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a b s t r a c t

As we move to increasingly complex cyber–physical systems (CPS), new approaches are needed to plan
efficient state trajectories in real-time. In this paper, we propose an approach to significantly reduce
the complexity of solving optimal control problems for a class of CPS with nonlinear dynamics. We
exploit the property of differential flatness to simplify the Euler–Lagrange equations that arise during
optimization, and this simplification eliminates the numerical instabilities that plague optimal control
in general. We also present an explicit differential equation that describes the evolution of the optimal
state trajectory, and we extend our results to consider both the unconstrained and constrained cases.
Furthermore, we demonstrate the performance of our approach by generating the optimal trajectory
for a planar manipulator with two revolute joints. We show in simulation that our approach is able
to generate the constrained optimal trajectory in 4.5 ms while respecting workspace constraints and
switching between a ‘left’ and ‘right’ bend in the elbow joint.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing demand to extend the boundaries of
utonomy in cyber–physical systems (CPS) using experimental
estbeds (see: Beaver et al., 2020; Chalaki et al., 2022; Jang
t al., 2019; Rubenstein et al., 2012) and outdoor experiments

(see: Chalaki et al., 2022; Mahbub &Malikopoulos, 2020; Vásárhe-
yi et al., 2018). As CPS achieve higher autonomy levels, they
ill be forced into complicated interactions with other agents
nd the surrounding environment (Beaver & Malikopoulos, 2021;
alikopoulos et al., 2021; Oh et al., 2017). These autonomous
gents must be able to react quickly to their environment and re-
lan efficient trajectories. To this end, we propose a new method
o simplify real-time optimal trajectory planning by exploiting
ifferential flatness.
A system is differentially flat if there exist a set of endogenous

lat variables, also called outputs, such that the original state and
ontrol variables can be written as an explicit function of the flat
ariables and a finite number of their derivatives. This yields an
quivalent flat system that is completely described by integrator
ynamics. It is significantly easier to generate control trajectories
n the flat space, wherein the trajectories can be exactly mapped

✩ This research was supported by NSF under Grants CNS-2149520 and CMMI-
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back to the original coordinate system. Differentially flat sys-
tems have garnered significant interest since their introduction
by Fliess et al. (1995), and it has been shown that generating
trajectories in the flat space can reduce computational time by
at least an order of magnitude (e.g., see: Petit et al., 2001). Dif-
ferentially flat systems are closely related to feedback linearizable
systems (Lévine, 2007); however, the standard control techniques
for flat systems are distinct from feedback linearization.

The overwhelming majority of research on trajectory gen-
eration with differential flatness uses collocation techniques,
i.e., finding optimal parameters for a set of basis functions in
the flat space. Under this approach, a designer selects an ap-
propriate basis function for their application, e.g., polynomial
splines in Mellinger and Kumar (2011), Sreenath et al. (2013),
Bezier curves in Milam (2003), Fourier transforms in Ogunbodede
(2020), or piece-wise constant functions in Kolar et al. (2017).
The parameters of these basis functions are optimally determined
to yield the optimal trajectory for the selected basis. A rigorous
overview of this approach is given in the recent textbook by Sira-
Ramirez and Agrawal (2018). In contrast, we propose an indirect
approach that seeks a solution by solving a set of optimality
conditions.

Our approach is similar to contemporary methods, such as
NOSNOC (see Nurkanović & Diehl, 2022) and the Method of Evolv-
ing Junctions (MEJ); see Li et al. (2017). Each of these algorithms
explicitly resolves the junctions that arise in the optimal control
problem. NOSNOC was developed to solve systems with switched
dynamics, and explicitly includes the switching point in its dis-
cretization. Similarly, MEJ has been used for optimal navigation in

https://doi.org/10.1016/j.automatica.2023.111404
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iscrete flow fields (see Zhai et al., 2022), where the boundary be-
tween different flow regions are explicitly resolved. Similarly, our
approach generates a collection of optimal trajectory segments
between discrete junctions. However, we determine the optimal
junctions using standard root-finding algorithms, whereas NOS-
NOC discretizes the entire space, and MEJ uses a stochastic global
search. Critically, MEJ has been applied to linear systems with
quadratic objective functions, e.g., see Li et al. (2017), which are
differentially flat. We also note that our approach gives an equa-
tion that describes the system’s trajectory between junctions,
whereas MEJ and NOSNOC give no such construction.

There are also weaker and more general analytical results
for the so-called maximal inversion approach by Chaplais and
Petit (2007, 2008), which proves that the optimality conditions
for a feedback linearizable system can be separated into two
parts—one describing the optimal state trajectory, and the other
describing the optimal costate trajectory. This separation result
is significant, as the general optimality conditions couple the
evolution of the states and costates—this leads to significant nu-
merical instabilities (see: Bryson, 1996). While Chaplais and Petit
(2008) proved that the optimality conditions are separable, in this
paper, we provide the analytical form of the ordinary differential
equation that explicitly describes their evolution. Furthermore,
while Chaplais and Petit (2008) considers control-affine nonlin-
ear systems, our proposed approach does not require affinity in
the control variables. More recent work following this approach
employs saturation functions to handle trajectory constraints,
e.g., Graichen et al. (2010), whereas our approach explicitly gen-
rates constrained optimal trajectories. Finally, we also derive the
ptimal boundary conditions in the flat space, which, to the best
f our knowledge, has not been addressed in the literature to
ate. The contributions of this paper are:

• We present a set of ordinary differential equations that
describe the evolution of the costates as explicit functions
of the state and control variables (Theorem 1).

• We derive optimality conditions that are independent of
the costates (Theorem 2). This independence property holds
for interior-point (Section 3.2) and path (Section 3.3) con-
straints.

• We derive equivalent boundary conditions for the state and
control variables when an initial or final state is left free or
when the final time is unknown (Section 3.4).

The remainder of the article is organized as follows. In Sec-
ion 2, we provide the modeling framework and enumerate our
ssumptions before presenting our main theoretical results in
ection 3. In Section 4, we provide an illustrative example of con-
rolling a nonlinear planar manipulator, and relate our differential
latness transformations to the forward and inverse kinematics.
inally, we draw concluding remarks and present directions of
uture work in Section 5.

