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Abstract— Safety-critical cyber-physical systems require con-
trol strategies whose worst-case performance is robust against
adversarial disturbances and modeling uncertainties. In this
paper, we present a framework for approximate control and
learning in partially observed systems to minimize the worst-
case discounted cost over an infinite time horizon. We model
disturbances to the system as finite-valued uncertain variables
with unknown probability distributions. For problems with
known system dynamics, we construct a dynamic programming
(DP) decomposition to compute the optimal control strategy.
Qur first contribution is to define information states that
improve the computational tractability of this DP for a class of
problems with observable incurred costs at each time instance.
Our second contribution proposes approximate information
states that can be constructed or learned directly from observed
data for these problems. We derive bounds on the performance
loss of the resulting approximate control strategy and illustrate
the effectiveness of our approach in partially observed decision-
making problems with a numerical example.

I. INTRODUCTION

Cyber-physical systems, such as connected and automated
vehicles [1], often require decision-making in uncertain
environments with partial knowledge of the dynamics [2]
over long time horizons. This decision-making challenge
is typically modeled with a stochastic formulation, where
an agent accesses a prior probability distribution for all
uncertainties and computes a control strategy to minimize
the expected value of a discounted total cost across an
infinite time horizon [3]. However, the actual performance of
such a strategy degrades when the assumed prior distribution
is different from the actual underlying distribution [4]. To
mitigate this drawback, research efforts have proposed alter-
natives, including (1) robust stochastic formulations, where
an agent minimizes the worst-case expected cost given a
set of feasible probability distributions [S]; and (2) risk-
averse formulations, where an agent minimizes a combina-
tion of both the expected cost and the cost variance [6], [7].
While these formulations improve the performance under
a distribution mismatch, many safety-critical applications
require further guarantees on the worst-case performance of
a strategy against either adversarial attacks or system failure,
e.g., cyber-security [8] and cyber-physical networks [9]. A
non-stochastic formulation is suitable in such applications,
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where the agent has no knowledge of the distributions on
the uncertainties and uses only their set of feasible values
to compute a control strategy that minimizes the maximum
possible cost [10]-[15]. This non-stochastic formulation is
both maximally robust and risk-averse [16].

In this paper, we analyze a non-stochastic problem over
an infinite time horizon with an agent that can access only
output data and may not know the underlying state-space
model. In such partially observed problems, an optimal
strategy can be computed using a memory-based dynamic
program (DP) when the time horizon is finite. However, the
agent’s memory grows to an infinite-dimensional vector as
time tends to infinity. This makes a memory-based approach
computationally intractable. When the state-space model is
known, this challenge is alleviated using the maximum cost-
to-come as an information state in the DP, for both finite-
time [17] and infinite-time problems [18]. The computational
tractability of this DP has been further improved in finite-
time problems using approximate information states [19],
[20]. Meanwhile, general notions of information states and
their approximations have been developed for stochastic
problems over an infinite time horizon without relying on
state-space models [21]. In contrast, to the best of our
knowledge, no such general notions exist for infinite-time
problems to minimize the worst-case discounted total cost.

Our main contributions in this paper are: (1) we intro-
duce general information states (Definition 1) and a time-
invariant DP to compute an optimal strategy in non-stochastic
problems over an infinite time horizon for problems with
observable costs (Theorem 1); (2) we define approximate
information states (Definition 2) to compute a strategy with
a bounded performance loss (Theorem 2); and (3) using a
numerical example, we show that approximate information
states can be learned directly from output data with incom-
plete access to system dynamics. Subsequently, we compute
an approximate strategy using deep Q-learning (Section V).

The remainder of the paper proceeds as follows. In Section
I, we present our formulation. In Section III, we define
the memory-based DP. In Section IV, we derive information
states for observable costs, define approximate information
states, and derive performance bounds. In Section V, we
demonstrate our results in a numerical example, and in
Section VI, we draw concluding remarks.

