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T
his article provides an introduction to the theory of 
mechanism design and its application to engineer-
ing problems. Our aim is to provide the fundamental 
principles of mechanism design for control engineers 
and theorists, along with state-of-the-art methods 

in engineering applications. We start our exposition with a 
brief overview of game theory, highlighting the funda-
mental notions necessary to introduce mechanism design. 

Then, we offer a comprehensive discussion of the principles 
of mechanism design. Finally, we explore four key applications 
in engineering, that is, communication networks, power grids, 
transportation, and security systems.

INTRODUCTION
Over the last 70 years, the theory of mechanism design was 
developed as an approach to efficiently align individuals’ and 
systems’ interests in problems where individuals have pri-
vate preferences [1]. It can be viewed as the art of designing the 
rules of a game to achieve a desired outcome. Mechanism 
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design has broad applications spanning many fields, including 
microeconomics, social choice theory, computer science [2], and 
control engineering. Applications in engineering include 
communication networks [3], social media [4], transportation 
routing [5], online advertising [6], smart grids [7], multiagent 
systems [8], and resource allocation problems [9].

Eric Maskin has provided an example that best illus-
trates the theory of mechanism design in simple terms [10]. 
Suppose we want to divide a cake between two children, for 
example, Mary and Bill (see Figure 1). Our intent is to divide 
the cake fairly so that each child is satisfied with their por-
tion. Obviously, one way for a fair division is when Mary 
thinks she has at least half of the cake, and so does Bill. 
However, how can we achieve such a fair division? If we are sure 
that the children see the cake the same way we do, we can 
just cut it in half and give each child one of the pieces. Mary 
and Bill will each think they have half the cake and will live 
happily ever after. In reality, though, Mary and Bill can be 
expected to see things differently than we do. Children do 
not always regard our “fair” division as really fair. Bill 
might think that Mary’s piece is bigger and feel somewhat 
shortchanged. So, even if we intend to accomplish a fair 
division, in practice, we are not in the position to obtain it 
because we know nothing about the children’s perspective. 
Do they see it as we do or not? Is there a “mechanism” (for exam-
ple, a protocol) that, if followed, will result in a fair division, even 
if we do not have enough information about the fairness of the 
division? Well, one potential mechanism is to have Bill cut 
the cake, and then Mary would choose the portion she 
would like. The above mechanism is called the divide-and-
choose mechanism. Since Bill is accountable for the fair divi-
sion of the cake, he will do his best to have it equally cut. He 
knows that if the pieces are disparate, Mary will choose the 
bigger one. So, the cake is equally cut. Mary chooses her 
portion, and she is happy with that, and so is Bill, who 
chooses the other one. Hence, through the divide-and-choose 
mechanism, we have accomplished the desired outcome.

The theory of mechanism design represents the conflu-
ence of microeconomics [11], [12], [13], [14], [15], [16], [17], 
[18], [19], [20], [21], [22] and social choice theory [23], [24], 

while it equally draws from auctions [25], optimization 
[26], [27], and game theory [28], [29], [30], [31], [32], [33]. The 
theory was developed to implement systemwide optimal 
solutions to problems involving multiple rational individu-
als (agents), each with private information about prefer-
ences and conflicting interests [1]. It all started with Leonid 
Hurwicz, who asked what is the best way for a centralized 
entity to manage a system of selfish agents with conflicting 
interests, each trying to make a decision and reach an equi-
librium. He was most interested in problems in which the 
efficiency of the equilibrium depends on the availability 
(and, thus, truthfulness) of the agents’ information. Hur-
wicz’s rigorous answer established the theoretical frame-
work to study this problem and other similar ones. The 
key idea behind his seminal work [34], [35], [36] was to 
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FIGURE 1 (a) The divide-and-choose mechanism, showcasing the fair division of a cake. (b) In the scenario, Bill is tasked with dividing 
the cake into two perceived equal parts, while Mary chooses her preferred portion. (c) This method ensures a satisfying outcome for 
both children, regardless of their individual perceptions of fairness.
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recognize that the solution depends on the agents’ behavior 
and how they value their information. In economics, this 
translates to “a rational and intelligent agent will act as a 
utility maximizer and will not report their private infor-
mation truthfully without a guaranteed compensation.” 
Hurwicz developed a methodology to elicit the private 
information of any agent by offering appropriate incen-
tives. Hurwicz’s theoretical framework was revolutionary 
in economics and engineering, and many other scholars 
started expanding it. Robert Myerson and Maskin con-
tributed immensely to the theory and expanded the 

mathematics behind “reverse engineering,” the process of 
achieving a desirable goal (for example, social welfare and 
revenue). The importance, significance, and impact of Hur-
wicz, Myerson, and Maskin’s work were recognized and 
awarded the Nobel Memorial Prize in Economic Sciences 
in 2007 [37].

This article has two main objectives: 1) to provide a tutorial 
on the theory of mechanism design and 2) to present how the 
theory of mechanism design can yield solutions to engineering 
problems (see “Control Example”). The takeaway messages of 
this article are as follows:

Control Example

Here, we offer a control dynamical system example (closely 

following [38]) in which we can easily identify where mech-

anism design can be used.

We assume linear dynamics for a dynamical system of the 

following form:

	 x Ax But t t1 = ++ � (S1)
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We are now ready to discuss an agent’s problem. First, 

no agent directly provides control inputs into the system. The 

diagonal block Aii of A gives the dynamics for the ith agent. 

Different agents may influence each other, so the off-diagonal 

blocks Aij represent the impact of agent j on agent i. For the 

purposes of this example, we assume that agent i’s input can 

affect only the states of its subsystem. Thus, the input matrix 

( , , )B B Bdiag 1 If=  is a block-diagonal matrix. Based on this, 

the dynamics for agent i are
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It is natural for any agent i to be aware of its own dynam-

ics, so Aii and Bi are known to agent i. However, no agent has 

complete information of the component ,A x ( )
j ij t

j
NiR !  which is 

part of the agent’s dynamics. Hence, a “social planner” (cen-

tral computer or system coordinator) is required to intervene 

and provide a “mechanism” (or a process) handling whatever 

information each agent knows, ensuring, in the end, that all 

agents can compute their dynamics. Consider that for each 

agent i, the state is ,G x gX ( ) ( ) ( )
i x

i i
x
i#= " ,  and the input con-
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=" ,  are matrices and vectors with appropriate 

dimensions, respectively. Now, the (strictly) convex cost func-

tion of agent i is
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where ( , )li $ $  and ( )gi $  are the stage and terminal costs, re-

spectively.

As discussed earlier, agents know their dynamics, and any 

agent i’s cost function is private information. This raises a big 

problem: How can we analyze such a problem when informa-

tion is asymmetric among all the agents? For a moment, sup-

pose a social planner is tasked with implementing a control 

input in the system and has complete knowledge about the 

dynamics of the system, that is, matrices A and B as well as 

constraints for any ,i I!  ,X i  .U i  The social planner’s problem 

is a convex minimization program
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This problem could be solved using standard convex opti-

mization techniques. However, our assumption that the social 

planner has complete information on all the agents’ costs is 

too strong. Without this knowledge, the objective function is ef-

fectively unknown. To find an efficient trajectory/solution to this 

problem, the social planner must elicit the missing information 

from all the agents. Since the agents are strategic, we cannot 

simply ask them to report their private information, as misreport-

ing can lead to a better outcome for them. This is where the 

theory of mechanism design enters and provides a powerful 

theoretical framework to provide a solution to this information 

elicitation problem. By designing appropriate incentives (re-

warding an agent for reporting its private information truthfully) 

or disincentives (penalizing it for misreporting), we can ensure 

that our system’s strategic agents have it in their best interest to 

disclose their true information, thereby facilitating an optimal so-

lution to an optimal control problem that aligns with the collective 

interest (for example, efficient trajectories for a group of drones).
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1)	 Although mechanism design originates from eco-
nomics, primarily aiming to align individual and 
systemwide economic interests, it has found applica-
tions in various engineering fields.

2)	 Mechanism design provides a powerful theoretical 
framework for solving objective-first and informa-
tion elicitation problems.

3)	 Although most of the literature has focused on static 
and simplified economic models, there is great po
tential in solving dynamic real-world engineering 
problems.

4)	 The future challenge lies in developing dynamic, 
robust, and computationally tractable mechanisms, 
especially in dynamic and unpredictable engineer-
ing control problems.

We start our exposition by providing a brief overview of 
key notions of game theory. Next, we offer the general 
framework and fundamental principles of mechanism 
design. Then, we provide mechanism design problem for-
mulations of different engineering applications. Finally, we 
offer some concluding remarks and a discussion of the 
future of mechanism design in control engineering.

GAME THEORY
Game theory is arguably one of the cornerstones of eco-
nomics for studying competition and strategic behavior 
and lies at the intersection of mathematics and social sci-
ence. The first theoretical formulation of a game is thanks 
to John von Neumann [39]. Von Neumann’s work estab-
lished the notion that every problem in economics (for that 
matter, in engineering and computer science) is essentially 
a competition for resources among selfish agents, each 
striving to make a decision that benefits it only. Thus, von 
Neumann introduced game theory as a means to study 
“interactions in the presence of conflict of interest” [40]. 
Game theory models the conflicting (or cooperative) inter-
action among agents (also referred to as “players”) and pro-
vides a principled way of predicting the outcome of this 

interaction using equilibrium analysis. The study of games 
is most appealing and intuitive to scientists, engineers, and 
scholars across many fields, as it provides the mathematics 
to answer what a selfish agent (human, corporation, or 
machine) is going to decide and how under different yet 
certain conditions.

Although game theory is quite extensive, in this article, 
we focus on providing only a snapshot of the fundamental 
notions and a simple classification of games (see Figure 2). 
A game is a mathematical model of the strategic interaction 
of at least two agents (for example, bidders in an auction, 
corporations, countries, robots, and autonomous cars) 
whose actions (or decisions) can affect the other agents’ 
payoff. The agents play against one another, often compet-
ing over the utilization of a limited resource (for example, 
the tragedy of the commons [41]) by taking an action, 
which defines an agent’s behavior in the game; depending 
on the application, an action can be either a bid in an auc-
tion or the selection of a route on the road network or 
simply what to bet on a coin flip. An agent’s action leads to 
a payoff, meaning that there exists a function that maps 
the agent’s action to a real number. For example, a vehicle 
may have to decide on route A or route B. The payoff from 
choosing either route can be in terms of travel time, so 
route A may result in 30 min, and route B may result in  
25 min. These actions can be taken simultaneously (for 
example, rock–paper–scissors) or sequentially (for example, 
monopoly and chess). Agents may cooperate toward reach-
ing an ideal solution (for example, signing a contract). This 
cooperation can take the form of an alliance to find 
“common ground” in terms of what actions each should 
take. If agents do not choose or are unable to cooperate, 
then the game is called noncooperative, and it most natu-
rally models strictly competitive “play” among all agents.

