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The effective induction of high levels of stereocontrol for free-radical-
mediated transformations represents a notorious challenge in asymmetric

catalysis. Herein, we describe a metalloredox biocatalysis strategy to
repurpose natural cytochromes P450 to catalyse asymmetric radical
cyclization to arenes through an unnatural electron transfer mechanism.
Directed evolution afforded a series of engineered P450 aromatic radical
cyclases with complementary selectivities: P450,,., and P450,,, facilitated
enantioconvergent transformations of racemic substrates, giving rise to
either enantiomer of the product with excellent total turnover numbers
(upt012,000).Inaddition to these enantioconvergent variants, another
engineered radical cyclase, P450,,.;, permitted efficient kinetic resolution
of racemic chloride substrates (S factor =18). Furthermore, computational
studies revealed a proton-coupled electron transfer mechanism for the
radical-polar crossover step, suggesting the potential role of the haem
carboxylate as a base catalyst. Collectively, the excellent tunability of this
metalloenzyme family provides an exciting platform for harnessing free
radical intermediates for asymmetric catalysis.

Due to their ability to exert excellent stereocontrol over challenging
asymmetric transformations, enzymes are widely recognized as pow-
erful tools to streamline the synthesis of chiral molecular scaffolds'™.
Until fairly recently, only a small set of biochemistries from nature’s
catalytic repertoire has been exploited to facilitate the synthesis and
manufacturing of arelatively narrow range of value-added compounds.
Unfortunately, the vast majority of privileged synthetic transformations,
particularly those allowing for stereoselective C-C bond formation, are
not presentinthe state-of-the-art biocatalytic toolbox’. Thus, to further
advance the field of biocatalysis to the next level of sophistication and
applicability, itisimperative to devise and optimize synthetically useful
enzyme functions thatare not presently knownin the biological world® ™.

Advances from mechanistic enzymology and structural biology
have furnished invaluable insights into the molecular mechanism

and structural basis of enzymatic machineries. Over the past decade,
by cross-fertilizing the fields of synthetic chemistry and enzymol-
ogy, biocatalysis researchers initiated a campaign to repurpose and
evolve natural enzymes to catalyse unnatural reactions by leveraging
the synthetic versatility of common cofactors illuminated by organic
and organometallic chemists®*'°. In nature, radical enzymes™? such
asradical S-Adenosyl methionine enzymes' facilitate challenging free
radical transformations. However, despite their excellent selectivity
and intriguing mechanism, these natural radical enzymes are not yet
widely applied in synthetic chemistry and biotechnology. Very recently,
new concepts and strategies inthe emerging area of unnatural radical
biocatalysis have led to several distinct activation modes to enable
stereoselective transformations of open-shell intermediates'****,
Utilizing the strongly reducing excited-state flavin and nicotinamide
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Fig.1| A metalloenzyme platform for stereoselective radical cyclization.

a, Proposed catalytic cycle with ahaemoprotein catalyst. b, Biocatalytic
enantioconvergent radical cyclization leading to either enantiomer of the
products. ¢, Biocatalytic kinetic resolution to prepare enantioenriched tertiary

(rac)-l

alkyl halides. Lis an Fe-binding amino acid residue, which is serine in this work.
Xis either Br or Cl. PCET, proton-coupled electron transfer. Coloured spheres
are generic substituents of the molecule.

cofactors™?, an elegant photoenzymatic strategy for asymmetric

radical reactions was developed. In 2021 and 2022, by capitalizing on
theinnate redoxactivity of first-row transition-metal cofactorsin com-
mon metalloproteins, haem*?* and non-haem® Fe enzymes were used
via ametalloredox strategy to catalyse stereoselective atom-transfer
radical reactions. Collectively, these emerging new-to-nature activa-
tionmodes provide an exciting opportunity to evolve enzymes capable
of imposing excellent stereocontrol over fleeting free radical inter-
mediates, an objective that has long eluded small-molecule catalysis
because of the inherent difficulties to induce asymmetry with free
radical chemistry* 2,