A. Notation and Preliminaries

In our exposition, we use the mathematical framework of
uncertain variables [22]. For a set .2, an uncertain variable is
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amapping X : 2 — 2 and is compactly denoted by X € 2.
This is the non-stochastic equivalent of a random variable.
For any w € (), its realization is X(w) = x € Z". Its marginal
range is the set of feasible realizations [[X]] :={X(w) |w €
Q} C 4. The joint range of two uncertain variables X € 2~
and Y € & is the set of feasible simultaneous realizations
X, Y]] := {(X(w),Y(w)) |w € Q} € 2 x #. The two
uncertain variables are independent if [[X, Y]] = [[X]] x [[Y]].
The conditional range of X given a realization y of Y is the
set [[XJy]] = {X(@) | Y(@) =y, w € Q}.

Consider two bounded, non-empty subsets 2°,% of a
metric space (.7, n) with metric n : 2" x % — R>(. The
Hausdorff distance is the pseudo-metric

’H(%,@)::max{ sup inf n(x,y), sup inf n(x, y)} (1
xeXye¥ yeEH xe &

Furthermore, if f : ¥ — R is a Lipschitz continuous
function with a constant Ly € R>¢, then [15, Lemma 5]:

sup f(z) — sup f(y)| < Ly -H(Z, ). @)
reX yeW

II. PROBLEM FORMULATION

We consider the control of an uncertain system that
evolves in discrete time steps. At each time ¢t € N =
{0,1,2,...} an agent collects an observation of the system
as the uncertain variable Y; € ) and generates a control
action denoted by the uncertain variable U; € U. After
generating the action at each ¢, the agent incurs a cost
denoted by the uncertain variable C; € C C R>(. The set
C is bounded by min{C} = ¢™® and max{C} = c™**. We
formulate our problem for a general case where the agent
may not have knowledge of a state-space model for the
system. Thus, we use an input-output model to describe the
evolution of the system, as follows. Ateach ¢ € N, the system
receives two inputs: the action Uy, and an uncontrolled distur-
bance W; € W. The disturbances {W; |t € N} constitute a
sequence of independent uncertain variables. After receiving
the inputs at each time ¢ € N, the system generates two
outputs: (1) the observation Y; 11 = hyy1(Wo.t, Up.t), where
hiy1 @ Wt x Ut — Y is the observation function; and (2)
the cost C; = di(Wo.t, Up.t), where dy : W x Ut — C is
the cost function. The initial observation is Yy = ho(W)).

The agent perfectly recalls all observations and control ac-
tions and at each ¢ € N, the agent’s memory is the uncertain
variable M; := (Yy.t,Up.4—1) taking values in M, := Y'x
U'~'. The agent uses a control law ¢, : M; — U to
generate the action U; = g¢;(M;) as a function of the
memory. The control strategy is the collection of control laws
g := (90, 91, ... ) with a feasible set G. The performance of
a strategy g € G is given by the worst-case discounted cost,

T

J(g) := lim sup th-ch 3)

T=00 co.re([Cocrll? =g

where v € (0, 1) is a discount parameter, the marginal range
[[Co.r]]9 is the set of all feasible costs consistent with the
strategy g and with the set of feasible disturbances VV. The

limit in (3) is well defined because C; < ¢™#* for all t. Next,
we define the control problem with known dynamics.

Problem 1. The optimization problem is to derive
the infimum value inf g 7(g), given the feasible sets
{U,W,Y,C} and the functions {hy,d; |t € N}.

If the minimum value is achieved in Problem 1, the ar-
gument g* = arg mingeg J(g) is called an optimal control
strategy. We aim to tractably compute an optimal strategy.
We impose the following assumption in our analysis.

Assumption 1. We consider that the sets {U/,W,)} are
each bounded subsets of a metric space (.,7n) and C is a
bounded subset of Rx>g.

Assumption 1 ensures that all uncertain variables take
values in bounded sets and that we can use the Hausdorff
pseudo-metric (1) as a distance measure between them. In
the next section, we derive a DP for Problem 1 with known
dynamics. However, our main results in Section IV are also
suitable for reinforcement learning problems with unknown
dynamics. We illustrate this with an example in Section V.