Due to the broad applicability of game theory, there has 
been a myriad of applications in economics and engineer-
ing as well as in computer science, so specific games 
have  been given a name. For example, normal form games 

Cooperative and 
Noncooperative

Games

Simultaneous and
Sequential Move

Games

Symmetric and
Asymmetric

Games

Constant, Zero-,
and Nonzero-Sum

Games

Normal Form and
Extensive Games

FIGURE 2 A classification of the different types of games.
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(we offer an overview of these games in “Games and the 
Nash Equilibrium”); matrix games; differential, static, and 
dynamic games [42], [43], [44], [45], [46]; Bayesian and stochastic 

games [47]; zero-sum games [48], [49]; one-shot and repeated 
games; Stackelberg games [50], [51]; finite and continuous games 
[52]; and hybrid games [53], [54]. 

Games and the Nash Equilibrium

We present an overview of essential notions from nonco-

operative game theory. A finite normal form game is a 

tuple , , ( ) ,uG I S i i I= !  where , , , n1 2I f= " , is a finite set of 

n agents (most commonly referred to as “players”), with ;n 2$  

,S SS n1 # #g=  where Si is a finite set of actions available to 

player ,i I!  with ( , , )s s s Sn1 f !=  being the strategy profile; 

and ( , , ),u u un1 f=  where : ,u RSi "  is a real-valued payoff  

(or utility) function for player .i I!

Actions are the possible moves a player can make at any 

given point in the game. For example, in a simple game of rock–

paper–scissors, the actions available to a player are to play 

either rock, paper, or scissors. A strategy, on the other hand, 

is a complete plan of actions a player will take given any pos-

sible situation in the game. It is a specification of what actions a 

player will take in response to every possible action of the other 

players. For example, in the game of chess, a strategy might 

specify a player’s opening move, how they will respond to each 

possible opening move of their opponent, how they will respond 

to each possible countermove, and so on. Of course, for any 

player in any game, one strategy that is available to them is to 

select an action and play it [8]. In game theory, we call such 

strategies “pure strategies.” Alternatively, a game-theoretic 

player could randomize their strategy (which action to choose) 

over some probability distribution. Such strategies are called 

“mixed strategies.” For the remainder of this article, we focus 

on pure strategies and use the terms “action” and “strategy” 

interchangeably.

Games model the strategic interactions of competing play-

ers. These interactions rely on the information of the players. 

Thus, in game theory, “who knows what” plays a crucial role. If 

all players in a game have full access to all available information 

(payoff or utility functions, players’ strategies, and game dynam-

ics), then we say this is a game with complete information. In 

contrast, even if one player has limited or missing information, 

then we say that this is a game with incomplete information. In 

most cases, players are uninformed about the game’s character-

istics (types, utility functions, or strategies). If at least one player 

is not fully aware of all actions/strategies of all other agents, then 

we say this is a game with imperfect information. For example, 

every one-shot simultaneous-move game is a game of imper-

fect information. Another important notion in game theory is the 

notion of common knowledge, which characterizes a game’s in-

formation as follows: if every player knows specific information 

(for example, an action), then we can expect any other player to 

know that every other player knows it as well.

One of the key assumptions in game theory is that the players 

are rational. A player is said to be rational if they always make de-

cisions in pursuit of their own objectives (for example, maximizing 

their own expected payoff). Another key assumption in game the-

ory is that the players are intelligent. This implies that each player 

in the game knows everything about the game and that they are 

competent enough to make any inferences about the game.

In all games, players make decisions and reach an equilib-

rium. We call different notions of equilibria solution concepts. 

One such equilibrium is the dominant strategies equilibrium, 

in which any agent has a strategy that, regardless of what the 

other players might decide to do, is the best possible (it re-

sults in the highest possible payoff). The dominant strategies 

equilibrium is quite strong, and it can be hard (almost impos-

sible) to have it in a game of competing players under differ-

ent scenarios. The most celebrated solution concept in game 

theory is the Nash equilibrium (NE). A player’s NE strategy is 

the best response to the NE strategies of the other players. In 

other words, a player cannot be better off if they depart from 

their NE strategy if all the other players choose their NE strate-

gies. Thus, no player has an incentive to deviate from an NE 

strategy. More formally, let Si be the set strategies of player i; 

,si  s Si i!l  be two strategies of player i; and S i-  be the set of all 

the strategy profiles of the remaining players. Then, si strictly 

dominates sil  if, for all ,s Si i!- -  we have ( , ) ( , ).u s s u s si i i i i i2- -l  

Also, a strategy is (strictly) dominant if it (strictly) dominates 

any other strategy. A player i’s best response to the strat-

egy profile 

	 ( , , , , , )s s s s si i i n1 1 1f f=- - + � (S6)

is the strategy s Si i!)  such that ( , ) ( , )u s s u s si i i i i i$)
- -  for all 

.s Si i!  A strategy profile ( , , )s s sn1 f=) ) )  is an NE if, for each 

player i, ( , ) ( , )u s s u s si i i i i i$) ) )
- -l  for all .s Si i!l

Next, for completeness, we define the notion of Pareto 

domination. An outcome of a game is any strategy profile 

.s S!  Intuitively, an outcome Pareto dominates some other 

outcome as long as it improves the utility of at least one player 

without reducing the utility of any other. Assume G  and ,sl  

.s S!  Then, a strategy profile sl Pareto dominates strategy s if 

( ) ( )u s u si i$l  for all i I!  and there exists some j I!  for which 

( ) ( ) .u s u sj j2l  Pareto domination is a useful notion to describe 

the social dilemma in a game. However, Pareto-dominated out-

comes are often not played in game theory; an NE will always 

be preferred by rational players. For further discussion of the 

game theory notions presented above, see [S1] and [8].
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THE HISTORY OF MECHANISM DESIGN
Game theory is concerned with the analysis of games. 
Mechanism design, on the other hand, involves designing 
games with desirable outcomes. Mechanism design was 
considered a consequence of debates about the relative 
merits of socialism, communism, and capitalism, the most 
important of which was the socialist calculation debate [55]. 
Mechanism design attempted to provide a scientific basis 
for addressing the above debate by constructing a theoreti-
cal framework for considering systems other than capital 
markets for allocating the means of production [56]. It also 
took a mathematically rigorous approach to the comparison 
of a specific arrangement to capitalism in terms of efficacy 
and productivity. In the last half century, economics has 
adopted the study of mechanism design as the systematic 
analysis of resource allocation in institutions and processes. 
The above extremely fundamental development reveals the 
roles of information, communication, control, incentives, 
and agent processing capacity in decentralized resource 
allocation. Moreover, it allows the identification of sources 
of market failure. Hurwicz, a Polish-American economist 
and mathematician, was the first to introduce the concept of 
incentive compatibility, a cornerstone notion in which agents 
are incentivized to act in accordance with the desired out-
comes of a social planner. It ensures that truth telling or 
behaving according to the system’s rules is the best strategy 
for each agent, leading to the successful implementation of the 
system’s objectives. Hurwicz also provided a methodology for 

mechanisms that are incentive compatible and how exactly 
these mechanisms can guarantee the desired outcomes [34].  
Hurwicz’s contributions in establishing mechanism design’s 
theoretical foundations were key in providing efficient solu-
tions to resource allocation problems. Jean-Jacques Laffont, 
a French economist, through his studies in public and infor-
mation economics, participated in the translation of the 
foundational economic theory into the language and tools 
that today appear not only in game theory but also in stud-
ies of the organization of firms and markets as well as in the 
applied economics of regulation, taxation, and public goods 
provision [58]. Pure and applied research in economics was 
connected through studies about transactions among eco-
nomic agents in terms of information and incentives. As one 
can see from Figure 3, the insights and better theoretical 
understanding of how incentives influence strategic eco-
nomic problems have transformed the discipline of econom-
ics. The theory’s interdisciplinary applicability has helped 
scientists and engineers architect efficient systems by design-
ing the right incentive to drive the agents’ behavior and thus 
achieve the desirable objective. Other excellent historical sur-
veys on the theory of mechanism design are reported in [59] 
and [60].

The theory of mechanism design since the 1950s has 
been rigorously studied by numerous economists and math-
ematicians to provide insights and solutions to different 
economic topics (for example, public goods, markets, and 
auctions). The theory started with the seminal contributions 

Communication and Decentralized Resource Allocation
Leonid Hurwicz, Jacob Marschak

Incomplete Information
Kenneth Arrow, Gérard

Debreu
Incentive Design

William Vickrey

Auction Design
Roger Myerson, Paul Milgrom,

Robert Wilson

Economic Games
Robert Aumann, Drew Fudenberg, John Harsanyi,
John Forbes Nash Jr., Andy Postlewaite, Reinhard

Selten, Jean Tirole

Experimental Market Games
Vernon L. Smith, Charles Plott,
Thomas Palfrey, Alvin E. Roth,

Preston McAfee

Behavioral
Economics

Ernst Fehr, Daniel
Kahneman, David
Laibson, Matthew
Rabin, and Amos

Tversky

Bounded Rationality
Herbert A. Simon

Public Goods
Ronald Coase, Jerry R. Green,

Theodore Groves, John O. Ledyard

Principal–Agent Problems
Peter Diamond, Oliver

Hart, Jean-Jacques Laffont,
Eric Maskin, James

Mirrlees, Sherwin Rosen

FIGURE 3 The key theoretical “chapters” of the theory of mechanism design and its related fields. We use arrows to showcase the influ-
ence of the different ideas and what notions first inspired specific works. For example, Vickrey’s work in incentive design inspired both 
the design of auctions and problems in public goods.
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of Hurwicz [34], [35] and Jacob Marschak [61] (see Figure 3), 
who both were interested in resource allocation problems 
(for example, communication) and the means of control-
ling (through incentives) agents. In parallel, Kenneth 
Arrow, Gérard Debreu, and Herbert A. Simon also worked 
on problems with incomplete information and how to 
bound rationality.

In 1961, William Vickrey’s seminal work [25] on auctions 
was published, paving the way for Hurwicz’s theoretical 
framework to be applied as a means of designing incen-
tives based on agents’ information for a simple yet formi-
dable problem of an auction. Arrow and Debreu’s work was 
instrumental in establishing the interconnected relation of 
information and decision making and its role in influenc-
ing behavior in the efficient allocation of limited resources.