. Problem formulation

Consider the nonlinear dynamical system,

˙(t) = f
(
x(t), u(t)

)
, (1)

here x(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rm, n ≥ m, are the state and
ontrol vectors, respectively, f is a smooth vector field, and t ∈ R
s time. The system is differentially flat if the following definition
olds.

efinition 1 (Adapted From Rigatos, 2015). A system described by
1) is said to be differentially flat if there exists a vector of outputs
(t) = (y (t), . . . , y (t)), such that:
1 m

2

(1) There exists a smooth function σ that maps x(t), u(t), and
a finite number of its derivatives to y, i.e.,

y(t) = σ
(
x(t), u(t), u̇(t), . . . , u(p)(t)

)
, (2)

for some p ∈ N.
(2) The variables x(t) and u(t) can be expressed as smooth

functions of y(t) and a finite number of its time derivatives,
i.e.,

x(t) = γ0
(
y(t), ẏ(t), . . . , y(q)(t)

)
, (3)

u(t) = γ1
(
y(t), ẏ(t), . . . , y(q)(t)

)
, (4)

for some q ∈ N.
(3) The vectors y(t), i = 1, . . . ,m and their time deriva-

tives are differentially independent, i.e., there exists no
differential relation satisfying η(y, ẏ, . . . ) = 0.

hen the variables yi(t), i = 1, 2, . . . ,m are the outputs of the
ifferentially flat system.

Definition 1 implies a smooth bijective mappings σ , γ0, and γ1
etween the original space, X × U × U (1)

× . . . , and a flat space
× Y (1)

× . . . . Furthermore, since this mapping uses only the
riginal state variables and their derivatives, this is said to be an
ndogenous transformation.
For a comprehensive discussion on differential flatness and

he topological properties of flat spaces see Fliess et al. (1999).
ext, we impose our working assumptions for the analysis of
ifferentially flat systems that satisfy Definition 1.

ssumption 1. The trajectory of the system is contained in an
pen set where the functions (2)–(4) are well-defined.

ssumption 2. The control actions in the original and flat spaces
re upper and lower bounded.

Assumption 1 is a standard assumption in the literature
see: Van Nieuwstadt et al., 1994). It can be relaxed by con-
training the trajectory to remain within a subset where (2)–(4)
re well-defined, and several relaxations of this assumption are
iscussed in Milam (2003).
Assumption 2 is common in optimal control (see: Bryson &

o, 1975), particularly for physical systems where actuators are
ltimately bounded by their physical strength or energy con-
umption. This assumption can be relaxed by allowing the control
nput to take the form of a Dirac delta function, which introduces
dditional complexity that requires nonsmooth analysis.
We note that, for mechanical systems, Assumption 1 has been

roven to hold for a broad class of practical problems. For exam-
le, in the case of robot manipulators, the diffeomorphism (2) is
xactly the forward kinematics, and the inverse transformations
3) and (4) are exactly the inverse kinematics and inverse dy-
amics. While providing an algorithm to determine the inverse
inematics in general is an open problem, the transformations
ave been derived and tabulated for many systems (see Spong
t al., 2020 for some examples). We also demonstrate in our
xample that singularities in the transformations are equivalent
o the unconstrained switching points of Bryson and Ho (1975);
e treat these as interior point constraints in our case study.
urthermore, when discontinuities of the first kind appear in
hese transformations, they can easily be handled by piecing
he left and right limits using continuity in the state—which is
mplied by the differentially flat dynamics and bounded control
n Assumption 2 (Bryson & Ho, 1975). This further motivates our
pproach, which is robust to these kinds of discontinuities and
ingularities.
Next, as an illustrative example of our approach, we introduce

‘‘running’’ example that we will refer back to throughout the
anuscript: a unicycle operating in R2.



L.E. Beaver and A.A. Malikopoulos Automatica 159 (2024) 111404

[

t

a

P
n
f
m

s

w
s
d

o
t

3

f

Fig. 1. An overview of our proposed approach, showing how the original optimization problem is split into motion primitives in the flat space. These are optimally
pieced together to generate the optimal trajectory in either space.
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Example 1. Let x(t) = [px(t), py(t), θ (t)]T be the state of a uni-
cycle in the R2 plane, where px(t) and py(t) denote the position,
and θ (t) denotes the heading angle. Let u(t) = [u1(t), u2(t)]T be
the vector of control actions, where u1(t) and u2(t) denote the
forward and angular velocity, respectively. Then, the dynamics
are given by,

ẋ(t) =

⎡⎣u1(t) cos
(
θ (t)

)
u1(t) sin

(
θ (t)

)
u2(t)

⎤⎦ . (5)

This system admits m = 2 differentially flat base states, y(t) =
y1(t), y2(t)]T = [px(t), py(t)]T (see Sira-Ramirez & Agrawal,
2018). The transformations (3) and (4) between the flat and
original variables are⎡⎣px(t)
py(t)
θ (t)

⎤⎦ =

⎡⎣ y1(t)
y2(t)

atan2(ẏ2, ẏ1)

⎤⎦ , (6)

[
u1(t)
u2(t)

]
=

[√
ẏ1(t)2 + ẏ2(t)2

ÿ2 ẏ1−ẏ2 ÿ1
ẏ22+ẏ21

]
, (7)

which satisfy Assumption 1 for u1(t) ̸= 0. Note that atan2 is the
wo-argument inverse tangent with codomain (−π, π].

Next, we formulate a constrained optimal control problem for
system governed by (1) under Assumptions 1 and 2.

roblem 1. Consider a differentially flat system (1) with run-
ing cost L

(
x(t), u(t)

)
over the time horizon [t0, t f ] ⊂ R and a

inal cost φ(x(t f ), u(t f )). Determine the optimal control input that
inimizes the cost, i.e.,

min
u(t)

φ
(
x(t f ), u(t f )

)
+

∫ t f

t0
L
(
x(t), u(t)

)
dt

ubject to: (1),
ĝ
(
x(t), u(t), t

)
≤ 0,

given: initial conditions, final conditions,

here the initial and final states may be fixed, a function of the
tate variables, or left free. In addition, the function ĝ(x(t), u(t), t)
efines a vector of state and control trajectory constraints.

