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Enzyme-controlled stereoselective 
radical cyclization to arenes enabled by 
metalloredox biocatalysis

Wenzhen Fu    1, Natalia M. Neris1, Yue Fu    2, Yunlong Zhao    1, 
Benjamin Krohn-Hansen    1, Peng Liu    2   & Yang Yang    1,3 

The effective induction of high levels of stereocontrol for free-radical- 
mediated transformations represents a notorious challenge in asymmetric 
catalysis. Herein, we describe a metalloredox biocatalysis strategy to 
repurpose natural cytochromes P450 to catalyse asymmetric radical 
cyclization to arenes through an unnatural electron transfer mechanism. 
Directed evolution afforded a series of engineered P450 aromatic radical 
cyclases with complementary selectivities: P450arc1 and P450arc2 facilitated 
enantioconvergent transformations of racemic substrates, giving rise to 
either enantiomer of the product with excellent total turnover numbers 
(up to 12,000). In addition to these enantioconvergent variants, another 
engineered radical cyclase, P450arc3, permitted efficient kinetic resolution 
of racemic chloride substrates (S factor = 18). Furthermore, computational 
studies revealed a proton-coupled electron transfer mechanism for the 
radical–polar crossover step, suggesting the potential role of the haem 
carboxylate as a base catalyst. Collectively, the excellent tunability of this 
metalloenzyme family provides an exciting platform for harnessing free 
radical intermediates for asymmetric catalysis.

Due to their ability to exert excellent stereocontrol over challenging 
asymmetric transformations, enzymes are widely recognized as pow-
erful tools to streamline the synthesis of chiral molecular scaffolds1–4. 
Until fairly recently, only a small set of biochemistries from nature’s 
catalytic repertoire has been exploited to facilitate the synthesis and 
manufacturing of a relatively narrow range of value-added compounds. 
Unfortunately, the vast majority of privileged synthetic transformations, 
particularly those allowing for stereoselective C–C bond formation, are 
not present in the state-of-the-art biocatalytic toolbox5. Thus, to further 
advance the field of biocatalysis to the next level of sophistication and 
applicability, it is imperative to devise and optimize synthetically useful 
enzyme functions that are not presently known in the biological world6–10.

Advances from mechanistic enzymology and structural biology 
have furnished invaluable insights into the molecular mechanism 

and structural basis of enzymatic machineries. Over the past decade, 
by cross-fertilizing the fields of synthetic chemistry and enzymol-
ogy, biocatalysis researchers initiated a campaign to repurpose and 
evolve natural enzymes to catalyse unnatural reactions by leveraging 
the synthetic versatility of common cofactors illuminated by organic 
and organometallic chemists8–10. In nature, radical enzymes11,12 such 
as radical S-Adenosyl methionine enzymes12 facilitate challenging free 
radical transformations. However, despite their excellent selectivity 
and intriguing mechanism, these natural radical enzymes are not yet 
widely applied in synthetic chemistry and biotechnology. Very recently, 
new concepts and strategies in the emerging area of unnatural radical 
biocatalysis have led to several distinct activation modes to enable 
stereoselective transformations of open-shell intermediates10,13,14. 
Utilizing the strongly reducing excited-state flavin and nicotinamide 
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demonstrated previously36,37, we postulated that haem-dependent 
radical cyclases could be evolved as a unifying platform to realize all 
these stereoselective processes as outlined in Fig. 1b,c.

Results and discussion
Discovery and directed evolution of radical cyclases P450arc1–2

Using α-bromo-β-amidoester 1 as the model substrate, we commenced 
our investigation by evaluating a panel of haem proteins and their vari-
ants, including cytochromes P450, globins and cytochromes c as well as 
our recently evolved radical cyclase mutants23, using intact Escherichia 
coli cells as biocatalysts (Fig. 2a). We focused our initial efforts on the 
asymmetric synthesis of 3,3-disubstituted oxindoles, in part due to 
the prevalence of these structural elements in bioactive natural prod-
ucts and medicinal agents38. Among all the haem proteins we tested, 
although many displayed encouraging initial activities, only a handful 
of variants from the cytochrome P450 superfamily showed moderate 
levels of enantioselectivity (Supplementary Table 1). In particular, 
P411Diane2 and P411Diane3, a set of closely related variants of serine-ligated 
CYP102A1 (ref. 39) (P450 from Bacillus megaterium) lacking the flavin 
adenine dinucleotide domain, which we previously engineered for 
enantioselective C–H amination40,41, exhibited good activities with 
opposite enantiopreferences (P411Diane2: 58% yield, (S)-2a:(R)-2a = 66:34; 
P411Diane3: 62% yield, (S)-2a:(R)-2a = 36:64).

