

Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis

Received: 11 September 2022

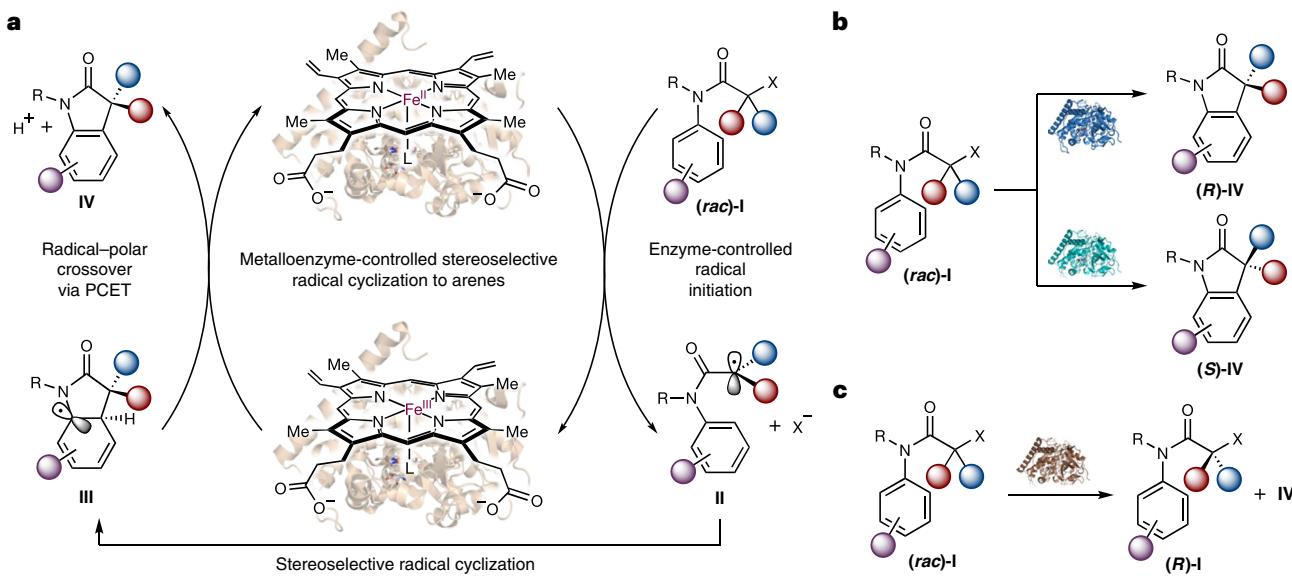
Wenzen Fu¹, Natalia M. Neris¹, Yue Fu², Yunlong Zhao¹,
Benjamin Krohn-Hansen¹, Peng Liu²✉ & Yang Yang^{1,3}✉

Accepted: 13 June 2023

Published online: 20 July 2023

 Check for updates

The effective induction of high levels of stereocontrol for free-radical-mediated transformations represents a notorious challenge in asymmetric catalysis. Herein, we describe a metalloredox biocatalysis strategy to repurpose natural cytochromes P450 to catalyse asymmetric radical cyclization to arenes through an unnatural electron transfer mechanism. Directed evolution afforded a series of engineered P450 aromatic radical cyclases with complementary selectivities: P450_{arc1} and P450_{arc2} facilitated enantioconvergent transformations of racemic substrates, giving rise to either enantiomer of the product with excellent total turnover numbers (up to 12,000). In addition to these enantioconvergent variants, another engineered radical cyclase, P450_{arc3}, permitted efficient kinetic resolution of racemic chloride substrates (*S* factor = 18). Furthermore, computational studies revealed a proton-coupled electron transfer mechanism for the radical–polar crossover step, suggesting the potential role of the haem carboxylate as a base catalyst. Collectively, the excellent tunability of this metalloenzyme family provides an exciting platform for harnessing free radical intermediates for asymmetric catalysis.


Due to their ability to exert excellent stereocontrol over challenging asymmetric transformations, enzymes are widely recognized as powerful tools to streamline the synthesis of chiral molecular scaffolds^{1–4}. Until fairly recently, only a small set of biochemistries from nature's catalytic repertoire has been exploited to facilitate the synthesis and manufacturing of a relatively narrow range of value-added compounds. Unfortunately, the vast majority of privileged synthetic transformations, particularly those allowing for stereoselective C–C bond formation, are not present in the state-of-the-art biocatalytic toolbox⁵. Thus, to further advance the field of biocatalysis to the next level of sophistication and applicability, it is imperative to devise and optimize synthetically useful enzyme functions that are not presently known in the biological world^{6–10}.

Advances from mechanistic enzymology and structural biology have furnished invaluable insights into the molecular mechanism

and structural basis of enzymatic machineries. Over the past decade, by cross-fertilizing the fields of synthetic chemistry and enzymology, biocatalysis researchers initiated a campaign to repurpose and evolve natural enzymes to catalyse unnatural reactions by leveraging the synthetic versatility of common cofactors illuminated by organic and organometallic chemists^{8–10}. In nature, radical enzymes^{11,12} such as radical S-Adenosyl methionine enzymes¹² facilitate challenging free radical transformations. However, despite their excellent selectivity and intriguing mechanism, these natural radical enzymes are not yet widely applied in synthetic chemistry and biotechnology. Very recently, new concepts and strategies in the emerging area of unnatural radical biocatalysis have led to several distinct activation modes to enable stereoselective transformations of open-shell intermediates^{10,13,14}. Utilizing the strongly reducing excited-state flavin and nicotinamide