To further develop and generalize the concept of metalloredox
radical biocatalysis, we sought to develop ametalloenzyme-catalysed
stereoselective addition of carbon-centred radicals to aromatic sys-
tems using easily available racemic a-halocarbonyls as substrates
(Fig. 1)®. In this proposed catalytic cycle (Fig. 1a), the ferrous haem
protein catalyst first reacts with the alkyl halide substrate I to furnish
a highly reactive radical species Il via single-electron transfer (SET).
Thisincipient radical Il subsequently adds to the aromaticring, leading
to a dearomatized radical intermediate III. Finally, the radical-polar
crossover of Il with the ferric haem protein furnishes the final product,
regenerates the ferrous protein catalyst and completes the catalytic
cycle. Inthis process, if the haem protein readily accommodates and
transforms both enantiomeric forms of the organic halide substrate to
the sameradical intermediate, it would allow us to develop an enantio-
convergent protocol® to convert racemic building blocks into enan-
tioenriched products bearing a challenging quaternary stereocentre
(Fig. 1b). Alternatively, if the haem protein catalyst effectively distin-
guishes the two enantiomers of the substrate and selectively converts
one enantiomer, we would be able to develop a biocatalytic kinetic
resolution®*to prepare enantioenriched acyclic tertiary alkyl halides,
whose enantioselective synthesis remain non-trivial (Fig. 1c)*. In asym-
metric catalysis, engineering a set of structurally related yet function-
ally orthogonal catalysts to enable highly selective enantioconvergent
transformation and kinetic resolution of the same racemic substrates
remains a formidable task for both biocatalysts and small-molecule
catalysts™. In light of the promiscuous nature of haem enzymes***
as well as their ability to facilitate unnatural reactions as elegantly

demonstrated previously***, we postulated that haem-dependent

radical cyclases could be evolved as a unifying platform to realize all
these stereoselective processes as outlined in Fig. 1b,c.

Results and discussion

Discovery and directed evolution of radical cyclases P450,,,_,
Using a-bromo-f-amidoester1as the model substrate, we commenced
our investigation by evaluating a panel of haem proteins and their vari-
ants, including cytochromes P450, globins and cytochromes cas well as
ourrecently evolved radical cyclase mutants®, using intact Escherichia
colicells as biocatalysts (Fig. 2a). We focused our initial efforts on the
asymmetric synthesis of 3,3-disubstituted oxindoles, in part due to
the prevalence of these structural elements in bioactive natural prod-
ucts and medicinal agents®. Among all the haem proteins we tested,
although many displayed encouraginginitial activities, only a handful
of variants from the cytochrome P450 superfamily showed moderate
levels of enantioselectivity (Supplementary Table 1). In particular,
P411y;,,., and P411;,,.5, aset of closely related variants of serine-ligated
CYP102A1 (ref. 39) (P450 from Bacillus megaterium) lacking the flavin
adenine dinucleotide domain, which we previously engineered for
enantioselective C-H amination*®*, exhibited good activities with
opposite enantiopreferences (P411p;,..,: 58%yield, (§)-2a:(R)-2a = 66:34;
P411,;,,e5: 62% yield, (S)-2a:(R)-2a=36:64).

With P411,,,,.., and P411,,,,.; as initial hits for this novel enzyme
function, we set out to engineer a set of enantiocomplementary radi-
cal cyclases for the catalyticasymmetric synthesis of 3,3-disubstituted
oxindoles (Fig. 2b-d). To further improve the enantioselectivity of
P411,,,.., in this unnatural radical cyclization, by targeting amino
acid residues in proximity to the haem cofactor, iterative rounds of
site-saturation mutagenesis (SSM)*? and screening were carried out.
In each round of engineering, four active-site residues were rand-
omized in parallel to provide a total of four single-site-saturation
libraries. The selection of target residues for SSM was guided by our
molecular docking studies (Supplementary Information). For each
SSM library, 90 clones were screened in a 96-well plate. After four
rounds of directed evolution of P411y;,,.,, beneficial mutations W263Q,
L181M, T438G and H266L were identified, furnishing P450,,, (Fig. 2c;
arc, aromatic radical cyclase). Based on our quantum mechanics/
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Fig.2|Discovery and engineering of enantioconvergent P450 radical
cyclases. a, Evaluation of haem protein catalysts for enantioconvergent
radical cyclization. b, Evolved final variants P450,,, and P450,,, as orthogonal
biocatalysts for enantioconvergent radical cyclization. ¢, Directed evolution of

