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Abstract— In many real-world scenarios involving high-
stakes and safety implications, a human decision-maker
(HDM) may receive recommendations from an artificial
intelligence while holding the ultimate responsibility of
making decisions. In this letter, we develop an “adherence-
aware Q-learning” algorithm to address this problem. The
algorithm learns the “adherence level” that captures the
frequency with which an HDM follows the recommended
actions and derives the best recommendation policy in real
time. We prove the convergence of the proposed Q-learning
algorithm to the optimal value and evaluate its performance
across various scenarios.

Index Terms— Q-learning, Markov Decision Processes,
Recommender systems, Reinforcement learning.

I. INTRODUCTION

Decisions driven by artificial intelligence have recently
found applications in complex cyber-physical systems [1]
such as transportation [2], [3], finance [4], and healthcare
[5]. However, decisions involving high-stakes or safety-critical
applications [6] are often ultimately taken by human decision-
makers (HDMs) under advice from an artificial intelligence
algorithm. Since this is at the discretion of the HDM,
the algorithm’s recommendations may not be followed at
every instance of time [7]. The phenomenon of unexpected
decisions influencing the performance of such “expert-in-the-
loop” systems has garnered increasing interest in recent years,
primarily in the fields of operations [8], human trust on
machines [9], finance [4], and healthcare services [5].

Many research efforts have focused on the factors
influencing the adherence of HDMs to recommendations. In
[10], it was established that HDMs usually prefer following
recommendations that match their comfort and expertise and
may ignore recommendations that contradict their opinions.
The authors in [9] provide evidence for the hypothesis that
HDMs trust their knowledge rather than an algorithm. A
similar phenomenon for partial adherence is also observed
when humans recommend actions to other humans, e.g.,
medical advice [11]. Conversely, an algorithm may not be
able to account for real-life limitations faced by humans
when implementing an action [12]. Thus, an HDM may
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trust their judgment to navigate such situations and disregard
algorithmic recommendations [13]. As a consequence of these
factors, algorithmic recommendations to HDMs can perform
significantly worse than anticipated [11].

Two main approaches have been proposed in the literature
to address performance degradation: (1) Increasing adoption:
Many research efforts have focused on increasing the
adoption of recommendations among HDMs [14]. In [15],
reinforcement learning techniques were utilized to increase
HDM adherence, assuming they are likelier to follow
recommendations close to their baseline strategy. In [16], a
Lazy Markov decision processes (MDPs) formulation was
proposed to improve the alignment of recommendations with
the baseline strategy. (2) Incorporating adherence awareness:
A more recent approach is to improve recommendations
by considering partial adherence within the algorithm’s
problem. In [17], an adherence-aware MDP was analyzed,
and a value iteration algorithm was proposed to improve the
performance of recommendations. However, this result relies
upon prior knowledge of the HDM’s adherence level and
system dynamics. To bring this framework closer to real-world
implementation, we require further insights into adherence-
aware recommendations that can be obtained with incomplete
prior knowledge of dynamics and adherence levels.

In this letter, we address this challenge by incorporating
partial adherence into reinforcement learning [18], [19]
by proposing an “adherence-aware Q-learning algorithm.”
Specifically, we consider an MDP comprising an HDM that
implements actions to influence the evolution of an unknown
environment. The HDM’s strategy for generating actions
combines an algorithmic recommendation and a baseline
strategy. The adherence level of the HDM is not known to
the algorithm a priori. The algorithm and the HDM share the
same objective, and thus, our formulation aims to compute
in real time the best-recommended actions to maximize an
expected total discounted reward.

Our main contributions in this letter are the (1) introduction
of an adherence-aware Q-learning algorithm (Algorithm (7))
to compute an optimal control law, (2) convergence for
the algorithm to the optimal Q-function (Theorem 1), and
(3) establishment of the advantages of our approach against
baseline policies and classical Q-learning using numerical
examples (Section IV).

The remainder of the letter proceeds as follows. In
Section II, we present our formulation, the definitions of the
adherence-aware Q-learning function, and the updating rule of



Fig. 1: Process of the actual law implementation.

the adherence level. In Section III, we prove the convergence
of the proposed algorithm. In Section IV, we demonstrate our
result in an inventory control problem, and in Section V, we
draw concluding remarks.