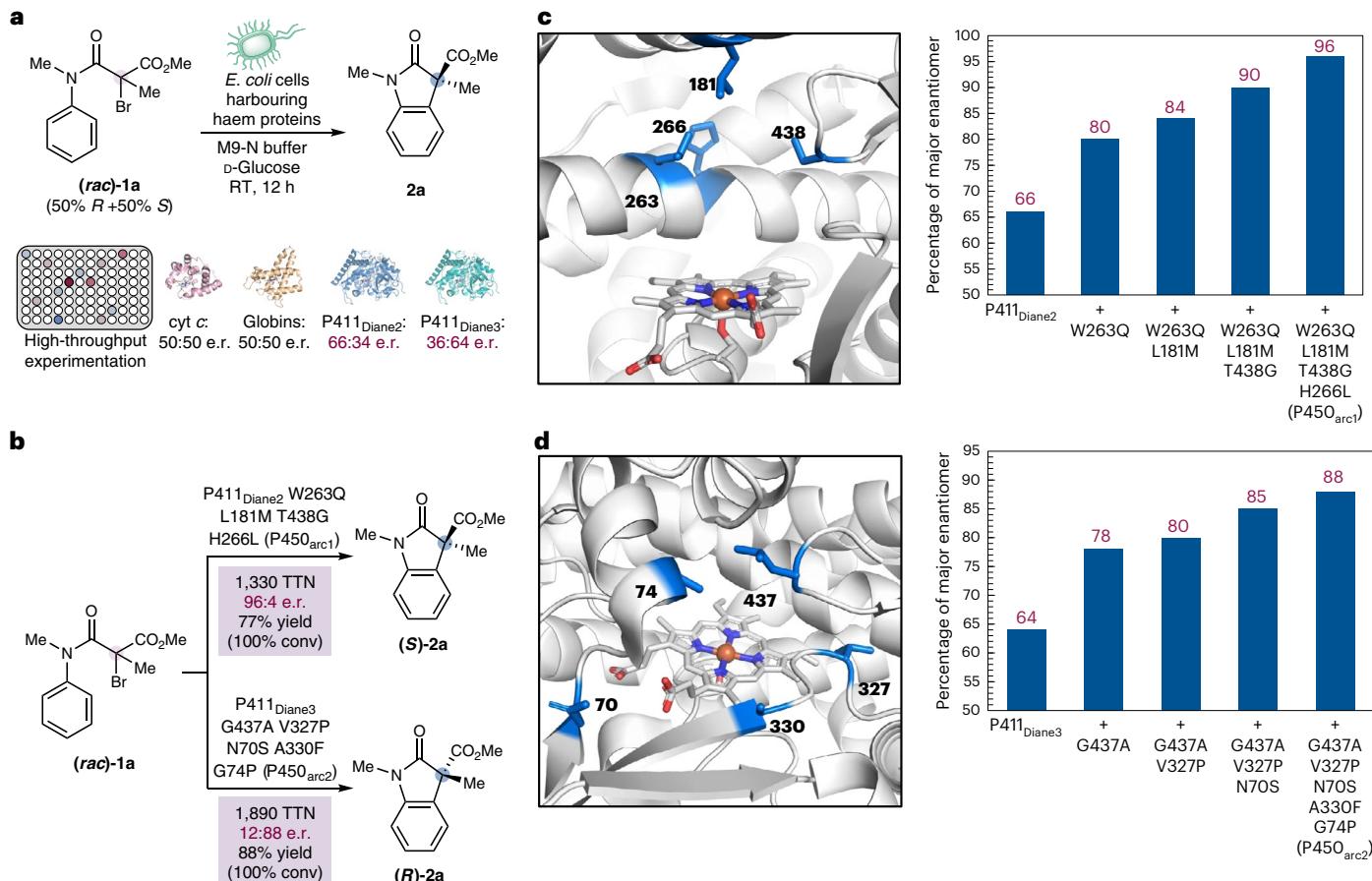
¹Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA. ²Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA. ³Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA, USA.

✉e-mail: pengliu@pitt.edu; yang@chem.ucsb.edu

Fig. 1 | A metalloenzyme platform for stereoselective radical cyclization. **a**, Proposed catalytic cycle with a haemoprotein catalyst. **b**, Biocatalytic enantioconvergent radical cyclization leading to either enantiomer of the products. **c**, Biocatalytic kinetic resolution to prepare enantioenriched tertiary

alkyl halides. L is an Fe-binding amino acid residue, which is serine in this work. X is either Br or Cl. PCET, proton-coupled electron transfer. Coloured spheres are generic substituents of the molecule.

cofactors^{13–22}, an elegant photoenzymatic strategy for asymmetric radical reactions was developed. In 2021 and 2022, by capitalizing on the innate redox activity of first-row transition-metal cofactors in common metalloproteins, haem^{23,24} and non-haem²⁵ Fe enzymes were used via a metalloredox strategy to catalyse stereoselective atom-transfer radical reactions. Collectively, these emerging new-to-nature activation modes provide an exciting opportunity to evolve enzymes capable of imposing excellent stereocontrol over fleeting free radical intermediates, an objective that has long eluded small-molecule catalysis because of the inherent difficulties to induce asymmetry with free radical chemistry^{26–28}.


To further develop and generalize the concept of metalloredox radical biocatalysis, we sought to develop a metalloenzyme-catalysed stereoselective addition of carbon-centred radicals to aromatic systems using easily available racemic α -halocarbonyls as substrates (Fig. 1a). In this proposed catalytic cycle (Fig. 1a), the ferrous haem protein catalyst first reacts with the alkyl halide substrate I to furnish a highly reactive radical species II via single-electron transfer (SET). This incipient radical II subsequently adds to the aromatic ring, leading to a dearomatized radical intermediate III. Finally, the radical-polar crossover of III with the ferric haem protein furnishes the final product, regenerates the ferrous protein catalyst and completes the catalytic cycle. In this process, if the haem protein readily accommodates and transforms both enantiomeric forms of the organic halide substrate to the same radical intermediate, it would allow us to develop an enantioconvergent protocol³⁰ to convert racemic building blocks into enantioenriched products bearing a challenging quaternary stereocentre (Fig. 1b). Alternatively, if the haem protein catalyst effectively distinguishes the two enantiomers of the substrate and selectively converts one enantiomer, we would be able to develop a biocatalytic kinetic resolution^{31,32} to prepare enantioenriched acyclic tertiary alkyl halides, whose enantioselective synthesis remain non-trivial (Fig. 1c)³³. In asymmetric catalysis, engineering a set of structurally related yet functionally orthogonal catalysts to enable highly selective enantioconvergent transformation and kinetic resolution of the same racemic substrates remains a formidable task for both biocatalysts and small-molecule catalysts³⁰. In light of the promiscuous nature of haem enzymes^{34,35} as well as their ability to facilitate unnatural reactions as elegantly

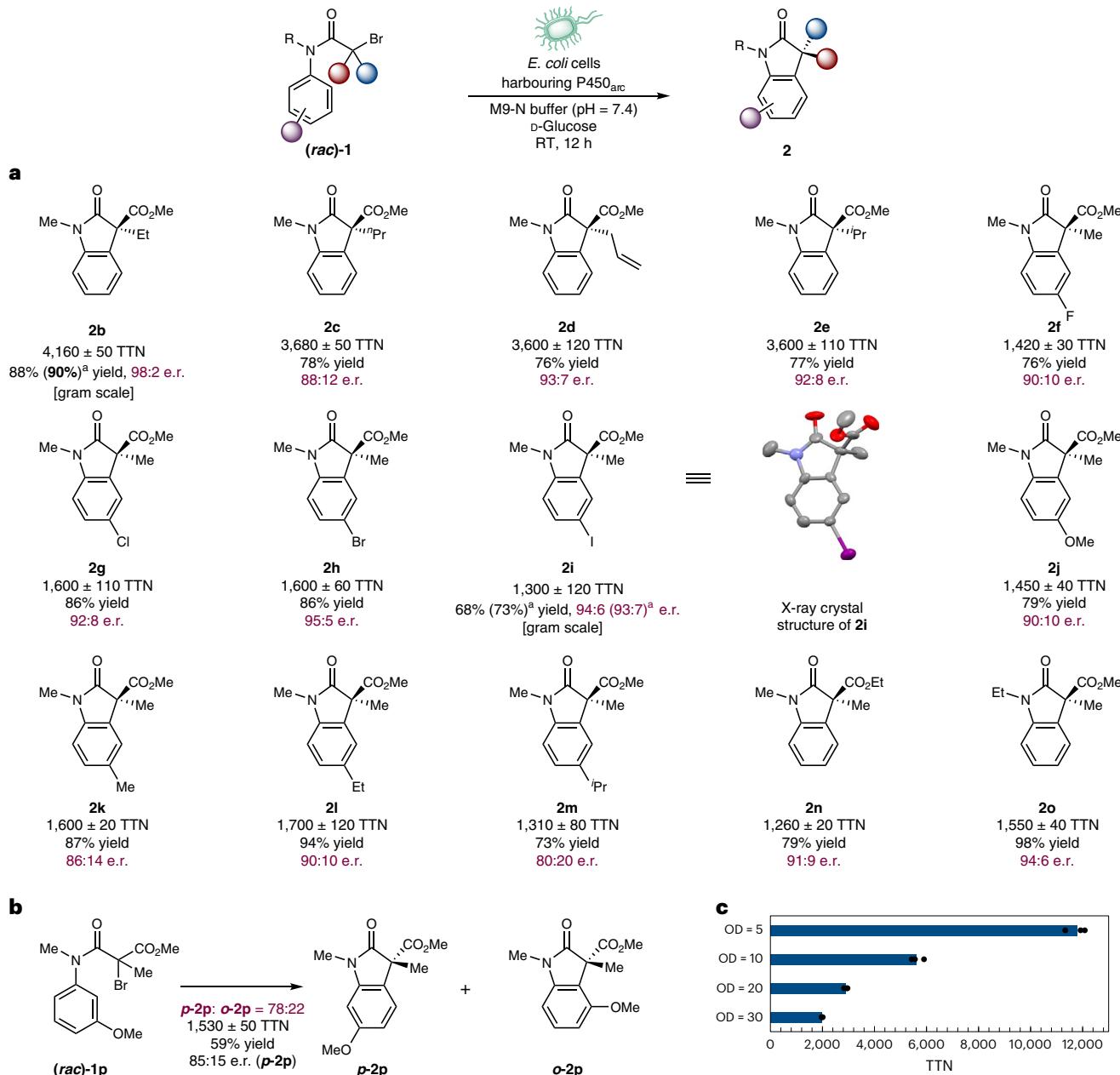
demonstrated previously^{36,37}, we postulated that haem-dependent radical cyclases could be evolved as a unifying platform to realize all these stereoselective processes as outlined in Fig. 1b,c.