P450,,..d, Directed evolution of P450,,.,. Both active site illustrations were made
on the basis of the crystal structure of a closely related P450 variant (Protein Data
Bank ID: SUCW).

molecular mechanics investigation®, the newly introduced glutamine
atresidue 263 likely engages the carbonyl group of the amide substrate
through hydrogen bonding, thus facilitating substrate activation and
enhancing enantiocontrol*. Under standard conditions, final variant
P450,,. afforded the radical cyclization product (§)-2ain 77% + 3%
yield, 1,330 + 50 total turnover number (TTN) and 96:4 e.r., as deter-
mined by chiral high-performance liquid chromatography analysis
(Fig. 2b). Similarly, the enantioselectivity of P411,,,,.; could also be
optimized through directed evolution. Accumulating five beneficial
mutations G437A, V327P, N70S, A330F and G74P, P450,,., was devel-
opedto provide (R)-2ain 88% + 1% yield, 1,890 + 30 TTN and 12:88 e.r.
(Fig. 2d). We note that when previously developed photoenzymatic
conditions were applied, substrates bearing a small a-substituent
suchaslaprovided modest enantioselectivities (78:22 e.r.) favouring
the (S)-enantiomer®, Thus, the rapid engineering of enantiodiver-
gent radical metalloenzymes P450,,, and P450,,., to access both the
(R)-enantiomer and the (S)-enantiomer demonstrated the power of
this adaptive metalloenzyme platform to solve difficult problems in
asymmetric catalysis. Additionally, steady-state kinetic studies showed
that our evolved enzyme P450,,., exhibited ak_, of 0.54 + 0.03 s, which
represented a 15-fold improvement relative to its parent P411,;,,,.,
(ke =0.036 £ 0.004 s™). The K,, of P450,,., was found to be similar to
that of the parent enzyme (Supplementary Table 10). The k., of P450,,
is similar to that of previously engineered new-to-nature radical C-H
azidases®. Although these unnatural radical enzymes have not yet
reached the catalytic efficiency of natural systems, further directed

evolution may lead to enhanced enzyme kinetics for unnatural metal-
loredox radical biocatalysis.

Substrate scope of evolved P450 radical cyclases

Using whole E. coli cells harbouring newly evolved P450 radical
cyclases, we next examined the substrate scope of this enantiocon-
vergent radical C-C bond formation (Fig. 3a). Radical precursors with
various a-substituents, including a methyl (2a), an ethyl (2b), a propyl
(2¢), an allyl (2d) and an isopropyl (2e), were all transformed with
excellent enantioselectivities under these biocatalytic conditions,
showcasing the versatility of engineered biocatalysts. Moreover,
aromatic rings bearing a diverse range of para-substituents, includ-
ing a fluorine (2f), a chlorine (2g), abromine (2h), aniodine (2i), a
methoxy (2j), amethyl (2k), an ethyl (2I) and an isopropyl (2m), all
underwent radical cyclization with excellent TTNs and enantiose-
lectivities. In addition to methyl esters (2a-2m), ethyl esters (2n)
were also excellent substrates. Additionally, the N-ethyl substrate 10
could also be successfully converted into the corresponding enan-
tioenriched product 20. The absolute stereochemistry of 2i was
determined by single-crystal X-ray diffraction analysis. Notably,
gram-scale biotransformations could be conveniently carried out
with slightly improved yield and identical enantioselectivity (2b
and 2i), further demonstrating the synthetic utility of these newly
evolved enzymes. Furthermore, by lowering the cell density of these
whole-cell biotransformations (OD,, = 30, 20, 10 and 5), evolved
enzymes were able to provide the C-C bond formation product 2b
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Fig.3|Substrate scope of P450,, -catalysed enantioconvergent radical
cyclization. a, Substrate scope of a-bromoesters (ODyq, = 15-35 unless otherwise
noted; Supplementary Methods). All the reactions were performed in triplicate

and averaged results and standard deviations are provided. b, Biocatalytic
site-selective radical cyclization of meta-substituted substrate 1p. c, Whole-cell
radical cyclization of 1b with high TTNs. *Gram-scale reaction.

withupto12,000 + 300 TTN (Fig. 3¢) without lowering the yield and
enantioselectivity (88%yield, 98:2e.r.).

