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Mechanism Design Theory

A TUTORIAL AND OVERVIEW OF APPLICATIONS IN
COMMUNICATION, POWER GRID, TRANSPORTATION,
AND SECURITY SYSTEMS

IOANNIS VASILEIOS CHREMOS® and ANDREAS A. MALIKOPOULOS

his article provides an introduction to the theory of
mechanism design and its application to engineer-
ing problems. Our aim is to provide the fundamental
principles of mechanism design for control engineers
and theorists, along with state-of-the-art methods
in engineering applications. We start our exposition with a
brief overview of game theory, highlighting the funda-
mental notions necessary to introduce mechanism design.
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Then, we offer a comprehensive discussion of the principles
of mechanism design. Finally, we explore four key applications
in engineering, that is, communication networks, power grids,
transportation, and security systems.

INTRODUCTION

Over the last 70 years, the theory of mechanism design was
developed as an approach to efficiently align individuals” and
systems’ interests in problems where individuals have pri-
vate preferences [1]. It can be viewed as the art of designing the
rules of a game to achieve a desired outcome. Mechanism
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design has broad applications spanning many fields, including
microeconomics, social choice theory, computer science [2], and
control engineering. Applications in engineering include
communication networks [3], social media [4], transportation
routing [5], online advertising [6], smart grids [7], multiagent
systems [8], and resource allocation problems [9].

Eric Maskin has provided an example that best illus-
trates the theory of mechanism design in simple terms [10].
Suppose we want to divide a cake between two children, for
example, Mary and Bill (see Figure 1). Our intent is to divide
the cake fairly so that each child is satisfied with their por-
tion. Obviously, one way for a fair division is when Mary
thinks she has at least half of the cake, and so does Bill.
However, how can we achieve such a fair division? If we are sure
that the children see the cake the same way we do, we can
just cut it in half and give each child one of the pieces. Mary
and Bill will each think they have half the cake and will live
happily ever after. In reality, though, Mary and Bill can be
expected to see things differently than we do. Children do
not always regard our “fair” division as really fair. Bill
might think that Mary’s piece is bigger and feel somewhat
shortchanged. So, even if we intend to accomplish a fair
division, in practice, we are not in the position to obtain it
because we know nothing about the children’s perspective.
Do they see it as we do or not? Is there a “mechanism” (for exam-
ple, a protocol) that, if followed, will result in a fair division, even
if we do not have enough information about the fairness of the
division? Well, one potential mechanism is to have Bill cut
the cake, and then Mary would choose the portion she
would like. The above mechanism is called the divide-and-
choose mechanism. Since Bill is accountable for the fair divi-
sion of the cake, he will do his best to have it equally cut. He
knows that if the pieces are disparate, Mary will choose the
bigger one. So, the cake is equally cut. Mary chooses her
portion, and she is happy with that, and so is Bill, who
chooses the other one. Hence, through the divide-and-choose
mechanism, we have accomplished the desired outcome.

The theory of mechanism design represents the conflu-
ence of microeconomics [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22] and social choice theory [23], [24],
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Summary

n this article, we provide the fundamental principles of

mechanism design theory for control engineers and theo-
rists, along with state-of-the-art methods in engineering
applications. Our objectives are 1) to provide a tutorial on
the theory of mechanism design and 2) to present how the
theory of mechanism design can yield solutions to engi-
neering problems. Mechanism design provides a powerful
theoretical framework for solving objective-first and infor-
mation-elicitation problems. Although mechanism design
originates from economics, primarily aiming to align individ-
ual and system-wide economic interests, it has applications
in various engineering fields. The future challenge lies in
developing dynamic, robust, and computationally tractable
mechanisms, especially in dynamic and unpredictable en-
gineering control problems. We start our exposition by pro-
viding a brief overview of key notions of game theory. Next,
we offer the general framework and fundamental principles
of mechanism design. Then, we provide mechanism design
problem formulations of different engineering applications.
Finally, we offer some concluding remarks and a discussion
of the future of mechanism design in control engineering.

while it equally draws from auctions [25], optimization
[26], [27], and game theory [28], [29], [30], [31], [32], [33]. The
theory was developed to implement systemwide optimal
solutions to problems involving multiple rational individu-
als (agents), each with private information about prefer-
ences and conflicting interests [1]. It all started with Leonid
Hurwicz, who asked what is the best way for a centralized
entity to manage a system of selfish agents with conflicting
interests, each trying to make a decision and reach an equi-
librium. He was most interested in problems in which the
efficiency of the equilibrium depends on the availability
(and, thus, truthfulness) of the agents’” information. Hur-
wicz’s rigorous answer established the theoretical frame-
work to study this problem and other similar ones. The
key idea behind his seminal work [34], [35], [36] was to
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FIGURE 1 (a) The divide-and-choose mechanism, showcasing the fair division of a cake. (b) In the scenario, Bill is tasked with dividing
the cake into two perceived equal parts, while Mary chooses her preferred portion. (c) This method ensures a satisfying outcome for

both children, regardless of their individual perceptions of fairness.
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recognize that the solution depends on the agents” behavior
and how they value their information. In economics, this
translates to “a rational and intelligent agent will act as a
utility maximizer and will not report their private infor-
mation truthfully without a guaranteed compensation.”
Hurwicz developed a methodology to elicit the private
information of any agent by offering appropriate incen-
tives. Hurwicz’s theoretical framework was revolutionary
in economics and engineering, and many other scholars
started expanding it. Robert Myerson and Maskin con-
tributed immensely to the theory and expanded the

Control Example
H ere, we offer a control dynamical system example (closely
following [38]) in which we can easily identify where mech-
anism design can be used.
We assume linear dynamics for a dynamical system of the
following form:

Xt+1= Ax: + Bu: (S1)

where x;€R" is the state vector and u: € R™ is the input sig-
nal. For this system, we suppose that there is a total of | 7|
interconnected and nonoverlapping subsystems, where 7 de-
notes the set {0,1,...,| 7'|}. Each i € T represents an agent. In
addition, define N; as the set of neighboring agents for agent i.
For time step t=1,2,...,T, denote by x” €R" the state vec-
tor of agent i so that x;=(x{", ..., x}"") and =/Z\n,=n. Next,
partition the inputs; that is, u{’€R™. In a similar fashion,
ur=@w,...,u{""), and =2\ m;= m.

We are now ready to discuss an agent’s problem. First,
no agent directly provides control inputs into the system. The
diagonal block A; of A gives the dynamics for the ith agent.
Different agents may influence each other, so the off-diagonal
blocks A; represent the impact of agent j on agent i. For the
purposes of this example, we assume that agent /’s input can
affect only the states of its subsystem. Thus, the input matrix
B =diag(Bs, ..., Bir)) is a block-diagonal matrix. Based on this,
the dynamics for agent / are

X0 = A+ Bl + 3 Al
JENI

(S2)

It is natural for any agent i to be aware of its own dynam-
ics, so A; and B; are known to agent . However, no agent has
complete information of the component Zjcx Ajx™, which is
part of the agent’s dynamics. Hence, a “social planner” (cen-
tral computer or system coordinator) is required to intervene
and provide a “mechanism” (or a process) handling whatever
information each agent knows, ensuring, in the end, that all
agents can compute their dynamics. Consider that for each
agent i, the state is X;={G¥x? <g¥}, and the input con-
straints are given by U;={G{u (i) < g?}, where {GY, GO}
and {g‘x"’,s:]ff)}l,-ll'1 are matrices and vectors with appropriate
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mathematics behind “reverse engineering,” the process of
achieving a desirable goal (for example, social welfare and
revenue). The importance, significance, and impact of Hur-
wicz, Myerson, and Maskin’s work were recognized and
awarded the Nobel Memorial Prize in Economic Sciences
in 2007 [37].

This article has two main objectives: 1) to provide a tutorial
on the theory of mechanism design and 2) to present how the
theory of mechanism design can yield solutions to engineering
problems (see “Control Example”). The takeaway messages of
this article are as follows:

dimensions, respectively. Now, the (strictly) convex cost func-
tion of agent i is

v, u) = i) + 3 1) (S3)
t=0

where /i(-,-) and gi() are the stage and terminal costs, re-

spectively.

As discussed earlier, agents know their dynamics, and any
agent /’s cost function is private information. This raises a big
problem: How can we analyze such a problem when informa-
tion is asymmetric among all the agents? For a moment, sup-
pose a social planner is tasked with implementing a control
input in the system and has complete knowledge about the
dynamics of the system, that is, matrices A and B as well as
constraints for any i € 7, X;, U;. The social planner’s problem
is a convex minimization program

M . T-1 . ;
min > (gf(x‘r”) +2 lz(Xﬁ’%U?”)) (S4)
i=q k=0
subject to x:+1 = Ax:+ Bu: t=0 =1
x'eX;andul’ €U, viel, t=1,..,T
xP=x0 vieT. (S5)

This problem could be solved using standard convex opti-
mization techniques. However, our assumption that the social
planner has complete information on all the agents’ costs is
too strong. Without this knowledge, the objective function is ef-
fectively unknown. To find an efficient trajectory/solution to this
problem, the social planner must elicit the missing information
from all the agents. Since the agents are strategic, we cannot
simply ask them to report their private information, as misreport-
ing can lead to a better outcome for them. This is where the
theory of mechanism design enters and provides a powerful
theoretical framework to provide a solution to this information
elicitation problem. By designing appropriate incentives (re-
warding an agent for reporting its private information truthfully)
or disincentives (penalizing it for misreporting), we can ensure
that our system’s strategic agents have it in their best interest to
disclose their true information, thereby facilitating an optimal so-
lution to an optimal control problem that aligns with the collective
interest (for example, efficient trajectories for a group of drones).
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1) Although mechanism design originates from eco-
nomics, primarily aiming to align individual and
systemwide economic interests, it has found applica-
tions in various engineering fields.

2) Mechanism design provides a powerful theoretical
framework for solving objective-first and informa-
tion elicitation problems.

3) Although most of the literature has focused on static
and simplified economic models, there is great po-
tential in solving dynamic real-world engineering
problems.

4) The future challenge lies in developing dynamic,
robust, and computationally tractable mechanisms,
especially in dynamic and unpredictable engineer-
ing control problems.