Results and discussion

Discovery and directed evolution of radical cyclases P450_{arc1-2}
Using α -bromo- β -amidoester 1 as the model substrate, we commenced our investigation by evaluating a panel of haem proteins and their variants, including cytochromes P450, globins and cytochromes c as well as our recently evolved radical cyclase mutants²³, using intact *Escherichia coli* cells as biocatalysts (Fig. 2a). We focused our initial efforts on the asymmetric synthesis of 3,3-disubstituted oxindoles, in part due to the prevalence of these structural elements in bioactive natural products and medicinal agents³⁸. Among all the haem proteins we tested, although many displayed encouraging initial activities, only a handful of variants from the cytochrome P450 superfamily showed moderate levels of enantioselectivity (Supplementary Table 1). In particular, P411_{Diane2} and P411_{Diane3}, a set of closely related variants of serine-ligated CYP102A1 (ref. 39) (P450 from *Bacillus megaterium*) lacking the flavin adenine dinucleotide domain, which we previously engineered for enantioselective C–H amination^{40,41}, exhibited good activities with opposite enantiopreferences (P411_{Diane2}: 58% yield, (S)-2a:(R)-2a = 66:34; P411_{Diane3}: 62% yield, (S)-2a:(R)-2a = 36:64).

With P411_{Diane2} and P411_{Diane3} as initial hits for this novel enzyme function, we set out to engineer a set of enantiocomplementary radical cyclases for the catalytic asymmetric synthesis of 3,3-disubstituted oxindoles (Fig. 2b–d). To further improve the enantioselectivity of P411_{Diane2} in this unnatural radical cyclization, by targeting amino acid residues in proximity to the haem cofactor, iterative rounds of site-saturation mutagenesis (SSM)⁴² and screening were carried out. In each round of engineering, four active-site residues were randomized in parallel to provide a total of four single-site-saturation libraries. The selection of target residues for SSM was guided by our molecular docking studies (Supplementary Information). For each SSM library, 90 clones were screened in a 96-well plate. After four rounds of directed evolution of P411_{Diane2}, beneficial mutations W263Q, L181M, T438G and H266L were identified, furnishing P450_{arc1} (Fig. 2c; arc, aromatic radical cyclase). Based on our quantum mechanics/

Fig. 2 | Discovery and engineering of enantioconvergent P450 radical cyclases. a, Evaluation of haem protein catalysts for enantioconvergent radical cyclization. **b**, Evolved final variants P450_{arc1} and P450_{arc2} as orthogonal biocatalysts for enantioconvergent radical cyclization. **c**, Directed evolution of

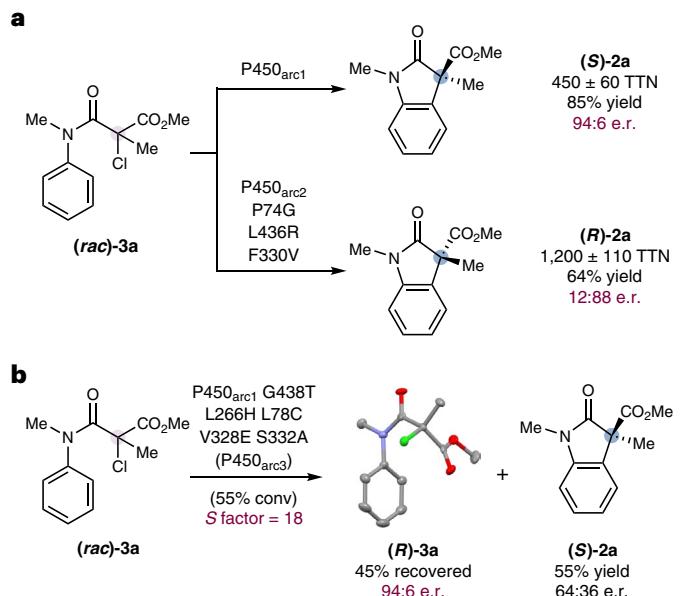

P450_{arc1}. **d**, Directed evolution of P450_{arc2}. Both active site illustrations were made on the basis of the crystal structure of a closely related P450 variant (Protein Data Bank ID: SUCW).

molecular mechanics investigation²⁴, the newly introduced glutamine at residue 263 likely engages the carbonyl group of the amide substrate through hydrogen bonding, thus facilitating substrate activation and enhancing enantiocontrol²⁴. Under standard conditions, final variant P450_{arc1} afforded the radical cyclization product (S)-2a in 77% ± 3% yield, 1,330 ± 50 total turnover number (TTN) and 96:4 e.r., as determined by chiral high-performance liquid chromatography analysis (Fig. 2b). Similarly, the enantioselectivity of P411_{Diane3} could also be optimized through directed evolution. Accumulating five beneficial mutations G437A, V327P, N70S, A330F and G74P, P450_{arc2} was developed to provide (R)-2a in 88% ± 1% yield, 1,890 ± 30 TTN and 12:88 e.r. (Fig. 2d). We note that when previously developed photoenzymatic conditions were applied, substrates bearing a small α -substituent such as **1a** provided modest enantioselectivities (78:22 e.r.) favouring the (S)-enantiomer¹⁸. Thus, the rapid engineering of enantiodivergent radical metalloenzymes P450_{arc1} and P450_{arc2} to access both the (R)-enantiomer and the (S)-enantiomer demonstrated the power of this adaptive metalloenzyme platform to solve difficult problems in asymmetric catalysis. Additionally, steady-state kinetic studies showed that our evolved enzyme P450_{arc1} exhibited a k_{cat} of 0.54 ± 0.03 s⁻¹, which represented a 15-fold improvement relative to its parent P411_{Diane2} ($k_{\text{cat}} = 0.036 \pm 0.004$ s⁻¹). The K_{M} of P450_{arc1} was found to be similar to that of the parent enzyme (Supplementary Table 10). The k_{cat} of P450_{arc1} is similar to that of previously engineered new-to-nature radical C–H azidases²⁵. Although these unnatural radical enzymes have not yet reached the catalytic efficiency of natural systems, further directed

evolution may lead to enhanced enzyme kinetics for unnatural metalloredox radical biocatalysis.