II. MODELING FRAMEWORK

A. Problem Formulation
We consider a system comprising an artificial intelligence

or algorithm recommending actions to an HDM. In turn,
the HDM implements actions to influence the evolution of
a dynamic environment. At each instance of time, the HDM
can select to either follow the recommendation provided by
the algorithm or select an action using a baseline law. The
evolution of the state of the environment is modeled as an
infinite horizon discounted MDP S = (X ,U , P,R, λ), where
X is a finite set of states and U is a finite set of actions.
At any time t ∈ N = {0, 1, . . . }, the state of the system is
denoted by the random variable Xt ∈ X and the action input
to the MDP is the random variable Ut ∈ U . The function
P : X ×X ×U → [0, 1] yields the transition probability for all
t as P (xt+1 | xt, ut) = p(Xt+1 = xt+1 | Xt = xt, Ut = ut)
from any realized state xt ∈ X and realized action ut ∈ U to
the next realized state xt+1 ∈ X . The function R : X×U → R
yields the reward R(Xt, Ut) for all t ∈ N, and λ ∈ (0, 1] is
a discount factor applied to future rewards when measuring
performance.

In the MDP S , the actions are implemented by an HDM
with access to a baseline law gb : X → U that belongs to a
set G of stationary Markovian laws. The HDM also receives
an action recommendation at each instance of time from an
algorithm using a recommendation law gr : X → U from
the set of feasible laws G. Subsequently, we consider that the
HDM implements the recommended action with a probability
θ ∈ [0, 1] and the baseline action with a probability 1 − θ.
Thus, the HDM follows a mixed actual control law given by
a convex combination of the recommended and baseline laws
as follows:

ga = θ·gr + (1− θ)·gb. (1)

The process of an HDM taking an action using the baseline
and the recommendation law is illustrated in Fig. 1. The
probability θ is a representation of the adherence level of

the HDM to a recommended action, i.e., it captures the fact
that an HDM does not systematically implement the latter.
The objective of an HDM is to maximize the expected total
discounted reward

J(ga;x) = lim
T→∞

Ega

[
T∑

t=1

λt+1·R(Xt, Ut)
∣∣∣X1 = x

]
, (2)

where Ega
[·] is the expectation with respect to the distributions

of all random variables generated using the actual control law.

Problem 1. The objective is to derive the optimal control law
gr∗ such that ga∗ = θgr∗ + (1− θ)gb satisfies

J(ga∗) ≥ J(ga), ∀ga ∈ Ga(gb), (3)

where Ga(gb) is the set of all possible control laws for a given
baseline law gb and θ.

Remark 1. The term Ut refers to the action implemented
by the HDM at any t ∈ N. Additionally, we denote the
recommended action as U r

t = gr(Xt) and the baseline action
as U b

t = gb(Xt) for all t.

In our modeling framework, we impose the following
assumptions :

Assumption 1. The stationary adherence level θ and transition
matrix P may be unknown. However, the baseline law gb is
known a priori.

The baseline law gb can be determined by observing the
system over a finite number of instances since the sets of states
and actions are finite. Thus, we consider the law to be known
in our problem formulation.

Assumption 2. The baseline law gb is deterministic.

The baseline law must be deterministic to recognize when
the HDM implements the baseline action as opposed to when
they implement the recommended action. This assumption
is satisfied by the optimal solutions to regular MDPs. An
extension of our results for mixed baseline laws is a direction
of future research.

B. Preliminary Results

In Problem 1, an optimal value function is given by the fixed
point of the following Bellman-like equation for all possible
states x ∈ X [17]:

V (x) = max
ur

θ·
∑
x′∈X

(
R(x, ur) + P (x′ |x, ur)·V (x′)

)
+

(1− θ)·
∑
x′∈X

(
R(x, gb(x)) + P (x′ |x, gb(x))·V (x′)

)
,

(4)

where x′ denotes a realization of the next state, ur the
recommended action, ub = gb(x) the base action for a given
state x ∈ X . Here, we use a time-invariant notation because
(4) holds for all t ∈ N and all possible states in X . When the
system dynamics and adherence level θ are known, we can use
value iteration with (4) to derive an optimal recommendation
law.



In our formulation, we consider that these functions and
quantities may be unknown. Next, we provide a Q-learning
algorithm to compute the optimal recommendation law in
Problem 1.