Much later, in the 1970s and 1980s, Peter Diamond, 
Oliver Hart, Laffont, Maskin, James Mirrlees, and Sherwin 
Rosen worked independently on “principal–agent prob-
lems,” focusing on how one can design a contract between 
a principal (for example, an institution or a corporation) 
and a rational agent efficiently. As a continuation of Vick-
rey’s work, Ronald Coase, Jerry R. Green, Theodore Groves, 
and John Ledyard made significant contributions to the 
design of incentives for public goods problems (for exam-
ple, road infrastructure, public parks, television and radio 
broadcasts, and national security). Furthermore, Roger 
Myerson, Paul Milgrom, and Robert Wilson expanded the 
Vickrey auction to address more complicated scenarios and 
complex problems.

At the same time, many economists continued devel-
oping and studying games; a few examples are Robert 
Aumann, Drew Fudenberg, John Harsanyi, John Forbes 
Nash Jr., Andy Postlewaite, Reinhard Selten, and Jean 
Tirole. An essential extension of game theory is the 
development of methodologies for agents that might not 
act as rational and intelligent agents. Key questions in 
this area are

1)	 Do agents make optimal decisions at all times?
2)	 Do agents make sacrifices when deciding on their utility?
3)	 Do agents always optimize for their own benefit?
To answer these questions, the fields of behavioral 

economics and experimental game theory were devel-
oped, first by Simon and then by notable contributors, 
such as Ernst Fehr, Daniel Kahneman, David Laibson, 
Matthew Rabin, and Amos Tversky as well as Vernon L. 
Smith, Charles Plott, Thomas Palfrey, Alvin E. Roth, 
and Preston McAfee. Several survey articles on the 
theory of mechanism design can be found in [62], [63], 
[64], and [65].

Although we have focused only on the history of mech-
anism design from the economics point of view, there have 
been numerous key contributions in engineering and com-
puter science. Thus, we dedicate the second part of this 
article to stress the contributions and engineering applica-
tions of mechanism design.

THE THEORY OF MECHANISM DESIGN
Most generic control systems can be viewed as a specifica-
tion of how decisions are made as a function of the infor-
mation that is known by the agents in the system [66], [67], 
[68], [69], [70]. What interests us in most cases is efficiency, 
that is, realizing the best possible allocation of resources 
with the best use of information to achieve an outcome 
where, collectively, agents are satisfied and there is no over-
utilization of the system’s resources [30]. One key challenge 
in ensuring efficiency in a control system is the fact that 
different agents may have conflicting interests and act self-
ishly. In other words, systems that incorporate strategic 
decision making, if they remain uninfluenced, are not 
guaranteed to exhibit optimal performance. This is well 
known to be the case in control theory and economics [71], 
[72]. There are various theories and approaches that attempt 
to guarantee efficiency in such systems and can provide 
solutions of varying degrees of success. One way to study 
such problems is information design (see “Information 
Design”). Another theory is mechanism design, in which 
we are concerned with how to implement systemwide opti-
mal solutions to problems involving multiple selfish agents, 
each with private information about its preferences [73], 
[74]. For example, within the context of mobility, agents are 
travelers, and their private information can be tolerance to 
traffic delays, the value of time, a preferred travel time, or 
any disposition to a specific mode of transportation [75]. 
Given that each traveler/driver/passenger “competes” with 
everyone else to reach its destination first, we want to 
ensure that given this inherent conflict of interest, we can 
still guarantee uncongested roads, no traffic accidents, and 
no travel time delays. Mechanism design can help us design 
the rules of systems where information is decentralized 
(different agents know different aspects of the system) and 
agents do not necessarily have an immediate incentive to 
cooperate [76]. In particular, mechanism design helps us 
design rules that align all agents’ decision making by 
providing the right incentives to achieve a well-defined 
objective for the system (for example, aggregate optimal 
performance and system-level efficiency). Thus, mecha-
nism design entails solving an optimization problem with 
a sometimes unverifiable and always incomplete informa-
tion structure [18]. We call such a problem an incentive 
design and preference elicitation problem. 

The Building Blocks of Mechanism Design
We start our exposition by considering a system consisting 
of a finite group of agents, each competing with one 
another for a limited fixed allocation of resources. Each 
agent evaluates different allocations based on some pri-
vate information that is known only to it. Consider a social 
planner, playing the role of a centralized entity whose task 
is to align the selfish and conflicting interests of the agents 
with the overall system’s objective (for example, an effi-
cient allocation of resources or the maximization of social 
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welfare). As illustrated in Figure 4, four components exist. 
There is a group of agents, each making a decision based 
on its personal information. Decisions then are reported 
as  messages to the social planner, which is tasked to 
design  the rules by which it can be determined what 
each agent gets.

Next, we provide a formal mathematical presentation of 
the social planner’s task through the lens of optimization 
theory. We consider a set of selfish agents ,| | n NI I !=  
with preferences over different outcomes in a set .O  Each 
agent i I!  is assumed to possess private information, 

denoted by .i i!i H  Since an agent i’s ii  can influence its 
decision making in a significant way, we call ii  the type of 
agent i. We write ( ) ,i i Ii i=!  ,!i H  where i iIH P H= !  to 
represent the type profile of all agents. An agent i’s prefer-
ences over different outcomes can be represented by a util-
ity function : .u ROi i "#H  Although the exact form of ui  
can vary depending on the application of the problem [77], 
[78], [79], [80], what is common in the literature [2], [8], [76] 
is a quasi-linear function of the form

	 ( , ) ( , ) ( )u o v o pi i i i i ii i i= - � (1)

Information Design

In this sidebar, we offer a quick overview of an alternative 

approach to mechanism design based on the work reported 

in [S2] and [S3]. As we have seen so far, information plays 

a crucial role in game-theoretic models and mechanism de-

sign. However, information in such cases is used to evaluate 

utility functions and study equilibria. In mechanism design, in 

particular, information is used to design the best possible in-

centives (in the form of payment functions) to guide efficient 

allocations. In contrast, in information design, the social plan-

ner manages a system’s information (instead of its resources), 

and it is the social planner’s task to devise a careful process 

for the efficient allocation of information (instead of monetary 

incentives for the allocation of resources). Thus, the goal of in-

formation design is to influence the agents’ behavior based on 

how much information may become available. This draws vital 

insights from behavioral economics, as it treats the agents’ 

cognitive abilities to adapt their behavior based on what is 

available to them.

It is standard in mechanism design to consider as a given 

the “informational environment” (for example, who knows 

what and who does not know what yet seeks to learn) and 

focus on the design of appropriate incentives based on the 

desirable outcome (equilibrium behavior) among strategic 

agents. Information design simply considers nonfixed infor-

mational environments and sets the rules that the agents 

and the social planner commit to respect. Of particular inter-

est are environments with incomplete information, as strate-

gic agents compete over resources against one another and 

seek to learn more about their competitors (other agents). 

For example, an agent can improve its strategy if it has 

more accurate beliefs about the payoffs and states of the  

other agents.

In the last 10 years, information design has been growing 

rapidly, finding key applications in economics, engineering, 

and finance. One example is the study of the optimal de-

sign of information under a Bayesian framework between 

two agents that attempt to communicate over a network 

[S4], [S5], [S6]. Other applications are grade disclosure 

and matching markets [S7], voter mobilization [S8], traffic 

routing [S9], rating systems [S10], transparency regulation 

in financial markets [S11], price discrimination [S12], and 

stress tests in banking regulation [S13]. Furthermore, simi-

lar methodologies have been used to design auction-based 

mechanisms to sell and buy information [S14], [S15], [S16].
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where :v ROi i 0"#H $  represents an arbitrary valuation 
function and p Ri 7  is a monotonically increasing func-
tion. If outcome o O!  represents an allocation of a 
resource, then pi  can be thought of as a transfer of agent 
i’s wealth or a cost imposed on agent i for that particular 
allocation o. Intuitively, a quasi-linear function defined 
as in (1) ensures that the marginal value of vi  does 
not  depend on how large pi  becomes and vice versa. 
Furthermore, (1) assumes that ui  is linear with respect to 

.pi  Next, we can naturally define the social welfare as 
the  collective summation of all the agents’ valuations; 
that is,

	 ( , ) ( , ).o v oSW i
i

i
I

i i=
!

/ � (2)

If our system objective is to maximize (2), then imme-
diately we observe that there is an important obstacle; 
that is, any agent i may misreport its type ii  in the hope 
of increasing its own utility. So, the question is now, 
How can we incentivize agents to report their type truth-
fully? The answer is through the appropriate design of 

.pi  The next step is to outline the building blocks that 
can help us design .pi  Formally, we can define a mecha-
nism as a tuple ,f pG H  composed of a social choice function 
(SCF) :f O"H  and a vector of payment functions 

( ) ,p pi i I= !  with : .p Ri "H  In other words, a mechanism 
,f pG H  defines the rules by which we can implement a 

system objective by mapping the agents’ types to an 
outcome (by means of the SCF) while using the pay-
ments to ensure the optimality or efficiency of that out-
come. It is important to note here that the above is an 
example of a direct mechanism, in which information is 
directly communicated between the agents and the 
social planner (see “Fundamental Results” for other 
specifications). Next, we state the social planner’s prob-
lem, as follows: 

	 ( , )max oSW
o O

i
!

� (3)

	 , isubject to Ii i 6 !i i=t � (4)

	 ( , ) ( , ),v o v o o Oi
i

i i
i

i
I I

6$ !i i
! !

l l/ / � (5)

	 ( ( )) ,p s 0i
i I

6$ !i i H
!

/ � (6)

	 ( ( ( ))) ( ( )) , ,v f s p s i0 Ii i 6 6$ ! !i i i H- � (7)

where iit  denotes the reported type of agent i and (·)s  is the 
equilibrium strategy profile (for example, an NE). Con-
straints (4) ensure the truthfulness in the agents’ reported 
types, (5) imposes an efficiency condition, (6) makes certain 
that no external payments are required, and (7) incentiv-
izes all agents to participate in the mechanism voluntarily. 
If we could know for certain the true types of all the agents, 
then we could solve the optimization problem (3)–(7) using 
standard optimization techniques. However, as this is 
unreasonable to expect from selfish agents, the social plan-
ner needs to elicit ( )i i Ii i= !  by designing the appropriate 

( ) .p pi i I= !

The social planner faces now two critical questions: the 
preference aggregation (which asks what is the best outcome 
o O!  for any given type profile )!i H  and the information 
elicitation (which asks how one can extract truthfully the 
type i !i H  of any agent ).i I!  The theory of mechanism 
design essentially helps us answer both questions by pro-
viding the mathematical framework to construct mecha-
nisms ,f pG H  that can achieve our desirable outcome. In the 
next section, we discuss one such mechanism that elicits 
the private information of agents truthfully.