In what follows, we present our main results, which yield a set
f sufficient conditions for optimality that are only dependent on
he state and control variables.

. Main results

We generate the optimal solution to Problem 1 as follows:

irst, we apply the diffeomorphism of Definition 1 to generate an

3

quivalent problem in the flat space. Next, we apply Pontryagin’s
rinciple to construct the Hamiltonian in the flat space, and apply
he Euler–Lagrange and optimality conditions to generate an or-
inary differential equation that describes the optimal motion of
he system. We solve the differential equation to generate all pos-
ible dynamical motion primitives that the optimality conditions
dmit; we achieve this by considering every possible combination
f constraints that could become active along the trajectory over
non-zero time interval. This procedure is similar to exhaustively
hecking every possible constraint activation in a static optimiza-
ion problem to guarantee complimentary slackness as part of
he KKT conditions (Boyd & Vandenberghe, 2004). Finally, the
esulting motion primitives can be passed back through the flat-
ess diffeomorphism to generate the optimal motion primitives
n the original coordinate system. Thus, we generate a collection
f optimal motion primitives – in both the original and flat
oordinates – that must be pieced together using the optimality
onditions to generate the optimal solution to Problem 1. This
rocess is summarized in Fig. 1.

.1. Separability of the optimality conditions

First, we construct the flat space, which allows us to trans-
orm Problem 1 into an optimization over the differentially flat
ariables. Note that the transformations (3), (4), are a function of
= [y1, y2, . . . , ym] and a finite number of their derivatives. Thus,
e perform dynamic extension on each of our i = 1, 2, . . . ,m
utput variables yi by taking ki time derivatives. The value of
i is the minimum number of derivatives required to span the
omain of (3) and (4), and thus it depends explicitly on the
iffeomorphism in Definition 1. This can be achieved using the
ynamic extension algorithm, as detailed in Di Benedetto et al.
1989). Using the dynamic extension, we define analogous state
nd control variables for the system in the flat space.

efinition 2. Group each output yi, i = 1, . . . ,m and their ki
erivatives into the state vector s(t) and control vector a(t) such
hat,

s(t) =
[
y1(t), . . . , y(k1−1)

1 (t), . . . , y(km−1)
m (t)

]T
, (8)

(t) =
[
y(k1)1 (t), . . . , y(km)

m (t)
]T
, (9)

nd s× a ∈ Y × Y (1)
× . . . span the flat space.

Remark 1. For the unicycle system in Example 1, the flat state
and control variables are

s(t) =
[
y1(t), y2(t), ẏ1(t), ẏ2(t)

]T
, (10)

a(t) =
[
ÿ1(t), ÿ2(t)

]T
, (11)
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hich consists of two integrator chains, each with a length of
i = 2, for i = 1, 2.

With the flat space completely defined, we apply the map-
ings (Definition 1) to construct an equivalent optimal control
roblem over the flat variables.

roblem 2. Find the cost-minimizing trajectory in the flat space,

min
a(t)

Φ(s(t f ), a(t f ))+
∫ t f

t0
Ψ
(
s(t), a(t)

)
dt

ubject to: ṡ = I(s(t), a(t)),
g
(
s(t), a(t), t

)
≤ 0,

given: initial conditions, final conditions,

here I denotes integrator dynamics from Definition 2 in
runovsky canonical form (Brunovský, 1970), while Φ , Ψ , g , and
he boundary conditions are constructed by composing φ, L, ĝ and
he boundary conditions of Problem 1 with the inverse of (3) and
(4).

Under the framework proposed by Bryson and Ho (1975), we
write the constraint g with explicit dependence on the control ac-
tion a(t). This is not restrictive on our analysis, and we rigorously
prove in Section 3.3 that, under Assumption 2, any trajectory
constraint h(s(t), t) can be transformed into an explicit function
of the control input. This is achieved by taking successive time
derivatives of h(s(t), t) until any component of the control vector
a(t) appears; this yields a constraint with explicit functional de-
pendence on the control variable and a set of tangency conditions
that must be satisfied. This technique is similar to the derivation
of control barrier functions with high relative degree, as discussed
in Xiao and Belta (2019).

Note that solving Problem 2 yields the optimal solution to
Problem 1 through Definition 1, and this construction is common
in the literature (see Fliess et al., 1995; Milam, 2003; Ogun-
bodede, 2020; Petit et al., 2001 for examples). We present our
first result next, which decouples the state and costates for the
Hamiltonian function associated with Problem 2. Note that to
simplify the notation, we omit the explicit dependence on a(t),
s(t), and t for the remainder of this Section where it does not
lead to ambiguity.

We follow the standard process of Bryson and Ho (1975), Ross
(2015) for solving optimal control problems. First, we construct
the Hamiltonian for Problem 2,

H = Ψ (s(t), a(t))+ λT (t)I(s(t), a(t))

+ µT (t)g
(
x(t), a(t), t

)
, (12)

where λ(t) is the vector of costates, g is a vector of inequality con-
straints, and µ(t) is a vector of inequality Lagrange multipliers.
This leads to our first result.

Theorem 1.
The costates λy

(j)
i , for each base state i = 1, 2, . . . ,m and

derivative j = 0, 1, . . . , ki − 1, for Problem 2 are,

λy
(j)
i =

ki−j∑
n=1

(−1)n
dn−1

dtn−1

(
Ψy(j+n)

i
+ µTgy(j+n)

i

)
, (13)

here the d
dt operator is the Cartan field of Fliess et al. (1999).

roof. The Euler–Lagrange and optimality equations for (12) are,

λ̇
T
= Ψs + λT I s + µTg s, (14)

0 = Ψa + λT Ia + µTga, (15)
4

where the subscripts a and s correspond to partial derivatives
with respect to those variables. We simplify (14) by exploiting
the integrator structure of I for each element of s(t).