Substrate scope of evolved P450 radical cyclases

Using whole *E. coli* cells harbouring newly evolved P450 radical cyclases, we next examined the substrate scope of this enantioconvergent radical C–C bond formation (Fig. 3a). Radical precursors with various α -substituents, including a methyl (**2a**), an ethyl (**2b**), a propyl (**2c**), an allyl (**2d**) and an isopropyl (**2e**), were all transformed with excellent enantioselectivities under these biocatalytic conditions, showcasing the versatility of engineered biocatalysts. Moreover, aromatic rings bearing a diverse range of *para*-substituents, including a fluorine (**2f**), a chlorine (**2g**), a bromine (**2h**), an iodine (**2i**), a methoxy (**2j**), a methyl (**2k**), an ethyl (**2l**) and an isopropyl (**2m**), all underwent radical cyclization with excellent TTNs and enantioselectivities. In addition to methyl esters (**2a**–**2m**), ethyl esters (**2n**) were also excellent substrates. Additionally, the *N*-ethyl substrate **1o** could also be successfully converted into the corresponding enantioenriched product **2o**. The absolute stereochemistry of **2i** was determined by single-crystal X-ray diffraction analysis. Notably, gram-scale biotransformations could be conveniently carried out with slightly improved yield and identical enantioselectivity (**2b** and **2i**), further demonstrating the synthetic utility of these newly evolved enzymes. Furthermore, by lowering the cell density of these whole-cell biotransformations ($\text{OD}_{600} = 30, 20, 10$ and 5), evolved enzymes were able to provide the C–C bond formation product **2b**


Fig. 3 | Substrate scope of P450_{arc}-catalysed enantioconvergent radical cyclization. a, Substrate scope of α -bromoesters ($\text{OD}_{600} = 15\text{--}35$ unless otherwise noted; Supplementary Methods). All the reactions were performed in triplicate

and averaged results and standard deviations are provided. **b**, Biocatalytic site-selective radical cyclization of *meta*-substituted substrate **1p**. **c**, Whole-cell radical cyclization of **1b** with high TTNs. ^aGram-scale reaction.

with up to $12,000 \pm 300$ TTN (Fig. 3c) without lowering the yield and enantioselectivity (88% yield, 98:2 e.r.).

When *meta*-substituted arene **1p** was applied, without further engineering, P450_{arc2} overrode inherent substrate selectivity to furnish **para-2p** as the major product in 78:22 regioisomeric ratio, $1,530 \pm 50$ TTN and 85:15 e.r. This result highlighted the potential of metalloenzymes to exert regiocontrol over free-radical-mediated transformations. By contrast, previously developed radical cyclization using photoredox and small-molecule Cu catalysts furnished racemic oxindole **2p** as a mixture of *para*- and *ortho*-product in an approximately 1:1 ratio, slightly favouring **ortho-2p** (with photoredox catalyst Ir(ppy)₃: **p-2p:o-2p = 44:56**; with Cu(tris(2-pyridyl)methylamine)Br: **p-2p:o-2p = 39:61**; Supplementary Methods). The non-selective nature of these reactions underscored the challenge of imposing regiocontrol over radical cyclization using conventional approaches.

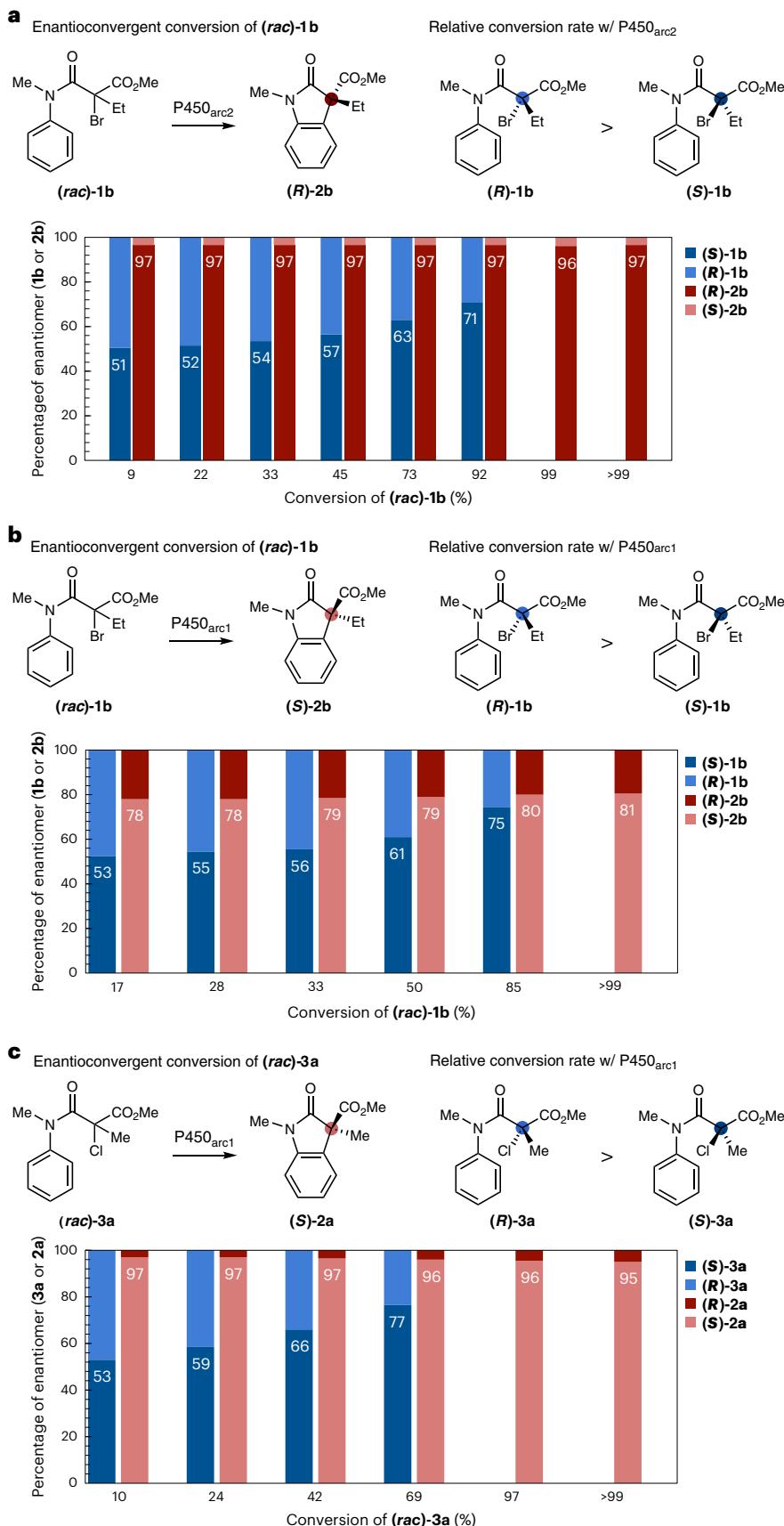
Next, we sought to generalize this metalloenzymatic radical process to the conversion of *meta*-chloro substrates. Gratifyingly, it was found that P450_{arc1} and P450_{arc2}-P74G-L436R-F330V allowed the enantioconvergent conversion of chloride **3a** with orthogonal enantiopreferences (Fig. 4a). Under optimized reaction conditions ($\text{OD}_{600} = 120$), P450_{arc1} gave rise to (**S**)-**2a** in 85% yield, 450 ± 60 TTN and 94:6 e.r. Under similar conditions with a lower cell density ($\text{OD}_{600} = 30$), the enantiocomplementary variant P450_{arc2}-P74G-L436R-F330V furnished (**R**)-**2a** in 64% yield, $1,200 \pm 110$ TTN and 12:88 e.r. (Fig. 4a). Furthermore, another enzyme variant from this evolutionary lineage, P450_{arc3} (P450_{arc1}-G438T-L266H-L78C-V328E-S332A), was found to promote effective kinetic resolution of **3a** (Fig. 4b). With P450_{arc3}, at a conversion of 55%, (**R**)-**3a** was recovered in 94:6 e.r. This corresponds to an *S* factor of 18 ($S = \log[(1 - c)(1 - \text{e.e.})]/\log[(1 - c)(1 + \text{e.e.})]$), where *c* is conversion and *e.e.* is enantiomeric excess, *e.e. = $([R] - [S])/([R] + [S])$*), indicating