When meta-substituted arene 1p was applied, without further
engineering, P450,,., overrode inherent substrate selectivity to
furnish para-2p as the major product in 78:22 regioisomeric ratio,
1,530 £ 50 TTN and 85:15 e.r. This result highlighted the potential of
metalloenzymes to exert regiocontrol over free-radical-mediated
transformations. By contrast, previously developed radical cyclization
using photoredox and small-molecule Cu catalysts furnished racemic
oxindole 2p as a mixture of para- and ortho-product in an approxi-
mately 1:1ratio, slightly favouring ortho-2p (with photoredox catalyst
Ir(ppy);: p-2p:0-2p = 44:56; with Cu(tris(2-pyridyl)methylamine)Br:
p-2p:0-2p = 39:61; Supplementary Methods). The non-selective nature
of these reactions underscored the challenge of imposing regiocontrol
over radical cyclization using conventional approaches.

Next, we sought to generalize this metalloenzymatic radical pro-
cesstothe conversion of a-chloro substrates. Gratifyingly, it was found
that P450,,, and P450,,.,-P74G-L436R-F330V allowed the enantiocon-
vergent conversion of chloride 3a with orthogonal enantiopreferences
(Fig. 4a). Under optimized reaction conditions (OD, = 120), P450,,,
gaveriseto (S)-2ain 85%yield, 450 + 60 TTNand 94:6 e.r. Under similar
conditions with a lower cell density (OD,, = 30), the enantiocomple-
mentary variant P450,,.,-P74G-L436R-F330V furnished (R)-2ain 64%
yield, 1,200 £ 110 TTN and 12:88 e.r. (Fig. 4a). Furthermore, another
enzyme variant from this evolutionary lineage, P450,,.; (P450,,,—
G438T-L266H-L78C-V328E-S332A), was found to promote effective
kineticresolution of 3a (Fig. 4b). With P450,,.,, at a conversion of 55%,
(R)-3a was recovered in 94:6 e.r. This corresponds to an S factor of
18 (S=log[(1-c)(1-e.e.)])/log[(1-c)(1+e.e.)], where cis conversion
ande.e.isenantiomericexcess, e.e. = ([R] - [S])/([R] + [S])), indicating
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Fig.4|P450,-catalysed stereoselective transformations of a-chloro
substrate 3a. a, P450,,, and P450,,.,-P74G-L436R-F330V-catalysed
enantioconvergent transformation of 3a with complementary
enantiopreferences. b, P450,,,-catalysed radical kinetic resolution of 3a. All
the reactions were performed in triplicate and averaged results and standard
deviation are provided.

excellent enantiodiscrimination by this kinetic resolution enzyme.
Additionally, P450,,, furnished cyclization product 2a in 55% yield
and 64:36 e.r. Additionally, it was found that (§)-3a, the enantiomer
undergoing faster radical cyclization with P450,,,, exhibited the same
stereochemistry at the a-position as the major enantiomeric product
(8)-2a (Fig. 4b). Together, these results demonstrated the highly malle-
able nature of this metalloenzyme platformto affect both enantiocon-
vergent radical cyclization and kinetic resolution with evolutionarily
related mutants.

Mechanistic and computational studies

Enzymes capable of accommodating and transforming both enantiom-
ersofaracemic substrate that are configurationally stableinto the same
major enantiomeric product are rare in natural biosynthetic machiner-
ies, despite ahandful of recently developed new-to-nature biocatalytic
enantioconvergent transformations™'¢'**°, To date, detailed enan-
tioconvergent mechanisms of these unnatural biocatalytic processes
remain poorly understood. With a panel of highly efficient P450,,,
enzymes permitting the enantioconvergent transformation of both
a-bromo and a-chloro substrates, we studied the evolution of the e.r.
of formed products and recovered substrates as a function of substrate
conversion (Fig. 5).

First, whenthe a-bromo substrate1b was used, with P450,,., as the
biocatalyst (Fig. 5a), the e.r. of product 2b remained constant (97:3)
throughout the course of the reaction, with (R)-2b as the major enan-
tiomeric product. During this enantioconvergent transformation, as
thereaction proceeded, gradual enrichment of (§)-1bin recovered 1b
was observed, showcasingkinetic resolution. With P450,,.,, this kinetic
resolution occurred with low levels of enantiodiscrimination, as evi-
denced by asmall Sfactorof1.4 + 0.1. Thus, although (R)-1b underwent
faster conversionrelative toits enantiomer (S)-1b, product 2b derived
from (R)-1b and (S)-1b exhibited identical e.r.