III. MEMORY-BASED DYNAMIC PROGRAM

In this section, we present value functions to evaluate the
performance of any strategy g € G. Next, we present a
memory-based DP decomposition of Problem 1 that approxi-
mately computes the value functions with arbitrary precision.
Then, we highlight the drawback of the memory-based DP,
which motivates the notion of information states presented in
Section IV. To construct value functions, we first define the
accrued cost at each t € N as the sum of past incurred costs
Ay = Y4~ 4%-Cy, which satisfies A;y1 = A; +~1-C; with
Ap := 0. This is well defined in the limit ¢ — oo because

max cmax max

limy oo A < limy_oo Zz;é 7E-c =9 =a
Thus, A; € [0,a™**] for all ¢t € N. Similarly, the cost-to-
go at any t € N is the sum of future all costs still to be
incurred Cf° = Y";2, v*~-Cy. Note that Cf° € [0, a™]
for all ¢ and that C° = C; + v-C¢7,. Then, for all ¢ € N,
we can define a value function for any g € G as

Vi (my) == (ac+7"¢®), @

sup
ai,cg®€[[Ae,CP me]]9
where [[A;, C7°|my]]9 is the conditional range induced by
the choice of strategy g. From the definition of the value
functions, at ¢ = 0 it holds that sup, cy Vi (y0) = J(g),
where mg = yo. Thus, the value function V{(yo) evaluates
the performance of any strategy g for an initial observation

yo- Similarly, the optimal value function at each ¢ € N is
Vi(my) := inf V2 (my), (5)

geg

and the optimal value is inf g J(g) = sup,,cy Vo(vo)-
Given the value functions in (4) and (5), we can evaluate
the performance of a strategy and compare it with the optimal
performance. However, there is no natural DP decomposition
to compute these value functions in an infinite-horizon
system with no terminal time. Thus, we construct a memory-
based DP that assumes a finite horizon 7" € N and use it to
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compute approximations of the value functions recursively.
For any g € G, we define finite-horizon evaluation functions
for all my € M, andeacht =0,...,T—1as JZ(my; T) :=
SUPin, 11 €[[Mig1|me]]o fq+1(mt+1;T)’ where Jg(mTaT) =
SUDy 1. erel[Ar,Crlmrjjs(0T + Y7 -cr) at time T'. Similarly,
we define approximately optimal finite-horizon functions for
all my € My andeacht=0,...,7 — 1 as

Jt(mt,T) = lnf sup Jt+1(mt+1;T), (6)

wt €U M1 €[[Miy1|me,ue]]

where, Jr(mr;T) = inf,, cySUPay cre(ar,Crlmr ur]]
(ar + ~T-cr). Note that the finite-horizon functions
JZ (my;T) and Jy(my;T) at any t = 0,...,7T are param-
eterized by the choice of horizon 7' € N. Next, we bound
the approximation error between the value functions and their
finite-horizon counterparts.

Lemma 1. For any finite horizon T € N and for all m; €
M, and each t =0,...,T,

7T+1_Cmin
@) —— 5 +J7 (me;T) <V (my)
T+1 .max
Y C
ST+ ——, O
’}/T+1'Cmin
b) 1—~ +Ji(my;T) < Vi(my)
T+1_Cmax
< Ji(mT)+ 2 @®)
I—v

Proof. a) We prove each inequality in (7) using backward
induction. For the upper bound at time 7, we use the
dynamics of the accrued cost and cost-to-go to write that
T
Vf(TT) = SWPayr cp,c52, | €[Ar,Cr,C52, | [mr]]o (aT+T’y e+
v + .039_"_1) < SupaT,CTG[[qéT,CﬂmTHQ (aT+’y .CT) +

+1, max
yTHLgmax < J9(my; T) + 15— The lower bound at
time 7" follows from iﬁ < 7, using the same sequence
of arguments as before. This forms the basis of our induction.
Next, consider the hypothesis that (7) holds at time ¢ + 1.