Fig. 4 | P450_{arc}-catalysed stereoselective transformations of α -chloro substrate 3a. a, P450_{arc1} and P450_{arc2}-P74G-L436R-F330V-catalysed enantioconvergent transformation of 3a with complementary enantiopreferences. **b**, P450_{arc3}-catalysed radical kinetic resolution of 3a. All the reactions were performed in triplicate and averaged results and standard deviation are provided.

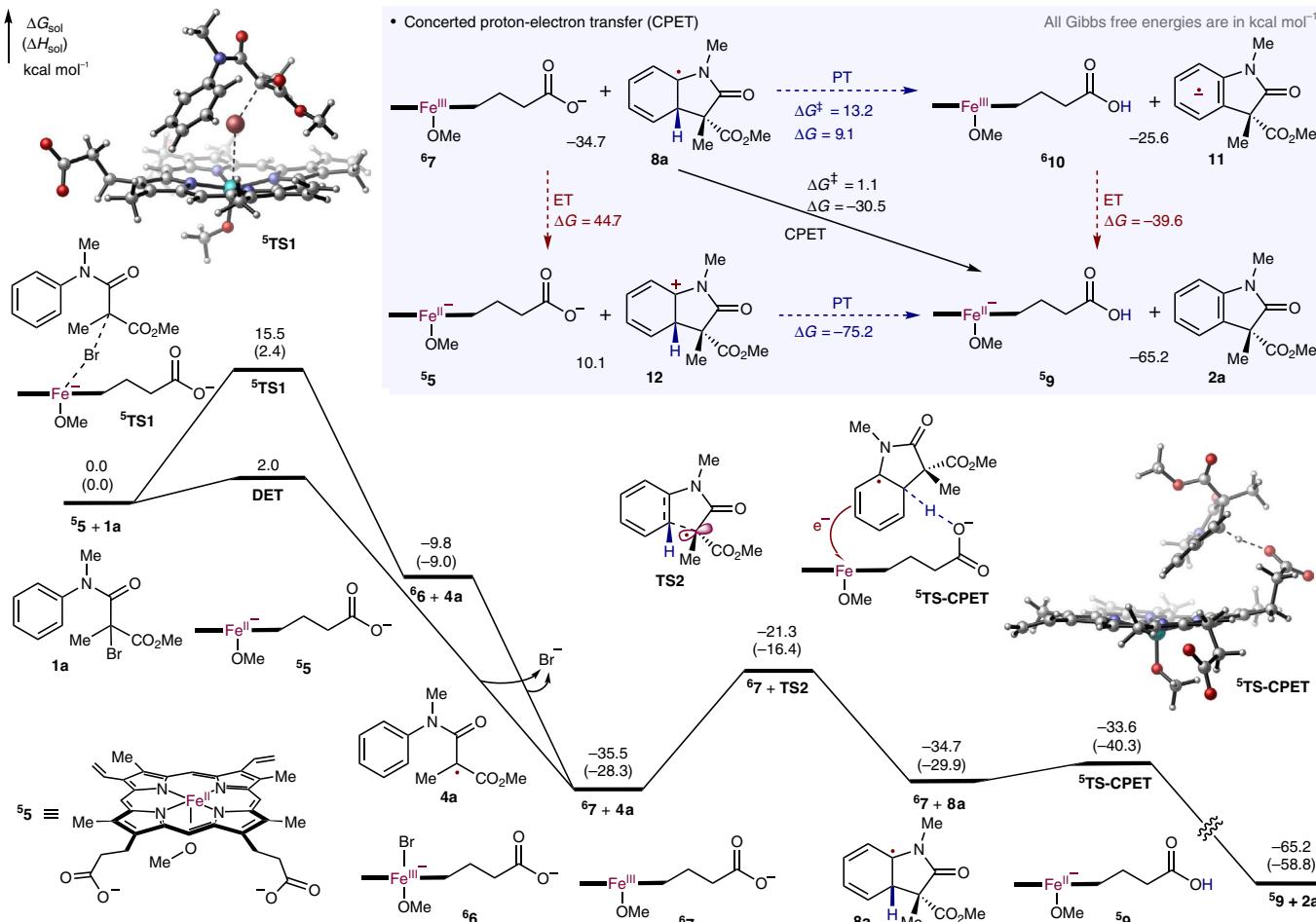
excellent enantiodiscrimination by this kinetic resolution enzyme. Additionally, P450_{arc3} furnished cyclization product 2a in 55% yield and 64:36 e.r. Additionally, it was found that (S)-3a, the enantiomer undergoing faster radical cyclization with P450_{arc3}, exhibited the same stereochemistry at the α -position as the major enantiomeric product (S)-2a (Fig. 4b). Together, these results demonstrated the highly malleable nature of this metalloenzyme platform to affect both enantioconvergent radical cyclization and kinetic resolution with evolutionarily related mutants.

Mechanistic and computational studies

Enzymes capable of accommodating and transforming both enantiomers of a racemic substrate that are configurationally stable into the same major enantiomeric product are rare in natural biosynthetic machineries, despite a handful of recently developed new-to-nature biocatalytic enantioconvergent transformations^{15,16,18,40}. To date, detailed enantioconvergent mechanisms of these unnatural biocatalytic processes remain poorly understood. With a panel of highly efficient P450_{arc} enzymes permitting the enantioconvergent transformation of both α -bromo and α -chloro substrates, we studied the evolution of the e.r. of formed products and recovered substrates as a function of substrate conversion (Fig. 5).