Second, when P450,,, was applied to transform 1b (Fig. 5b),
although the product enantiopreference was reversed to favour (S)-
2b, the same (R)-enantiomer of 1b still underwent faster conversion,
similar to that with P450,,,. Furthermore, as the reaction proceeded

to higher conversions, the e.r. of product 2b increased, indicating
that the slow-reacting enantiomer (S)-1b was converted to 2b with
aslightly higher e.r. Similar to P450,,,, P450,,. also displayed a low
kinetic-resolution selectivity toward the substrate (Sfactor =1.8 + 0.1).

Third, starting from the a-chloro substrate 3a, P450,,, furnished
the same major enantiomeric product (R)-2a as that from the bromo
substrate 1a (Fig. 5¢). Kinetic resolution of the substrate was also
observed (S factor =3.4 £ 0.5), with (R)-3a being transformed faster
than (8)-3a. Using the same biocatalyst P450,,,, the (R)-enantiomer
of both the chloro (3a) and the bromo (1a) substrate underwent
faster transformation. Interestingly, as the reaction proceeded,
aslight decrease in the e.r. of 2a was observed, suggesting that the
slow-reacting (§)-3a furnished 2a with a lower enantioselectivity.
This trend is contrary to that of the bromo substrate 1b with the same
enzyme variant (vide supra). Together, these experiments demonstrate
that for all these newly evolved enantioconvergent biocatalysts, kinetic
resolution of the substrate occurs with modest selectivities, despite
the ability of these biocatalysts to fully transform the racemic substrate
with excellent product enantioselectivities. Furthermore, all three pos-
sible producte.r. evolution patterns, including constant e.r. (Fig. 5a),
slowlyincreasinge.r. (Fig. 5b) and slowly decreasinge.r. (Fig. 5c), were
uncovered in this study, revealing subtle differences in enzymatic
stereocontrol over enantioconvergent radical cyclization.

To provide further insights into the reaction mechanism, we per-
formed density functional theory (DFT) calculations using amodel Fe
porphyrinsystem, which hasbeenused in our previous computational
studies (Fig. 6)*>***>*!, DFT calculations showed that the Fe porphy-
rin catalyst remains at high spin throughout the catalytic cycle”*.
Due to the relatively weak C-Br bond in a-bromo-f3-amidoester 1a
(bond-dissociation enthalpy = 47.6 kcal mol ™), the Fe-catalysed radi-
cal initiation to afford an a-carbonyl radical 4a is highly exergonic
(AG=-35.5kcal mol™). With this model system bearing an anionic meth-
oxide axial ligand, the radical initiation step prefers an outer-sphere
dissociative electron transfer mechanism (AG* = 2.0 kcal mol™)
over the inner-sphere electron transfer pathway (TS1 in Fig. 6,
AG*=15.5kcal mol™). The subsequent radical cyclization to the pen-
dant aromatic ring has an activation barrier (AG*) of 14.2 kcal mol?,
indicating a sufficient lifetime for the enantioconvergent conversion
of racemic starting materials via the conformational change and C-C
bond rotation of radical 4a. For the radical-polar crossover step, sev-
eral proton/electron transfer pathways from the dearomatized radical
intermediate 8ato the oxindole product 2a were considered. The most
favourable mechanism features a concerted proton-electron transfer
(CPET)*, as previously studied in arelated haem system**, where elec-
tron transfer from 8a to the haem Fe and proton transfer from 8ato
the haem propionate occurinaconcerted manner. This CPET pathway
displays a low free-energy barrier of 1.1 kcal mol™. Stepwise proton
transfer-electron transfer and electron transfer-proton transfer pro-
cesses are kinetically less favourable, because of the higher barriersto
formtherelatively unstable intermediates11and 12, respectively. This
findingindicatesthat the carboxylate group of the haem cofactor may
serve as abase catalyst tofacilitate the radical-polar crossover event,
demonstrating the potential role of the haem cofactor as a bifunc-
tional catalyst to greatly lower the activation barrier of radical-polar
crossover. Although other basic residues in the enzyme active site
may serve as the base catalyst, these DFT calculations suggest that
this CPET process is more favourable, as it bypasses the formation of
high-energy intermediates resulting from stepwise electron or proton
transfer. Additionally, as this CPET enables a fast and irreversible pro-
cess to trap the cyclized radical intermediate 8a, radical cyclization
(TS2in Fig. 6) is expected to be the enantioselectivity-determining
step with the enzyme catalyst. This mechanistic scenario is consist-
ent with kinetic isotope effect experiments that suggest irreversible
radical cyclization because of the kinetically facile trapping of 8a
(see Supplementary Fig. 7).
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Conclusion