Note that, by construction,

λT I s =
[
0, λy1 , . . . , λy

(k1−2)
1 , . . . , 0, λym , . . . , λy

(km−2)
m

]
, (16)

λT Ia =
[
0, 0, . . . , λy

(k1−1)
1 , 0, 0, . . . , λy

(km−1)
m

]
. (17)

First we consider (15) for some base state i ∈ {1, 2, . . . ,m}, which
yields,

0 = Ψ
y
(ki)
i

+ λy
(ki−1)
i + µTg

y
(ki)
i
, (18)

which satisfies Theorem 1 when j = ki − 1. Next, for j ∈

{0, 1, . . . , ki − 1}, (14) implies,

λ̇y
(j)
i = −Ψy(j)i

− λy
(j−1)
i − µTgy(j)i

. (19)

For the case that j = ki − 1, (19) becomes,

λ̇y
(ki−1)
i = Ψ

y
(ki−1)
i

+ λy
(ki−2)
i − µTg

y
(ki−1)
i

. (20)

Solving (18) for λy
(ki−1)
i , taking its derivative, and substituting

the result into (20) satisfies Theorem 1 for j = ki − 2. Taking
repeated time derivatives and substituting completes the proof
of Theorem 1. □

Theorem 1 could be interpreted as an alternative to the proof
of separability presented in Chaplais and Petit (2008), however,
our result is constructive and explicitly derives the costates as
functions of state and control variables. Furthermore, our result
relies on differential flatness, rather than feedback linearization,
and does not require affinity with respect to the control inputs
in the system dynamics. Furthermore, in the following subsec-
tions, we apply Theorem 1 to generate the optimal constrained
trajectory and boundary conditions as a function of the state and
control variable. This, to the best of our knowledge, has not been
addressed to date.

Remark 2. For the unicycle system in Example 1, the costates
are,

λy
= −

(
ψẏ + µTg ẏ

)
+

d
dt

(
ψa + µTga

)
, (21)

y(1)
= −

(
ψa + µTga

)
. (22)

Our next result comes from manipulating Theorem 1 to elim-
inate the costate variables; this yields an equivalent optimality
condition that is independent of the costates.

Theorem 2. The optimal trajectory for the system described in
Problem 2 satisfies

ki∑
n=0

(−1)n
dn

dtn

(
Ψy(n)i

+ µTgy(n)i

)
= 0, (23)

for each integrator chain starting with the base state yi, i =

1, 2, . . . ,m.

Proof. By Theorem 1,

λyi =

ki∑
n=1

(−1)n
dn−1

dtn−1

(
Ψy(n)i

+ µTgy(n)i

)
, (24)

while for j = 0 (19) implies,

λ̇yi = −Ψ − µTg . (25)
yi yi
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˙ yi = −Ψyi − µTgyi

=

ki∑
n=1

(−1)n
dn

dtn
(
Ψy(n)i

+ µTgy(n)i

)
, (26)

hich proves Theorem 2. □

Note that while we prove Theorem 2 for the flat space, the
apping (3) and (4) can be composed with (23) to generate an
quivalent optimality condition in the original space. Thus, the
eparation of states and costates is independent of the coordinate
ystem, and is instead a fundamental property of differentially flat
ystems.

emark 3. Applying Theorem 2 to Example 1 yields the optimal-
ty equation,

Ψp + µTgp
)
−

d
dt

(
Ψv + µTgv

)
+

d2

dt2
(
Ψa + µTga

)
= 0.

Furthermore, the following (arbitrary) terminal cost, running
ost, and constraints,

=
1
2
u2(t)2, L =

1
2
u1(t)2, ĝ = θ − θmax ≤ 0,

become

Φ =
1
2

( ÿ2ẏ1 − ẏ2ÿ1
ẏ22 + ẏ21

)2
, Ψ =

1
2

(
ẏ1(t)2 + ẏ22

)
,

g ′ = atan2
(
ẏ2(t), ẏ1(t)

)
− θmax ≤ 0.

he transformed constraint g ′ is not an explicit function of the
ontrol variables ÿ1 or ÿ2. We resolve this by taking a single
erivative of the constraint, which we call g :=

d
dt g

′. The new
unction g is an explicit function of the control variables, and
we take partial derivatives of it in the optimality equation—we
discuss this step in further detail in Section 3.3. Note that we
ave, in essence, moved the nonlinearities of the dynamics into
he objectives and constraints.

While Theorem 2 describes the evolution of the optimal state
rajectory, one must also consider instantaneous jumps in the
rajectory caused by constraint activations. Consider a constraint
ector g that has c linearly independent rows, then µ(t) is a c×1

matrix. When a constraint gi, i = 1, 2, . . . , c does not influence
the system trajectory then µi(t) = 0 by definition, otherwise
µi(t) > 0. When µ = 0 the trajectory is said to follow a singular
(unconstrained arc), and if any µi > 0, then the trajectory is said
to follow a regular (constrained) arc. When the system switches
between singular and regular arcs, the corresponding costates
may switch instantaneously at the so-called constraint junction.

We propose a new interpretation of this property, where the
collection of singular and regular arcs constitute a set of optimal
motion primitives. A vector of c constraints implies at most 2c dif-
ferent motion primitives, which can be automatically computed
using Theorem 2 and the corresponding constraint equations. In
other words, Theorem 2 provides an optimal motion primitive
generator, which can be solved numerically or analytically to
derive every possible motion primitive.

In this context, dealing with switching elements of µ(t) is
reduced to optimally switching between a finite set of motion
primitives at unknown constraint junctions. The standard ap-
proach of Bryson and Ho (1975) derives optimality conditions
that must be satisfied at each junction,

λ−T
= λ+T

+ πTN s, (27)

H+
− H−

= πTN , (28)
t

5

∂H−

∂a−
=
∂H+

∂a+
= 0, (29)

where the superscripts − and + denote the instant in time
just before and just after the junction, respectively, π is a con-
stant vector of Lagrange multipliers, N is a vector of tangency
conditions, which we rigorously derive in the following subsec-
tions, and the subscripts s and t correspond to partial derivatives
with respect to the state and time. In the following subsections,
we employ Theorem 1 to exhaustively write the jump condi-
tions (27)–(29) as explicit functions of the state and control
variables. This enables us to solve Problem 2 using only the state
and control variables, which removes the numerical instabilities
that are generally associated with nonlinear optimal control.