The Vickrey–Clarke–Groves Mechanism
A well-established and broadly used mechanism that has 
been successful in widely different applications (for exam-
ple, auctions, public projects, and cost minimization prob-
lems) is the Vickrey–Clarke–Groves (VCG) mechanism [12], 
[16], [25]. The VCG mechanism ensures the existence and 
implementation of a dominant strategy equilibrium, which 
is an efficient solution and allows selfish agents to make a 
decision (alternatively, choose a strategy) that is best no 

Agents
People/Organizations

Agents
People/Organizations

Preferences
Messages/Information

Mechanism
Game/Institution

Outcomes
Decisions/Allocations

FIGURE 4 An arbitrary control system (agents, preferences, and allocations) viewed under a mechanism design framework.
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matter what other agents may decide. Agents are also in
centivized to truthfully report their private preferences 
and have no reason (for example, a chance of receiving neg-
ative utility) not to participate in the mechanism. However, 
the VCG is known to be an extravagant mechanism; that is, 
it can generate big surpluses (that is, the taxation may be 
extremely high for all agents).

In the previous section, we reviewed the main concepts 
of mechanism design and formulated the incentive design 
and preference elicitation problem. In words, we asked, 
How can we design the payments ( )p pi i I= !  so that every 
agent makes the decision that agrees with what we have chosen 
as the system’s objective (for example, efficiency)? To answer 
this question, in this section, we review the VCG mecha-
nism (one of the most successful mechanisms), as it incen-
tivizes agents to be truthful and guarantees efficiency.

As discussed earlier, a mechanism is a tuple , .f pG H  In a 
VCG mechanism, the SCF f is defined as an allocation rule 
(who gets what) based on the optimization problem (3)–(7); 
that is,

	 ( ) ( , )arg maxf oSW
,o

i
O i i

i i=
! !i H

t t
t

� (9)

where ( ) .i i Ii i= !
t t  In other words, assuming that the agents 

disclose their true information, (9) provides the social plan-
ner, which attempts to maximize the social welfare, a 
formal mathematical framework to compute the allocations 
of each agent under the right incentives.

Recall that the central idea of a VCG mechanism is 
determining the allocation of a resource to agents by elicit-
ing truthfully any private information agents might hold. 
To achieve this, VCG mechanisms propose payments that 

Fundamental Results

One key characteristic of mechanism design is the commu-

nication of information in the system. Agents have private 

information, which is vital to the social planner’s objective. 

Part of any mechanism is to specify how the private informa-

tion is communicated from the agents to the social planner, 

and thus, all mechanisms fall under two categories: direct 

and indirect. Given any system, if the agents report their pri-

vate information (preferences) directly to the social planner, 

then we say that the agents’ preferences are observable to 

the social planner. In contrast, if the agents do not (or can-

not) report their private information to the social planner, then 

the social planner has to “observe” the agents’ preferences 

indirectly through signals or behavior. Formally, an indirect 

mechanism is defined as the specification of , ,gMG H  a col-

lection of messages ( ) ,M M i i I= !  and an outcome function 

g. A direct mechanism is defined as the tuple , .f pG H  One key 

question in mechanism design now is the following: If an out-

come can be implemented in an indirect mechanism, then 

can it also be implementable in a direct mechanism where 

information (types) is observable? This is answered by the 

revelation principle.

The revelation principle is one of the most fundamental 

and significant results in the theory of mechanism design. It 

serves as the cornerstone, establishing that the solution of 

any indirect mechanism can most surely be replicated by a 

direct mechanism. This allows us to limit the scope of how 

many mechanisms we need to investigate and focus, rather, 

on mechanisms in which agents communicate privately and 

directly with the social planner. Thus, the goal remains to 

elicit the private information truthfully [S17], [S18], [S19], 

[S20], [29]. For example, let us take a city’s transportation 

network with a finite number of cars. Suppose each car 

has its own travel preferences (private information). We are 

interested in finding the optimal traffic flow. If such a flow 

exists when all the cars share only information that is indi-

rectly related to their true preferences, then thanks to the 

revelation principle, there is also an optimal flow in which all 

the cars report their preferences truthfully, and thus, we can 

achieve the same optimal traffic flow. By devising systems 

where the cars are incentivized to be truthful, we can ef-

ficiently manage the city’s traffic. Mathematically, we have 

the following theoretical setup. Suppose some arbitrary 

mechanism , gMG H  implements some SCF f in a dominant 

strategy equilibrium. This means that SCF f is truthfully im-

plementable in a dominant strategy equilibrium if and only if 

for each agent ,i I!  there exist functions :m Mi i i"H  such 

that for i i!i H  and ( ( )) ( ),g m fi i=  the profile ( ( ))mi i i Ii !  is a 

dominant strategy. Hence, it can be seen that the revelation 

principle holds immediately after noting that ( ) ( ( ))f g mi i=  

for each .!i H  Therefore, there are two key theoretical in-

sights we can draw from the revelation principle: 1) for the 

implementation of an SCF, it is sufficient to focus only on a 

system’s main attributes, and 2) in systems, decentralization 

cannot prevail over centralization. As we see in later sec-

tions, though, decentralization and the specifics of a prob-

lem can offer valuable insights and are worth investigating 

for indirect mechanisms.
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serve as incentives for the agents to report their private 
information. The critical question is, How can we ensure 
truthfulness if an agent can influence its payment by what it 
reports? The VCG mechanism answers this question by 
asking each agent to pay for the external effect it imposes 
on the other agents. This is the total utility (or welfare) loss 
other agents experience due to this specific agent’s pres-
ence in the mechanism. Therefore, it does not depend on 
their own declared valuation. Thus, the VCG mechanism 
charges each agent the following payment:

	 ( ) ( ( )) ( ( ))p v f v fi j
j i

i j
j i

i i i= -
! !

-
t t t/ / � (10)

where ii-
t  denotes the type profile of all agents except agent 

i. Note that the payments defined in (10) do not depend on an 
agent i’s own declaration .iit  Assume for a moment that all 
agents declare their types truthfully. Then, the first sum in 
(10) computes the value of the social welfare with agent i not 
participating in the mechanism. The second sum in (10) com-
putes the value of the social welfare of all other agents j i!  
with agent i participating in the mechanism. Thus, agent i 
(when it reports )iit  is made to pay the marginal effect of its 
decision (in our case, agent i’s reported type ).iit  In other 
words, this particular design of the payments in (10) inter-
nalizes an agent i’s social externality. In this context, “exter-
nality” refers to the impact that an agent’s actions have on 
the welfare of all other agents. Borrowed from economics, 
the notion of externalities is often used to describe situations 
where the actions of one individual or group have conse-
quences (positive or negative) for others. In our particular 
setting, the externality is how agent i’s decision affects the 
welfare of all other agents.

The VCG mechanism represented by the SCF f defined 
by (9) and the payment functions p defined by (10) satisfies 
the following properties:

1)	 For any agent, truth telling is a strategy that domi-
nates any other strategy that is available for that 
agent. We say then that truth telling is a dominant 
strategy. Note that such strategies are “always opti-
mal” no matter what other agents decide.

2)	 The VCG mechanism successfully aligns the agents’ 
individual interests with the system’s objective. In our 
case, that objective is to maximize the social welfare of 
all the agents. We call this property economic efficiency.

3)	 For any agent, the VCG mechanism incentivizes it to 
voluntarily participate in the mechanism, as no agent 
loses by participation (in terms of utility).

4)	 The VCG mechanism ensures no positive transfers 
are made from the social planner to the agents. Thus, 
the mechanism does not incur a loss. We call this 
weakly budget balanced.

The VCG mechanism essentially ensures the realization 
of a socially efficient outcome, that is, satisfying properties 
(1)–(3) in a system of selfish agents, where each possesses 

private information. The VCG mechanism induces a domi-
nant strategy equilibrium, maximizing the social welfare 
while ensuring no agent is hurt by participating.

Other mechanisms exist, each with different properties 
and tradeoffs among efficiency, optimality, and informa-
tion. One classic example is the Arrow–d’Aspremont–
Gerard-Varet (AGV) mechanism that offers an efficient 
solution, incentivizes all agents to report their private 
information truthfully, and, most importantly, ensures all 
transactions between the agents and the social planner are 
equal to zero (that is, budget balanced; see Figure 5). The 
key characteristic of the AGV is its Bayesian NE solution 
concept that operates under the assumption of a common 
prior; that is, agents hold beliefs about what other agents 
might do. Furthermore, implementation theory focuses on 
decentralized mechanisms and more rigorously setting up 
the messaging process between agents and the social plan-
ner. Inspired by economics and engineering applications, 
distributed mechanisms (see [81], [82], [83], [84], and [85]) and 
dynamic mechanisms (see [86], [87], and [88]) have also been 
developed to tackle how decisions can be made locally 
within a system and also by relaxing some of the strong 
assumptions on information and prior beliefs, respectively.

We conclude this section with the following remark. 
Although the main motivation of mechanism design is the 
microeconomic study of institutions and relies heavily on 
game-theoretic techniques, it is a powerful theory, provid-
ing a systematic methodology in the design of systems of 
asymmetric information [89], [90] consisting of strategic 
agents whose performance must attain a specified system 
objective. The remainder of the article presents how we can 
use this theory to design a socially efficient system consist-
ing of rational and intelligent agents that compete with one 
another for the utilization of a limited number of resources.

ENGINEERING APPLICATIONS
In this section, we explore various engineering applica-
tions of mechanism design.

Communication Networks
Communication networks are typically modeled as resource 
allocation problems (for example, the bandwidth in wired/
wireless communication is the resource, and a “network 
manager” needs to allocate efficiently among the agents) 
with a finite set of strategic agents. There are many different 
focused areas in communications, such as flow control, rout-
ing, channel scheduling, and power control. There are 
numerous ways to model the utility of an agent in a commu-
nication network. Still, one key assumption is viewing net-
work utilities for the agents as a concave function. Naturally, 
game-theoretic studies [91], [92], [93], [94], [95], [96] have been 
extensively focused on routing/congestion games, net-
worked games, and dynamic games. The main results are 
the existence and uniqueness of an NE, its computation, and 
deriving algorithms to learn/attain an NE. A completely 
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different approach is to formulate the communication net-
work as a convex optimization problem (for example, maximiz-
ing the network utility of all agents) subject to network 
constraints [97], [98]. Typically, a communication problem is 
formulated as follows. Consider a communication network 
of n strategic agents, where I  corresponds to the set of 
agents. Each agent is rational and intelligent and possesses 
private information. In addition, each agent i I!  is endowed 
with a utility function : ,u RXi #  where X  is the set of allo-
cations. In such problems, consider quasi-linear utility func-
tions of the form

	 ( , ) ( )u p v px xi i i i i i= - � (11)

where ( , , , )x x xxi i i i
k1 2 if=  is a k -dimensionali  vector and 

denotes the allocation made to agent .i I!  Intuitively, the 
quasi-linear function defined above ensures that the marginal 
value of vi  does not depend on how large pi  becomes and vice 
versa. Furthermore, ui  is linear with respect to ,pi  which rep-
resents the tax paid by agent .i I!  Based on this information 
so far, we get the following optimization problem:

	 ( )max v xi
i

ix
I!