For the upper bound at time ¢, by definition V7 (m;) =
SUDq, c, c2 | €[[A,Cr O3, [mil]o (a4t +417060,) =
SUPg, e €f[Arsr,05%, [mel)a (Gt41 + Y Heg ) =
SUDPy, 1 €[[M g1 [ma]]o SWPar 1,653, El[Aes1,05% ey al]o (@441

YR = SUD, e (Mo ) ‘431(mt+1) <

+1 _max
g . 0l C
SUPy, ,y e[[Mosa|miells Jir1 (Mes; T)  +
.max

1=y
J2(my;T) + % where, in the fourth equality, we
use (4) for V,(my41); and in the inequality, we use
the hypothesis. The lower bound follows from the same
sequence of arguments. Thus, (7) holds using induction.

b) We can prove the lower bound in (8) by taking the
infimum on both sides of the lower bound in (7). To prove
the upper bound in (8), we first note that Jy(myT) =
infycg JZ(my; T) for all ¢ = 0,...,T using standard
DP arguments for terminal-cost problems [17]. Then, at

time T, by definition Vr(my) = inf g Vi(mr) <
. T+1 . max T+1, _max
infgeg J7(mp; T) + 25— = Jr(mp; T) + Tg=5—

Using this as the basis, the result follows forallt =0,...,T
using the same induction arguments as in (7). O

Lemma 1 establishes that the approximation error between
finite-horizon functions and corresponding value functions
decreases with the horizon 7' € N. As a direct consequence
of (8), limr_ o0 Jo(yo; T) = Vo (yo) for all yo € V. However,
the domain of Jr(mp;T) is My = YT x UT~! which
grows with 7', and in the limit 7" — oo, the set My is
infinite-dimensional. Thus, it is computationally intractable
to achieve close approximations of the optimal value using
(6). We address this issue in the next section using informa-
tion states, which take values in time-invariant spaces.

IV. SYSTEMS WITH OBSERVABLE COSTS

In this section, we analyze Problem 1 in the case where
the agent observes the incurred cost at each instance of
time. Thus, at each ¢t € N, the agent receives a realization of
(Y, C;) and the memory is My = (Yo.¢, Co.t—1, Uo-t—1). For
such systems, we present the notion of information states
which take values in time-invariant spaces. Then, we use
them to construct a time-invariant DP decomposition, which
converges to the optimal value of Problem 1. To begin, we
formulate our notion of information states.

Definition 1. An information state for Problem 1 with
observable costs at any ¢ € N is an uncertain variable S; =
¢(M;) taking values in a bounded, time-invariant set S. For
all t € N, for all m; € M; and u; € U;, it satisfies that

[[Cr, Segr | me, ue]) = [[Cr, Sea | Ge(me), ). (9)

Next, we use the information state from Definition 1 to
construct a time-invariant operator 7 : [S — R] — [S —
R] that yields a fixed-point equation to recursively compute
the optimal value in Problem 1. For any uniformly bounded
function A : S — R, the operator 7 is given by

[TA](5):= inf ~ sup  (c+7A®F)),
u€U ¢,5'€[[C,S’|5,u]]

(10)

for all s € S. Note that we use time-invariant notation for all
variables in (10) because the sets and functions in the RHS
are time-invariant. Due to discounting, 7 is a contraction
mapping. Thus, using the Banach fixed point theorem, the
equation A = 7TA admits a unique solution A® = TA>®.
Starting with A°(5) := 0, the fixed-point iteration around 7~
generates a sequence of functions

A (5) = [TA™](5) = [T"A°)(5), (11)

for all n =1,2,..., such that lim,,_,o 7"A% = A>. Next,
we that A™(54(m;)), n € N can be used to estimate V;(m;)
for all ¢ in Problem 1 with observable costs, with an error
that decreases in n.