First, when the α -bromo substrate 1b was used, with P450_{arc2} as the biocatalyst (Fig. 5a), the e.r. of product 2b remained constant (97:3) throughout the course of the reaction, with (R)-2b as the major enantiomeric product. During this enantioconvergent transformation, as the reaction proceeded, gradual enrichment of (S)-1b in recovered 1b was observed, showcasing kinetic resolution. With P450_{arc2}, this kinetic resolution occurred with low levels of enantiodiscrimination, as evidenced by a small S factor of 1.4 ± 0.1. Thus, although (R)-1b underwent faster conversion relative to its enantiomer (S)-1b, product 2b derived from (R)-1b and (S)-1b exhibited identical e.r.

Second, when P450_{arc1} was applied to transform 1b (Fig. 5b), although the product enantiopreference was reversed to favour (S)-2b, the same (R)-enantiomer of 1b still underwent faster conversion, similar to that with P450_{arc2}. Furthermore, as the reaction proceeded


to higher conversions, the e.r. of product 2b increased, indicating that the slow-reacting enantiomer (S)-1b was converted to 2b with a slightly higher e.r. Similar to P450_{arc2}, P450_{arc1} also displayed a low kinetic-resolution selectivity toward the substrate (S factor = 1.8 ± 0.1).

Third, starting from the α -chloro substrate 3a, P450_{arc1} furnished the same major enantiomeric product (R)-2a as that from the bromo substrate 1a (Fig. 5c). Kinetic resolution of the substrate was also observed (S factor = 3.4 ± 0.5), with (R)-3a being transformed faster than (S)-3a. Using the same biocatalyst P450_{arc1}, the (R)-enantiomer of both the chloro (3a) and the bromo (1a) substrate underwent faster transformation. Interestingly, as the reaction proceeded, a slight decrease in the e.r. of 2a was observed, suggesting that the slow-reacting (S)-3a furnished 2a with a lower enantioselectivity. This trend is contrary to that of the bromo substrate 1b with the same enzyme variant (vide supra). Together, these experiments demonstrate that for all these newly evolved enantioconvergent biocatalysts, kinetic resolution of the substrate occurs with modest selectivities, despite the ability of these biocatalysts to fully transform the racemic substrate with excellent product enantioselectivities. Furthermore, all three possible product e.r. evolution patterns, including constant e.r. (Fig. 5a), slowly increasing e.r. (Fig. 5b) and slowly decreasing e.r. (Fig. 5c), were uncovered in this study, revealing subtle differences in enzymatic stereocontrol over enantioconvergent radical cyclization.

To provide further insights into the reaction mechanism, we performed density functional theory (DFT) calculations using a model Fe porphyrin system, which has been used in our previous computational studies (Fig. 6)^{23,24,40,41}. DFT calculations showed that the Fe porphyrin catalyst remains at high spin throughout the catalytic cycle^{23,24}. Due to the relatively weak C-Br bond in α -bromo- β -amidoester 1a (bond-dissociation enthalpy = 47.6 kcal mol⁻¹), the Fe-catalysed radical initiation to afford an α -carbonyl radical 4a is highly exergonic ($\Delta G = -35.5$ kcal mol⁻¹). With this model system bearing an anionic methoxide axial ligand, the radical initiation step prefers an outer-sphere dissociative electron transfer mechanism ($\Delta G^\ddagger = 2.0$ kcal mol⁻¹) over the inner-sphere electron transfer pathway (TS1 in Fig. 6, $\Delta G^\ddagger = 15.5$ kcal mol⁻¹). The subsequent radical cyclization to the pendant aromatic ring has an activation barrier (ΔG^\ddagger) of 14.2 kcal mol⁻¹, indicating a sufficient lifetime for the enantioconvergent conversion of racemic starting materials via the conformational change and C-C bond rotation of radical 4a. For the radical-polar crossover step, several proton/electron transfer pathways from the dearomatized radical intermediate 8a to the oxindole product 2a were considered. The most favourable mechanism features a concerted proton-electron transfer (CPET)⁴³, as previously studied in a related haem system⁴⁴, where electron transfer from 8a to the haem Fe and proton transfer from 8a to the haem propionate occur in a concerted manner. This CPET pathway displays a low free-energy barrier of 1.1 kcal mol⁻¹. Stepwise proton transfer-electron transfer and electron transfer-proton transfer processes are kinetically less favourable, because of the higher barriers to form the relatively unstable intermediates 11 and 12, respectively. This finding indicates that the carboxylate group of the haem cofactor may serve as a base catalyst to facilitate the radical-polar crossover event, demonstrating the potential role of the haem cofactor as a bifunctional catalyst to greatly lower the activation barrier of radical-polar crossover. Although other basic residues in the enzyme active site may serve as the base catalyst, these DFT calculations suggest that this CPET process is more favourable, as it bypasses the formation of high-energy intermediates resulting from stepwise electron or proton transfer. Additionally, as this CPET enables a fast and irreversible process to trap the cyclized radical intermediate 8a, radical cyclization (TS2 in Fig. 6) is expected to be the enantioselectivity-determining step with the enzyme catalyst. This mechanistic scenario is consistent with kinetic isotope effect experiments that suggest irreversible radical cyclization because of the kinetically facile trapping of 8a (see Supplementary Fig. 7).

Fig. 5 | Time course of P450_{arc}-catalysed enantioconvergent radical cyclization processes. a, P450_{arc2}-catalysed enantioconvergent radical cyclization of **(rac)-1b**. **b**, P450_{arc1}-catalysed enantioconvergent radical cyclization of **(rac)-1b**. **c**, P450_{arc1}-catalysed enantioconvergent radical cyclization of **(rac)-3a**.

Fig. 6 | Reaction energy profile of biocatalytic radical cyclization to arenes using a model system for serine-ligated P450_{arc}. Density functional theory calculations were carried out at the (U)B3LYP-D3/6-311+G(d,p)-LANL2TZ(f)/SMD(chlorobenzene)//(U)B3LYP-D3/6-31G(d)-LANL2DZ level of theory. PT, proton transfer; ET, electron transfer.

Conclusion

We have developed a unifying metalloenzyme platform for the asymmetric radical cyclization to arenes, allowing challenging quaternary stereogenic centres to be formed with excellent enantioselectivities. Directed evolution enabled the rapid engineering of an orthogonal set of P450 radical cyclases P450_{arc1-2}, allowing either enantiomeric product to be accessed via enantioconvergent radical cyclization. Furthermore, kinetic resolution biocatalyst P450_{arc3} was also developed, giving rise to enantioenriched tertiary alkyl chlorides. Thus, closely related biocatalysts were engineered to catalyse both enantioconvergent transformation and kinetic resolution of the same racemic substrates via a common radical mechanism. DFT calculations suggest that the radical–polar crossover event with ferric haem is facilitated by proton-coupled electron transfer and the C–C bond-forming radical addition determines the stereoselectivity of enantioconvergent processes. Collectively, the promiscuous nature and the excellent tunability of this metalloenzyme platform highlight its potential to tackle challenging problems in asymmetric radical transformations via unnatural biocatalysis.