III. Q-LEARNING APPROACH

In this section, we propose an adherence-aware Q-learning
algorithm that can learn a Q-function for Problem 1 and
subsequently use this to derive an optimal recommendation
law. We also prove the convergence of the proposed algorithm
to the optimal Q-function. We begin by constructing an
unbiased estimate for the unknown θ using a point estimator
of θ that considers the action implemented by the HDM.
The tuple (θ, 1 − θ) can be interpreted as the probability
distribution of a sequence of identical and independently
distributed random variables {Yt}t∈N, where each Yt ∈ {0, 1}
indicates whether the HDM implements the recommended
action at time t, i.e., Yt = 1 when Ut = gr(Xt) and Yt = 0
when Ut = gb(Xt). To construct this estimator for any
sample size n ∈ N, we first collect a sample st comprising
observations of the random variables Y0, . . . , Yn. Then, we
utilize the point estimator to approximate θ as θt = st/n.
To carry out this procedure online during Q-learning, we can
write the update rule for the n+1-th estimate θt+1 of θ from
the n-th estimate θt as

θt+1 =
θt·n+ 1[Yt+1 = 1]

n+ 1
, (5)

where 1[·] is the indicator function. Using standard arguments,
we can show that this update rule will converge to the true θ
value [20] in (1), i.e.,

E[θt+1] = θ. (6)

Using the update rule for θ, we propose our adherence-aware
Q-learning algorithm to learn the value function in (4) as

Q(x, u)← Q(x, u) + α(x, u)·
{
θt+1·

[
r(x, u)

+ λ·max
gr

Q(x′, gr(x′))
]
+ (1− θt+1)·

[
r(x, u)

+ λ·Q(x′, gb(x′))
]
−Q(x, u)

}
,

(7)

where x′ ∈ X is the next state, x ∈ X is the current state,
u ∈ U is the current action, and α(x, u) is the learning rate.
We use time-invariant notation as this algorithm holds for all
t ∈ N and all states in X and actions in U . The term Q(x, u)
in the RHS is the current value for a given state x and action u.
The term maxgr Q(x′, gr(x′)) is the estimate of optimal future
value, and Q(x′, gb(x′)) is the future value given the baseline
law. Next, we show the adherence-aware Q-learning algorithm
in procedural form.

A. Proof of convergence

In this subsection, we prove the convergence of the
adherence-aware Q-learning algorithm to the optimal value
function. Before we prove convergence, we first define an
adherence-aware operator for our Bellman-like recursion, and
we prove that this is a contraction mapping.

Algorithm 1 Adherence-aware Q-learning algorithm
Algorithm parameters: step size α ∈ (0, 1], small ϵ > 0,
λ ∈ [0, 1]. Consider a baseline law gr(x) = ur.
Initialize: Q(x,u), for all x ∈ X , u ∈ U , arbitrarily.

for each episode do
Initialize x
for each iteration do

Choose u using a law derived from Q (e.g., ϵ-greedy)
Take action u, compute r, x′

Update Q using Equation (7)
x← x′

end for
end for

Definition 1. The adherence-aware operator J : [X × U →
R]→ [X × U → R] for any bounded q : X × U → R is

(J q)(xt, ut) = θt+1·max
ur
t

∑
Xt+1∈X

P (xt+1|xt, u
r
t)·

[
R(xt, u

r
t)

+ λ·q(xt+1, u
r
t)
]
+ (1− θt+1)·

∑
xt+1∈X

P (xt+1|xt, u
b
t)

·
[
R(xt, u

b
t) + λq(xt+1, u

b
t)
]
, ∀t ∈ N, (8)

for all possible realization xt ∈ X and ut ∈ U , where ur =
gr(xt) is the recommended action and ub = gb(xt) is the
baseline action.

Lemma 1. The operator J is a contraction mapping.

Proof. We prove the result using the definition of a contraction
mapping, i.e., we prove that J satisfies

∥J q1 − J q2∥∞ ≤ λ∥q1 − q2∥∞, (9)

for any bounded q : X × U → R and for any possible
realization xt ∈ X and ut ∈ U .