Theorem 1. Consider the function A™ generated using (11)
for any n € N. Then, for all t € N, it holds that

,y'n-‘rt .cmln

1o, VA" (T (me)) + sup

ar€[[A¢|m]]

ar < Vi(my)
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,yn+t'cmax

ar +~"N"(G¢(me)) +

< sup
ar€[[A¢|my]] 1 -

< (12)
Proof. We show (12) by combining arguments in Lemma 1
with the definition of information states in (9). Thus, we first
show that for any horizon T' € N, the following relationship
is true for each t =0,...,T":

Ji(my; T) =N (5, (m)) + sup @ (13)

at €[[A¢|m4]]
We can prove (13) by induction. At time 7, using the
definition of the finite-horizon function Jp(mp;T) =
infuTGLl SUPqr cre[[Ar,Cr|mr,ur]] (G‘T + ’YT'CT) =
%nfuTGZ/l SUDcrc([Cr|mr,ur]] €T T SUPare([Ap|mr]) 4T =
mfuzeu SUPcr 5741 (mri1)E[[Cr,Srp1 | ur] ] \CT +
VAN G (mrin)))  + SUDae(iarjmp)) OT =
A(or(mr)) + SUP,,.e[[Ar|my)) @T> Where, in the second
equality, note that Ap is completely determined given
Mt because the costs are perfectly observed; and in
the third equality, we note that A°(Gry1(mri1)) = O.
This forms the basis of our induction. Next, consider the
hypothesis that (13) holds at time ¢ 4 1. Using the definition

of the finite-horizon function at time t, Jy(myT) =

t+1,
inf,,, o SUPm, 1 €[(Mo e au] SUDc, a,€[[Cy. Armesa]) (Y

AT G (mesr)) + e+ ay) = inf,, ¢y
Supct,at,mt+1€[[Ct,At,Mt+1\mt,ut]]( FHLAT t(Ut+1(mt+1))
+,yt.ct7+ at) = infUtEU SuPe,, Ut+1(mt+1) [[Ct,Se41lme,uq]]
(YHLAT G (meg1)) + A'e) + sup,, ¢ [A,\mT]] at
- mfuteu SupCf70t+1(mt+1)e[[ct,st+1|Ut(mt)7ut]](
Orr1(mit1)) +  yct)  + SUDg, (A, my)) Ot =
vt AT (G (me)) + SuD,, (A, fm,) @-  Where, in
the third equality, we use the fact that costs are observable;
in the fourth equality, we use (9) from Definition 1; and
in the last equality, we use the definition of A”—**! from
(11). This proves (13) using induction. Then, (12) follows
directly for all ¢ € N and all n € N by substituting (13) into
(8) and selecting a horizon T'=¢t+n — 1. O

Theorem 1 allows us to characterize the error between
the optimal value Vj(yo) and the value A" (5¢(yo)) for any
Yo € Y, by selecting t = 0 in (12). Then, we select ¢ = 0
and let n — oo to establish that A (5o(yo)) = Vo(vo)-
Thus, when Problem 1 has observable costs, the fixed point
A computes the optimal value function V, as a direct
consequence of Theorem 1. Next, consider that the infimum
is achieved in the RHS of [TA”}( 5) for all 5 € S and
n € N. We define a strategy «* = (7*,7*,...), where
7* ' § — U is the minimizing argument in RHS of (10)
for A = A>. Then, it holds that the memory-based strategy
g* = (35,97,--.), where gf = 7*(o¢(ms)), gives an
optimal solution to Problem 1 with observable costs (from
standard arguments analogous to Appendix B of [23]).

Remark 1. For systems with perfectly observed states and
known dynamics, an example of a valid information state
at any time ¢ is the state itself X; € AX. For partially
observed systems, a valid information state at any time ¢
is the conditional range [[X;|M;]] € 2.

Remark 2. When attempting to learn an information state
that satisfies Definition 1 using only output data, we may not
be able to satisfy (9) exactly. Thus, in Subsection IV-A, we
relax this definition for approximate information states.

