagenesis (Fig. 2B). The T73D, T73F, T73Y and
R78I mutations, which increase cell UV sensitivity 10-50 fold, attenu-
ated the UV mutagenesis more dramatically than the D68I, A76T, R78S
and T80L mutations, which are mildly (~ 5 fold) UV sensitive (Fig. 2A
and B). The Y72T mutation, which is mildly UV sensitive (~ 5 fold), also
dramatically attenuated the UV mutagenesis (Fig. 2A and B). Of note, all
the LRS mutations that significantly attenuated the UV mutagenesis are
mostly (D68I, R781 and R78S) or entirely (all the other mutations)
embedded in the nucleosome (Figs. 1 and 2). In contrast, the R67V, T711
and E74M mutations, which did not significantly affect the UV muta-
genesis, are on the nucleosome surface (Figs. 1 and 2).
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Fig. 3. All the UV sensitive histone H4 LRS mutations that attenuate UV mutagenesis are largely epistatic to rad6A and rad54, but not rad18A. (A-C) UV sensitivities
of rad6A (A), rad5A (B) and rad184 (C) cells with or without the indicated histone H4 LRS mutations. (D) UV induced Can" mutation frequencies. Error bars indicate
standard errors. The mutation frequencies of all the rad184 cells with the LRS mutations are very significantly different (p < 0.01) from those without the LRS

mutation, except for those marked with * (0.01 < p < 0.05).

3.2. All the histone H4 LRS mutations that attenuate UV mutagenesis are
largely epistatic to rad6A and rad5A, but not rad184

We next determined epistatic interactions of the LRS mutations with
those implicated in PRR. Rad6 is an E2 ubiquitin conjugase that is
critical for both TLS and TS [32]. Indeed, rad6 mutants are highly
deficient in PRR of UV-damaged DNA [12] and exhibit no UV muta-
genesis [33,34]. Rad5 is a SWI/SNF family ATPase and an E3 ubiquitin
ligase that is required for TS [35,36]. Rad5 also plays a structural role in
TLS, where neither its ubiquitin ligase activity nor its ATPase activity is
required [37-39]. None of the LRS mutations that attenuate the UV
mutagenesis (Fig. 2) dramatically enhanced UV sensitivities of rad6A
cells (Fig. 3A). The enhancements of the UV sensitivity of rad5A cells by
all the LRS mutations were very mild if any (< 3 fold) (Fig. 3B). The
Y72T mutation enhanced the UV resistance of both rad6A and rad54
cells to certain extents (Fig. 3A and B), presumably due to derepression
of a non-PRR mechanism that remains to be characterized.

Rad18 is an E3 ubiquitin ligase that forms a complex with Rad6, and
plays an important role in both TLS and TS of various DNA lesions [40].
However, rad18 mutations do not significantly affect UV mutagenesis
[33,41] and increase spontaneous mutagenesis [42-44]. All the LRS
mutations that attenuated UV mutagenesis in otherwise WT cells
(Fig. 2), except for the D68I and Y72T mutations, synergistically
increased the UV sensitivity of rad184 cells (Fig. 3C). All the LRS mu-
tations, including the D68I and Y72T mutations, attenuated UV muta-
genesis in rad184 cells (Fig. 3D). Therefore, the D68I and Y72T
mutations are not truly epistatic to rad18A. Besides attenuating UV
mutagenesis, the D68I and Y72T mutations may derepress a DNA repair
or damage tolerance mechanism that remains to be elucidated.

Taken together, our results so far indicate that the histone H4 LRS
mutations that attenuate UV mutagenesis are largely implicated in a

Rad6- and Rad5-dependent but not Rad18-dependent PRR mechanism.

3.3. The attenuation of UV mutagenesis by the histone H4 LRS mutations
may be caused by compromised Pol¢- and Poly-dependent TLS, but not by
enhanced error-free TS

In S. cerevisiae, all UV mutagenesis is dependent on Pol¢, which is
most efficient in extending primer termini opposite a variety of lesions
or mismatches [5,6,9,45]. Pol( is composed of the catalytic subunit Rev3
and the accessory subunit Rev7. Revl itself is a deoxycytidyl transferase
that incorporates dCTPs opposite abasic or damaged G sites [46-49].
Revl also interacts with Rev3, Rev7 and Poln, and has an essential
structural role in Pol{-dependent error-prone TLS [50-52]. Rev3 was
barely detectable on Western blots (Fig. 4A), in line with its very low
abundance [53]. The LRS mutations, including the Y72T and T73D
mutations that most severely attenuate UV mutagenesis (Figs. 2 and 3),
did not significantly affect the expression levels of Rev3, Revl or Rev7
(Fig. 4A-C; data not shown). All the LRS mutations that attenuate UV
mutagenesis (Figs. 2 and 3) synergistically increased the UV sensitivity
of rev3A cells (Fig. 4F), indicating that the LRS mutations also attenuate
a Pol¢-independent mechanism.