/ � (12)

	 ( ) , , , ,h c j m1 2subject to xij
i

i j c
S j

6 f# =
!

/ � (13)

	 , i0x Ii 6$ ! � (14)

where m Nc !  is the number of network constraints (for 
example, the capacity of a link in the network) and S j  is the 
set of agents associated with the jth constraint (for example, 

the number of agents using a particular link in the network). 
For each , , , ,j m h1 c ijf=  there is a general function that, 
depending on the specifics of the problem, may model how 
we can measure the bandwidth allocation in the network. 
Next, the agents hold private information that is not known 
to the social planner. An example is the valuation functions 
( ) .vi i I!  Thus, the social planner cannot directly address the 
above maximization problem without the agents’ valua-
tion functions. Information is decentralized among the 
agents in the communication network, and it is the task of 
the social planner to devise a mechanism to elicit the neces-
sary information from the agents and ensure the efficient 
allocation of resources. This is a clear and natural applica-
tion of implementation theory in an engineering problem (see 
“Implementation Theory”). 

Using implementation theory and taking advantage 
of an optimization-based formulation, the focus is to 
carefully design the outcome function g, that is, design 
the payment function pi  such that the allocations x are 
efficient for all agents. The standard analysis of such 
problems is as follows. First, we show that at least one 
NE exists for the game induced by the mechanism 

, .gMG H  Then, since the agents are considered strategic, 
we need to ensure that the outcome function (and thus, 
the payment functions) induce voluntary participation; 
that is, at any NE, no agent may lose utility by partici-
pating in the mechanism. In other words, all the agents 
may, at the very least, have neutral utility ( ).u 0i =  Natu-
rally, in communication networks as well as any other 
engineering applications, we need to be mindful of all 
monetary transactions in the system. Thus, by checking 
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FIGURE 5 The VCG and AGV mechanisms and their possible properties.
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the sum of all the payments of all the agents, we need to 
ensure it is zero at the NE (in which case we say the 
mechanism is budget balanced). The next two properties 
are related to the optimal solution of the optimization 
problem. Can we ensure that all NEs of the induced game 

, , ( )g uM i i IG H!  are equivalent to the optimal solution? If yes, 
then we say that the mechanism fully implements the 
efficient allocation vector x)  at an NE. Rarely, we might 
have an ideal mechanism that results in a unique NE. 
Finally, depending on the network’s topology and other 
physical constraints of our problem of interest, we need 
to check feasibility; that is, the allocation ( , , )x xx n1 f=  
for each agent is feasible, satisfying all the constraints at 
the NE. This methodology has been widely used in the 
communication networks literature. In Table 1, we pro-
vide a snapshot of recent work that mostly focuses on the 
utility maximization problem.

In the following section, we focus on one particularly 
interesting method that has been studied extensively in 
communication networks (inspired by the economics liter-
ature). Of course, other mechanisms have also been investi-
gated in the literature [99], [100], [101], [102], [103].

VCG-Based Mechanisms for Communications Networks
How can we allocate a fixed amount of an infinitely divisible 
resource among a finite set of strategic agents? This is a classic 

problem in communication problems where pricing plays a 
key role [68], [109], [110]. Under natural network constraints, 
and if our desired outcome is to achieve efficiency, then our 
starting point is the Kelly mechanism [111]. Briefly, the Kelly 
mechanism asks each agent to act as a bidder in an auction 
and announce a bid. Then, the allocation of the single 
resource is conducted in proportion to the agents’ bids. For 
each allocation, the social planner will receive a payment 
(or tax) equal to the amount of an agent’s bid in a propor-
tional way. For example, if an agent bids a higher amount 
for a larger proportion of the resource, the Kelly mecha-
nism asks the agent to pay more proportionally to its bid. In 
economics, we call this a “market clearing price.” Such a 
price has many desirable characteristics, as it ensures the 
bare minimum communication (1D messages), and the 
social planner needs only to communicate back a single 
price per resource unit. Both characteristics are ideal, as 
they ensure that the mechanism is practical and easily 
implementable for large-scale systems. The usefulness of 
the Kelly mechanism led to extensive research and the birth 
of scalar-parameterized mechanisms (as the only communica-
tion between the agents and the social planner is a scalar). 
Mathematically, the allocation function for agent i I!  in 
the Kelly mechanism is given by ( )/( ),x c p p{ }\i i j i jI$ R= !  
where pi  is the payment agent i has to make and c N!  is 
the capacity of a single resource.

Implementation Theory

I n this sidebar, we present the fundamentals of imple-

mentation theory, following the formulation of an indirect 

and decentralized resource allocation mechanism closely 

inspired by the framework presented in [9]. One key char-

acteristic of implementation theory is that it considers in-

formationally decentralized systems. Thus, the goal is to 

devise a mechanism that handles this “asymmetry” in in-

formation and provide a set of rules that induce a game. 

This game will have an equilibrium, achieving our de-

sired outcome among strategic agents. So, what are the 

building blocks of this theory? First, we need to specify 

a set of messages that all agents have access to and can 

use to communicate information. Based on this informa-

tion, agents make decisions that affect the reaction of the 

network manager. Once the communication between the 

network manager and agents is complete, the mechanism 

induces a game, and strategic agents then compete for the 

network’s resources. We formally define below what we 

mean by “indirect mechanism” and “induced game.” An in-

direct mechanism can be described as a tuple of two com-

ponents, namely, , .gMG H  We write ( , , , ),M M MM n1 2 g=  

where M i  defines the set of possible messages of agent 

.i I!  Thus, the agents’ complete message space is 

.M M Mn1 # #g=  The component g is the outcome func-

tion defined by : ,Mg O"  which maps each message pro-

file to the output space

	 {( , , ), ( , , ) | , }x x p p x pR RO n n i i1 1 0f f ! != $ � (S7)

that is, the set of all possible allocations to the agents and the 

monetary payments made or received by the agents. The out-

come function g determines the outcome, namely, ( ),g n  for 

any given message profile ( , , ) .m m Mn1 f !n =  The payment 

function :p RMi "  determines the monetary payment made 

or received by an agent .i I!  A mechanism , ,gMG H  together 

with the utility functions ( ) ,ui i I!  induce a game , , ( ) ,g uM i i IG H!  

where each utility ui is evaluated at ( )g n  for each agent .i I!  

Let m i-  be the message profile of all agents except agent ;i I!  

that is, ( , , , , , ) .m m m m mi i i n1 1 1f f=- - +  Next, consider a game 

, , ( ) .g uM i i IG H!  The solution concept of an NE is a message pro-

file n)  such that ( ( , )) ( ( , ))u g m m u g m mi i i i i i$) ) )
- -  for all m Mi i!  

and for each ,i I!  where ( , , , , , ) .m m m m mi i i n1 1 1f f=- - +  

Note that an NE requires complete information. However, we 

can interpret an NE as the fixed point of an iterative process 

in an incomplete information setting [17], [20]. This is in accor-

dance with Nash’s interpretation of an NE; that is, the complete 

information NE can be a possible equilibrium of an iterative 

learning process.
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Following a similar methodology, a special formulation 
of the VCG mechanism for an auction setting was intro-
duced in [112] and [113]. The problem was for a single divis-
ible good under two different scenarios. At first, Semret 
[113] studied nondifferentiable pseudoutility functions 
between a social planner and multiple agents. In [112], the 
case was that agents sought bundles of links of a commu-
nication network (for example, a route), and each agent’s 
utility function depended on the minimum allocation re
ceived along its route. The key approach here was that for 
each link of the network, a completely new and different 
auction was run. Both works have been somewhat gener-
alized for multiple divisible links [114], [115]. A general 
convex VCG-based mechanism was introduced in [68], 
following [104], which, just like in the Kelly mechanism, 
required only 1D bid signals from all agents. Following 
this work, [105] proposed a VCG-based mechanism with 
agents reporting a 2D bid, that is, a per-unit price b  and a 
maximum quantity di  that agent i I!  is willing to pay 
for the resource. Thus, the valuation function takes the 
form of

	 ( ) { , }.minv x x di i i i$b=t � (14)

The benefit of this mechanism is that it provides the 
equilibrium of the induced game (an auction in this case), 
resulting in an optimal solution of the utility maximization 
problem based on the reported agents’ utility functions. 
Each agent pays for its allocation exactly the externality it 
imposes on the other agents by participating in this mecha-
nism. Of course, other mechanisms have been investigated, 
explored, and developed at great length [99], [100], [101], 
[102], [103].

Power Grid Systems
Over the last few decades, consid-
erable efforts have been made to 
decarbonize our society’s increas-
ing energy demands [116] and reas-
sess the efficiency of the existing 
methods of producing, managing, 
and consuming electricity [117]. 
Since the 1980s [118], [119], [120], 
demand-side management (DSM) pro-
grams have been the standard way 
to study power grid systems, their 
efficiency, and, recently, their trans-
formation to smart grid systems. 
According to the U.S. Energy Infor-
mation Administration, “Demand-
side management (DSM) programs 
consist of the planning, implement-
ing, and monitoring activities of 
electric utilities which are designed 
to encourage consumers to modify 

their level and pattern of electricity usage.” Hence, it is no 
surprise that next-generation smart power grids utilize 
information and communication technologies as well as 
improved computational and sensor capabilities. That is 
why smart power grid systems are excellent examples of 
cyberphysical systems characterized by an overlay of infor-
mation, algorithms, and enhanced operational programs to 
generate, transmit, distribute, and use electricity [121].