3.2. Interior-point constraints

First, we consider the case where a set of state and/or control
values are imposed at a single time instant. Let h

(
s(t1), t1

)
= 0

describe an interior point constraint that is imposed at some time
t1. We construct the tangency vector,

N
(
s(t), t

)
=

[
h
(
s(t), t

)
t − t1

]
, (30)

which is necessary and sufficient for constraint satisfaction at
t1 when N

(
s(t1), t1

)
= 0. Note that if the time t1 is unknown,

then (30) reduces to N = h. To determine the optimal jump
conditions, we substitute the tangency vector (30) into the opti-
mality Eqs. (27) and (28). Applying Theorem 1 to (27)–(29) yields∑m

i=1{ki −1}+1 equations that determine the optimal change in
a and its derivatives at t1, and these equations are independent
of the costate vectors.

Further manipulating (27)–(29) yields a useful pair of equa-
tions that are amenable to finding an analytical solution. First, we
substitute (12) into (28) and use (27) to eliminate λ−,

(Ψ +
− Ψ −)+ (µ+Tg+

− µ−Tg−)

+ λ+T (I+ − I−) = πT (N t + N sI−
)
. (31)

Note that, by definition, µTg = 0 along the optimal state-
trajectory, thus we set those terms equal to zero. Furthermore,
the state trajectory is continuous under Assumption 2 and the
integrator dynamics. Thus,

I+ − I− =

[
0

a+ − a−

]
. (32)

Applying Theorem 1 to (31) for the case j = ki−1 and simplifying
yields,

(Ψ +
− Ψ −) − (Ψa + µTga)

−
· (a+ − a−)

= πT (N t + N sI+
)
. (33)

Following a similar process also implies,

(Ψ +
− Ψ −) − (Ψa + µTga)

+
· (a+ − a−)

= πT (N t + N sI−
)
. (34)

3.3. Path constraints

Next, we consider the case when path constraints on the
state and/or control variables are imposed on Problem 2 and
influence the trajectory of the system. To generate our optimal
motion primitive using Theorem 2, we first need to ensure our
constraints are functions of the state and control variables. Let
hi
(
s(t), t

)
≤ 0 denote the i = 1, 2, . . . , c state or control

constraints. Note that hi is not required to be an explicit function
of the control input. Under the standard approach of Bryson and
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o (1975), we require that hi is at least qi-times differentiable,
here qi is the minimum number of derivatives required for any

component of the control input to appear in dqi
dtqi hi. To guaran-

tee satisfaction of the original constraint hi, we construct the
tangency vector,

N i(s(t), t) :=

⎡⎢⎢⎢⎢⎣
hi
(
s(t), t

)
h(1)
i

(
s(t), t

)
...

h(qi−1)
i

(
s(t), t

)

⎤⎥⎥⎥⎥⎦ , (35)

nd define the constraint,

i
(
s(t), a(t), t

)
:= h(qi)

i

(
s(t), a(t), t

)
. (36)

hus, whenever hi
(
s(t), t

)
= 0 over a non-zero interval, we

impose N i
(
s(t), t

)
= 0 and g i

(
s(t), a(t)

)
= 0 over the interior

of the interval; this satisfies the original constraint under As-
sumption 2 (Bryson & Ho, 1975). Note that, if hi is a function
of the control variable, q = 0 and N i is empty. Furthermore, if
the constraint is active over a zero-length interval, the problem
reduces to the analysis in Section 3.2 with an unknown activation
time.

Finally, to construct the tangency matrix for the c constraints,
we construct the stacked tangency vector,

N
(
s(t), t

)
=

⎡⎢⎢⎢⎣
N1

(
s(t), t

)
N2

(
s(t), t

)
...

N c
(
s(t), t

)
⎤⎥⎥⎥⎦ , (37)

which accounts for all of the constraints that may influence the
state and control trajectory. As with the previous section, (27)–
(29) determine the required instantaneous change in the control
variables and their derivatives for an optimal trajectory.

Again, further manipulating (27)–(29) yields a pair of useful
equations. Note that, by construction,

πT Ṅ+
= 0, (38)

as N i = 0 and g+

i = 0 when constraint i is active, and the
corresponding πi = 0 otherwise. Thus, taking the full derivative
implies

πT Ṅ+
= πT

(
N t + N s · I+

)
= 0. (39)

Thus, applying (33) at the end of a constrained motion primitive
yields

(Ψ +
− Ψ −)− (Ψa + µTga)

−
· (a+ − a−) = 0. (40)

This leads directly to our next result,

Corollary 1. If the system exits from or enters to an unconstrained
motion primitive, the optimal control input satisfies

Ψ +
− Ψ −

− Ψ −

a (a+ − a−) = 0, or (41)

Ψ +
− Ψ −

− Ψ +

a (a+ − a−) = 0, respectively. (42)

Proof. When the system exits from an unconstrained motion
primitive, µ−

= 0 and the result follows by (40). When the
system enters an unconstrained motion primitive, µ+

= 0 and
π = 0; the result follows by (33). □

Corollary 2. If the objective function has the form Ψ = f (s(t)) +
∥a(t)∥2, then the control input a(t) is always continuous when the
system enters or exits an unconstrained motion primitive.

Proof. The proof follows trivially from Corollary 1 and continuity
in s(t) from Assumption 2. □
6

3.4. Boundary conditions

The results of Sections 3.2 and 3.3 completely describe the
evolution of the system if the boundary conditions are known.
Next, we extend this result to the case that a boundary condition
is unspecified by applying Theorem 1.

Corollary 3. Let the state y(j)i (t) for i ∈ {1, 2, . . . ,m} and j ∈

{0, 1, 2, . . . , ki − 1} be unspecified at a boundary, i.e., it can be
arbitrarily selected. There exists an equivalent boundary condition
that guarantees optimality of the system trajectory.