We start our exposition by providing a brief overview of
key notions of game theory. Next, we offer the general
framework and fundamental principles of mechanism
design. Then, we provide mechanism design problem for-
mulations of different engineering applications. Finally, we
offer some concluding remarks and a discussion of the
future of mechanism design in control engineering.

GAME THEORY

Game theory is arguably one of the cornerstones of eco-
nomics for studying competition and strategic behavior
and lies at the intersection of mathematics and social sci-
ence. The first theoretical formulation of a game is thanks
to John von Neumann [39]. Von Neumann’s work estab-
lished the notion that every problem in economics (for that
matter, in engineering and computer science) is essentially
a competition for resources among selfish agents, each
striving to make a decision that benefits it only. Thus, von
Neumann introduced game theory as a means to study
“interactions in the presence of conflict of interest” [40].
Game theory models the conflicting (or cooperative) inter-
action among agents (also referred to as “players”) and pro-
vides a principled way of predicting the outcome of this

interaction using equilibrium analysis. The study of games
is most appealing and intuitive to scientists, engineers, and
scholars across many fields, as it provides the mathematics
to answer what a selfish agent (human, corporation, or
machine) is going to decide and how under different yet
certain conditions.

Although game theory is quite extensive, in this article,
we focus on providing only a snapshot of the fundamental
notions and a simple classification of games (see Figure 2).
A game is a mathematical model of the strategic interaction
of at least two agents (for example, bidders in an auction,
corporations, countries, robots, and autonomous cars)
whose actions (or decisions) can affect the other agents’
payoff. The agents play against one another, often compet-
ing over the utilization of a limited resource (for example,
the tragedy of the commons [41]) by taking an action,
which defines an agent’s behavior in the game; depending
on the application, an action can be either a bid in an auc-
tion or the selection of a route on the road network or
simply what to bet on a coin flip. An agent’s action leads to
a payoff, meaning that there exists a function that maps
the agent’s action to a real number. For example, a vehicle
may have to decide on route A or route B. The payoff from
choosing either route can be in terms of travel time, so
route A may result in 30 min, and route B may result in
25 min. These actions can be taken simultaneously (for
example, rock-paper—scissors) or sequentially (for example,
monopoly and chess). Agents may cooperate toward reach-
ing an ideal solution (for example, signing a contract). This
cooperation can take the form of an alliance to find
“common ground” in terms of what actions each should
take. If agents do not choose or are unable to cooperate,
then the game is called noncooperative, and it most natu-
rally models strictly competitive “play” among all agents.

Due to the broad applicability of game theory, there has
been a myriad of applications in economics and engineer-
ing as well as in computer science, so specific games
have been given a name. For example, normal form games

Cooperative and
Noncooperative
Games

Simultaneous and
Sequential Move
Games

Symmetric and
Asymmetric
Games

FIGURE 2 A classification of the different types of games.

Constant, Zero-,
and Nonzero-Sum
Games

Normal Form and
Extensive Games
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(we offer an overview of these games in “Games and the
Nash Equilibrium”); matrix games; differential, static, and
dynamic games [42], [43], [44], [45], [46]; Bayesian and stochastic

games [47]; zero-sum games [48], [49]; one-shot and repeated
games; Stackelberg games [50], [51]; finite and continuous games
[52]; and hybrid games [53], [54].

Games and the Nash Equilibrium
We present an overview of essential notions from nonco-
operative game theory. A finite normal form game is a
tuple G =(7, S, (u)icr), where 7 ={1,2,...,n} is a finite set of
n agents (most commonly referred to as “players”), with n > 2;
S=S1x---x 8y, where S; is a finite set of actions available to
player i € 7, with s=(s1,...,Ss) €S being the strategy profile;
and u=(u1,...,un), where u;:S—R, is a real-valued payoff
(or utility) function for player i € 7.

Actions are the possible moves a player can make at any
given point in the game. For example, in a simple game of rock—
paper—scissors, the actions available to a player are to play
either rock, paper, or scissors. A strategy, on the other hand,
is a complete plan of actions a player will take given any pos-
sible situation in the game. It is a specification of what actions a
player will take in response to every possible action of the other
players. For example, in the game of chess, a strategy might
specify a player’s opening move, how they will respond to each
possible opening move of their opponent, how they will respond
to each possible countermove, and so on. Of course, for any
player in any game, one strategy that is available to them is to
select an action and play it [8]. In game theory, we call such
strategies “pure strategies.” Alternatively, a game-theoretic
player could randomize their strategy (which action to choose)
over some probability distribution. Such strategies are called
“mixed strategies.” For the remainder of this article, we focus
on pure strategies and use the terms “action” and “strategy”
interchangeably.

Games model the strategic interactions of competing play-
ers. These interactions rely on the information of the players.
Thus, in game theory, “who knows what” plays a crucial role. If
all players in a game have full access to all available information
(payoff or utility functions, players’ strategies, and game dynam-
ics), then we say this is a game with complete information. In
contrast, even if one player has limited or missing information,
then we say that this is a game with incomplete information. In
most cases, players are uninformed about the game’s character-
istics (types, utility functions, or strategies). If at least one player
is not fully aware of all actions/strategies of all other agents, then
we say this is a game with imperfect information. For example,
every one-shot simultaneous-move game is a game of imper-
fect information. Another important notion in game theory is the
notion of common knowledge, which characterizes a game’s in-
formation as follows: if every player knows specific information
(for example, an action), then we can expect any other player to
know that every other player knows it as well.

One of the key assumptions in game theory is that the players
are rational. A player is said to be rational if they always make de-
cisions in pursuit of their own objectives (for example, maximizing
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their own expected payoff). Another key assumption in game the-
ory is that the players are intelligent. This implies that each player
in the game knows everything about the game and that they are
competent enough to make any inferences about the game.

In all games, players make decisions and reach an equilib-
rium. We call different notions of equilibria solution concepts.
One such equilibrium is the dominant strategies equilibrium,
in which any agent has a strategy that, regardless of what the
other players might decide to do, is the best possible (it re-
sults in the highest possible payoff). The dominant strategies
equilibrium is quite strong, and it can be hard (almost impos-
sible) to have it in a game of competing players under differ-
ent scenarios. The most celebrated solution concept in game
theory is the Nash equilibrium (NE). A player's NE strategy is
the best response to the NE strategies of the other players. In
other words, a player cannot be better off if they depart from
their NE strategy if all the other players choose their NE strate-
gies. Thus, no player has an incentive to deviate from an NE
strategy. More formally, let S; be the set strategies of player j;
si, Si€ Si be two strategies of player i; and S-; be the set of all
the strategy profiles of the remaining players. Then, s; strictly
dominates s; if, for all s-;€S-i, we have ui(si, s-i) > ui(si, S-i).
Also, a strategy is (strictly) dominant if it (strictly) dominates
any other strategy. A player i’'s best response to the strat-
egy profile

S-i=(S1,..-,Si~1,Sit1;---,Sn) (S6)
is the strategy sieS; such that ui(si,s-)=>ui(s;, s) for all
si€Si. A strategy profile s”=(si,...,sn) is an NE if, for each
player i, ui(si, s%) = ui(si, s for all sie S;.

Next, for completeness, we define the notion of Pareto
domination. An outcome of a game is any strategy profile
se 8. Intuitively, an outcome Pareto dominates some other
outcome as long as it improves the utility of at least one player
without reducing the utility of any other. Assume G and s/
s e 8. Then, a strategy profile s’ Pareto dominates strategy s if
ui(s’) = ui(s) forall i € I and there exists some j € I for which
uj(s’)>uj(s). Pareto domination is a useful notion to describe
the social dilemma in a game. However, Pareto-dominated out-
comes are often not played in game theory; an NE will always
be preferred by rational players. For further discussion of the
game theory notions presented above, see [S1] and [8].
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THE HISTORY OF MECHANISM DESIGN

Game theory is concerned with the analysis of games.
Mechanism design, on the other hand, involves designing
games with desirable outcomes. Mechanism design was
considered a consequence of debates about the relative
merits of socialism, communism, and capitalism, the most
important of which was the socialist calculation debate [55].
Mechanism design attempted to provide a scientific basis
for addressing the above debate by constructing a theoreti-
cal framework for considering systems other than capital
markets for allocating the means of production [56]. It also
took a mathematically rigorous approach to the comparison
of a specific arrangement to capitalism in terms of efficacy
and productivity. In the last half century, economics has
adopted the study of mechanism design as the systematic
analysis of resource allocation in institutions and processes.
The above extremely fundamental development reveals the
roles of information, communication, control, incentives,
and agent processing capacity in decentralized resource
allocation. Moreover, it allows the identification of sources
of market failure. Hurwicz, a Polish-American economist
and mathematician, was the first to introduce the concept of
incentive compatibility, a cornerstone notion in which agents
are incentivized to act in accordance with the desired out-
comes of a social planner. It ensures that truth telling or
behaving according to the system’s rules is the best strategy
for each agent, leading to the successful implementation of the
system’s objectives. Hurwicz also provided a methodology for

mechanisms that are incentive compatible and how exactly
these mechanisms can guarantee the desired outcomes [34].
Hurwicz’s contributions in establishing mechanism design’s
theoretical foundations were key in providing efficient solu-
tions to resource allocation problems. Jean-Jacques Laffont,
a French economist, through his studies in public and infor-
mation economics, participated in the translation of the
foundational economic theory into the language and tools
that today appear not only in game theory but also in stud-
ies of the organization of firms and markets as well as in the
applied economics of regulation, taxation, and public goods
provision [58]. Pure and applied research in economics was
connected through studies about transactions among eco-
nomic agents in terms of information and incentives. As one
can see from Figure 3, the insights and better theoretical
understanding of how incentives influence strategic eco-
nomic problems have transformed the discipline of econom-
ics. The theory’s interdisciplinary applicability has helped
scientists and engineers architect efficient systems by design-
ing the right incentive to drive the agents’ behavior and thus
achieve the desirable objective. Other excellent historical sur-
veys on the theory of mechanism design are reported in [59]
and [60].