Substituting (8), using the definition of the ∞-norm, in (9),
we obtain:

∥J q1 − J q2∥∞ = max
x,ur

∣∣∣θt+1·λ·
∑

xt+1∈X
P (xt+1 | xt, u

r
t)

·
[
max
ur

q1(xt+1, u
r
t) − max

ur
q2(xt+1, u

r
t)
]
+ (1− θt+1)·

λ·
∑

xt+1∈X
P (xt+1 | xt, u

b
t)·

[
q1(xt+1, u

b)− q2(xt+1, u
b)
] ∣∣∣.
(10)

From the triangle inequality, we obtain:

∥J q1 − J q2∥∞ ≤ max
x,ur

θt+1·λ·
∑

xt+1∈X
P (xt+1 | xt, u

r
t)

·
∣∣∣ max
st+1,U r

t

q1(st+1, u
r
t)− max

st+1,ur
t

q2(st+1, u
r
t)
∣∣∣+ (1− θt+1)·

λ·
∑

Xt+1∈X
P (xt+1 | xt, u

b
t)·

∣∣∣q1(xt+1, u
b)− q2(xt+1, u

b)
∣∣∣.
(11)

Since
∑

xt+1∈X P (xt+1 | xt, u
r
t) = 1 and∑

xt+1∈X P (xt+1 | xt, u
b
t) = 1 in the RHS of (11), ∥J q1 −

J q2∥∞ ≤ maxx,ur θt+1·λ·|q1 − q2|+ (1− θt+1)·λ·|q1 − q2|.



We complete the proof using the definition for the ∞-norm
to state that ∥J q1 − J q2∥∞ ≤ θt+1·λ·

(
∥q1 − q2∥∞

)
+ (1−

θt+1)·λ·
(
∥q1 − q2∥∞

)
= λ·∥q1 − q2∥∞.

Using the Banach fixed point theorem and the result of
Lemma 1, the equation Q = JQ admits a unique solution
Q∞ = JQ∞. Furthermore, starting at Q0(xt, ut) = 0,
the fixed point iteration around J generates a sequence of
functions Qk+1(xt, ut) = JQk(xt, ut) = J kQ0(xt, ut) for
all k = 1, . . . , such that limk→∞J kQ0 = Q∞. Next, we
prove that the operator is monotone and then use this to
establish that the fixed point Q∞ is the optimal value.

Lemma 2. Consider the maximum value over all control laws
in Problem 1 given by

Q∗ = max
ga

Ega
[ ∞∑

t=1

λt−1R(Xt, Ut) | X1 = x
]
. (12)

Then, the fixed point solution Q∞ = JQ∞ also satisfies
Q∞ = Q∗.

Proof. Suppose that R(xt, ut) is bounded by C ∈ R for all
possible states and actions, and consider a finite truncation as
Q∗

T = maxga Ega
[∑T

t=1 λ
t−1R(Xt, Ut)|X1 = x

]
. Case (1),

by construction, the truncate Q∗
T is sub-optimal w.r.t. Q∗, i.e.,

Q∗ ≥ Q∗
T . However, Q∗

T satisfies Q∗
T = J kQ0, and hence as

k →∞ we can write Q∗ ≥ Q∗
T = J kQ0 = Q∞. In Case (2),

we use the assumption that the reward is bounded, and hence
we can write Q∗ ≤ Q∗

T +
∑∞

t=T λTC for all T . Taking the
limT→∞, we get Q∗ ≤ Q∗

T = Q∞. From Cases (1) and (2),
we conclude that Q∞ = Q∗.

Next, we prove the convergence of Algorithm 1 in the
tabular setting with finite-valued random variables.

Theorem 1. Given a finite MDP (X ,U , P,R, λ), the
adherence-aware Q-learning algorithm, defined by the update
rule (7) converges with probability 1 to the optimal Q∗ in (12)
under the following conditions for all (x, u) ∈ X × U :

1)
∑
t

αt(x, u) =∞, (13)

2)
∑
t

αt(x, u)
2 <∞, (14)

3) R(x, ur) and R(x, ub) are bounded. (15)

Proof. For any t ∈ N, we write the t + 1-th iteration of the
Q-update rule (7) as:

Qt+1(x, u) = (1− αt(x, u))Qt(x, u)

+ αt(x, u)
{
θt+1

[
max
ur

(R(x, ur) + λ·Qt(x
′, ur))

]
+ (1− θt+1)

[
R(x, ub) + λ·Qt(x

′, ub)
] }

, (16)

where recall that ub = gb(x). By subtracting Q∗(x, u) from

both sides, we get:

∆t+1(x, u) = (1− αt(xt, ut))·∆t(x, u) + αt(x, u)

·
{
θt+1·

[
max
ur

(
R(x, ur) + λ·Qt(x

′, ur)
)]