Proof. Without loss of generality, let the state variable y(j)i (t)
be undefined at the final time t f . Under the standard approach
(Bryson & Ho, 1975), the corresponding boundary condition
λy

(j)
i (t f ) = 0 is required to guarantee optimality. Thus, by The-

orem 1,
ki−j∑
n=1

(−1)n
dn−1

dtn−1

(
Ψy(j+n)

i
+ µTgy(j+n)

i

)⏐⏐⏐
t f
= 0 (43)

is an equivalent boundary condition. □

In practice, it is likely that Problem 2 will have boundary
conditions defined by functions of the state variables. Without
loss of generality, let B(s(t f ), t f ) = 0 describe the functional
constraints at t f . This implies that

λT (t f ) =
(
∂Φ

∂s
+ ν

∂B
∂s

)
t=t f

, (44)

(s(t f ), t f ) = 0, (45)

here ν is a constant Lagrange multiplier that guarantees con-
traint satisfaction (see: Bryson & Ho, 1975). Applying Theorem 1
o (44) results in a system of equations that guarantees constraint
atisfaction at the boundaries, which ensures that Problem 2 has
he correct number of initial and final conditions.

Finally, it is possible that the boundary conditions are de-
cribed at an unknown terminal time. In this case, the optimal
erminal time t f satisfies (Bryson & Ho, 1975)

=

[
∂Φ

∂t
+ ν

∂B
∂t

+

(∂Φ
∂s

+ νT ∂B
∂s

)
I + Ψ

]
t=t f

= 0. (46)

Thus, Problem 2 always corresponds to a two-point boundary
alue problem with m initial conditions and m final conditions
hat are independent of the costates. Next, we present a numer-
cal example for generating the trajectory of a double-integrator
ystem in real time.

. Robotic manipulator case study

To demonstrate the effectiveness of our approach, we consider
he motion planning problem for a planar serial manipulator with
wo revolute joints, which we refer to as the manipulator. In
articular, we derive the optimal trajectory for the pick-and-place
roblem. Note that, to improve readability, we omit the explicit
ependence of variables on time where it does not cause ambi-
uity. We use the standard model for our manipulator, which is
epicted in Fig. 2.
The state space x = [θ1, θ2, θ̇1, θ̇2]

⊺ corresponds to the joint
pace of the manipulator, and the action space u = [τ1, τ2]

⊺ is
he torque applied at each angle. The manipulator’s dynamics are
iven by,
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Fig. 2. A 2-link serial manipulator with 2 revolute joints.

= D(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ), (47)

here θ = [θ1, θ2]
⊺, D is the inertial matrix, C is the Coriolis

matrix, and G is the gravitational matrix (see Spong et al., 2020
for further details).

In this case study we consider a pick-and-place task, i.e., we
seek to plan a trajectory for the grasper located at point p. The
system is under-actuated; we have two control inputs, namely,
the two joint torques applied to θ1 and θ2. However, we have
hree states of interest: the Cartesian position of the grasper at
oint p and its orientation. For pick-and-place, our variable of
nterest is the grasper position p, and the manipulator satisfies
he definition of differential flatness with p as the flat output
ariable. In fact, the diffeomorphism from the joint to the state
pace is exactly the forward and inverse kinematics. We also note
hat the inverse kinematics for the manipulator are non-unique
nd contain a singularity when θ2 = Kπ for any integer K . In

the sequel, we demonstrate that these singularity points can be
included as interior point constraints per Section 3.2—which we
can either impose or avoid as part of our optimal control problem.

First, we write the grasper position as an explicit function of
the state variables using the forward kinematics,

p =

[
px
py

]
= l1

[
cos(θ1)
sin(θ1)

]
+ l2

[
cos(θ1 + θ2)
sin(θ1 + θ2).

]
. (48)

The joint angles can also be written as an explicit function of
he output variables using the inverse kinematics (Spong et al.,
020),

2 = ± cos−1
(
p2x + p2y − l21 − l22, 2 l1l2

)
, (49)

1 = atan2
(
py, px

)
− atan2

(
l2 sin(θ2), l1 + l2 cos(θ2)

)
.

Finally, composing the inverse dynamics (49) and its deriva-
ives with the dynamics (47) yields the control input τ as an
xplicit function of the position p. Thus, the forward and inverse
inematics of the serial manipulator are exactly the diffeomor-
hisms of Definition 1. The resulting flat state and action space
s,

=

[
p
ṗ

]
, a = p̈. (50)

Next, for the pick-and-place task, we seek to bring the ma-
ipulator from its current state at time t = 0 and position the
7

rasper at a desired position at some later time T > 0, i.e.,

p(0) = l1

[
cos(θ1)
sin(θ1)

]
+ l2

[
cos(θ1 + θ2)
sin(θ1 + θ2)

]
,

ṗ(0) =
d
dt

p(t = 0),

p(T ) = pf ,

ṗ(T ) = 0.

(51)

Note that the inverse kinematics (49) are non-unique. Thus,
any position p(t) that is non-singular at time t can correspond to
a ‘left’ or ‘right’ bend in the elbow at θ2. We refer to these as the
two ‘modes’ of the manipulator. The initial mode at time t = 0
is determined by the initial state; the final mode at time t = T
can be selected to influence the final orientation of the grasper.
If the initial and final modes differ, then the grasper must enter
a singular configuration at some time t1 ∈ (0, T ), i.e.,

∥p(t1)∥2 = (l1 + l2)2, or

∥p(t1)∥2 = (l1 − l2)2.
(52)

Thus, may we include (52) as an interior point constraint with
an unknown time as per Section 3.2 when the initial and final
odes are distinct. Finally, to ensure Assumption 1 is satisfied,

we must constrain the grasper to remain within the manipulator’s
workspace, i.e.,

∥p∥2 − (l1 + l2)2 ≤ 0, (53)

(l1 − l2)2 − ∥p∥2 ≤ 0, (54)

which coincidentally coincides with the singular configuration of
this manipulator.

To summarize, our approach enables us to formulate the op-
timal manipulator trajectory planning problem as a kinematic
particle with workspace bounds (53), (54). We can switch be-
tween ‘left’ and ‘right’ bending modes with the interior point
constraint (52) if the initial and final modes are distinct, or we
can constrain the manipulator to avoid singular configurations.