Poln encoded by RAD30 catalyzes error-free TLS opposite CPDs [54],
and rad30A cells have elevated UV mutagenesis [55-57]. Poln also co-
operates with Pol¢ for TLS of 6-4PPs, which is mutagenic if the 3’
nucleotide of a 6-4PP is not C [9]. Poln primarily inserts a G opposite the
3’ nucleotide of a 6-4PP and Pol{ can extend the G by incorporating a
correct nucleotide opposite the 5’ nucleotide of the 6-4PP. In agreement
with previous reports [7,58], the Poln protein level did not significantly
change following UV irradiation (Fig. 4D; data not shown). However, all
the LRS mutant cells had a lower level of Poln (Fig. 4D and E). rad304
cells were more UV sensitive than rev34 cells (Fig. 4F and G), indicating
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Fig. 4. The histone H4 LRS mutations that attenuate UV mutagenesis may affect the Poln-dependent TLS as well. (A-E) Levels of 6 xFLAG-tagged Rev3 (A), and
3xFLAG-tagged Rev1 (B), Rev7 (C) and Rad30 (D and E) in the indicated cells. Histone H3 serves as the loading control. (F and G) UV sensitivities of rev3A (F) and

rad30A (G) cells with or without the indicated histone H4 LRS mutations.

that the Poln-dependent TLS contributes more to cell UV resistance than
does the Pol¢-dependent TLS. Most of the LRS mutations mildly (less
than additively) or had not at all (the D68I and A76T) increased the UV
sensitivity of rad30A cells (Fig. 4G). This indicates that most of the LRS
mutations are strongly implicated in the Poln-dependent TLS, which
may be at least in part due to decreased cellular levels of the Poln pro-
tein. This may also explain why the LRS mutations synergistically in-
crease the UV sensitivity of rev3A cells.

Activation of DNA damage checkpoint has been shown to promote
Pol¢-dependent error-prone TLS [59,60], as well as the
Rad51-dependent error-free TS [61]. Rad24 is a DNA damage sensor
that is required for the activation of the DNA damage checkpoint. All the

LRS mutations additively or synergistically increased the UV sensitivity
of rad24A cells (Supplementary Fig. 1A), indicating that the LRS muta-
tions may not significantly affect the DNA damage checkpoint
activation.

Decreased UV mutagenesis in the LRS mutant cells might also be
caused by enhanced error-free TS. Therefore, we tested epistatic in-
teractions of the LRS mutations with rad51A and rad524. Rad51 and
Rad52 are required for homologous recombinational repair of DNA
double-strand breaks and the formation of recombination intermediates
during TS [10,62,63]. All the LRS mutations that attenuate UV muta-
genesis additively increased the UV sensitivities of rad51A and rad52A
cells (Supplementary Fig. 1B and C). This indicates that the attenuation
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of UV mutagenesis by the LRS mutations are not caused by enhanced
Rad51- and Rad52-dependent error-free TS. Our observation that most
of the LRS mutations synergistically interact with rad184 (Fig. 3C),
which abolishes PCNA mono- and poly-ubiquitinations that is required
for TS, supports the idea that the LRS mutations do not significantly
affect the TS branch of PRR.

3.4. The attenuations of UV mutagenesis by the histone H4 LRS mutations
are not due to significant alteration of PCNA ubiquitination or sumoylation

Both TLS and TS have been well known to be tightly regulated by
ubiquitination and sumoylation of PCNA [13,14]. Mono- and
poly-ubiquitinations of PCNA are catalyzed by Rad6-Rad18 and
Ubc13-Mms2-Rad5, respectively. Sumoylation of PCNA is primarily
catalyzed by Sizl [13,14]. The expression levels of Rad6 and Radl8
were not significantly affected even in the Y72T, T73D and R78I mutant

WT
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cells (Fig. 5A and B; data not shown), which are severely defective in UV
mutagenesis (Figs. 2 and 3). As expected, following UV irradiation,
mono- and di-ubiquitination of PCNA were induced in WT but not rad6A
cells, and the di-ubiquitination did not occur in rad5A cells (Fig. 5C and
D). Also as expected, PCNA sumoylation at K164 was abolished, while
those at K127 and at both K164 and K127 diminished in siz1A cells
(Fig. 5C and D). The LRS mutations caused little, if any, changes of PCNA
ubiquitination or sumoylation (Fig. 5D). This indicates that the attenu-
ated UV mutagenesis in the LRS mutant cells is not due to alteration of
the PCNA modifications.