+ (1− θt+1)

·
[
R(x, ub) + λ·Qt(x

′, ub)
]
−Q∗(x, u)

}
, (17)

where ∆t(x, u) = Qt(x, u)−Q∗(x, u). Let

Ft(x, u, x
′) = θt+1·

[
max
ur

(
R(x, ur) + λQt(x

′, ur)
)]

+(1− θt+1)·
[
R(x, ub) + λ·Qt(x

′, ub)
]
−Q∗(x, u). (18)

Next, we prove that the expectation and the variance
of Ft(x, u, x

′) are bounded above. By taking the
expectation in both sides in (18) given the history
Ft = {∆t,∆t−1, . . . , Ft−1, . . . }, we obtain

E[Ft(X,U,X ′)
∣∣ Ft, x, u] = E

{
θt+1·

[
max
ur

(
R(X,U r)

+ λ·Qt(X
′, U r)

) ∣∣ Ft, x, u
]}

+ E
{
(1− θt+1)·

[
R(X,U b)

+ λ·Qt(X
′, U b)

∣∣ Ft, x, u
]}
−Q∗(x, u).

(19)
From Lemma 1, the update rule for θt+1 is independent of
state and action so that we can write

E[Ft(X,U,X ′)
∣∣ Ft, x, u] = E[θt+1

∣∣ Ft]

·E
[
max
ur

(
R(X,U r) + λ·Qn(X ′, U r)

) ∣∣ Ft, x, u
]

+ E[(1− θt+1) | Ft]·E
[
R(X,U b)

+ λ·Qt(X
′, U b)

∣∣ Ft, x, u
]
−Q∗(x, u).

(20)

From (6), the last equation becomes

E[Ft(X,U,X ′)
∣∣ Ft, x, u] = θ·E

[
max
ur

(
R(X,U r)

+ λ·Qt(X
′, U r)

) ∣∣ Ft, x, u
]
+ (1− θ)·E

[
R(X,U b)

+ λ·Qt(X
′, U b)

∣∣ Ft, x, u
]
−Q∗(x, u).

(21)

By expanding the expectations we have

E[Ft(X,U,X ′)
∣∣ Ft, x, u] = θ·max

ur

∑
x′∈X

P (x′ | x, ur)·[(
R(x, ur) + λQt(x

′, ur)
)]

+ (1− θ)·
∑
x′∈X

P (x′ | x, ub)·[
R(x, ub) + λ·Qt(x

′, ub)
]
−Q∗(x, u).

(22)

The first two terms in the RHS of the last equation form
the contraction operator J , hence from Lemma 2,

E[Ft(X,U,X ′)
∣∣ Ft, x, u] = (JQ)(xu)−(JQ∗)(x, u). (23)

To conclude the result, we use the ∞-norm on both sides of
(23) and the result of Lemma 1, and we obtain

∥E[Ft(X,U,X ′)
∣∣ Ft]∥∞ = ∥(JQ)(x, u)− (JQ∗)(x, u)∥∞

≤ λ·∥Qt −Q∗∥∞ = λ·∥∆t∥∞.
(24)



Next, we show that the variance is also bounded above. By
using the definition of the variance of Ft(X,U,X ′) we write:

var[Ft(X,U,X ′)
∣∣ Ft, x, u] = E

{(
θt+1·

(
max
ur

(
R(X,U r)

+ λ·Qt(X
′, U r)

))
+ (1− θt+1)·

(
R(X,U b)

+ λ·Qt(X,U b)
)
−Q∗(X,U)

−
[
(JQ)(X,U)− (JQ∗)(X,U)︸ ︷︷ ︸

E[Ft(X,U,X′)|Ft, x, u]

])2 ∣∣ Ft, x, u
}
.

(25)
From Lemma 2, we can simplify the last term in the RHD

of (25) as

var[Ft(X,U,X ′)|Ft, x, u] = E
{(

θt+1·
(
max
ur

(
R(X,U r)

+ λ·Qt(X
′, U r)

))
+ (1− θt+1)·

(
R(X,U b)

+ λ·Qt(X
′, U b)

)
− (JQ)(X,U)

)2

| Ft, x, u
}
,

(26)
which is the definition of the variance with variable
θt+1·

(
maxur

(
R(X,U r) + λ·Qt(X

′, U r)
))

+ (1 −
θt+1)·(R(X,U) + λ·Qt(X

′, U b). By using the Assumption
(3), i.e., the reward. Hence its variance is bounded, i.e.,

var[Ft(X,U,X ′)
∣∣ Ft, x, u] ≤ C·(1 + ∥∆t∥∞)2, (27)

and the proof is complete.