We have developed a unifying metalloenzyme platform for the asym-
metric radical cyclization to arenes, allowing challenging quaternary
stereogenic centres to be formed with excellent enantioselectivities.
Directed evolution enabled the rapid engineering of an orthogonal
set of P450 radical cyclases P450,,,,, allowing either enantiomeric
producttobeaccessed viaenantioconvergent radical cyclization. Fur-
thermore, kinetic resolution biocatalyst P450,,.; was also developed,
giving rise to enantioenriched tertiary alkyl chlorides. Thus, closely
related biocatalysts were engineered to catalyse both enantiocon-
vergent transformation and kinetic resolution of the same racemic
substrates viaacommon radical mechanism. DFT calculations suggest
that the radical-polar crossover event with ferric haem is facilitated
by proton-coupled electron transfer and the C-C bond-forming radi-
cal addition determines the stereoselectivity of enantioconvergent
processes. Collectively, the promiscuous nature and the excellent
tunability of this metalloenzyme platform highlight its potential to
tackle challenging problems in asymmetric radical transformations
via unnatural biocatalysis.

Methods

Expression of P450,, variants

E. coli(E.cloniBL21(DE3)) cells carrying plasmid encoding the appro-
priate P450,,. variant were grown overnight in 3 ml of Luria-Bertani
medium with 0.1 mg/mL ampicillin (LB,,,;,). Preculture (1.5 ml) was
used to inoculate 28.5 ml of Hyperbroth (AthenaES) with 0.1 mg/mL

ampicillin (HB,,,) inan Erlenmeyer flask (125 mL). This culture wasincu-
bated at37 °Cand 230 r.p.m.for 2 h. It was then cooled onice for 20 min
and induced with 0.5 mM isopropyl B-D-1-thiogalactopyranoside
and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression
was conducted at 22 °C and 150 r.p.m. for 20 h. E. coli cells were then
transferred to a conical tube (50 ml) and pelleted by centrifugation
(3,000g, 5 min, 4 °C). Supernatant was removed and the resulting
cell pellet was resuspended in M9-N buffer to OD4,, = 5-60 (usually
15-30). Analiquot of this cell suspension (2 ml) was taken to determine
protein concentration using the pridine hemochromagen assay after
lysis by sonication.

Stereoselective radical cyclization using whole E. coli cells
harbouring P450,,.

Suspensions of E. coli (E. cloni BL21(DE3)) cells expressing the appropri-
ate P450,,. variantin M9-N buffer (typically ODy,, = 30) were kept onice.
Inanother conical tube, asolution of D-glucose (500 mMin M9-N) was
prepared. The suspension of E. coli cells expressing P450,,. (typically
0D =30, 345 pl) and the solution of D-glucose (40 pl of 500 mM stock
solutionin M9-N buffer) were added to a vial (2 ml). This vial was then
transferred into an anaerobic chamber, where the organic substrate
(15 pl of stock solution (267 mM in EtOH)) was added. The final reac-
tion volume was 400 pl; the final concentrations were 10 mM substrate
and 50 mM D-glucose. (Note: the reaction performed with E. coli cells
resuspended to OD,,, = 30 indicates that 345 pl of OD,, = 30 cells were
added, and likewise for other reaction OD,, descriptions.) The vials
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were sealed and agitated in a Corning digital microplate shaker atroom
temperature and 680 r.p.m.for 12 h.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data are available in the main text and the Supplementary Infor-
mation or available from the authors upon reasonable request. X-ray
crystal structures of 2iand (R)-3aare available free of charge from the
Cambridge Crystallographic Data Centre under reference numbers
CCDC 2184585 and 2184586. Plasmids encoding P450,,. reported in
thisstudy are available for research purposes from Y.Y. under amaterial
transfer agreement with the University of California Santa Barbara.
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