3.5. The attenuations of UV mutagenesis by the histone H4 LRS mutations
are unrelated to alteration of histone H3 K79 methylation

At the center of the nucleosomal LRS domain is histone H3 K79
(Fig. 1), which can be methylated by the methyltransferase Dotl [64].
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Fig. 8. Histone H4 LRS mutations might attenuate TLS by compromising nucleosome disassembly and/or reassembly at a lesion-stalled replication fork. (A) Structure
of a histone H3-H4 tetramer complexed with two MCM2 molecules (5BNV) [67]. (B and C) Cartoon and surface structures illustrating interactions between the
histone H4 LRS domain and MCM2. Side chains of histone H4 and MCM2 residues on the interaction surfaces are shown. Histone H4 residues that attenuate UV
mutagenesis are shown in magenta, and those that do not significantly affect UV mutagenesis are shown in green. (D) Histone H4 LRS mutations may compromise
nucleosome disassembly by MCM2 in front of a lesion-stalled replication fork of normal replicative polymerases ¢ and 8, thereby attenuating the loa-
ding/functionalities of TLS polymerases 1 and ¢ (undepicted). (E) Histone H4 LRS mutations may compromise nucleosome reassembly by MCM2, ASF1 and CAF-1
behind a lesion-stalled replication fork, thereby attenuating the loading/functionalities of TLS polymerases n and .

As expected, no mono-, di- or tri-methylation of histone H3 K79 can be
detected in dot1A cells (Fig. 6A). In agreement with previous reports (e.
g. [65]), cells lacking Rtf1, one of the 5 subunits of the RNA polymerase
II-associated factor 1 complex (PaflC), showed virtually no di- or
tri-methylation but increased mono-methylation of histone H3 K79
(Fig. 6A). By modulating mono-ubiquitination of histone H2B K123,
Paf1C is known to promote tri- and di-methylations but is dispensable
for mono-methylation of histone H3 K79 [66]. The T73D, T73F, T73Y
and R78I mutations severely decreased tri-, di- and/or
mono-methylations of histone H3 K79 (Fig. 6A). This may be due to the
fact that the histone H4 T73 and R78 residues are located underneath
the histone H3 K79 residue in the nucleosome (Fig. 1). However, the
R78S and all the other LRS mutations including the Y72T mutation that
drastically attenuated UV mutagenesis do not dramatically affect his-
tone H3 K79 methylations (Fig. 6A). To determine if the histone H3 K79
methylation affects UV mutagenesis, we measured UV-induced Can"
mutation frequencies in dotlA cells. As can be seen in Fig. 6B, the UV
mutagenesis in dot1A cells was similar to that in the WT cells. These
results indicate that the attenuation of UV mutagenesis by the histone
H4 LRS mutations is unrelated to the alteration of histone H3 K79
methylation.

3.6. All the UV sensitive histone H4 LRS mutations increase chromatin
accessibility

Chromatin structures pose constraints on all aspects of DNA trans-
actions [18]. Chromatin structures have been shown to inhibit PRR [23,
24]. We wondered if the LRS mutations decrease chromatin accessibility
thereby attenuating TLS and UV mutagenesis. Partial digestion of
chromatin with MNase, which preferentially cleaves the linker DNA
between nucleosomes, generates DNA ladders reflecting different
numbers of associated nucleosomes. Having a decreased accessibility of
chromatin will generate longer and/or sharper nucleosomal DNA lad-
ders. The histone H4 R67V mutation, which is located on the nucleo-
some surface, mildly increased UV resistance and had no deficiency in

UV mutagenesis (Fig. 2), did not significantly affect chromatin accessi-
bility (Fig. 7, compare the nucleosomal DNA ladders between the R67V
and WT cells). However, MNase treatments generated shorter and/or
blurrier nucleosomal DNA ladders in all the other LRS mutant cells
(including the E74M) than in the WT cells (Fig. 7). This may reflect the
fact that the LRS is required for heterochromatin formation and tran-
scriptional repression at specific yeast loci (which entail chromatin
compaction) (27,28). These results indicate that the attenuations of UV
mutagenesis by the LRS mutations are not due to decreased chromatin
accessibility. Instead, certain intact structures posed by the LRS domain
may actually play a positive role in TLS and mutagenesis.