The theory of mechanism design since the 1950s has
been rigorously studied by numerous economists and math-
ematicians to provide insights and solutions to different
economic topics (for example, public goods, markets, and
auctions). The theory started with the seminal contributions

________ Communication and Decentralized Resource Allocation I
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FIGURE 3 The key theoretical “chapters” of the theory of mechanism design and its related fields. We use arrows to showcase the influ-
ence of the different ideas and what notions first inspired specific works. For example, Vickrey’s work in incentive design inspired both

the design of auctions and problems in public goods.
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of Hurwicz [34], [35] and Jacob Marschak [61] (see Figure 3),
who both were interested in resource allocation problems
(for example, communication) and the means of control-
ling (through incentives) agents. In parallel, Kenneth
Arrow, Gérard Debreu, and Herbert A. Simon also worked
on problems with incomplete information and how to
bound rationality.

In 1961, William Vickrey’s seminal work [25] on auctions
was published, paving the way for Hurwicz’s theoretical
framework to be applied as a means of designing incen-
tives based on agents” information for a simple yet formi-
dable problem of an auction. Arrow and Debreu’s work was
instrumental in establishing the interconnected relation of
information and decision making and its role in influenc-
ing behavior in the efficient allocation of limited resources.

Much later, in the 1970s and 1980s, Peter Diamond,
Oliver Hart, Laffont, Maskin, James Mirrlees, and Sherwin
Rosen worked independently on “principal-agent prob-
lems,” focusing on how one can design a contract between
a principal (for example, an institution or a corporation)
and a rational agent efficiently. As a continuation of Vick-
rey’s work, Ronald Coase, Jerry R. Green, Theodore Groves,
and John Ledyard made significant contributions to the
design of incentives for public goods problems (for exam-
ple, road infrastructure, public parks, television and radio
broadcasts, and national security). Furthermore, Roger
Myerson, Paul Milgrom, and Robert Wilson expanded the
Vickrey auction to address more complicated scenarios and
complex problems.

At the same time, many economists continued devel-
oping and studying games; a few examples are Robert
Aumann, Drew Fudenberg, John Harsanyi, John Forbes
Nash Jr, Andy Postlewaite, Reinhard Selten, and Jean
Tirole. An essential extension of game theory is the
development of methodologies for agents that might not
act as rational and intelligent agents. Key questions in
this area are

1) Do agents make optimal decisions at all times?

2) Do agents make sacrifices when deciding on their utility?

3) Do agents always optimize for their own benefit?

To answer these questions, the fields of behavioral
economics and experimental game theory were devel-
oped, first by Simon and then by notable contributors,
such as Ernst Fehr, Daniel Kahneman, David Laibson,
Matthew Rabin, and Amos Tversky as well as Vernon L.
Smith, Charles Plott, Thomas Palfrey, Alvin E. Roth,
and Preston McAfee. Several survey articles on the
theory of mechanism design can be found in [62], [63],
[64], and [65].

Although we have focused only on the history of mech-
anism design from the economics point of view, there have
been numerous key contributions in engineering and com-
puter science. Thus, we dedicate the second part of this
article to stress the contributions and engineering applica-
tions of mechanism design.
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THE THEORY OF MECHANISM DESIGN

Most generic control systems can be viewed as a specifica-
tion of how decisions are made as a function of the infor-
mation that is known by the agents in the system [66], [67],
[68], [69], [70]. What interests us in most cases is efficiency,
that is, realizing the best possible allocation of resources
with the best use of information to achieve an outcome
where, collectively, agents are satisfied and there is no over-
utilization of the system’s resources [30]. One key challenge
in ensuring efficiency in a control system is the fact that
different agents may have conflicting interests and act self-
ishly. In other words, systems that incorporate strategic
decision making, if they remain uninfluenced, are not
guaranteed to exhibit optimal performance. This is well
known to be the case in control theory and economics [71],
[72]. There are various theories and approaches that attempt
to guarantee efficiency in such systems and can provide
solutions of varying degrees of success. One way to study
such problems is information design (see “Information
Design”). Another theory is mechanism design, in which
we are concerned with how to implement systemwide opti-
mal solutions to problems involving multiple selfish agents,
each with private information about its preferences [73],
[74]. For example, within the context of mobility, agents are
travelers, and their private information can be tolerance to
traffic delays, the value of time, a preferred travel time, or
any disposition to a specific mode of transportation [75].
Given that each traveler/driver/passenger “competes” with
everyone else to reach its destination first, we want to
ensure that given this inherent conflict of interest, we can
still guarantee uncongested roads, no traffic accidents, and
no travel time delays. Mechanism design can help us design
the rules of systems where information is decentralized
(different agents know different aspects of the system) and
agents do not necessarily have an immediate incentive to
cooperate [76]. In particular, mechanism design helps us
design rules that align all agents’ decision making by
providing the right incentives to achieve a well-defined
objective for the system (for example, aggregate optimal
performance and system-level efficiency). Thus, mecha-
nism design entails solving an optimization problem with
a sometimes unverifiable and always incomplete informa-
tion structure [18]. We call such a problem an incentive
design and preference elicitation problem.

The Building Blocks of Mechanism Design

We start our exposition by considering a system consisting
of a finite group of agents, each competing with one
another for a limited fixed allocation of resources. Each
agent evaluates different allocations based on some pri-
vate information that is known only to it. Consider a social
planner, playing the role of a centralized entity whose task
is to align the selfish and conflicting interests of the agents
with the overall system’s objective (for example, an effi-
cient allocation of resources or the maximization of social
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welfare). As illustrated in Figure 4, four components exist.
There is a group of agents, each making a decision based
on its personal information. Decisions then are reported
as messages to the social planner, which is tasked to
design the rules by which it can be determined what
each agent gets.

Next, we provide a formal mathematical presentation of
the social planner’s task through the lens of optimization
theory. We consider a set of selfish agents J,|7 |=neN
with preferences over different outcomes in a set O. Each
agent i € 7 is assumed to possess private information,

Information Design
In this sidebar, we offer a quick overview of an alternative
approach to mechanism design based on the work reported
in [S2] and [S3]. As we have seen so far, information plays
a crucial role in game-theoretic models and mechanism de-
sign. However, information in such cases is used to evaluate
utility functions and study equilibria. In mechanism design, in
particular, information is used to design the best possible in-
centives (in the form of payment functions) to guide efficient
allocations. In contrast, in information design, the social plan-
ner manages a system’s information (instead of its resources),
and it is the social planner’s task to devise a careful process
for the efficient allocation of information (instead of monetary
incentives for the allocation of resources). Thus, the goal of in-
formation design is to influence the agents’ behavior based on
how much information may become available. This draws vital
insights from behavioral economics, as it treats the agents’
cognitive abilities to adapt their behavior based on what is
available to them.

Itis standard in mechanism design to consider as a given
the “informational environment” (for example, who knows
what and who does not know what yet seeks to learn) and
focus on the design of appropriate incentives based on the
desirable outcome (equilibrium behavior) among strategic
agents. Information design simply considers nonfixed infor-
mational environments and sets the rules that the agents
and the social planner commit to respect. Of particular inter-
est are environments with incomplete information, as strate-
gic agents compete over resources against one another and
seek to learn more about their competitors (other agents).
For example, an agent can improve its strategy if it has
more accurate beliefs about the payoffs and states of the
other agents.

In the last 10 years, information design has been growing
rapidly, finding key applications in economics, engineering,
and finance. One example is the study of the optimal de-
sign of information under a Bayesian framework between
two agents that attempt to communicate over a network
[S4], [S5], [S6]. Other applications are grade disclosure
and matching markets [S7], voter mobilization [S8], traffic

denoted by 6: € ©;. Since an agent i’s 6; can influence its
decision making in a significant way, we call 6; the type of
agent i. We write (6:)icr =6, 6 €0, where © =Il;cr0; to
represent the type profile of all agents. An agent i’s prefer-
ences over different outcomes can be represented by a util-
ity function u;: O X ©; — R. Although the exact form of u;
can vary depending on the application of the problem [77],
[78], [79], [80], what is common in the literature [2], [8], [76]
is a quasi-linear function of the form

ui(0, 6:) = vi(0, 6:) — pi(6y) @

routing [S9], rating systems [S10], transparency regulation
in financial markets [S11], price discrimination [S12], and
stress tests in banking regulation [S13]. Furthermore, simi-
lar methodologies have been used to design auction-based
mechanisms to sell and buy information [S14], [S15], [S16].
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where vi: O X ©; - R>y represents an arbitrary valuation
function and p;— R is a monotonically increasing func-
tion. If outcome o€ O represents an allocation of a
resource, then p; can be thought of as a transfer of agent
i’s wealth or a cost imposed on agent i for that particular
allocation o. Intuitively, a quasi-linear function defined
as in (1) ensures that the marginal value of v; does
not depend on how large p: becomes and vice versa.
Furthermore, (1) assumes that u; is linear with respect to
pi. Next, we can naturally define the social welfare as
the collective summation of all the agents’ valuations;
that is,

SW (o, 6) = >_ vi(0, 6)). (@)

iel

If our system objective is to maximize (2), then imme-
diately we observe that there is an important obstacle;
that is, any agent i may misreport its type 6; in the hope
of increasing its own utility. So, the question is now,
How can we incentivize agents to report their type truth-
fully? The answer is through the appropriate design of
pi. The next step is to outline the building blocks that
can help us design p;. Formally, we can define a mecha-
nism as a tuple (f, p) composed of a social choice function
(SCF) f:©—-0 and a vector of payment functions
p = (pi)ier, with p;:© — R. In other words, a mechanism
(f,p) defines the rules by which we can implement a
system objective by mapping the agents’ types to an
outcome (by means of the SCF) while using the pay-
ments to ensure the optimality or efficiency of that out-
come. It is important to note here that the above is an
example of a direct mechanism, in which information is
directly communicated between the agents and the
social planner (see “Fundamental Results” for other
specifications). Next, we state the social planner’s prob-
lem, as follows:

max SW (o, 6) 3

Agents Preferences
People/Organizations Messages/Information

Mechanism
Game/Institution

’ @0‘”}‘

o

subject to 6i=0, viel @

> vi(0,0) = Y. vi(0,6), Yo' €O (5)
iel iel
> pi(s(6)) =0, Voe® ©)
iel
0i(f(s(0)) —pi(s(6)) =0, VieI, VOO %)

where 6; denotes the reported type of agent i and s(-) is the
equilibrium strategy profile (for example, an NE). Con-
straints (4) ensure the truthfulness in the agents’ reported
types, (5) imposes an efficiency condition, (6) makes certain
that no external payments are required, and (7) incentiv-
izes all agents to participate in the mechanism voluntarily.
If we could know for certain the true types of all the agents,
then we could solve the optimization problem (3)—(7) using
standard optimization techniques. However, as this is
unreasonable to expect from selfish agents, the social plan-
ner needs to elicit 6 = (6;)ier by designing the appropriate
p=(pier.