There are multiple methodologies for DSM programs, but 
depending on the application and modeling choices, we can 
say that there are four main categories: 1) energy efficiency, 2) 
price-based demand response, 3) incentive-based demand 
response, and 4) market-based models. For the purposes of 
this article, our focus is on the last category, that is, market-
centric grid control. The key architectural structure for such 
models is as follows: there are generators, loads, distribution 
grids, and aggregators, all playing important roles as partici-
pants in the market. There is an independent system operator 
(ISO) that is tasked to manage all and any transactions for 
electricity in the market [122]. The goal of such a model is to 
provide the “right” incentives and set of rules for the overall 
power generation to cost-effectively and efficiently match the 
load at all time [121]. The main approach to achieve this goal 
is for the ISO to assume complete control of the market and, 
by introducing an auction, derive the incentives (for exam-
ple, electricity payments) for efficient power and energy allo-
cation under different scenarios. For example, we can 
consider different regulations and constraints in the produc-
tion or distribution of electricity. Such modeling has been 
studied extensively over the last 10 years, as efforts to pro-
vide more sustainable consumption and production of elec-
tricity to homes from factories have been a top priority [123], 

Communication Networks With a Maximization Problem

Reference Framework Constraints Implementation
Budget 
Balanced

[104] Flow control Systemwide Partial No

[68] Flow control Systemwide Full Yes

[105] Flow control Systemwide Full Yes

[97] Flow control Systemwide Partial Yes

[98] Joint flow control and  
multipath routing

Systemwide Full No

[106] Power allocation and  
spectrum sharing

Systemwide Full Yes

[107] Electric vehicles Systemwide Full Yes

[108] Networked public goods Local Full Yes

[83] Networked public goods Systemwide Full Yes

[82] Network utility maximization Systemwide  
and linear

Full Yes

TABLE 1  A summary of recent articles on utility maximization problems  
in communication networks.
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[124], [125], [126], [127]. Two key challenges that have been 
studied in the literature are

1)	 How can we design the right monetary payments in selling 
electricity to consumers in day-ahead or real-time settings?

2)	 How can we ensure the efficient and balanced production 
and distribution of electricity as well as the control of the 
electrical voltage frequency?

In parallel to market-based approaches, game-theo-
retic models have also been studied and explored in an 
effort to understand the strategic interactions between 
producers (for example, production centers or factories) 
and consumers (for example, households and build-
ings) [128], [129], [130], [131], [132], [133]. This means that 
both producers and consumers are assumed to be self-
ish (rational and intelligent) and, thus, make decisions 
(how much electricity to produce and how much elec-
tricity to consume) according to their own individual 
self-interest [134].

Suppose our goal is to develop a pricing mechanism for a 
DSM program in which we want to encourage efficient energy 
consumption among consumers. If we adopt the mechanism 
design approach, then we set a systemwide socially efficient 
objective that we want to achieve (this could be a property 
such as truthfulness, efficiency, and being budget balanced). 
What if, though, all household appliances that use electricity from 
our consumers are jointly scheduled? One way to tackle this issue 
(since it causes severe computational complexity) is to use the 
technique consumer-level control, in which we attempt to deter-
mine the total electricity consumption in each time step. Then, 
we schedule enough production/distribution for a consum-
er’s appliances to operate at the “desired” electricity usage 
levels [135], [136]. However, additional information from con-
sumers might be necessary, and, as has been shown [7], this 
information is private, and consumers have no reason to 
report it truthfully. Hence, mechanism design can be used to 
solve this information elicitation problem by the appropriate 
design of incentives [137]. The literature can be categorized as 
follows: 1) auction-based mechanisms (primarily extensions 
of the VCG), 2) market-based mechanisms [138], [139], [140], 
[141], [142], [143], [144], and 3) indirect mechanisms for bid-
ding and pricing models. In the following section, we review 
a general market-based framework of a smart grid system.

Electricity Markets
In this section, we offer a general formulation of an electric-
ity market, followed by its natural extension to an optimal 
mechanism design problem. Our exposition follows the 
work in [145].

Consider a smart power grid system consisting of agents 
(for example, producers and consumers), a power grid net-
work, and the electricity demand from the agents. In this 
general framework, we also consider that the information 
is uncertain. Electricity production incurs a cost that needs 
to be covered by the producers. To capture this, we introduce 
a production cost function. Thus, it is natural to expect all the 

producers to be selfish. Their goal is to cover, at the very 
least, their cost when selling the produced electricity. In 
general, there are two ways we can model this problem: 1) 
use of a bid function, which directly maps an electricity 
quantity into a payment, and 2) use of a supply function, 
which directly maps payments to the produced quantity. 
As we discussed earlier, there is an ISO that aggregates the 
demand side. In mechanism design terms, the ISO plays 
the role of a social planner and is tasked to elicit any private 
information, gather the bids and payments from the agents, 
and allocate the electricity that has been produced. Next, 
consider that i I!  refers to a node (some producer) of an 
arbitrary network ,G  where I  is the set of nodes. Each 
i I!  may produce quantity q Ri !  of electricity. As this is 
an interconnected power grid system, we say that the quan-
tity of electricity that is sent from some node i I!  to node 
j I!  is denoted by .h R,i j !  At each node ,i I!  assume 
that there is demand for electricity .d Ri !  Each node is 
asked by the ISO to report a bid denoted by ( ) ,b q Ri i !  and, 
at the same time, the maximum quantity qir  that node i I!  
can produce. Next, we can add constraints to our problem 
to capture the specifics of the power grid network. Note 
that ( )hh H, ,i j i j I != !  such that .h h, ,

max
i j i j#  The goal of the 

ISO is to derive the allocation of electricity such that the 
total cost of production is minimized for the nodes (or pro-
ducers), respect all constraints, and ensure that the supply 
of electricity is at least greater than the demand (that way, 
the power grid system can safely meet the demand) [145]. 
Next, we add a nodal constraint of the form

	
( ) ( )

q h h
c h c h

d2, ,
, , , ,

i j i i j
j

j i j i i j i j

j
i

I I

$+ - -
+

! !

^ h/ / � (15)

where ( )c h,i j  represents the loss from the distribution of 
electricity with quantity h from node i I!  to node .j I!  
This constraint is critical to ensure that the demand at each 
node is satisfied, considering the electricity produced, the 
amount received from the other nodes, the amount sent to 
the other nodes, and the losses from distribution among 
nodes. We are ready to state the allocation of the electricity 
optimization problem: for each ,h H!

	 ( )min b q
( ) ,q

i
i

i
h Ii i I !!

/ � (16)

	
( ) ( )

q h h
c h c h

d2subject to , ,
, , , ,

i j i i j
j

j i j i i j i j

j
i

I I

$+ - -
+

! !

^ h/ / � (17)

	 [ , ]q q0i i! r � (18)

	 .h 0,i j $ � (19)

Consider that there exists a probability distribution fi  over 
a set of potential production cost functions. Each node i I!  is 
characterized by a type, say, ,ii  representing a production 
cost function that depends on the quantity .qi  So, based on the 
mechanism design expectation that no node i I!  will report 
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its true production cost function ii  truthfully, we need to for-
mulate an optimization problem and design appropriate 
incentives to have efficient production and distribution of 
electricity in the power grid network. Note that

	 [ ( )]min pE
, ,q h p j

j
I,j i k j

i
!

/ � (20)

	 ( )
( ) ( )

q h h
c h c h

d2subject to , ,
, , , ,

j i j j i
i

i j i j j i j i

i
j

I I

$i + - -
+

! !

^ h/ /
� (21)
	 [ ( )] ( ( )) [ ( )] ( ( ))p q p b q bE Ej j j j j j$i i i i- - � (22)

	 [ ( )] ( ( ))p q 0E j j j $i i i- � (23)

	 ,h p 0,i j j $ � (24)

where ( )i i Ii i= !  is the profile of production cost functions. 
To solve the above optimization problem, we need a mech-
anism with allocation and payment rules (q, p) that mini-
mize the expected payments of all nodes. Some key 
approaches to find the optimal (q, p) are to first analyze an 
NE based on Bayesian Bertrand games [146], study the qua-
dratic externalities of the system, or study the Walrasian 
equilibrium and replicate the techniques used in wholesale 
electricity auctions [147], [148]. Of course, there are many 
other techniques for this problem, that is, stochastic market 
mechanisms [149] and energy reserve co-optimized mar-
kets [150]. There are other methodologies of electricity mar-
kets in power grid systems or electric mobility that take a 
different approach, such as designing stochastic repeated 
games [151], [152].

Transportation Systems
Commuters in big metropolitan areas have continuously 
experienced the frustration of congestion and traffic jams 
[153]. Several studies have shown the benefits of emerging 
mobility systems (for example, ride-hailing, on-demand 
mobility services, shared vehicles, and self-driving cars) in 
reducing energy use and alleviating traffic congestion in 
several different transportation scenarios [154], [155], [156], 
[157], [158], [159], [160], [161], [162], [163]. For some recent and 
comprehensive surveys on the methodologies and tech-
niques used in smart mobility-on-demand systems, see 
[164], [165], and [166].

Routing/Congestion Games
We start this section with a motivational example. Sup-
pose we have a simple transportation network ( , )V EG =  
with two routes A and B (one shorter than the other), where 
V  is the set of nodes and E  is the set of edges/roads. The 
agents (in this case, the drivers) start at origin o V!  and 
need to choose either route A or B to reach a final destina-
tion .d V!  If all the drivers choose the shortest route, then 
naturally, congestion will occur, and all the drivers will 
experience travel delays. So, the goal here is to find the 
best possible coordination of traffic through the different 
routes from o to d. We can model this as a game in which 

the drivers play against one another and have two possible 
actions (route A or route B), thus leading to several possi-
ble outcomes. In the simple case of two players, the number 
of possible outcomes is the combination of the choices 
between these two players; that is, 1) both players choose 
route A; 2) player 1 chooses route A, and player 2 chooses 
route B; 3) player 1 chooses route B, and player 2 chooses 
route A; and 4) both players choose route B. Which one is the 
best equilibrium? The answer to this question has been 
studied extensively over the last 20 years in the form of 
noncooperative routing games, in which selfish agents com-
pete for the best route in the traffic of a transportation net-
work [167]. Most interestingly, the generalization of routing 
games was developed by economist Robert W. Rosenthal 
in 1973 [168], [169], in which the theoretical framework of 
congestion games was introduced as noncooperative games 
of competing agents whose strategies are subsets of 
resources in the system (transportation network). The 
agents’ utility then depends only on the number of other 
agents that have chosen the same or an overlapping strat-
egy [170], [171]. Moreover, the final cost of an agent can be 
computed as the sum of the costs of the strategy’s elements 
(the route or an origin–destination pair). Mathemati-
cally, following the formulation of congestion games in [2] 
closely, we have n N!  agents, with set { , , }n1I f=  and a 
network .G  The set of strategies of each agent i I!  is a set 
of subsets of the set of edges .E  We call these paths or 
routes. For each edge ,e E!  there exists a congestion func-
tion : .c RIe 0" $  Additionally, denote by {( , , )}P P Pi nf=  
the set of paths (that is, the strategies). The congestion of 
edge e E!  is some function ( )P,  that can measure how 
many agents utilize one particular edge of agent .i I!  
Then, agent i’s utility is given as

	 ( ( )).u c Pi e
e Pi

,=
!