4. DISCUSSION

We showed that histone H4 LRS mutations can attenuate UV muta-
genesis without affecting ubiquitination or sumoylation of PCNA.
Instead of being located on the nucleosome surface, all of the UV
mutagenesis-deficient LRS mutations are mostly or entirely embedded in
the nucleosome (Figs. 1 and 2). Therefore, the TLS machinery may not
recognize or access a feature of the LRS when the nucleosome is intact.
Instead, the LRS feature may be recognized or accessed during/after a
nucleosome is disassembled or during/before a nucleosome is assem-
bled. During DNA replication, nucleosomes must be disassembled ahead
of the replication fork and immediately reassembled behind the repli-
cation fork [67-69]. MCM2, a component of the CMG
(Cdc45-MCM-GINS) complex, and ASF1 and CAF-1 are histone H3-H4
chaperones involved in the disassembly and reassembly of nucleo-
somes. MCM2 captures parental H3-H4 tetramers and passes them to
ASF1 and CAF-1 to reassemble nucleosomes behind the replication fork
[67-69]. Histone chaperones are crucial for mitigating DNA replication
stresses, including those caused by DNA damage [70]. Indeed, CAF-1 is
rapidly recruited to chromatin following UV irradiation [71]. Structural
studies showed that a region (residues 96-121) of MCM2 extensively
interacts with the histone H4 LRS residues that would otherwise be
mostly embedded in the intact nucleosome (Figure 8A-C) [67].
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Therefore, it is likely that the histone H4 LRS mutations will affect in-
teractions with MCM2, compromising the disassembly (Figure 8D)
and/or reassembly of nucleosomes at lesion-stalled replication forks
(Figure 8E). The compromised disassembly and/or reassembly of nu-
cleosomes may attenuate the recruitment and/or functionality of Poln,
Pol¢ and other accessory factors for TLS. Also, the decreased level of Poln
in the LRS mutant cells (Fig. 4D and E) may at least in part exacerbate
the TLS deficiency. Future studies are needed to test this model.

We found that the LRS mutations that attenuate UV mutagenesis are
largely epistatic to rad6A and rad5A, but not rad184 (Fig. 3). This in-
dicates that these mutations affect the TLS mechanism(s) that is/are
largely dependent on Rad6 and Rad5, but not Rad18. It has been known
a long time ago that rad6 mutations can abolish UV mutagenesis,
whereas rad18 mutations do not significantly affect the mutagenesis
[33,41]. How Rad6 functions independently of Rad18 in TLS of UV le-
sions has been unknown. Rad6 also interacts with the ubiquitin ligase
Brel to mono-ubiquitinate histone H2B K123 [72], and with the ubiq-
uitin ligase Ubrl to poly-ubiquitinate proteins containing unacetylated
N-terminal residues causing their subsequent degradation [73].
Mono-ubiquitination of histone H2B K123 has recently been shown to
contribute to recombination-mediated DNA damage tolerance but not
TLS [74]. The interaction of Rad6 with Ubrl does not contribute to PRR
[75,76]. Rad6 may have an as-yet-unidentified substrate implicated in
TLS of UV lesions. This substrate may directly or indirectly affect
nucleosome disassembly and/or reassembly at a lesion-stalled replica-
tion fork (Figure 8), in which the LRS mutations are also implicated.

Rad5 is an E3 ubiquitin ligase and a DNA-dependent ATPase [37,38].
In addition to promoting overall error-free TS through
poly-ubiquitinating PCNA, Rad5 directly interacts with Revl and pro-
motes Pol¢-dependent TLS [39,77,78]. Although it is dispensable for
Poln-dependent error-free TLS of CPDs, Rad5 is required for TLS of
6-4PPs [38], which can be error-prone and requires the sequential ac-
tions of Poln and Pol¢ [9]. The role of Rad5 in TLS appears to be
structural as neither its ubiquitin ligase activity nor its ATPase activity is
required [37-39]. Some specific DNA structures, rather than
mono-ubiquitination of PCNA, have been suggested to be required for
recruiting Rad5 to damaged sites [77]. Compromised nucleosome
disassembly and/or reassembly caused by the LRS mutations (Figure 8)
may affect the generation of the specific DNA structures required for
recruiting Rad5 and associated TLS polymerases. Again, future studies
are needed to test this hypothesis.