The social planner faces now two critical questions: the
preference agqregation (which asks what is the best outcome
o0 € O for any given type profile 6 € ©) and the information
elicitation (which asks how one can extract truthfully the
type 6; € © of any agent i € I). The theory of mechanism
design essentially helps us answer both questions by pro-
viding the mathematical framework to construct mecha-
nisms (f, p) that can achieve our desirable outcome. In the
next section, we discuss one such mechanism that elicits
the private information of agents truthfully.

The Vickrey—Clarke—Groves Mechanism

A well-established and broadly used mechanism that has
been successful in widely different applications (for exam-
ple, auctions, public projects, and cost minimization prob-
lems) is the Vickrey—Clarke—Groves (VCG) mechanism [12],
[16], [25]. The VCG mechanism ensures the existence and
implementation of a dominant strategy equilibrium, which
is an efficient solution and allows selfish agents to make a
decision (alternatively, choose a strategy) that is best no

Qutcomes
Decisions/Allocations

Agents
People/Organizations

FIGURE 4 An arbitrary control system (agents, preferences, and allocations) viewed under a mechanism design framework.
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matter what other agents may decide. Agents are also in-
centivized to truthfully report their private preferences
and have no reason (for example, a chance of receiving neg-
ative utility) not to participate in the mechanism. However,
the VCG is known to be an extravagant mechanism; that is,
it can generate big surpluses (that is, the taxation may be
extremely high for all agents).

In the previous section, we reviewed the main concepts
of mechanism design and formulated the incentive design
and preference elicitation problem. In words, we asked,
How can we design the payments p = (pi)ier so that every
agent makes the decision that agrees with what we have chosen
as the system’s objective (for example, efficiency)? To answer
this question, in this section, we review the VCG mecha-
nism (one of the most successful mechanisms), as it incen-
tivizes agents to be truthful and guarantees efficiency.

Fundamental Results

ne key characteristic of mechanism design is the commu-
Onication of information in the system. Agents have private
information, which is vital to the social planner’s objective.
Part of any mechanism is to specify how the private informa-
tion is communicated from the agents to the social planner,
and thus, all mechanisms fall under two categories: direct
and indirect. Given any system, if the agents report their pri-
vate information (preferences) directly to the social planner,
then we say that the agents’ preferences are observable to
the social planner. In contrast, if the agents do not (or can-
not) report their private information to the social planner, then
the social planner has to “observe” the agents’ preferences
indirectly through signals or behavior. Formally, an indirect
mechanism is defined as the specification of (M, g ), a col-
lection of messages M =(M,)icz, and an outcome function
g. A direct mechanism is defined as the tuple (f,p ). One key
question in mechanism design now is the following: If an out-
come can be implemented in an indirect mechanism, then
can it also be implementable in a direct mechanism where
information (types) is observable? This is answered by the
revelation principle.

The revelation principle is one of the most fundamental
and significant results in the theory of mechanism design. It
serves as the cornerstone, establishing that the solution of
any indirect mechanism can most surely be replicated by a
direct mechanism. This allows us to limit the scope of how
many mechanisms we need to investigate and focus, rather,
on mechanisms in which agents communicate privately and
directly with the social planner. Thus, the goal remains to
elicit the private information truthfully [S17], [S18], [S19],
[S20], [29]. For example, let us take a city’s transportation
network with a finite number of cars. Suppose each car
has its own travel preferences (private information). We are
interested in finding the optimal traffic flow. If such a flow

As discussed earlier, a mechanism is a tuple (f, p). In a
VCG mechanism, the SCF f is defined as an allocation rule
(who gets what) based on the optimization problem (3)-(7);
that is,

f(6) = arg max SW(o, 6) C)

€0,6i€0;

where 6 = (8))ic 1. In other words, assuming that the agents
disclose their true information, (9) provides the social plan-
ner, which attempts to maximize the social welfare, a
formal mathematical framework to compute the allocations
of each agent under the right incentives.

Recall that the central idea of a VCG mechanism is
determining the allocation of a resource to agents by elicit-
ing truthfully any private information agents might hold.
To achieve this, VCG mechanisms propose payments that

exists when all the cars share only information that is indi-
rectly related to their true preferences, then thanks to the
revelation principle, there is also an optimal flow in which all
the cars report their preferences truthfully, and thus, we can
achieve the same optimal traffic flow. By devising systems
where the cars are incentivized to be truthful, we can ef-
ficiently manage the city’s traffic. Mathematically, we have
the following theoretical setup. Suppose some arbitrary
mechanism (M, g ) implements some SCF f in a dominant
strategy equilibrium. This means that SCF f is truthfully im-
plementable in a dominant strategy equilibrium if and only if
for each agent j € 7, there exist functions mi:©; — M, such
that for 6, € ©; and g(m(6)) =f(6), the profile (mi(6i))icr is a
dominant strategy. Hence, it can be seen that the revelation
principle holds immediately after noting that (6) = g (m(6))
for each 6 € ©. Therefore, there are two key theoretical in-
sights we can draw from the revelation principle: 1) for the
implementation of an SCF, it is sufficient to focus only on a
system’s main attributes, and 2) in systems, decentralization
cannot prevail over centralization. As we see in later sec-
tions, though, decentralization and the specifics of a prob-
lem can offer valuable insights and are worth investigating
for indirect mechanisms.
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serve as incentives for the agents to report their private
information. The critical question is, How can we ensure
truthfulness if an agent can influence its payment by what it
reports? The VCG mechanism answers this question by
asking each agent to pay for the external effect it imposes
on the other agents. This is the total utility (or welfare) loss
other agents experience due to this specific agent’s pres-
ence in the mechanism. Therefore, it does not depend on
their own declared valuation. Thus, the VCG mechanism
charges each agent the following payment:

pi(6) = 2 vi(f(6-)) — 2. vi(f(6)) (10)
j#i

J#i

where §-; denotes the type profile of all agents except agent
i. Note that the payments defined in (10) do not depend on an
agent i's own declaration ;. Assume for a moment that all
agents declare their types truthfully. Then, the first sum in
(10) computes the value of the social welfare with agent i not
participating in the mechanism. The second sum in (10) com-
putes the value of the social welfare of all other agents j # i
with agent i participating in the mechanism. Thus, agent i
(when it reports 6;) is made to pay the marginal effect of its
decision (in our case, agent i’s reported type 6)). In other
words, this particular design of the payments in (10) inter-
nalizes an agent i’s social externality. In this context, “exter-
nality” refers to the impact that an agent’s actions have on
the welfare of all other agents. Borrowed from economics,
the notion of externalities is often used to describe situations
where the actions of one individual or group have conse-
quences (positive or negative) for others. In our particular
setting, the externality is how agent i’s decision affects the
welfare of all other agents.

The VCG mechanism represented by the SCF f defined
by (9) and the payment functions p defined by (10) satisfies
the following properties:

1) For any agent, truth telling is a strategy that domi-
nates any other strategy that is available for that
agent. We say then that truth telling is a dominant
strategy. Note that such strategies are “always opti-
mal” no matter what other agents decide.

2) The VCG mechanism successfully aligns the agents’
individual interests with the system’s objective. In our
case, that objective is to maximize the social welfare of
all the agents. We call this property economic efficiency.

3) For any agent, the VCG mechanism incentivizes it to
voluntarily participate in the mechanism, as no agent
loses by participation (in terms of utility).

4) The VCG mechanism ensures no positive transfers
are made from the social planner to the agents. Thus,
the mechanism does not incur a loss. We call this
weakly budget balanced.

The VCG mechanism essentially ensures the realization

of a socially efficient outcome, that is, satisfying properties
(1)-(3) in a system of selfish agents, where each possesses
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private information. The VCG mechanism induces a domi-
nant strategy equilibrium, maximizing the social welfare
while ensuring no agent is hurt by participating.

Other mechanisms exist, each with different properties
and tradeoffs among efficiency, optimality, and informa-
tion. One classic example is the Arrow—d’Aspremont—
Gerard-Varet (AGV) mechanism that offers an efficient
solution, incentivizes all agents to report their private
information truthfully, and, most importantly, ensures all
transactions between the agents and the social planner are
equal to zero (that is, budget balanced; see Figure 5). The
key characteristic of the AGV is its Bayesian NE solution
concept that operates under the assumption of a common
prior; that is, agents hold beliefs about what other agents
might do. Furthermore, implementation theory focuses on
decentralized mechanisms and more rigorously setting up
the messaging process between agents and the social plan-
ner. Inspired by economics and engineering applications,
distributed mechanisms (see [81], [82], [83], [84], and [85]) and
dynamic mechanisms (see [86], [87], and [88]) have also been
developed to tackle how decisions can be made locally
within a system and also by relaxing some of the strong
assumptions on information and prior beliefs, respectively.

We conclude this section with the following remark.
Although the main motivation of mechanism design is the
microeconomic study of institutions and relies heavily on
game-theoretic techniques, it is a powerful theory, provid-
ing a systematic methodology in the design of systems of
asymmetric information [89], [90] consisting of strategic
agents whose performance must attain a specified system
objective. The remainder of the article presents how we can
use this theory to design a socially efficient system consist-
ing of rational and intelligent agents that compete with one
another for the utilization of a limited number of resources.

ENGINEERING APPLICATIONS
In this section, we explore various engineering applica-
tions of mechanism design.