A. Approximate Information States

In this subsection, we define approximate information
states that approximately satisfy (9), and construct a time-
invariant approximate DP of Problem 1 using them. Then, we
bound the resulting error, estimating the optimal value and
the performance loss of the resulting approximate strategy.

Definition 2. An approximate information state for Problem
1 with observable costs at any ¢ € N is an uncertain variable
S, = &¢+(My) taking values in a bounded, time-invariant set
S. Furthermore, there exists a parameter € € R>¢ such that
for all my € M; and u; € U and t € N, it satisfies

H([Cr, Set1lme, wll, [[Cr, Sea1]6:(me), wi]]) <€, (14)
where recall that H is the Hausdorff distance defined in (1).

To compute an approximate value and control strategy, we
proceed with approximate information states just as we did
with information states. First, we construct a time-invariant
operator 7 : [S — R] — [S — R], such that for any
uniformly bounded function A : S — R,

[TA](3) = inf sup (c + vAF)).
u€l ¢ 37¢[[C,8")3,u]]

15)

Note that 7 is a contraction mapping and thus, the equa-
tion = TA admits a unique solution A® = TA>.
Then starting with A°(3) := 0 the fixed- point iteration
around T~ recursively generates the functions Arti(s) =
[TA™)(5) = [’T”AOJ( 8), for all n = 1,2,..., such that
lim,, oo 7"AY = A°°. This forms our approximate DP
decomposition. Next, consider that the infimum is achieved
in the RHS of [TA"](3) for all §e Sandalne N
We an approximate strategy «° = (7*,7*,...), where
#*: 8 — U is the minimizing argument in the RHS of (15)
for A = A°. Then, a corresponding memory-based strategy
is g == (45,97,...) with g7 := n*(o¢(m;)) for all t € N.
Next, we bound both the approximation error between the
optimal value Vo (yo) and A (6¢(yo)), and the performance
loss when implementing §* to generate the control actions.

Theorem 2. Let the functions A" be Lipschitz continuous
with a constant L € R>q for all n € N. Then, we have that

a) |Vo(yo) — A®(60(y0))| < Le(1 -7,  (16)
b) [Volyo) — V& (yo)| < 2-L-e(1—7)7", a7
where L = max{y-Lj,1}.

Proof. We show (16) using (8) from Lemma 1. Thus, we
first show that for any 7" € N, it holds for all t =0,...,T

| Je(me; T) =~ AT (G, (me)) — sup aq] < Be(T), (18)
at€[[At|me]]

where 3,(T) = Biy1(T) +~'-L-¢ and Bp(T) = 47 -L-e. We

prove (18) by induction. At time T, recall that Jp(mp;T) =
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infuTeuSUPcTe[[CT\mT,uT]]VT'CT +  SUPure([Ar|mr]]
ar for perfectly observed costs. This implies that
| Jr(mp; T) — 4" Al(&T(mT)) — SUPqre([Ar|mq)) 07| =
|1nfuT€Z/I SuchG[[CT|mT ur]] 7 Cr — 7T Al (UT(mT))| =