In short, we discovered that the nucleosomal LRS plays an important
role in TLS and UV mutagenesis. The discovery may set a foundation for
future studies regarding how TLS takes place in the context of
chromatin.
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Supplementary materials for Selvam et al entitled “Histone H4 LRS mutations can attenuate UV
mutagenesis without affecting PCNA ubiquitination or sumoylation”.

Supplementary Table S1. Plasmids used.

Plasmid Description Source
pRS414 Single-copy empty vector with TRPI as election marker (D)
pRS416 Single-copy empty vector with URA3 as election marker (D)
PIFLAGKanMX | % 0 etom of o sene sing KanMX s seection marker | | )
p6FLAG-KanMX | As p3FLAG-KanMX, but with 6xFLAG replaced the 3XxFLAG This study
pRS416 with 1.8 kb HHTI-HHF'I gene pair (encoding wild type
pDM? histones H3 and H4) inserted at the HindIII-Xmal site 3)
pRS414 with 2.1 kb HHT2-HHF'2 gene pair (encoding wild type

pHTE2 histones H3 and H4) inserted at the Xhol-Sacll site @)
pHTF2 R67V As pHTF2, but with HHF2 codon R67V mutation @)
pHTF2 D681 As pHTF2, but with HHF2 codon D681 mutation @)
pHTF2 T711 As pHTF2, but with HHF2 codon T711 mutation 4)
pHTF2 Y72T As pHTF2, but with HHF2 codon Y72T mutation 4)
pHTF2 T73D As pHTF2, but with HHF2 codon T73D mutation 4)
pHTF2 T73F As pHTF2, but with HHF2 codon T73F mutation 4)
pHTF2 T73Y As pHTF2, but with HHF2 codon T73Y mutation 4)
pHTF2 E74M As pHTF2, but with HHF2 codon E74M mutation 4)
pHTF2 A76T As pHTF2, but with HHF2 codon A76T mutation 4)
pHTF2 R78I As pHTF2, but with HHF2 codon R781 mutation 4)
pHTF2 R78S As pHTF2, but with HHF2 codon R78S mutation 4)
pHTF2 T80L As pHTF2, but with HHF?2 codon T8OL mutation 4)




Supplementary Table S2. Yeast strains expressing wild type histones used.

Strain Genotype Plasmid Source
Y452 MATa ura3-52 his3-1 leu2-3 leu2-112 ®)]
MATa, leu2A1, his34200, ura3-52, trplA63, lys2-1284,
YBL574 (hht1-hhf1)A::LEU2, (hht2-hhf2)A::HIS3 Ty912435- pDM9 3)
lacZ::his4 (aka FY2162)

DL28 As Y452, but with r#f1::KanMX (6)

DL68 As Y452, but with dot1::KanMX (6)
AR197 As YBL574, but with rad51::KanMX pDM9 This study
AR198 As YBL574, but with rad52::KanMX pDM9 This study
KS109 As YBL574, but with radi8::KanMX pDM9 This study
KS110 As YBL574, but with rad30:: KanMX pDM9 This study
KS111 As YBLS574, but with rev3::KanMX pDM9 This study
KS113 As YBL574, but with rad24::KanMX pDM9 This study
KS107 As YBL574, but with rad5:: KanMX pDM9 This study
KS108 As YBLS574, but with rad6:: KanMX pDM9 This study
KS281 As YBL574, but with sizl::KanMX pDM9 This study
KS292 As KS107, but with KanMX deleted pDM9 This study
KS293 As KS108, but with KanMX deleted pDM9 This study
KS294 As KS281, but with KanMX deleted pDM9 This study
KS337 As YBL574, but with POL30 tagged with 3XFLAG pDM9 This study
KS338 As KS292, but with POL30 tagged with 3xFLAG pDM9 This study
KS339 As KS293, but with POL30 tagged with 3xFLAG pDM9 This study
KS340 As KS294, but with POL30 tagged with 3xFLAG pDM9 This study
KS644 As YBL574, but with RAD30 tagged with 3XFLAG pDM9 This study
KS969 As YBL574, but with REV7 tagged with 3xFLAG pDM9 This study
KS970 As YBL574, but with REV] tagged with 3XxFLAG pDM9 This study
KS971 As YBL574, but with RAD18 tagged with 3xFLAG pDM9 This study
KS972 As YBL574, but with RAD6 tagged with 3XFLAG pDM9 This study
KS1005 As YBL574, but with REV3 tagged with 6XFLAG pDM9 This study




Supplementary Figure 1. Histone H4 LRS mutations that attenuate UV mutagenesis additively increase
the UV sensitivities of rad24A (A), rad51A (B) and rad52A (C) cells.
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