Communication Networks

Communication networks are typically modeled as resource
allocation problems (for example, the bandwidth in wired/
wireless communication is the resource, and a “network
manager” needs to allocate efficiently among the agents)
with a finite set of strategic agents. There are many different
focused areas in communications, such as flow control, rout-
ing, channel scheduling, and power control. There are
numerous ways to model the utility of an agent in a commu-
nication network. Still, one key assumption is viewing net-
work utilities for the agents as a concave function. Naturally,
game-theoretic studies [91], [92], [93], [94], [95], [96] have been
extensively focused on routing/congestion games, net-
worked games, and dynamic games. The main results are
the existence and uniqueness of an NE, its computation, and
deriving algorithms to learn/attain an NE. A completely
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different approach is to formulate the communication net-
work as a convex optimization problem (for example, maximiz-
ing the network utility of all agents) subject to network
constraints [97], [98]. Typically, a communication problem is
formulated as follows. Consider a communication network
of n strategic agents, where 7 corresponds to the set of
agents. Each agent is rational and intelligent and possesses
private information. In addition, each agent i € 7 isendowed
with a utility function u;: X X R, where X is the set of allo-
cations. In such problems, consider quasi-linear utility func-
tions of the form

ui(Xi, pi) = Ui(Xi) —pi (11)
where xi= (x},x3,..., xf") is a ki~dimensional vector and
denotes the allocation made to agent i € 7. Intuitively, the
quasi-linear function defined above ensures that the marginal
value of v; does not depend on how large p; becomes and vice
versa. Furthermore, u; is linear with respect to p;, which rep-
resents the tax paid by agent i € 7. Based on this information
so far, we get the following optimization problem:

max > vi(x)) (12)
iel
subjectto Y hij(x)) <c¢j, Vj=1,2,...,mc 13)
ieS;
xi=0, viel (14)

where m.e N is the number of network constraints (for
example, the capacity of a link in the network) and S; is the
set of agents associated with the jth constraint (for example,
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the number of agents using a particular link in the network).
For each j=1,...,m hy, there is a general function that,
depending on the specifics of the problem, may model how
we can measure the bandwidth allocation in the network.
Next, the agents hold private information that is not known
to the social planner. An example is the valuation functions
(vi)ier. Thus, the social planner cannot directly address the
above maximization problem without the agents’ valua-
tion functions. Information is decentralized among the
agents in the communication network, and it is the task of
the social planner to devise a mechanism to elicit the neces-
sary information from the agents and ensure the efficient
allocation of resources. This is a clear and natural applica-
tion of implementation theory in an engineering problem (see
“Implementation Theory”).

Using implementation theory and taking advantage
of an optimization-based formulation, the focus is to
carefully design the outcome function g, that is, design
the payment function p; such that the allocations x are
efficient for all agents. The standard analysis of such
problems is as follows. First, we show that at least one
NE exists for the game induced by the mechanism
(M, g). Then, since the agents are considered strategic,
we need to ensure that the outcome function (and thus,
the payment functions) induce wvoluntary participation;
that is, at any NE, no agent may lose utility by partici-
pating in the mechanism. In other words, all the agents
may, at the very least, have neutral utility (u; = 0). Natu-
rally, in communication networks as well as any other
engineering applications, we need to be mindful of all
monetary transactions in the system. Thus, by checking
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FIGURE 5 The VCG and AGV mechanisms and their possible properties.

FEBRUARY 2024 < IEEE CONTROL SYSTEMS 31

Authorized licensed use limited to: Cornell University Library. Downloaded on January 10,2024 at 01:56:32 UTC from IEEE Xplore. Restrictions apply.



the sum of all the payments of all the agents, we need to
ensure it is zero at the NE (in which case we say the
mechanism is budget balanced). The next two properties
are related to the optimal solution of the optimization
problem. Can we ensure that all NEs of the induced game
(M, g, (wi)icr) are equivalent to the optimal solution? If yes,
then we say that the mechanism fully implements the
efficient allocation vector x” at an NE. Rarely, we might
have an ideal mechanism that results in a unique NE.
Finally, depending on the network’s topology and other
physical constraints of our problem of interest, we need
to check feasibility; that is, the allocation x = (x1,..., xx)
for each agent is feasible, satisfying all the constraints at
the NE. This methodology has been widely used in the
communication networks literature. In Table 1, we pro-
vide a snapshot of recent work that mostly focuses on the
utility maximization problem.

In the following section, we focus on one particularly
interesting method that has been studied extensively in
communication networks (inspired by the economics liter-
ature). Of course, other mechanisms have also been investi-
gated in the literature [99], [100], [101], [102], [103].

VCG-Based Mechanisms for Communications Networks
How can we allocate a fixed amount of an infinitely divisible
resource among a finite set of strategic agents? This is a classic

Implementation Theory

n this sidebar, we present the fundamentals of imple-

mentation theory, following the formulation of an indirect
and decentralized resource allocation mechanism closely
inspired by the framework presented in [9]. One key char-
acteristic of implementation theory is that it considers in-
formationally decentralized systems. Thus, the goal is to
devise a mechanism that handles this “asymmetry” in in-
formation and provide a set of rules that induce a game.
This game will have an equilibrium, achieving our de-
sired outcome among strategic agents. So, what are the
building blocks of this theory? First, we need to specify
a set of messages that all agents have access to and can
use to communicate information. Based on this informa-
tion, agents make decisions that affect the reaction of the
network manager. Once the communication between the
network manager and agents is complete, the mechanism
induces a game, and strategic agents then compete for the
network’s resources. We formally define below what we
mean by “indirect mechanism” and “induced game.” An in-
direct mechanism can be described as a tuple of two com-
ponents, namely, (M, g). We write M= (M1, Ma,---, M»),
where M, defines the set of possible messages of agent
ieI. Thus, the agents’ complete message space is
A= Mix - x M,. The component g is the outcome func-
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problem in communication problems where pricing plays a
key role [68], [109], [110]. Under natural network constraints,
and if our desired outcome is to achieve efficiency, then our
starting point is the Kelly mechanism [111]. Briefly, the Kelly
mechanism asks each agent to act as a bidder in an auction
and announce a bid. Then, the allocation of the single
resource is conducted in proportion to the agents’ bids. For
each allocation, the social planner will receive a payment
(or tax) equal to the amount of an agent’s bid in a propor-
tional way. For example, if an agent bids a higher amount
for a larger proportion of the resource, the Kelly mecha-
nism asks the agent to pay more proportionally to its bid. In
economics, we call this a “market clearing price.” Such a
price has many desirable characteristics, as it ensures the
bare minimum communication (1D messages), and the
social planner needs only to communicate back a single
price per resource unit. Both characteristics are ideal, as
they ensure that the mechanism is practical and easily
implementable for large-scale systems. The usefulness of
the Kelly mechanism led to extensive research and the birth
of scalar-parameterized mechanisms (as the only communica-
tion between the agents and the social planner is a scalar).
Mathematically, the allocation function for agent i € 7 in
the Kelly mechanism is given by x;=(c-p)/(Zjernup)),
where p; is the payment agent i has to make and c € N is
the capacity of a single resource.

tion defined by g:.# — O, which maps each message pro-
file to the output space

O ={(X1,..., Xn), (P1, ..., Pn) | Xi € R>0, pi € R} (S7)
that is, the set of all possible allocations to the agents and the
monetary payments made or received by the agents. The out-
come function g determines the outcome, namely, g (), for
any given message profile u=(m,...,mn) € M. The payment
function pi:M — R determines the monetary payment made
or received by an agent i € 7. A mechanism (M, g ), together
with the utility functions (uj)icr, induce a game (M, g, (U)icr ),
where each utility u; is evaluated at g () for each agent i € 7.
Let m-; be the message profile of all agents except agent j € J;
thatis, m-j=(ms,...,mi-1, Mi+1,...,ms). Next, consider a game
(M, g, (ui)ier ) . The solutionconceptofan NE is a message pro-
file x* such that u;(g(mi, m=)) = ui(g (mi, m=)) for all m; e M;
and for each i€ 7, where m-i=(m1,...,mi—1,Mi+1,...,Mn).
Note that an NE requires complete information. However, we
can interpret an NE as the fixed point of an iterative process
in an incomplete information setting [17], [20]. This is in accor-
dance with Nash’s interpretation of an NE; that is, the complete
information NE can be a possible equilibrium of an iterative
learning process.
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Following a similar methodology, a special formulation
of the VCG mechanism for an auction setting was intro-
duced in [112] and [113]. The problem was for a single divis-
ible good under two different scenarios. At first, Semret
[113] studied nondifferentiable pseudoutility functions
between a social planner and multiple agents. In [112], the
case was that agents sought bundles of links of a commu-
nication network (for example, a route), and each agent’s
utility function depended on the minimum allocation re-
ceived along its route. The key approach here was that for
each link of the network, a completely new and different
auction was run. Both works have been somewhat gener-
alized for multiple divisible links [114], [115]. A general
convex VCG-based mechanism was introduced in [68],
following [104], which, just like in the Kelly mechanism,
required only 1D bid signals from all agents. Following
this work, [105] proposed a VCG-based mechanism with
agents reporting a 2D bid, that is, a per-unit price g and a
maximum quantity d; that agent i € 7 is willing to pay
for the resource. Thus, the valuation function takes the
form of

0i(xi) = B-min{x;, di}. (14)

The benefit of this mechanism is that it provides the
equilibrium of the induced game (an auction in this case),
resulting in an optimal solution of the utility maximization
problem based on the reported agents’ utility functions.
Each agent pays for its allocation exactly the externality it
imposes on the other agents by participating in this mecha-
nism. Of course, other mechanisms have been investigated,
explored, and developed at great length [99], [100], [101],
[102], [103].

their level and pattern of electricity usage.” Hence, it is no
surprise that next-generation smart power grids utilize
information and communication technologies as well as
improved computational and sensor capabilities. That is
why smart power grid systems are excellent examples of
cyberphysical systems characterized by an overlay of infor-
mation, algorithms, and enhanced operational programs to
generate, transmit, distribute, and use electricity [121].
There are multiple methodologies for DSM programs, but
depending on the application and modeling choices, we can
say that there are four main categories: 1) energy efficiency, 2)
price-based demand response, 3) incentive-based demand
response, and 4) market-based models. For the purposes of
this article, our focus is on the last category, that is, market-
centric grid control. The key architectural structure for such
models is as follows: there are generators, loads, distribution
grids, and aggregators, all playing important roles as partici-
pants in the market. There is an independent system operator
(ISO) that is tasked to manage all and any transactions for
electricity in the market [122]. The goal of such a model is to
provide the “right” incentives and set of rules for the overall
power generation to cost-effectively and efficiently match the
load at all time [121]. The main approach to achieve this goal
is for the ISO to assume complete control of the market and,
by introducing an auction, derive the incentives (for exam-
ple, electricity payments) for efficient power and energy allo-
cation under different scenarios. For example, we can
consider different regulations and constraints in the produc-
tion or distribution of electricity. Such modeling has been
studied extensively over the last 10 years, as efforts to pro-
vide more sustainable consumption and production of elec-
tricity to homes from factories have been a top priority [123],