Methods

Expression of P450_{arc} variants

E. coli (*E. coli* BL21(DE3)) cells carrying plasmid encoding the appropriate P450_{arc} variant were grown overnight in 3 ml of Luria-Bertani medium with 0.1 mg/mL ampicillin (LB_{amp}). Preculture (1.5 ml) was used to inoculate 28.5 ml of Hyperbroth (AthenaES) with 0.1 mg/mL

ampicillin (HB_{amp}) in an Erlenmeyer flask (125 mL). This culture was incubated at 37 °C and 230 r.p.m. for 2 h. It was then cooled on ice for 20 min and induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was conducted at 22 °C and 150 r.p.m. for 20 h. *E. coli* cells were then transferred to a conical tube (50 ml) and pelleted by centrifugation (3,000g, 5 min, 4 °C). Supernatant was removed and the resulting cell pellet was resuspended in M9-N buffer to OD₆₀₀ = 5–60 (usually 15–30). An aliquot of this cell suspension (2 ml) was taken to determine protein concentration using the pridine hemochromagen assay after lysis by sonication.

Stereoselective radical cyclization using whole *E. coli* cells harbouring P450_{arc}

Suspensions of *E. coli* (*E. coli* BL21(DE3)) cells expressing the appropriate P450_{arc} variant in M9-N buffer (typically OD₆₀₀ = 30) were kept on ice. In another conical tube, a solution of D-glucose (500 mM in M9-N) was prepared. The suspension of *E. coli* cells expressing P450_{arc} (typically OD₆₀₀ = 30, 345 µl) and the solution of D-glucose (40 µl of 500 mM stock solution in M9-N buffer) were added to a vial (2 ml). This vial was then transferred into an anaerobic chamber, where the organic substrate (15 µl of stock solution (267 mM in EtOH)) was added. The final reaction volume was 400 µl; the final concentrations were 10 mM substrate and 50 mM D-glucose. (Note: the reaction performed with *E. coli* cells resuspended to OD₆₀₀ = 30 indicates that 345 µl of OD₆₀₀ = 30 cells were added, and likewise for other reaction OD₆₀₀ descriptions.) The vials

were sealed and agitated in a Corning digital microplate shaker at room temperature and 680 r.p.m. for 12 h.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

All data are available in the main text and the Supplementary Information or available from the authors upon reasonable request. X-ray crystal structures of **2i** and (**R**)-**3a** are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC 2184585 and 2184586. Plasmids encoding P450_{arcs} reported in this study are available for research purposes from Y.Y. under a material transfer agreement with the University of California Santa Barbara.

References

1. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. *Nature* **485**, 185–194 (2012).
2. Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. *Angew. Chem. Int. Ed.* **50**, 138–174 (2011).
3. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. *Nat. Rev. Chem.* **2**, 409–421 (2018).
4. Zetzsche, L. E., Chakrabarty, S. & Narayan, A. R. H. The transformative power of biocatalysis in convergent synthesis. *J. Am. Chem. Soc.* **144**, 5214–5225 (2022).
5. Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. *Nat. Rev. Chem.* **4**, 334–346 (2020).
6. Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. *Angew. Chem. Int. Ed.* **54**, 3351–3367 (2015).
7. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. *Nat. Rev. Chem.* **3**, 687–705 (2019).
8. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. *Nat. Catal.* **3**, 203–213 (2020).
9. Miller, D. C., Athavale, S. V. & Arnold, F. H. Combining chemistry and protein engineering for new-to-nature biocatalysis. *Nat. Synth.* **1**, 18–23 (2022).
10. Klaus, C. & Hammer, S. C. New catalytic reactions by enzyme engineering. *Trends Chem.* **4**, 363–366 (2022).
11. Jäger, C. M. & Croft, A. K. Anaerobic radical enzymes for biotechnology. *ChemBioEng Rev.* **5**, 143–162 (2018).
12. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. *Chem. Rev.* **114**, 4229–4317 (2014).
13. Sandoval, B. A. & Hyster, T. K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. *Curr. Opin. Chem. Biol.* **55**, 45–51 (2020).
14. Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. *Acc. Chem. Res.* **55**, 1087–1096 (2022).
15. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. *Nature* **540**, 414–417 (2016).
16. Sandoval, B. A., Meichan, A. J. & Hyster, T. K. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent 'ene'-reductases. *J. Am. Chem. Soc.* **139**, 11313–11316 (2017).
17. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. *Science* **364**, 1166 (2019).
18. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent 'ene'-reductases. *Nat. Chem.* **12**, 71–75 (2020).
19. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. *J. Am. Chem. Soc.* **143**, 97–102 (2021).
20. Fu, H. et al. An asymmetric sp^3 – sp^3 cross-electrophile coupling using 'ene'-reductases. *Nature* **610**, 302–307 (2022).
21. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. *Nature* **584**, 69–74 (2020).
22. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. *Nat. Catal.* **5**, 586–593 (2022).
23. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. *Science* **374**, 1612–1616 (2021).
24. Fu, Y. et al. Engineered P450 atom-transfer radical cyclases are bifunctional biocatalysts: reaction mechanism and origin of enantioselectivity. *J. Am. Chem. Soc.* **144**, 13344–13355 (2022).
25. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp^3)–H azidation. *Science* **376**, 869–874 (2022).
26. Proctor, R. S. J., Colgan, A. C. & Phipps, R. J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. *Nat. Chem.* **12**, 990–1004 (2020).
27. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. *Chem. Rev.* **122**, 5842–5976 (2022).
28. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. *Chem. Rev.* **103**, 3263–3296 (2003).
29. Clark, A. J. Copper catalyzed atom transfer radical cyclization reactions. *Eur. J. Org. Chem.* **2016**, 2231–2243 (2016).
30. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. *Chem. Rev.* **117**, 4528–4561 (2017).
31. Keith, J. M., Larwo, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. *Adv. Synth. Catal.* **343**, 5–26 (2001).
32. Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. *Angew. Chem. Int. Ed.* **44**, 3974–4001 (2005).
33. Zheng, Y., Zhang, S., Low, K.-H., Zi, W. & Huang, Z. A unified and desymmetric approach to chiral tertiary alkyl halides. *J. Am. Chem. Soc.* **144**, 1951–1961 (2022).
34. Poulos, T. L. Heme enzyme structure and function. *Chem. Rev.* **114**, 3919–3962 (2014).
35. Phillips, I. R., Shephard, E. A. & Ortiz de Montellano, P. R. *Cytochrome P450 Protocols* (Humana, 2013).
36. Brandenberger, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. *Curr. Opin. Biotechnol.* **47**, 102–111 (2017).
37. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. *Acc. Chem. Res.* **54**, 1209–1225 (2021).
38. Zhou, F., Liu, Y.-L. & Zhou, J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. *Adv. Synth. Catal.* **352**, 1381–1407 (2010).
39. Whitehouse, C. J. C., Bell, S. G. & Wong, L.-L. P450BM3 (CYP102A1): connecting the dots. *Chem. Soc. Rev.* **41**, 1218–1260 (2012).
40. Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp^3)–H bonds. *Nat. Chem.* **11**, 987–993 (2019).

41. Mai, B. K., Neris, N. M., Yang, Y. & Liu, P. C–N bond forming radical rebound is the enantioselectivity-determining step in P411-catalyzed enantioselective C(sp³)-H amination: a combined computational and experimental investigation. *J. Am. Chem. Soc.* **144**, 11215–11225 (2022).
42. Acevedo-Rocha, C. G., Hoebenreich, S. & Reetz, M. T. In *Directed Evolution Library Creation: Methods and Protocols* (eds. Gillam, E. M. J. et al.) 103–128 (Springer, 2014).
43. Weinberg, D. R. et al. Proton-coupled electron transfer. *Chem. Rev.* **112**, 4016–4093 (2012).
44. Warren, J. J. & Mayer, J. M. Proton-coupled electron transfer reactions at a heme-propionate in an iron-protoporphyrin-IX model compound. *J. Am. Chem. Soc.* **133**, 8544–8551 (2011).