IV. NUMERICAL EXAMPLES

A. Inventory Example
We consider an HDM in inventory control as a shop owner,

where the shop provides multiple items (K) for sale. The goal
of the HDM is to maximize its cumulative revenue at each time
step by deciding the number of items that need to be ordered
based on the stochastic demand of the future. Let xk be the
state of commodity k, where xk ∈ {0, 1, . . . , 100} and k =
1, 2, . . . ,K . The action uk ∈ {0, 1, . . . , 100} corresponds to
the amount of the order, and dk ∈ {0, 1, . . . , 100} corresponds
to the amount of the demand that is stochastic and follows
the uniform distribution with B(0, 100). We assume that the
baseline law of the HDM is according to (s, S) method [21],
where s represents the threshold of which the HDM should
order the amount of S. The state evolution for the inventory is
according to xk+1 = max(0, xk+uk−Dk), and the reward is
defined as the incomes of sales minus the holding cost H , and
the ordering cost C. The holding cost is given by H(xk, uk) =
h·max(0, xk − uk), where h > 0 while the ordering cost is
given by C(uk) = c·uk, where c > 0.

B. Machine replacement
We consider the Machine replacement MDP problem with

ten states. The set of states is {1, 2, 3, 4, 5, 6, 7, 8, S, L} and
the set of actions is {repair,wait}. Each state represents the
condition of the machine, where in-state 8 the machine is
broken, and states S,L represent the short and the long
repair, respectively. To model this problem, we adopt the same
rewards and transitions as in [17]. In particular, we show the

transition probabilities for both actions in Figure 2. Also, we
define a reward of 18 in state S, 20 in state L, and 0 in state 8.
All other states have a reward of 20. We assume the baseline
law is always wait when the machine is not broken or in the
long repair L. In any other case, the action is repair.

Fig. 2: Transition probabilities for repair (left) and wait (right).

C. Simulation results
We considered the learning rate α and the discount factor λ

equal to 0.9 for the simulation results. We also considered
that the update rule of θ will converge to 0.7. First, we
show convergence for the two different demand distributions
by tracking the initial state value for 10, 000 and 100 time
steps, respectively. In both numerical examples, the algorithm
converges (Figs. 3a and 4a). For the inventory case, though,
the algorithm needs more time to converge to optimal value
due to the large state space. Furthermore, in both scenarios,
we compared our adherence-aware Q-learning algorithm with
the regular Q-learning and the baseline law, as it was the
only one the HDM would implement. Figures 3b and 4b
illustrate the result in which the average actual reward using
the adherence-aware Q-learning algorithm is better than the
other two. Finally, we investigated the algorithm’s performance
for different values of θ. Figures 3c and 4c illustrate the result
and show that when θ ∈ [0, 0.5] our approach is slightly better
than the baseline law, while for θ ∈ [0.5, 1] our approach
outperforms the other two.

V. CONCLUDING REMARKS

In this letter, we proposed an “adherence-aware Q-learning”
designed to derive optimal recommendation actions for HDMs.
Our approach considers the complexity of the problem, where
both the dynamics of the environment and the level of
adherence to recommendations remain unknown. The structure
of our algorithm is based on a combination of the HDM’s
baseline law and an update rule for estimating the adherence
level to the recommendations. We proved the convergence
of the adherence-aware Q-learning algorithm to the optimal
value function, and we applied this algorithm to two numerical
examples, illustrating its ability to converge to the optimal
value and outperform alternative methods in various system
scenarios. Future work should consider situations where the
baseline law is unknown and can be learned over time
or the HDM has partial observability of the system state.
Extending the results in a team of human-driven vehicles with
a decentralized information structure [22] should be also a
potential direction of future research.



(a) Convergence of the adherence-aware
algorithm.

(b) Actual reward for the three different
approaches.

(c) Influence of the parameter θ.

Fig. 3: Inventory control results.

(a) Convergence of the adherence-aware
algorithm.

(b) Actual reward for the three different
approaches.

(c) Influence of the parameter θ.

Fig. 4: Machine replacement results.
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