~ | lnfMTEM SUP.,., sp41€[[Cr,Sr41|mr ur]] (CT +
A AO(§T+1)) - infU«Teu SupCT,ST+1€[[CT,ST+1|UT(mT),UT]]
(er+y-A8r 1) <AT-L- SuPuTEMH([[CTv St1lmer, url),
[[C’T,ST+1|UT(mT) ur]]) < AT .L-¢, where, in the second
equality, we note that A%(37,;) = 0 identically; in the
first inequality, we note that [ = max{vy-Lj,1} is the
Lipschitz constant of (cp + ~v-A°(3741)) with respect
to (cr,8741) and use (2); and in the second inequality,
we use (14). This forms the basis of our induction.
Next, we consider the hypothesis that (16) holds at
time ¢ + 1. Using the hypothesis and rearranging terms,
Jis1(meg; T) < Boga(T) + AT (6441 (mygr)) +
jjat+1. Then, at time ¢, |J:(me; T) —
< Bin(T) +
| infy,, cpf SUP, Ly e[ny e ) (Y Gry1(mes))+
SUPa, ,ci€[[Ar,Ctlmiia]] (at+7t'ct>) t AT- t+1(gt(mt))
SUPq, (A, m.]] O] < 5t+1( A) +  y'sup,, ey
| SUPc, 5,41 (me)€[[Cr,8e 41 me,ue]] (ct +’7'ATjt(&t+1( mi41)))
_SupCt,§t+1€[[Ct,§t+1|&t(mt),ut]](Ct + AT E))] <
Bis1(T) + +'-L-¢, where, in the second inequality, we use
[[Ae, Cilmega]] = [[Aelmusa]] x [[Cilmisa]] when a; is
perfectly observed; and, in the third inequality, we use (2)
and (14). This proves (18) for all ¢ using induction.

Next, for the iterated function A" we select a hori-
zon T = n — 1 and set ¢ = 0 in (18), to write
that |J0(y0, T) — A"(60(v0))| < Bo(T), where Bo(T) =
S aqt-Le. As n — oo with T = n — 1, note
that lim7 . Jo(y0; T) = Vo(wo), lim, 00 A™(G0(y0)) =
A% (60(yo)), and limy_, o 5o (T) = 1Lfy' The proof for (17)
follows from a similar series of arguments. O

SuParJrlE[[AtH [myta

t AT t+1 (Ut(mt)) o SuPatE[[Att‘]rnlt]LTatl
AT (

B. Alternate Characterization

When exploring whether an uncertain variable is a valid
candidate to be considered for an approximate information
state, it may be difficult to verify (14). Thus, we present
two stronger conditions that are easier to verify. To establish
that S, = G¢(My), t € N, satisfies (14), the following two
conditions should hold (see proof in Appendix C of [23]):

1) State-like evolution: There exists a Lipschitz continuous
function 1 : S xU x Y — S, such that

= (6¢(My), Ut, Yiq1).

2) Sufficient to approximate outputs: For all m; € M, and
uy € U, there exists a constant § € R such that

H([[Cr, Yigalme, ud]], [[Cr, Yiga|oe(me), ue]]) < 0.

V. NUMERICAL EXAMPLE

Gr1(Mit1) (19)

(20)

We consider an agent pursuing a target across a 5 X
5 grid with obstacles. At each ¢ € N, the agent’s
position X;® and the target’s position X each take
values in the set of grid cells X = {(0,0),(0,1),

., (4,4)} \ O, where O C X is the set of obstacles.
Let W = {(-1,0),(1,0),(0,0),(0,1),(0,-1)}, N =
{(0,-1),(0,0),(0,1)}, and U = W x {&}, where £ denotes
a “stop” action. Starting at X§ € X, the target’s position
evolves as X = 0(X{* + W, € X)(XP+ W) + (1 —
XP+W, € X))- X}, where W, € W and 4 is returns 1 or
0 after checking the argument. At each ¢, the agent observes
their own position perfectly and the target’s position as Y; =
S(XP4HN € X)(XP+N)+(1—0(XP+ N € X)) X2,
where N; € N. Then, the agent selects an action U; € U,
e.g., to move or stop. If the agent moves, i.e., U; # £, then
X5 =0(XE+ U, € X)(XF+U) + (1 - 0(X8+ U,y €
X))-X;®. The agent incurs a cost C; = 2. If the agent stops,
ie., Uy = ¢, they incur a terminal cost 10-n(X%, X7¥) for
the L1 distance from the target. We illustrate this pursuit
problem in Fig. 1(a), where the black cells are obstacles, the
red triangle is the agent, the blue circle is the observation,
and the blue disk is the target.

012 3 4

ag ~
-G y * ﬂ e
- t —
- s K@
- -1 H ﬂ 2y
<« DQL  U;

(a) The grid (b) Encoder-decoder architecture

Fig. 1. The pursuit problem with zi® = (0,1), =& = (4,3) and yo =
(4,2) is in (a). The neural network architecture for the AIS is in (b).