Finally, for brevity of our analysis, we present an optimization
problem that minimizes the L2 norm of the grasper’s accelera-
tion; this minimizes the magnitude of the force that the grasper
must apply during the pick-and-place operation. For more com-
plex objectives, e.g., minimizing the total joint torque, the ob-
jective function must be written as an explicit function of p
and any number of its derivatives using (49). While this may be
challenging analytically, it is trivial to achieve using automatic
differentiation, e.g., with Maple, Matlab, or Autodiff. Our final
optimal control problem is

min
a(t)

1
2

∫ T

0

1
2
∥a∥2dt

subject to:
integrator dynamics p̈ = a,

initial conditions (51),
ode switching constraint (52),

workspace constraints (53), (54),

where the mode switching constraint is neglected if the initial
and final configurations share the same mode.

Optimal Motion Primitives: We employ Theorem 2 to generate
an ordinary differential equation that is sufficient for optimality,

ä+ 2µip− 2µop = 0, (55)

where µi and µo are the time-varying Lagrange multipliers cor-
responding to the inner and outer bounds of the workspace
in (53) and (53), respectively. Both constraints cannot be ac-
tive simultaneously, thus there are only three dynamical motion
primitives:
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(1) Unconstrained motion, µi = µo = 0.
(2) Inner constraint, µi ≥ 0 and ∥p∥ = l1 − l2.
(3) Outer constraint, µo ≥ 0 and ∥p∥ = l1 + l2.

The optimal trajectory is a piecewise combination of these
three cases. We construct the dynamical motion primitives from
(55) with the orthonormal unit vectors p̂ and t̂ , which are parallel
and perpendicular to the position vector p, respectively. The
resulting motion primitives are,

ä = 0 (unconstrained) (56)
ä · p̂+ 2(l1 − l2)µi(t) = 0

ä · t̂ = 0
(inner constrained) (57)

ä · p̂+ 2(l1 + l2)µo(t) = 0

ä · t̂ = 0
(outer constraint) (58)

Each dynamical motion primitive has a solution,

a(t) = c1t + c2 (unconstrained), (59)

a(t) · p̂ =
v2

r

ä · t̂ = 0
(constrained). (60)

here r = (l1 + l2) for the outer constraint and r = (l1 − l2) for
he inner constraint.

To avoid unnecessary complexity in this example, we intro-
uce an additional assumption for this case study.

ssumption 3. The boundary conditions satisfy (l1 − l2) <
p(t)∥ < (l1 + l2), and the constraints bounding p(t) are active
nly instantaneously.

We only employ Assumption 3 for brevity; the implication
s that the optimal trajectory consists of an unknown number
f unconstrained arcs connected with interior point constraints.
e have found this constraint to be reasonable for energy-
inimizing systems that start and stop at rest, e.g., see Beaver

2023), Beaver et al. (2023).

witching Conditions: Under Assumption 3, the optimal solution
s a piecewise collection of unconstrained optimal motion prim-
tives connected at junction points. The unconstrained optimal
rajectory is a system of 8 equations and 8 unknowns, which
re the boundary conditions (51) and 8 unknown constants of
ntegration for the optimal motion primitives, i.e.,

p = c3t3 + c2t2 + c1t + c0,
v = 3c3t2 + 2c2t + c1,
= 6c3t + 2c2

(61)

In particular, the initial and final conditions are captured by a
et of linear equations

A(0)c0 = b0, (62)

(T )c f = bf , (63)

here A(0)c0 and A(T )c f denote the initial and final uncon-
trained trajectory segments (61) evaluated at t = 0 and t = T ,
espectively. The vectors c0 and c f contain the constants of inte-
ration for the initial and final unconstrained motion primitives,
nd b0, bf are the initial and final conditions. In the case that
he unconstrained trajectory is feasible, c0 = c f and the system
onsists of a single unconstrained arc.
If the unconstrained trajectory is infeasible, or the initial and

inal modes of the manipulator are distinct, then the trajectory
ust transition to a singular configuration where either the inner
r outer workspace constraint becomes active. Under Assump-
ion 3, this implies that there is only a single junction, and that it
s an interior point constraint at an unknown time t . Following
1

8

ection 3.2, we first write the tangency vector with an unknown
ctivation time,

(s(t), t) = (l1 − l2)2 − ∥p∥2. (64)

The tangency condition is satisfied by definition when θ2 = π ;
his allows us to write the tangency condition in an equivalent
orm that is linear in p. We achieve this by parameterizing the
oint p with the unknown angle θ1,

(t1) = (l1 − l2)
[
cos(θ1)
sin(θ1)

]
. (65)

Next, using Theorem 1 to rewrite the costates yields,
v
= −a− 2µip (66)

λp
= ȧ+ 2µ̇ip− 2µiv. (67)

ubstituting these into jump in the costates (27) yields,

˙
+
+ 2µ̇+

i p− 2µ+

i v = ȧ− + 2µ̇−

i p− 2µ−

i v − 2πp, (68)

−a+ − 2µ+

i p = −a− − 2µ−

i p. (69)

o complete our analysis, we employ two facts,

• The quantity p ·v = 0 in the singular configuration; this can
be trivially verified using (48).

• Although µi(t) is problematic to evaluate at t1, it is equal to
zero in an open set around t1; thus we take µ−

i = µ+

i .

Thus, taking the dot product of (68) and (69) with v and
ancelling yields,

ȧ+ − ȧ−
)
· v = 0, (70)(

a− − a+
)
= 0. (71)

This implies continuity in the control input and the quantity
˙ · v at t1 Thus, the optimality conditions at each junction are,

(1) Continuity in the state at t1: 4 equations.
(2) Tangency condition: 2 equations, 1 unknown θ1.
(3) p · v = 0 at t1: 1 equation.
(4) Continuity in the control input at t1: 2 equations.
(5) Continuity in a · v at t1: 1 equation.