/ � (25)

If the set of agents is infinite, then the game is nonatomic 
[172]. This notion, together with Rosenthal’s congestion 
game framework, allowed the formulation of general traf-
fic networked games with an infinite number of agents, 
each with a negligible effect on the system’s overall perfor-
mance. Hence, nonatomic congestion games (and their 
special case, routing games) have been the standard model 
of transportation systems, communication routing net-
works, and computer science [173], [174], [175], [176], [177], 
[178], [179], [180], [181], [182]. Moreover, this framework of 
congestion games has been proved to be quite flexible for a 
number of models and applications (see [167]).

Another example to showcase the flexibility and the theo-
retical prowess of nonatomic congestion games is the traffic 
routing model [183]. Agents are characterized as different 
origin–destination pairs in a transportation network, of which 
the edges are the resources. The core assumption here is that 
agents compete for limited (easily congested) resources. Thus, 
the strategies of the agents are represented as the possible 
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paths between an origin and a destination. To each path a cost 
is associated, and it models the travel latency or travel delays 
based on the traffic along the path. The goal in this model is to 
find an equilibrium closest to the social optimum: a multicom-
modity flow of minimum total delay. In [183], the Wardrop 
equilibrium was introduced as the collective strategies of all the 
agents in the network with the shortest paths. The signifi-
cance behind the Wardrop traffic model under the congestion 
game framework is that it allows us to study the efficiency of 
equilibria. Both the NE and Wardrop equilibria fail to mini-
mize the social cost and thus are overtly inefficient. Thus, to 
improve the game-theoretic analysis, in 1999, Koutsoupias 
and Papadimitriou [184], [185] proposed the inefficiency of 
equilibria to be studied through the lens of worst-case analy-
sis. In their seminal work, they introduced the “price of anar-
chy,” which represents the ratio of the worst social cost 
evaluated at an NE to the cost of an optimal solution [170]. 
This key notion was extensively studied in transportation, 
communication, and computer science problems (for exam-
ple, selfish routing) [170], [176], [186], [187], [188], [189].

Auction-Based Approaches for Intelligent  
Transportation Systems
Traffic congestion will continue to be one key challenge for 
next-generation smart cities. The cost incurred by travel 
delays, traffic accidents, and fuel consumption has been esti-
mated to be in the billions of U.S. dollars per capita annually. 
That is why, over the last 20 years, intelligent transportation 
systems (ITSs) have been introduced to provide solutions and 
make transportation in urban areas, as well as on highways, 
safer, more efficient, and more convenient for travelers and 
drivers. ITSs are a multidisciplinary field, as they incorporate 
multiple technologies, such as wireless communication, nav-
igation, sensing, and computing technologies. For example, 
ITSs have been applied in vehicle navigation, traffic signal 
control, emergency notification, and collision avoidance sys-
tems. Naturally, communication is vital in such systems, 
including vehicle-to-vehicle and vehicle-to-infrastructure (V2I) 
communication [190], in which advanced wireless communi-
cation allows vehicles to communicate crucial traffic infor-
mation (for example, speed, position, acceleration, traffic 
conditions, congestion, and traffic warnings) to infrastruc-
ture (some central authority/coordinator).

As we discussed earlier in this section, a key approach to 
the analysis of ITSs can be based on auctions. Vickrey’s 
work [191] established congestion pricing as a way to control 
congestion efficiently by requiring travelers/drivers in the 
transportation system to pay tolls (as a function of the exist-
ing congestion, time, location, and vehicle type) [192]. 
Dynamic pricing has also been introduced, notably in 
[193] and [194]. In contrast to congestion pricing, an auc-
tion-based technique focuses on establishing an auction, 
with competing vehicles reporting bids for “time slots” to 
travel in high-demand urban areas during peak hours 
[195]. Alternatively, taking advantage of V2I technologies, a 

combinatorial auction can be formulated to determine the 
right toll prices for vehicles [196] (in such auctions, buyers 
compete with one another and bid to acquire multiple 
different but related goods). Based on [195], we have the 
following framework. There is a set of agents ,I  where 
each agent i I!  makes a total of m Ni !  bids to enter the 
high-demand urban area. Time is modeled as a set of dis-
crete steps; that is, { , , , }, .T T1 2 NT f !=  Each time interval 
represents the duration of an agent’s stay in the area. So, each 
agent i I!  bids a monetary payment of value p Rij !  for 
the right to visit the urban area a number of c Nij !  times. 
Next, we have the following binary variables:

	 ( )
,
, .d t

c t1
0

if consists of time interval
otherwiseij

ij
= ' � (26)

In addition, we have

	 ( )
,
,

  
.x t

c1
0

if is accepted
otherwiseij

ij
= ' � (27)

Thus, the optimization problem is formulated as
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i

6# !
=
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where Dmax  is the maximum number of vehicles allowed to 
be in the specific urban area. This optimization problem is 
rather difficult to solve, as it is combinatorial, and depend-
ing on its size, it can be almost impossible to solve in finite 
time. However, auction-based congestion pricing [195] can 
provide good enough solutions. In [196], a similar yet im
proved combinatorial optimization problem is proposed, 
and using VCG-based incentives provides an efficient solu-
tion in the alleviation of traffic.

More recently, auctions and mechanism design have 
been used in ride-sharing [5], [197] and autonomous vehicle 
public transportation problems [198]. We summarize some 
of the latest articles in this area in Table 2.

Security Systems
It is well known that cyberdefense remains a top priority for 
many organizations across different sectors. Part of this is 
because cyberattacks are continuous and have the ability to 
bring down vital systems. Although there are many different 
angles to study security in a system of multiple agents, one 
approach is to assume that security is an economic good or 
resource and adopt game-theoretic approaches to study 
how we can find the best possible processes (via the 
appropriate design of incentives) for an efficient security 
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investment [205], [206]. The main assumption in this 
approach is that the interactions among strategic agents in 
a system in which security is of crucial importance can 
constitute a game. The objective of such a game is the pro-
vision of security through the means of investments by 
the agents. Thus, we say that security is a public good. 
This approach was first introduced by [207] as a way for a 
“security game” to study airlines’ baggage checking sys-
tems and what incentives are best. In parallel, Varian [208] 
studied security games for the reliability of computer sys-
tems. Afterward, security games were extensively stud-
ied in different fields and applications [207], [208], [209], 
[210], [211], [212]. There are two surveys on this topic: [206] 
and [214].

The Design of Security Games
What is a security game? In general, interconnected systems of 
multiple agents that depend on one another can be vulnera-
ble to attacks by outsiders and external forces. Thus, any 
agent is encouraged to invest in a system’s security mea-
sures, not only to protect itself but also to protect the other 
agents. Interconnectedness implies a positive externality. 
Consequently, the provision of security can be modeled nat-
urally as the provision of a public good (nonrivalrous com-
modity) [1]. Thus, a security game models the strategic 
interactions of agents in a security system where each is 
asked to invest its own resources to secure the system from 
external attacks. Mathematically, consider a network of 
n N!  agents (for example, networked computer servers, 
corporate divisions, or self-driving vehicles on a highway). 
The utilities of all the agents are interdependent, and so 

( ).v xi  Each agent is assumed to possess a finite amount of 
resources w Ni !  available for investment, and if an attack is 
successful against agent i’s resources, then a loss ( , ]w0i i, !  
may be imposed on agent .i I!  The agent is allowed to pro-
tect its resources; hence, agent i I!  may invest .x Ri 0! $  
However, this investment comes with a cost, represented by 
a general function :c R Ri 0 0"$ $  evaluated at the individual 
amount of investment .xi  We denote the vector of all the 
agents’ investments by { , , } .x xx Xn1 f= =  Then, to capture 
how likely an attack is to be successful or not, we introduce a 
risk function : [ , ].r 0 1Ri

n
0 "$  Let { , , , , , }x x x xx i i i n1 1 1f f=- - +  

capture the interdependence of all the other agents’ security. 
Then, the utility of an agent i I!  is of the form

	 ( ) ( ) ( ).v w r c xx xi i i i i i$,= - - � (31)

Hence, the security game is given by the tuple , , ( )vI X i i IG H!  
in a complete or incomplete information setting (depend-
ing on the problem).

The transformation of a security game to a mechanism 
design problem is straightforward. For a solution concept, 
we adopt the NE. Formally, we have

	 ( , ).argmaxx v x xi
x

i i i
0

=
$

-u � (32)

For completeness, the socially optimal solution profile x)  
can be computed as follows:

	 ( ).argmax vx x
x

j
i0

I

=)

$
!

/ � (33)

Next, the total interdependent utility of agent i I!  is 
given by

	 ( , ) ( )u p v px xi i i i= - � (34)

where pi  represents a payment/tax for agent i I!  when the 
investment profile is x. Naturally, in a security system, it is 
imperative to design the right payments for all agents to 
incentivize voluntary participation. One approach for this is 
to introduce the notion of exit equilibrium: an equilibrium that 
takes into account the “external strategy” of an agent from 
the mechanism for the provision of nonexcludable goods, 
such as security and investment. At an exit equilibrium, an 
agent may unilaterally opt out of the mechanism and decide 
to adopt its best response against the other agents that have 
chosen to participate in the mechanism [215]. Formally,

	 ( , )argmax v x xx i
i

j
j i

i i
i

0x i
=

!
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t t/ � (35)
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i
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i i

i
i

0i
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$
-t t � (36)

Most notably, although this is quite an interesting notion 
of an exit equilibrium, [215] showed an impossibility result 
for mechanisms that induce a security game with social 
optimality, a weak budget balance, and voluntary partici-
pation. Most interestingly, two main approaches, that is, 
the VCG mechanism and the externality mechanism [216], 
[217], that have been quite successful in other applications 
fail to circumvent this theoretical obstacle. For the purpose 
of this article, we focus on the latter only.

Auction-Based Mechanisms for Transportation Systems

Reference Model Auction Type Scenarios

[199] Dynamic 
ride-sharing

Combinatorial 
double auction

One-to-one 
assignment

[200] Dynamic 
ride-sharing

Vickrey One-to-one 
assignment 
with detours

[201] Dynamic 
ride-sharing

Combinatorial 
double auction

One-to-one 
assignment 
with detours

[198] Dial-a-ride 
problem

VCG One to many

[202] Dial-a-ride 
problem

Combinatorial 
double auction

One to many

[203], [204] Dial-a-ride 
problem

VCG One-to-one 
assignment 
with detours

TABLE 2  A summary of auction-based mechanisms for 
transportation systems.
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Auction-Based Mechanisms for Security in Communication Systems

Auction Type Characteristics Solution Concept Scenario

English auction [63] Winner pays second-highest price NE Information integrity

Dutch auction [63] Winner pays final price NE Black hole attack

First-price sealed bid auction [219] Winner pays highest price NE Privacy or faked sensing attack

Vickrey auction [219] Winner pays second-highest price NE User collusion/bid rigging

VCG auction [220] Vickrey auction with multiple goods Bayesian NE Eavesdropping attack

Share auction [221] Matching of goods based on ratio  
of buyers’ bids

NE Distributed denial-of-service 
attack

Ascending clock auction [222] Increasing price until demand equals 
supply

Walrasian equilibrium False name bids

Double auction [223] Matching between sellers’ demands 
and buyers’ bids

Market equilibrium Privacy

TABLE 3  A snapshot of articles on the security of communication systems.