Acknowledgements

This research is supported by the NIH (R35GM147387 to Y.Y. and R35GM128779 to P.L.) and the University of California Santa Barbara (Y.Y.). We acknowledge the BioPACIFIC MIP (NSF Materials Innovation Platform, DMR-1933487) and the NSF MRSEC Program (DMR-1720256) for access to instrumentation. DFT calculations were performed at the Center for Research Computing of the University of Pittsburgh and the Extreme Science and Engineering Discovery Environment supported by the National Science Foundation grant number ACI-1548562. Y.F. is an Andrew W. Mellon Predoctoral Fellow. We thank L. Zhang (University of California Santa Barbara) and Y. Wang (University of Pittsburgh) for critical reading of this manuscript.

Author contributions

Y.Y. conceived and directed the project. W.F., N.M.N., Y.Z. and B.K.-H. designed and performed the experiments. Y.F. carried out the computational studies with P.L. providing guidance. Y.Y., Y.F. and P.L. wrote the manuscript with the input of all other authors.

Competing interests

Y.Y., W.F., N.M.N. and Y.Z. are inventors on a patent application (US provisional patent no. 63/477,081) submitted by the University of California Santa Barbara that covers stereoselective biocatalytic radical addition to arenes. The remaining authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41929-023-00986-5>.

Correspondence and requests for materials should be addressed to Peng Liu or Yang Yang.

Peer review information *Nature Catalysis* thanks Gonzalo Jiménez-Osé and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2023

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d , Pearson's r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection

Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR state that no software was used.

Data analysis

Provide a description of all commercial, open source and custom code used to analyse the data in this study, specifying the version used OR state that no software was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our [policy](#)

Provide your data availability statement here.

Human research participants

Policy information about [studies involving human research participants and Sex and Gender in Research](#).

Reporting on sex and gender

Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this information has not been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Population characteristics

Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design questions and have nothing to add here, write "See above."

Recruitment

Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results.

Ethics oversight

Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions

Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

Replication

Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization

Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates were controlled OR if this is not relevant to your study, explain why.

Blinding

Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).

Research sample

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source.

Sampling strategy

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.

Data collection	Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
Timing	Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Non-participation	State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.
Randomization	If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.
Research sample	Describe the research sample (e.g. a group of tagged <i>Passer domesticus</i> , all <i>Stenocereus thurberi</i> within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.
Sampling strategy	Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
Data collection	Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale	Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Reproducibility	Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.
Randomization	Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.
Blinding	Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions	Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location	State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export	Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information).
Disturbance	Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
<input type="checkbox"/>	Antibodies
<input type="checkbox"/>	Eukaryotic cell lines
<input type="checkbox"/>	Palaeontology and archaeology
<input type="checkbox"/>	Animals and other organisms
<input type="checkbox"/>	Clinical data
<input type="checkbox"/>	Dual use research of concern

Methods

n/a	Involved in the study
<input type="checkbox"/>	ChIP-seq
<input type="checkbox"/>	Flow cytometry
<input type="checkbox"/>	MRI-based neuroimaging

Antibodies

Antibodies used

Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation

Describe the validation of each primary antibody for the species and application, noting any validation statements on the manufacturer's website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about [cell lines and Sex and Gender in Research](#)

Cell line source(s)

State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or vertebrate models.

Authentication

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination

Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines (See [ICLAC](#) register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, export.

Specimen deposition

Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods

If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about [studies involving animals](#); [ARRIVE guidelines](#) recommended for reporting animal research, and [Sex and Gender in Research](#)

Laboratory animals

For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals

Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals.

Reporting on sex

Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where performed, justify reasons for lack of sex-based analysis.

Field-collected samples

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about [clinical studies](#)

All manuscripts should comply with the ICMJE [guidelines for publication of clinical research](#) and a completed [CONSORT checklist](#) must be included with all submissions.

Clinical trial registration

Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol

Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection

Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes

Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about [dual use research of concern](#)

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented in the manuscript, pose a threat to:

No	Yes
<input type="checkbox"/>	<input type="checkbox"/> Public health
<input type="checkbox"/>	<input type="checkbox"/> National security
<input type="checkbox"/>	<input type="checkbox"/> Crops and/or livestock
<input type="checkbox"/>	<input type="checkbox"/> Ecosystems
<input type="checkbox"/>	<input type="checkbox"/> Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No	Yes
<input type="checkbox"/>	<input type="checkbox"/> Demonstrate how to render a vaccine ineffective
<input type="checkbox"/>	<input type="checkbox"/> Confer resistance to therapeutically useful antibiotics or antiviral agents
<input type="checkbox"/>	<input type="checkbox"/> Enhance the virulence of a pathogen or render a nonpathogen virulent
<input type="checkbox"/>	<input type="checkbox"/> Increase transmissibility of a pathogen
<input type="checkbox"/>	<input type="checkbox"/> Alter the host range of a pathogen
<input type="checkbox"/>	<input type="checkbox"/> Enable evasion of diagnostic/detection modalities
<input type="checkbox"/>	<input type="checkbox"/> Enable the weaponization of a biological agent or toxin
<input type="checkbox"/>	<input type="checkbox"/> Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition

- Confirm that both raw and final processed data have been deposited in a public database such as [GEO](#).
- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data.

Files in database submission

Provide a list of all files available in the database submission.

Genome browser session (e.g. [UCSC](#))

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates

Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.

Antibodies

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.

Peak calling parameters

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.

Data quality

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software

Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument

Identify the instrument used for data collection, specifying make and model number.

Software

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details.

Cell population abundance

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined.

Gating strategy

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

- Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Indicate task or resting state; event-related or block design.

Design specifications		<i>Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.</i>
Behavioral performance measures		<i>State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).</i>
 Acquisition		
Imaging type(s)		<i>Specify: functional, structural, diffusion, perfusion.</i>
Field strength		<i>Specify in Tesla</i>
Sequence & imaging parameters		<i>Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.</i>
Area of acquisition		<i>State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.</i>
Diffusion MRI	<input type="checkbox"/> Used	<input type="checkbox"/> Not used
 Preprocessing		
Preprocessing software		<i>Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).</i>
Normalization		<i>If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.</i>
Normalization template		<i>Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.</i>
Noise and artifact removal		<i>Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).</i>
Volume censoring		<i>Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.</i>
 Statistical modeling & inference		
Model type and settings		<i>Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).</i>
Effect(s) tested		<i>Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.</i>
Specify type of analysis: <input type="checkbox"/> Whole brain <input type="checkbox"/> ROI-based <input type="checkbox"/> Both		
Statistic type for inference (See Eklund et al. 2016)		<i>Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.</i>
Correction		<i>Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).</i>
 Models & analysis		
n/a	Involved in the study	
<input type="checkbox"/>	<input type="checkbox"/> Functional and/or effective connectivity	
<input type="checkbox"/>	<input type="checkbox"/> Graph analysis	
<input type="checkbox"/>	<input type="checkbox"/> Multivariate modeling or predictive analysis	
Functional and/or effective connectivity		<i>Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).</i>
Graph analysis		<i>Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).</i>
Multivariate modeling and predictive analysis		<i>Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.</i>