Power Gri tem ( . o - )
Oo € hG 1d S}f's € ds d 4 TABLE 1 A summary of recent articles on utility maximization problems

ver the last few decades, consid- | jy communication networks.
erable efforts have been made to |- =
decarbonize our society’s increas- Communication Networks With a Maximization Problem
ing energy demands [116] and reas- Budget
sessht}‘lje effficier;cy .Of the exis’fing Reference Framework Constraints Implementation  Balanced
methods o p.ro ucimg, .m.anagmg, [104] Flow control Systemwide Partial No
and consuming electricity [117]. )
Since the 1980s [118], [119], [120] [68] Flow control Systemwide Full Yes
demand-side management (DSM) pro- [105] Flow control Systemwide Full Yes
grams have been the standard way [97] Flow control Systemwide Partial Yes
to study power grid systems, their [98] Joint flow control and Systemwide Full No
efficiency, and, recently, their trans- multipath routing
formation to smart grid systems. [106] Power allocation and Systemwide Full Yes
According to the U.S. Energy Infor- spectrum sharing
mation Administration, “Demand- [107] Electric vehicles Systemwide Full Yes
side management (DSM) programs [108] Networked public goods Local Full Yes
FOHSISt of the p%anr.ung, 1m.p¥e.rnent- [83] Networked public goods Systemwide Full Yes
ng, z.md .nl1c.)n1tor1.ng act1v1t1.es of [82] Network utility maximization ~Systemwide Full Yes
electric utilities which are designed ) (fes
to encourage consumers to modify - J
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[124], [125], [126], [127]. Two key challenges that have been
studied in the literature are

1) How can we design the right monetary payments in selling

electricity to consumers in day-ahead or real-time settings?

2) How can we ensure the efficient and balanced production

and distribution of electricity as well as the control of the
electrical voltage frequency?

In parallel to market-based approaches, game-theo-
retic models have also been studied and explored in an
effort to understand the strategic interactions between
producers (for example, production centers or factories)
and consumers (for example, households and build-
ings) [128], [129], [130], [131], [132], [133]. This means that
both producers and consumers are assumed to be self-
ish (rational and intelligent) and, thus, make decisions
(how much electricity to produce and how much elec-
tricity to consume) according to their own individual
self-interest [134].

Suppose our goal is to develop a pricing mechanism for a
DSM program in which we want to encourage efficient energy
consumption among consumers. If we adopt the mechanism
design approach, then we set a systemwide socially efficient
objective that we want to achieve (this could be a property
such as truthfulness, efficiency, and being budget balanced).
What if, though, all household appliances that use electricity from
our consumers are jointly scheduled? One way to tackle this issue
(since it causes severe computational complexity) is to use the
technique consumer-level control, in which we attempt to deter-
mine the total electricity consumption in each time step. Then,
we schedule enough production/distribution for a consum-
er’s appliances to operate at the “desired” electricity usage
levels [135], [136]. However, additional information from con-
sumers might be necessary, and, as has been shown [7], this
information is private, and consumers have no reason to
report it truthfully. Hence, mechanism design can be used to
solve this information elicitation problem by the appropriate
design of incentives [137]. The literature can be categorized as
follows: 1) auction-based mechanisms (primarily extensions
of the VCG), 2) market-based mechanisms [138], [139], [140],
[141], [142], [143], [144], and 3) indirect mechanisms for bid-
ding and pricing models. In the following section, we review
a general market-based framework of a smart grid system.

Electricity Markets

In this section, we offer a general formulation of an electric-
ity market, followed by its natural extension to an optimal
mechanism design problem. Our exposition follows the
work in [145].

Consider a smart power grid system consisting of agents
(for example, producers and consumers), a power grid net-
work, and the electricity demand from the agents. In this
general framework, we also consider that the information
is uncertain. Electricity production incurs a cost that needs
to be covered by the producers. To capture this, we introduce
a production cost function. Thus, it is natural to expect all the
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producers to be selfish. Their goal is to cover, at the very
least, their cost when selling the produced electricity. In
general, there are two ways we can model this problem: 1)
use of a bid function, which directly maps an electricity
quantity into a payment, and 2) use of a supply function,
which directly maps payments to the produced quantity.
As we discussed earlier, there is an ISO that aggregates the
demand side. In mechanism design terms, the ISO plays
the role of a social planner and is tasked to elicit any private
information, gather the bids and payments from the agents,
and allocate the electricity that has been produced. Next,
consider that i € I refers to a node (some producer) of an
arbitrary network G, where I is the set of nodes. Each
i € 7 may produce quantity q: € R of electricity. As this is
an interconnected power grid system, we say that the quan-
tity of electricity that is sent from some node i € 7 to node
j€ I is denoted by hi; € R. At each node i € 7, assume
that there is demand for electricity d; € R. Each node is
asked by the ISO to report a bid denoted by bi(q:) € R, and,
at the same time, the maximum quantity §; thatnode i € T
can produce. Next, we can add constraints to our problem
to capture the specifics of the power grid network. Note
that h = (h;;)ijer € H such that h;; < hi™. The goal of the
ISO is to derive the allocation of electricity such that the
total cost of production is minimized for the nodes (or pro-
ducers), respect all constraints, and ensure that the supply
of electricity is at least greater than the demand (that way,
the power grid system can safely meet the demand) [145].
Next, we add a nodal constraint of the form

Cj 1(h i +Cl hl
ql+z h/z hz/) Z JAANAS /( /)

jeTr jeT

(15)

where c¢;;j(h) represents the loss from the distribution of
electricity with quantity h from node i € 7 to node j € 7.
This constraint is critical to ensure that the demand at each
node is satisfied, considering the electricity produced, the
amount received from the other nodes, the amount sent to
the other nodes, and the losses from distribution among
nodes. We are ready to state the allocation of the electricity
optimization problem: for each h € H,

min 3" bi(7)

16
@ierh/ =7 ( )

subject to g + z (hji—hij)— Z M >d; (17)

jer jer
q: €10, 71 (18)
hij= 0. 19)

Consider that there exists a probability distribution f; over
a set of potential production cost functions. Eachnode i € 7 is
characterized by a type, say, 6;, representing a production
cost function that depends on the quantity g:. So, based on the
mechanism design expectation that nonode i € 7 will report
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its true production cost function 6; truthfully, we need to for-
mulate an optimization problem and design appropriate
incentives to have efficient production and distribution of
electricity in the power grid network. Note that

qrhn,h}'k{;’j; Efpj(©)] (20)

subject to q;(6) + D (hij—hji)— . M >d;
icr icr )
Elpi(0)]-6i(q;(6)) = E[p;(b)] — 6;(4;(b)) (22)
Efpi©)]-6i(g,(6)) =0 (23)
hij,p;j=0 (24)

where 6 = (6:)icr is the profile of production cost functions.
To solve the above optimization problem, we need a mech-
anism with allocation and payment rules (g, p) that mini-
mize the expected payments of all nodes. Some key
approaches to find the optimal (g, p) are to first analyze an
NE based on Bayesian Bertrand games [146], study the qua-
dratic externalities of the system, or study the Walrasian
equilibrium and replicate the techniques used in wholesale
electricity auctions [147], [148]. Of course, there are many
other techniques for this problem, that is, stochastic market
mechanisms [149] and energy reserve co-optimized mar-
kets [150]. There are other methodologies of electricity mar-
kets in power grid systems or electric mobility that take a
different approach, such as designing stochastic repeated
games [151], [152].

Transportation Systems

Commuters in big metropolitan areas have continuously
experienced the frustration of congestion and traffic jams
[153]. Several studies have shown the benefits of emerging
mobility systems (for example, ride-hailing, on-demand
mobility services, shared vehicles, and self-driving cars) in
reducing energy use and alleviating traffic congestion in
several different transportation scenarios [154], [155], [156],
[157], [158], [159], [160], [161], [162], [163]. For some recent and
comprehensive surveys on the methodologies and tech-
niques used in smart mobility-on-demand systems, see
[164], [165], and [166].

Routing/Congestion Games

We start this section with a motivational example. Sup-
pose we have a simple transportation network G = (V, &)
with two routes A and B (one shorter than the other), where
V is the set of nodes and & is the set of edges/roads. The
agents (in this case, the drivers) start at origin 0 € V and
need to choose either route A or B to reach a final destina-
tion d € V. If all the drivers choose the shortest route, then
naturally, congestion will occur, and all the drivers will
experience travel delays. So, the goal here is to find the
best possible coordination of traffic through the different
routes from o to d. We can model this as a game in which

the drivers play against one another and have two possible
actions (route A or route B), thus leading to several possi-
ble outcomes. In the simple case of two players, the number
of possible outcomes is the combination of the choices
between these two players; that is, 1) both players choose
route A; 2) player 1 chooses route A, and player 2 chooses
route B; 3) player 1 chooses route B, and player 2 chooses
route A; and 4) both players choose route B. Which one is the
best equilibrium? The answer to this question has been
studied extensively over the last 20 years in the form of
noncooperative routing games, in which selfish agents com-
pete for the best route in the traffic of a transportation net-
work [167]. Most interestingly, the generalization of routing
games was developed by economist Robert W. Rosenthal
in 1973 [168], [169], in which the theoretical framework of
congestion games was introduced as noncooperative games
of competing agents whose strategies are subsets of
resources in the system (transportation network). The
agents’ utility then depends only on the number of other
agents that have chosen the same or an overlapping strat-
egy [170], [171]. Moreover, the final cost of an agent can be
computed as the sum of the costs of the strategy’s elements
(the route or an origin-destination pair). Mathemati-
cally, following the formulation of congestion games in [2]
closely, we have n € N agents, with set 7 ={1,...,n} and a
network G. The set of strategies of each agent i € J is a set
of subsets of the set of edges & We call these paths or
routes. For each edge e € &, there exists a congestion func-
tion c.: I — R=o. Additionally, denote by ¥ = {(% ..., Pu)}
the set of paths (that is, the strategies). The congestion of
edge e € & is some function ((P) that can measure how
many agents utilize one particular edge of agent i € 7.
Then, agent i’s utility is given as

ui= . ce(0(P)).

eePi

(25)

If the set of agents is infinite, then the game is nonatomic
[172]. This notion, together with Rosenthal’s congestion
game framework, allowed the formulation of general traf-
fic networked games with an infinite number of agents,
each with a negligible effect on the system’s overall perfor-
mance. Hence, nonatomic congestion games (and their
special case, routing games) have been the standard model
of transportation systems, communication routing net-
works, and computer science [173], [174], [175], [176], [177],
[178], [179], [180], [181], [182]. Moreover, this framework of
congestion games has been proved to be quite flexible for a
number of models and applications (see [167]).