We consider the pursuit problem when the agent is aware
of their own dynamics but unaware of the observation
model and target’s dynamics. Thus, we train an approximate
information state (ALS) model to learn a representation of the
target’s dynamics using observations, actions, and incurred
costs to enforce (19) and (20). The AIS is generated by a
neural network in an encoder-decoder architecture, as shown
in Fig. 1(b). At each t € N, the encoder 1) receives as
an input the observation Y; and previous AIS S,_1 and
generates S;. It consists of a linear layer of size (2,4)
with ReLU activation, followed by a gated recurrent unit
(GRU) with a hidden state size of 4. The hidden state
of the GRU constitutes the AIS S, updated recurrently as
S, = w(é’t_l, Y;), thus enforcing (19). Note that our AIS is
independent of the agent’s position and action because the
target moves independently from the agent. The decoder is
comprised of two separate units, each of which is selected
according to the action U;. If U; = &, we use the network
¢° which takes as an input the agent’s position X;® and the
AIS S, and generates a set of possible terminal costs Ke :=
[[Cy| X2, S,]]. This network comprises of two linear layers
with dimensions (6,16) and (16,9), where the first layer
has ReLLU activation and the second has sigmoid activation.
If U # & we use the network ¢¥ which takes the AIS
S, as an input and generates the conditional range Ky =
[[Yi41]S:]]. This network comprises of two linear layers with
dimensions (6,16) and (16,23), where the first layer has
ReLU activation and the second has sigmoid activation.

We train the entire model simultaneously using the outputs
of the decoder. Ateach ¢ € N, the training loss is given by the
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Hausdorff distance between the one-hot encoded incoming
data point, either C; or Y1, and the current predicted set.
Since the Hausdorff distance is not differentiable, we adapt
the distance-transform-based surrogate loss proposed in [24].
Note that we cannot observe the true underlying set and thus
train the predictions against sampled data points to eventually
learn the feasible sets. We train the network for 3 x 106
instances with a learning rate of 0.0003. In each instance,
we randomly initialize the agent and target’s positions from
the pink and blue hatched cells in Fig. 1(a) and randomize
all subsequent noises, disturbances, and actions.

Next, we utilize the trained encoder’s output AIS and
the agent’s position as a state input to a deep Q-learning
network (DQN) with two layers of (6,3) and (3,6) and a
LeakyReLU activation each. We train this AIS-DQN using
an exploratory policy for 3 x 10° instances with a learning
rate of 0.0005 using a maximally risk-averse approach from
[6] with high risk-aversion 0.9, to learn to minimize the
worst-case discounted cost with v = 0.97. We compare the
worst-case performance of the greedy strategy of the trained
AIS-DQN with the worst-case performance of a trained
stochastic-DQN, which uses the observation and position as
the state and has the same hyperparameters with no risk
aversion. In Fig. 2, we present the improvement in worst-
case cost achieved by AIS-DQN over stochastic-DQN in 10*
simulations each for different initial positions. Note that AIS-

DQN outperforms stochastic-DQN for most cases.
404

B Target at [4,4]
B Target at [3,3]
Target at [3,4]

301 Target at [4,3]
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B |
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Fig. 2. The improvement in worst-case performance using AIS-DQL over
stochastic-DQL.
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VI. CONCLUSIONS

In this paper, we provided a general notion of informa-
tion states for worst-case decision-making problems over
an infinite time horizon with observable costs. We showed
that these information states yield a time-invariant DP de-
composition to compute an optimal control strategy. Then,
we extended this notion to define approximate information
states and an approximate DP. We proved the associated
approximation bounds in worst-case performance. Finally,
we illustrated, using a numerical example, how approximate
information states can be learned using output data and used
to generate control strategies. Future work should consider
using these results in applications requiring approximately
worst-case control and worst-case reinforcement learning.
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