Next, note that splitting one unconstrained arc with a junction
ields 10 unknowns (8 new trajectory coefficients 1 unknown
ime, and the unknown parameter θ1) that we solve using the
bove 10 equations. Conditions 1, 2, and 4 are bilinear. Thus, if
e fix a time t1 and angle θ1 for the junction, we can write the
rajectory coefficients in the linear form,

(t1)c = b(θ1), (72)

here A(t1) is a square 8 × 16 matrix, c is a 16 × 1 vector
ontaining the trajectory coefficients for both segments, and b(θ1)
s an 8 × 1 vector that encodes the continuity and tangency
onditions. Thus, we combine (72) with the 8 boundary condi-
ions (51) to form a block-diagonal square matrix to calculate
he optimal trajectory for a given t1, θ1. Finally, we solve for the
ptimal values of t1 and θ1 using an off-the-shelf least-squares
ethod. In particular, we solve

p(θ1) · v(t1) = 0 (73)

(t−1 ) · v(t−1 )− a(t+1 , θ1) · v(t
+

1 , θ1) = 0. (74)

ote that p, v, a are cubic, quadratic, and linear polynomials
efined by the optimal motion primitive (61).
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Fig. 3. Initial (blue) and final (green) manipulator configuration. The uncon-
strained solution (dashed black), optimal solution (red line), junction (red
square), and elbow trajectory (black line) are marked. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

4.1. Result

To demonstrate how our analytic closed-form solution to the
optimal motion planning works, consider the serial manipulator
of Fig. 2 with the following parameters:

• l1 = 3 m, l2 = 2 m
• θ1(0) = π

4 , θ2(0) =
7π
8 ,

• θ̇1(0) = 0, θ̇2 = 0
• p(T ) = [−2,−3]⊺, ṗ(T ) = 0

We also wish to have the manipulator switch modes, starting
with the ‘left’ bend configuration and ending in the ‘right’ bend
configuration.

First, we calculate p(T ) using (48). Then, we write the bound-
ry conditions (51) in matrix form,⎡⎢⎣ 0 0 0 1

0 0 1 0
T 3 T 2 T 1
3T 2 2T 1 0

⎤⎥⎦⊗ I2×2

⎡⎢⎣c1
c2
c3
c4

⎤⎥⎦ =

⎡⎢⎣p(0)
0

p(T )
0

⎤⎥⎦ , (75)

where ⊗ is the Kronecker product and I2×2 is the 2 × 2 identity
matrix. This analytical expression for the trajectory coefficients
yields the optimal unconstrained solution. However, the resulting
trajectory is infeasible as demonstrated in Fig. 3, namely, the
grasper position p violates the condition ∥p∥ ≥ (l1 − l2).

Next, we construct the optimal trajectory from two segments,
and we impose the constraint ∥p∥ = (l1 − l2) as an interior
constraint at some unknown time t1. If the resulting trajectory is
feasible, then under Assumption 3 the trajectory is also optimal.
Furthermore, this enables us to switch from the ‘left’ to the ‘right’
mode at the singular point. We generate the optimal trajectory by
constructing the block-diagonal matrix,[A(0) 0

AC (t1)
0 A(T )

]
c = b(θ1), (76)

where A(0) and A(T ) are the boundary conditions (75), AC (t1)
captures the bilinear continuity conditions at the unknown time
t1, and 0 is an appropriately sized zero matrix. The vector c
contains the coefficients for both trajectory segments, and b(θ1)
encodes the continuity and tangency conditions for a given value

of θ1 at the junction. Finally, to determine the optimal time

9

t1 and angle θ1 for the junction, we solve the remaining two
nonlinear equations, (73) and (74) using nonlinear least squares.
The resulting trajectory is demonstrated in Fig. 3; we note that
the mean computational time required to generate the optimal
trajectory is 3.5 ms averaged over 1000 trials on a desktop PC
(i5-3570k @3.4 GHz, 12 GB RAM).

The trajectory of the manipulator, including the joint angle
trajectories, grasper acceleration, and torque applied at each joint
are presented in Fig. 4. Note that we calculated the joint torques
by taking numerical derivatives of the joint angles θ1, θ2 and
moothing them with a 100 ms moving average window. We
sed a mass of 0.25 kg and a gravitational acceleration of 0 m/s2

o model a lightweight arm operating perpendicular to gravity;
e computed the torque directly using (47).
The smooth motion of the manipulator is clear from the joint

ngle and acceleration plots of Fig. 4. The junction occurs at
approximately t1 = 5 s with an angle of θ1 = 2.7 radians;
he joint angles change gradually throughout the entire motion.
he grasper is brought toward the base of the manipulator be-
ore the junction, and it is moved away from the manipulator
fterward—this leads to the corner in the acceleration magnitude
hat coincides with the singularity. Finally, the torque at each
oint is smooth and continuous, with only minor disturbances
ccurring at the singularity.

. Conclusion

In this paper, we proposed a technique to easily generate opti-
al trajectories for differentially flat systems. First, we derived an
xplicit ordinary differential equation that describes the optimal
tate evolution independently of the costates. Second, we applied
he result of Theorem 1 to derive additional boundary conditions
or the flat system, which has not been presented in the literature
o the best of our knowledge. Third, we proposed a motion
rimitive generator in Theorem 2 and derived the conditions to
ptimally switch between different motion primitives. Finally,
e applied our results in an illustrative case study to generate
mooth motion that minimizes the acceleration of a gripper for a
ick-and-place operation. We were able to generate trajectories
n the order of milliseconds and guarantee satisfaction of the
oundary conditions while respecting the workspace constraints
nd switching from a ‘left’ to a ‘right’ mode. Furthermore, this il-
ustrative example is a concrete implementation of the theoretical
ontributions of this article.
There are several intriguing directions for future work. First, it

s practical, for given dynamics, to determine what objective func-
ions guarantee that an analytical solution to (23) exists. Another
otential direction for future research is to relax Assumptions 1

and 2 and derive similar results for systems with singularities
and unbounded actuation capabilities. Exploring problems with a
large number of constraints, such as motion planning in cluttered
environments, is another practical direction. Finally, developing
a general-purpose numerical method to formulate and solve op-
timization problems for differentially flat systems would be a
valuable contribution.
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