Another example to showcase the flexibility and the theo-
retical prowess of nonatomic congestion games is the traffic
routing model [183]. Agents are characterized as different
origin—destination pairs in a transportation network, of which
the edges are the resources. The core assumption here is that
agents compete for limited (easily congested) resources. Thus,
the strategies of the agents are represented as the possible
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paths between an origin and a destination. To each path a cost
is associated, and it models the travel latency or travel delays
based on the traffic along the path. The goal in this model is to
find an equilibrium closest to the social optimum: a multicom-
modity flow of minimum total delay. In [183], the Wardrop
equilibrium was introduced as the collective strategies of all the
agents in the network with the shortest paths. The signifi-
cance behind the Wardrop traffic model under the congestion
game framework is that it allows us to study the efficiency of
equilibria. Both the NE and Wardrop equilibria fail to mini-
mize the social cost and thus are overtly inefficient. Thus, to
improve the game-theoretic analysis, in 1999, Koutsoupias
and Papadimitriou [184], [185] proposed the inefficiency of
equilibria to be studied through the lens of worst-case analy-
sis. In their seminal work, they introduced the “price of anar-
chy,” which represents the ratio of the worst social cost
evaluated at an NE to the cost of an optimal solution [170].
This key notion was extensively studied in transportation,
communication, and computer science problems (for exam-
ple, selfish routing) [170], [176], [186], [187], [188], [189].

Auction-Based Approaches for Intelligent

Transportation Systems

Traffic congestion will continue to be one key challenge for
next-generation smart cities. The cost incurred by travel
delays, traffic accidents, and fuel consumption has been esti-
mated to be in the billions of U.S. dollars per capita annually.
That is why, over the last 20 years, intelligent transportation
systems (ITSs) have been introduced to provide solutions and
make transportation in urban areas, as well as on highways,
safer, more efficient, and more convenient for travelers and
drivers. ITSs are a multidisciplinary field, as they incorporate
multiple technologies, such as wireless communication, nav-
igation, sensing, and computing technologies. For example,
ITSs have been applied in vehicle navigation, traffic signal
control, emergency notification, and collision avoidance sys-
tems. Naturally, communication is vital in such systems,
including vehicle-to-vehicle and vehicle-to-infrastructure (V2I)
communication [190], in which advanced wireless communi-
cation allows vehicles to communicate crucial traffic infor-
mation (for example, speed, position, acceleration, traffic
conditions, congestion, and traffic warnings) to infrastruc-
ture (some central authority /coordinator).

Aswe discussed earlier in this section, a key approach to
the analysis of ITSs can be based on auctions. Vickrey’s
work [191] established congestion pricing as a way to control
congestion efficiently by requiring travelers/drivers in the
transportation system to pay tolls (as a function of the exist-
ing congestion, time, location, and vehicle type) [192].
Dynamic pricing has also been introduced, notably in
[193] and [194]. In contrast to congestion pricing, an auc-
tion-based technique focuses on establishing an auction,
with competing vehicles reporting bids for “time slots” to
travel in high-demand urban areas during peak hours
[195]. Alternatively, taking advantage of V2I technologies, a
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combinatorial auction can be formulated to determine the
right toll prices for vehicles [196] (in such auctions, buyers
compete with one another and bid to acquire multiple
different but related goods). Based on [195], we have the
following framework. There is a set of agents 7, where
each agent i € 7 makes a total of m; € N bids to enter the
high-demand urban area. Time is modeled as a set of dis-
crete steps; thatis, 7 = {1, 2, ..., T}, T € N. Each time interval
represents the duration of an agent’s stay in the area. So, each
agent i € 7 bids a monetary payment of value p;j € R for
the right to visit the urban area a number of c; € N times.
Next, we have the following binary variables:

1, if ¢jj consists of time interval ¢
di(t) = {O, otherwise : (26)
In addition, we have
_[1, if ¢y is accepted
xi() = {O, otherwise @7)
Thus, the optimization problem is formulated as
max > > pij X (28)
ierj=1
subjectto 33 di(H)- xi(t) < Damy VEET  (29)
ierj=1
Y1, viel 30)

i=1

where Dmax is the maximum number of vehicles allowed to
be in the specific urban area. This optimization problem is
rather difficult to solve, as it is combinatorial, and depend-
ing on its size, it can be almost impossible to solve in finite
time. However, auction-based congestion pricing [195] can
provide good enough solutions. In [196], a similar yet im-
proved combinatorial optimization problem is proposed,
and using VCG-based incentives provides an efficient solu-
tion in the alleviation of traffic.

More recently, auctions and mechanism design have
been used in ride-sharing [5], [197] and autonomous vehicle
public transportation problems [198]. We summarize some
of the latest articles in this area in Table 2.

Security Systems

It is well known that cyberdefense remains a top priority for
many organizations across different sectors. Part of this is
because cyberattacks are continuous and have the ability to
bring down vital systems. Although there are many different
angles to study security in a system of multiple agents, one
approach is to assume that security is an economic good or
resource and adopt game-theoretic approaches to study
how we can find the best possible processes (via the
appropriate design of incentives) for an efficient security
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investment [205], [206]. The main assumption in this
approach is that the interactions among strategic agents in
a system in which security is of crucial importance can
constitute a game. The objective of such a game is the pro-
vision of security through the means of investments by
the agents. Thus, we say that security is a public good.
This approach was first introduced by [207] as a way for a
“security game” to study airlines’ baggage checking sys-
tems and what incentives are best. In parallel, Varian [208]
studied security games for the reliability of computer sys-
tems. Afterward, security games were extensively stud-
ied in different fields and applications [207], [208], [209],
[210], [211], [212]. There are two surveys on this topic: [206]
and [214].

The Design of Security Games
What is a security game? In general, interconnected systems of
multiple agents that depend on one another can be vulnera-
ble to attacks by outsiders and external forces. Thus, any
agent is encouraged to invest in a system’s security mea-
sures, not only to protect itself but also to protect the other
agents. Interconnectedness implies a positive externality.
Consequently, the provision of security can be modeled nat-
urally as the provision of a public good (nonrivalrous com-
modity) [1]. Thus, a security game models the strategic
interactions of agents in a security system where each is
asked to invest its own resources to secure the system from
external attacks. Mathematically, consider a network of
n €N agents (for example, networked computer servers,
corporate divisions, or self-driving vehicles on a highway).
The utilities of all the agents are interdependent, and so
vi(x). Each agent is assumed to possess a finite amount of
resources w; € N available for investment, and if an attack is
successful against agent i’s resources, then a loss (i € (0, wi]
may be imposed on agent i € 7. The agent is allowed to pro-
tect its resources; hence, agent i € 7 may invest x; € Rxo.
However, this investment comes with a cost, represented by
a general function c;:R=o — R=¢ evaluated at the individual
amount of investment x;. We denote the vector of all the
agents’ investments by x = {x1,...,x,} = X. Then, to capture
how likely an attack is to be successful or not, we introduce a
riskfunctionr;: R2g — [0, 1]. Let x—i = {x1, ..., Xi-1, Xi+1, ..., Xu}
capture the interdependence of all the other agents’ security.
Then, the utility of an agent i € 1 is of the form
vi(x) = wi— ;- ri(x) — ci(xi). (31)

Hence, the security game is given by the tuple (7, X, (vi)ic1)
in a complete or incomplete information setting (depend-
ing on the problem).

The transformation of a security game to a mechanism
design problem is straightforward. For a solution concept,
we adopt the NE. Formally, we have

Xi= arng‘g(vi(xf, X—i). (2

For completeness, the socially optimal solution profile x*
can be computed as follows:

X" = argmax Z v;(x). 33)
=0 ieT

Next, the total interdependent utility of agent i€ I is
given by

ui(x, pi) = vi(x) — pi 34)
where p; represents a payment/tax for agent i € 7 when the
investment profile is x. Naturally, in a security system, it is
imperative to design the right payments for all agents to
incentivize voluntary participation. One approach for this is
to introduce the notion of exit equilibrium: an equilibrium that
takes into account the “external strategy” of an agent from
the mechanism for the provision of nonexcludable goods,
such as security and investment. At an exit equilibrium, an
agent may unilaterally opt out of the mechanism and decide
to adopt its best response against the other agents that have
chosen to participate in the mechanism [215]. Formally,

XL = argmaéz vi(x—;, X)) (35)
X055
xi= argmax v,-(fci,-, Xi). (36)

Most notably, although this is quite an interesting notion
of an exit equilibrium, [215] showed an impossibility result
for mechanisms that induce a security game with social
optimality, a weak budget balance, and voluntary partici-
pation. Most interestingly, two main approaches, that is,
the VCG mechanism and the externality mechanism [216],
[217], that have been quite successful in other applications
fail to circumvent this theoretical obstacle. For the purpose
of this article, we focus on the latter only.

s )
TABLE 2 A summary of auction-based mechanisms for
transportation systems.

A Y

Auction-Based Mechanisms for Transportation Systems
Reference Model Auction Type Scenarios
[199] Dynamic Combinatorial  One-to-one

ride-sharing double auction assignment
[200] Dynamic Vickrey One-to-one
ride-sharing assignment
with detours
[201] Dynamic Combinatorial  One-to-one
ride-sharing double auction assignment
with detours
[198] Dial-a-ride  VCG One to many
problem
[202] Dial-a-ride  Combinatorial  One to many
problem double auction
[203], [204] Dial-a-ride  VCG One-to-one
problem assignment
with detours
_
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The externality mechanism aims to redistribute the
wealth that is collected from the agents and ensure a strong
budget balance (all payments equal to zero). As shown in
[217], this mechanism induces a game with social optimal-
ity and voluntary participation and maintains a balanced
budget for cellular networks (which is an excludable public
good). The payment function is given by

ot wp OFi (e _» OCi [
Pz(x)— Zx]ﬁl 8Xj(x) Xi ax(xl)

jel !