The externality mechanism aims to redistribute the 
wealth that is collected from the agents and ensure a strong 
budget balance (all payments equal to zero). As shown in 
[217], this mechanism induces a game with social optimal-
ity and voluntary participation and maintains a balanced 
budget for cellular networks (which is an excludable public 
good). The payment function is given by

	 ( ) ( ) ( ).p x x
r x x

c xx xi j
j

i
j

i
i

i

i
i

I
2
2

2
2

,=- -) ) ) ) )
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However, these taxes fail to induce voluntary participation 
for all the agents, and thus, the system will be significantly 
vulnerable to attacks, as its security cannot be guaranteed.

Security in Communication Systems
Security has been extensively studied in communication 
systems since the 1980s. With the advancement of commu-
nication technology, such as wireless networks, communi-
cation among systems, computers, and phones has never 
been as easy and quick. However, such systems admit vul-
nerabilities, and since they play a key role in the exchange 
of information, attacks are continuous and frequent. In this 
section, we briefly focus on auction-based mechanisms 
that offer solutions for various communication scenarios 
and the solutions we can derive.

Auctions have been used to model the economic-in-nature 
interactions among agents of a communication system that 
need to invest resources for the security and well-being of 
the system (for example, to prevent external attacks). Exam-
ples of auctions used to model security include English auc-
tions, Dutch auctions, sealed bid auctions, double auctions, share 
auctions, and ascending clock auctions.

Both English and Dutch auctions are multiple-round auc-
tions and allow buyers to exchange information (their bid) 
with other buyers. In economics, this type of disclosure in 
auctions is called open outcry. In addition, the auctioneer in 
English auctions introduces a bid and keeps increasing it at 

each round, while in Dutch auctions, the opposite process 
occurs (with a high price decreasing until it is accepted). 
Thanks to the simplicity of the auction rules, such auctions 
have been used to defend and identify “malicious” agents in a 
system [224]. Sealed bid auctions, as their name suggests, are 
characterized by their ensured privacy, as buyers do not dis-
close their bids to anyone (examples are the first-price auction, 
Vickrey auction, and VCG auction). The specifics of each auc-
tion have been listed in Table 3, with recent key applications 
[225]. For example, a VCG auction extends the Vickrey auction 
with multiple goods and sets the proper rules to determine 
the winner (that is, the buyer who gets an auctioned good). In 
particular, the VCG auction awards the good to the buyer, 
who then pays the second-highest bid. This is extremely 
important, as it establishes the following principle: bid your 
true valuation and pay less than you expect. The VCG auction 
has been widely used in securing communication and wire-
less networks (for example, to prevent agent misbehavior).

So far, the above-mentioned auctions are one-sided, 
meaning there is one auctioneer who tries to sell one or 
more goods to a finite number of buyers. In a double auc-
tion, there is still an auctioneer who manages an auction 
between multiple buyers (who each submit bids at the same 
time) and sellers (who each submit payment demands for 
their goods [223]). For example, an auctioneer can match 
the buyers and sellers as follows. List the bids in a descend-
ing order and the payment demands in an ascending order. 
Denote by ,p pm m

seller buyer  the payment demand of a seller and 
the bid of a buyer, respectively. Then, the auctioneer can 
find the largest index m N!  for which

	 .p pm m
buyer seller# � (38)

The next step is to set the final payment as

	 .p
p p

2
m m
buyer seller

=
+) � (39)
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In economics, p)  is called the clearing price. Using this price, 
buyers get a good by paying ,p)  and naturally, the seller 
receives .p)  This process can be repeated as many times as 
necessary, and it stops once all the sellers’ goods have been 
matched or sold to the buyers.

Finally, share auctions constitute a type of auction that 
resembles a market and are used to model a resource allo-
cation to multiple buyers. However, the resource needs to 
be divisible (for example, bandwidth) [226]. Share auctions 
are as follows. Buyers submit to an auctioneer a bid (how 
much bandwidth they require), and then the auctioneer 
computes a payment that is proportional to the buyer’s bid. 
For example, suppose there are K N!  source–destination 
pairs of friendly jammers (sellers of friendly jamming 
power) and eavesdroppers in a wireless communication 
network. The goal is to improve the secrecy capacity of a 
source. A buyer submits a bid in the form of asking for 
friendly jamming power, say, .Ri !r  Thus, we can allocate 
the friendly jamming power at each source ;i I!  that is,

	
b

b max
i

k

i

k

K

1

r

b

r=
+

=

/
� (40)

where maxr  is the maximum possible power, bi  is the source 
i’s bid, and .R!b  Finally, source i I!  pays ,pi imr=  where 

R!m  is a payment per unit of power. Such auctions can be 
used to find the optimal bid among sources in the network 
and maximize the secrecy capacity change [227]. A com-
prehensive survey and tutorial can be found in [228]  
and [229].

CONCLUSION
In the last section of our article, we offered a discussion of 
the theory of mechanism design and its engineering appli-
cations. First, we discussed the theoretical and practical 
limitations of the theory, some of the most notable criti-
cisms, and how to move forward. We paid extra attention to 
offering key open questions in mechanism design and pro-
posed two main future research directions that we, as 
authors, believe have the greatest potential. Finally, we con-
clude this article with a few remarks.

Traditionally, mechanism design has focused mainly on 
quasi-linear static settings under somewhat simple struc-
tures for the agents’ types or utility functions. Some particu-
lar (unrealistic) strong assumptions have pervaded, making 
it difficult for mechanisms to be implemented in real-life 
problems. Whether the set of agents remains fixed and 
known to the social planner or the evolution of information 
is not considered, the ability to design mechanisms that offer 
a superior way to design incentives and induce efficiency 
across a system still remains a formidable challenge in mech-
anism design. For example, the VCG mechanism, although a 
widely used mechanism, is not frugal, and depending on the 
application, it might overtax agents (thus imposing a heavy 
tax burden). Information and communication, as envisioned 

by Hurwicz, rely on the universal existence and authority of 
a central authority (a social planner). Agents are expected to 
fully disclose their private information, raising privacy con-
cerns as well as computational costs to manage the sheer 
amount of information. Another key critique of the theory is 
the computational intractability of certain mechanisms, as 
many fail to provide an iterative learning process (alterna-
tively called a tâtonnement process); that is, there exists an 
algorithm for the equilibrium to be attained by the agents 
and social planner.

From an engineering standpoint, mechanism design is 
characterized by its tradeoff between the design of optimal 
and efficient solutions that all agents will accept and realistic 
and systemwide properties, such as simplicity, robustness, 
and computational trackability. As control problems are com-
monly dynamic, complex, and unpredictable [230], it still 
remains an open question of how to devise mechanisms that 
are simple yet dynamic, robust, and trackable. At the same 
time, a key open question is to look at the intersection of 
mechanism design and machine learning, allowing mecha-
nisms with incentives that lead to efficient equilibria that can 
be learned in dynamic environments (that is, extending the 
typical mechanism to address dynamic control problems). 
It is the authors’ belief that engineering applications (for 
example, communication networks, information systems, 
and transportation networks) of large-scale systems, 
which are dynamic in nature, impose rather crucial chal-
lenges to the theoretical framework of mechanism design 
and thus inspire novel new mechanisms that will circumvent 
some of the limitations of the theory (see Further Reading). 
Over the last 10 years, there has been extensive research from 
economists and mathematicians in expanding the theory of 
mechanism design for dynamic systems [6], [57], [213], [218]. 
The goal, of course, is to improve the applicability of these 
mechanisms in real-life problems and translate the useful-
ness of the theoretical insights into practice. Finally, game 
theory allows us to model the strategic interactions of sys-
tems consisting of multiple agents/players that compete over 
resources. The theory of mechanism design allows us to 
adopt an objective-first approach and model the best possible 
game and its rules. As new developments and applications 
are continuous, the next chapters of mechanism design in 
engineering and mechanism design’s true impact in solving 
big problems remain to be seen. 
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Further Reading

There is a rich list of books on game theory, economic 

design, and mechanism design for the interested reader 

and especially for any first-year graduate students as a first 

resource to learn more about the field. The literature on 

game theory and its applications includes several excellent 

textbooks [S21], [S22], [S23], [S24], [S25], [71]. Most of the 

established theories of mechanism design can be divided 

into three categories: economics, auctions, and computer 

science (with general applications). The gold standard in 

microeconomics, which includes rigorous introductions 

to game-theoretic notions and mechanism design, is [1].  

A textbook more focused on Nash-based mechanisms and 

matching markets is [74]. A recent book [76] offers a more 

economics-inclined theory establishing the foundations of 

mechanism design. Excellent textbooks in implementation 

theory are [S26] (with an excellent chapter in [S25]). Robust 

mechanism design in economics has been mostly devel-

oped by Dirk Bergemann, who has compiled a decade’s 

worth of work in [S27]. So far, most of the textbooks fo-

cus on the implementation of mechanisms and the efficient 

design of incentives. A completely different approach, one 

that is much closer to the first seminal article by Hurwicz, 

is the study of mechanisms under informational efficiency, 

focusing mostly on the preservation of privacy [9] and the 

bounded size of the message space [S28]. However, a rath-

er engineering-accessible textbook that offers a theoreti-

cal framework of mechanisms through fundamental results 

from linear programming is [S29]. Mechanism design has 

been instrumental in auction design, and many times, the 

methodologies and techniques of the two theories are inter-

changeable. Thus, some great general textbooks are [63] 

and [65], and a survey on combinatorial auctions is in [S30]. 

We end by offering excellent surveys from the economics 

literature [S31], [S32]. Of course, there have been numer-

ous key contributions in mechanism design by computer 

scientists, and in many graduate programs, mechanism 

design is part of the curriculum. A well-known textbook 

that offers a survey of these contributions is [2, Ch. 9–16], 

and, in general, so does [8]. Additional resources in game-

theoretic approaches and techniques of mechanism design 

(including dynamic incentive design) can be found in [S33], 

[S34], [S35], and [60]. Finally, a recent publication that dis-

cusses the latest developments, insights, and theoretical 

results in economic design is [S36]. 
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