37)

However, these taxes fail to induce voluntary participation
for all the agents, and thus, the system will be significantly
vulnerable to attacks, as its security cannot be guaranteed.

Security in Communication Systems

Security has been extensively studied in communication
systems since the 1980s. With the advancement of commu-
nication technology, such as wireless networks, communi-
cation among systems, computers, and phones has never
been as easy and quick. However, such systems admit vul-
nerabilities, and since they play a key role in the exchange
of information, attacks are continuous and frequent. In this
section, we briefly focus on auction-based mechanisms
that offer solutions for various communication scenarios
and the solutions we can derive.

Auctions have been used to model the economic-in-nature
interactions among agents of a communication system that
need to invest resources for the security and well-being of
the system (for example, to prevent external attacks). Exam-
ples of auctions used to model security include English auc-
tions, Dutch auctions, sealed bid auctions, double auctions, share

each round, while in Dutch auctions, the opposite process
occurs (with a high price decreasing until it is accepted).
Thanks to the simplicity of the auction rules, such auctions
have been used to defend and identify “malicious” agents in a
system [224]. Sealed bid auctions, as their name suggests, are
characterized by their ensured privacy, as buyers do not dis-
close their bids to anyone (examples are the first-price auction,
Vickrey auction, and VCG auction). The specifics of each auc-
tion have been listed in Table 3, with recent key applications
[225]. For example, a VCG auction extends the Vickrey auction
with multiple goods and sets the proper rules to determine
the winner (that is, the buyer who gets an auctioned good). In
particular, the VCG auction awards the good to the buyer,
who then pays the second-highest bid. This is extremely
important, as it establishes the following principle: bid your
true valuation and pay less than you expect. The VCG auction
has been widely used in securing communication and wire-
less networks (for example, to prevent agent misbehavior).

So far, the above-mentioned auctions are one-sided,
meaning there is one auctioneer who tries to sell one or
more goods to a finite number of buyers. In a double auc-
tion, there is still an auctioneer who manages an auction
between multiple buyers (who each submit bids at the same
time) and sellers (who each submit payment demands for
their goods [223]). For example, an auctioneer can match
the buyers and sellers as follows. List the bids in a descend-
ing order and the payment demands in an ascending order.
Denote by pi', pa*" the payment demand of a seller and
the bid of a buyer, respectively. Then, the auctioneer can
find the largest index m € N for which

N

auctions, and ascending clock auctions. paer < pter, (38)
Both English and Dutch auctions are multiple-round auc-
tions and allow buyers to exchange information (their bid) The next step is to set the final payment as
with other buyers. In economics, this type of disclosure in
auctions is called open outcry. In addition, the auctioneer in L paT pister
English auctions introduces a bid and keeps increasing it at P= 2 ' 59
( )
TABLE 3 A snapshot of articles on the security of communication systems.
y
Auction-Based Mechanisms for Security in Communication Systems
Auction Type Characteristics Solution Concept Scenario
English auction [63] Winner pays second-highest price NE Information integrity
Dutch auction [63] Winner pays final price NE Black hole attack
First-price sealed bid auction [219] Winner pays highest price NE Privacy or faked sensing attack
Vickrey auction [219] Winner pays second-highest price NE User collusion/bid rigging
VCG auction [220] Vickrey auction with multiple goods  Bayesian NE Eavesdropping attack
Share auction [221] Matching of goods based on ratio NE Distributed denial-of-service
of buyers’ bids attack
Ascending clock auction [222] Increasing price until demand equals Walrasian equilibrium False name bids
supply
Double auction [223] Matching between sellers’ demands Market equilibrium Privacy
and buyers’ bids )

&
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In economics, p” is called the clearing price. Using this price,
buyers get a good by paying p°, and naturally, the seller
receives p’. This process can be repeated as many times as
necessary, and it stops once all the sellers” goods have been
matched or sold to the buyers.

Finally, share auctions constitute a type of auction that
resembles a market and are used to model a resource allo-
cation to multiple buyers. However, the resource needs to
be divisible (for example, bandwidth) [226]. Share auctions
are as follows. Buyers submit to an auctioneer a bid (how
much bandwidth they require), and then the auctioneer
computes a payment that is proportional to the buyer’s bid.
For example, suppose there are K € N source—destination
pairs of friendly jammers (sellers of friendly jamming
power) and eavesdroppers in a wireless communication
network. The goal is to improve the secrecy capacity of a
source. A buyer submits a bid in the form of asking for
friendly jamming power, say, 7: € R. Thus, we can allocate
the friendly jamming power at each source i € J; that is,

Di 7 max

(40)

i =

= K
B+ Z b
k=1

where 7max is the maximum possible power, b; is the source
i'sbid, and B € R. Finally, source i € I pays pi: = Az, where
A € R is a payment per unit of power. Such auctions can be
used to find the optimal bid among sources in the network
and maximize the secrecy capacity change [227]. A com-
prehensive survey and tutorial can be found in [228]
and [229].

CONCLUSION

In the last section of our article, we offered a discussion of
the theory of mechanism design and its engineering appli-
cations. First, we discussed the theoretical and practical
limitations of the theory, some of the most notable criti-
cisms, and how to move forward. We paid extra attention to
offering key open questions in mechanism design and pro-
posed two main future research directions that we, as
authors, believe have the greatest potential. Finally, we con-
clude this article with a few remarks.

Traditionally, mechanism design has focused mainly on
quasi-linear static settings under somewhat simple struc-
tures for the agents’ types or utility functions. Some particu-
lar (unrealistic) strong assumptions have pervaded, making
it difficult for mechanisms to be implemented in real-life
problems. Whether the set of agents remains fixed and
known to the social planner or the evolution of information
is not considered, the ability to design mechanisms that offer
a superior way to design incentives and induce efficiency
across a system still remains a formidable challenge in mech-
anism design. For example, the VCG mechanism, although a
widely used mechanism, is not frugal, and depending on the
application, it might overtax agents (thus imposing a heavy
tax burden). Information and communication, as envisioned

by Hurwicz, rely on the universal existence and authority of
a central authority (a social planner). Agents are expected to
fully disclose their private information, raising privacy con-
cerns as well as computational costs to manage the sheer
amount of information. Another key critique of the theory is
the computational intractability of certain mechanisms, as
many fail to provide an iterative learning process (alterna-
tively called a tatonnement process); that is, there exists an
algorithm for the equilibrium to be attained by the agents
and social planner.

From an engineering standpoint, mechanism design is
characterized by its tradeoff between the design of optimal
and efficient solutions that all agents will accept and realistic
and systemwide properties, such as simplicity, robustness,
and computational trackability. As control problems are com-
monly dynamic, complex, and unpredictable [230], it still
remains an open question of how to devise mechanisms that
are simple yet dynamic, robust, and trackable. At the same
time, a key open question is to look at the intersection of
mechanism design and machine learning, allowing mecha-
nisms with incentives that lead to efficient equilibria that can
be learned in dynamic environments (that is, extending the
typical mechanism to address dynamic control problems).
It is the authors’” belief that engineering applications (for
example, communication networks, information systems,
and transportation networks) of large-scale systems,
which are dynamic in nature, impose rather crucial chal-
lenges to the theoretical framework of mechanism design
and thus inspire novel new mechanisms that will circumvent
some of the limitations of the theory (see Further Reading).
Over the last 10 years, there has been extensive research from
economists and mathematicians in expanding the theory of
mechanism design for dynamic systems [6], [57], [213], [218].
The goal, of course, is to improve the applicability of these
mechanisms in real-life problems and translate the useful-
ness of the theoretical insights into practice. Finally, game
theory allows us to model the strategic interactions of sys-
tems consisting of multiple agents/players that compete over
resources. The theory of mechanism design allows us to
adopt an objective-first approach and model the best possible
game and its rules. As new developments and applications
are continuous, the next chapters of mechanism design in
engineering and mechanism design’s true impact in solving
big problems remain to be seen.
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Further Reading

here is a rich list of books on game theory, economic

design, and mechanism design for the interested reader
and especially for any first-year graduate students as a first
resource to learn more about the field. The literature on
game theory and its applications includes several excellent
textbooks [S21], [S22], [S23], [S24], [S25], [71]. Most of the
established theories of mechanism design can be divided
into three categories: economics, auctions, and computer
science (with general applications). The gold standard in
microeconomics, which includes rigorous introductions
to game-theoretic notions and mechanism design, is [1].
A textbook more focused on Nash-based mechanisms and
matching markets is [74]. A recent book [76] offers a more
economics-inclined theory establishing the foundations of
mechanism design. Excellent textbooks in implementation
theory are [S26] (with an excellent chapter in [S25]). Robust
mechanism design in economics has been mostly devel-
oped by Dirk Bergemann, who has compiled a decade’s
worth of work in [S27]. So far, most of the textbooks fo-
cus on the implementation of mechanisms and the efficient
design of incentives. A completely different approach, one
that is much closer to the first seminal article by Hurwicz,
is the study of mechanisms under informational efficiency,
focusing mostly on the preservation of privacy [9] and the
bounded size of the message space [S28]. However, a rath-
er engineering-accessible textbook that offers a theoreti-
cal framework of mechanisms through fundamental results
from linear programming is [S29]. Mechanism design has
been instrumental in auction design, and many times, the
methodologies and techniques of the two theories are inter-
changeable. Thus, some great general textbooks are [63]
and [65], and a survey on combinatorial auctions is in [S30].
We end by offering excellent surveys from the economics
literature [S31], [S32]. Of course, there have been numer-
ous key contributions in mechanism design by computer
scientists, and in many graduate programs, mechanism
design is part of the curriculum. A well-known textbook

University of Delaware, Newark, DE, USA, in 2023. His re-
search interests lie broadly in mobility systems, game the-
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Ph.D. on the need to understand human behavior and how
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that offers a survey of these contributions is [2, Ch. 9-16],
and, in general, so does [8]. Additional resources in game-
theoretic approaches and techniques of mechanism design
(including dynamic incentive design) can be found in [S33],
[S34], [S35], and [60]. Finally, a recent publication that dis-
cusses the latest developments, insights, and theoretical
results in economic design is [S36].
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