With P411Diane2 and P411Diane3 as initial hits for this novel enzyme 
function, we set out to engineer a set of enantiocomplementary radi-
cal cyclases for the catalytic asymmetric synthesis of 3,3-disubstituted 
oxindoles (Fig. 2b–d). To further improve the enantioselectivity of 
P411Diane2 in this unnatural radical cyclization, by targeting amino 
acid residues in proximity to the haem cofactor, iterative rounds of 
site-saturation mutagenesis (SSM)42 and screening were carried out. 
In each round of engineering, four active-site residues were rand-
omized in parallel to provide a total of four single-site-saturation 
libraries. The selection of target residues for SSM was guided by our 
molecular docking studies (Supplementary Information). For each 
SSM library, 90 clones were screened in a 96-well plate. After four 
rounds of directed evolution of P411Diane2, beneficial mutations W263Q, 
L181M, T438G and H266L were identified, furnishing P450arc1 (Fig. 2c;  
arc, aromatic radical cyclase). Based on our quantum mechanics/

cofactors13–22, an elegant photoenzymatic strategy for asymmetric 
radical reactions was developed. In 2021 and 2022, by capitalizing on 
the innate redox activity of first-row transition-metal cofactors in com-
mon metalloproteins, haem23,24 and non-haem25 Fe enzymes were used 
via a metalloredox strategy to catalyse stereoselective atom-transfer 
radical reactions. Collectively, these emerging new-to-nature activa-
tion modes provide an exciting opportunity to evolve enzymes capable 
of imposing excellent stereocontrol over fleeting free radical inter-
mediates, an objective that has long eluded small-molecule catalysis 
because of the inherent difficulties to induce asymmetry with free 
radical chemistry26–28.

To further develop and generalize the concept of metalloredox 
radical biocatalysis, we sought to develop a metalloenzyme-catalysed 
stereoselective addition of carbon-centred radicals to aromatic sys-
tems using easily available racemic α-halocarbonyls as substrates  
(Fig. 1)29. In this proposed catalytic cycle (Fig. 1a), the ferrous haem 
protein catalyst first reacts with the alkyl halide substrate I to furnish 
a highly reactive radical species II via single-electron transfer (SET). 
This incipient radical II subsequently adds to the aromatic ring, leading 
to a dearomatized radical intermediate III. Finally, the radical–polar 
crossover of III with the ferric haem protein furnishes the final product, 
regenerates the ferrous protein catalyst and completes the catalytic 
cycle. In this process, if the haem protein readily accommodates and 
transforms both enantiomeric forms of the organic halide substrate to 
the same radical intermediate, it would allow us to develop an enantio-
convergent protocol30 to convert racemic building blocks into enan-
tioenriched products bearing a challenging quaternary stereocentre 
(Fig. 1b). Alternatively, if the haem protein catalyst effectively distin-
guishes the two enantiomers of the substrate and selectively converts 
one enantiomer, we would be able to develop a biocatalytic kinetic 
resolution31,32 to prepare enantioenriched acyclic tertiary alkyl halides, 
whose enantioselective synthesis remain non-trivial (Fig. 1c)33. In asym-
metric catalysis, engineering a set of structurally related yet function-
ally orthogonal catalysts to enable highly selective enantioconvergent 
transformation and kinetic resolution of the same racemic substrates 
remains a formidable task for both biocatalysts and small-molecule 
catalysts30. In light of the promiscuous nature of haem enzymes34,35 
as well as their ability to facilitate unnatural reactions as elegantly 
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Fig. 1 | A metalloenzyme platform for stereoselective radical cyclization. 
a, Proposed catalytic cycle with a haemoprotein catalyst. b, Biocatalytic 
enantioconvergent radical cyclization leading to either enantiomer of the 
products. c, Biocatalytic kinetic resolution to prepare enantioenriched tertiary 

alkyl halides. L is an Fe-binding amino acid residue, which is serine in this work.  
X is either Br or Cl. PCET, proton-coupled electron transfer. Coloured spheres  
are generic substituents of the molecule.
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molecular mechanics investigation24, the newly introduced glutamine 
at residue 263 likely engages the carbonyl group of the amide substrate 
through hydrogen bonding, thus facilitating substrate activation and 
enhancing enantiocontrol24. Under standard conditions, final variant 
P450arc1 afforded the radical cyclization product (S)-2a in 77% ± 3% 
yield, 1,330 ± 50 total turnover number (TTN) and 96:4 e.r., as deter-
mined by chiral high-performance liquid chromatography analysis 
(Fig. 2b). Similarly, the enantioselectivity of P411Diane3 could also be 
optimized through directed evolution. Accumulating five beneficial 
mutations G437A, V327P, N70S, A330F and G74P, P450arc2 was devel-
oped to provide (R)-2a in 88% ± 1% yield, 1,890 ± 30 TTN and 12:88 e.r. 
(Fig. 2d). We note that when previously developed photoenzymatic 
conditions were applied, substrates bearing a small α-substituent 
such as 1a provided modest enantioselectivities (78:22 e.r.) favouring 
the (S)-enantiomer18. Thus, the rapid engineering of enantiodiver-
gent radical metalloenzymes P450arc1 and P450arc2 to access both the 
(R)-enantiomer and the (S)-enantiomer demonstrated the power of 
this adaptive metalloenzyme platform to solve difficult problems in 
asymmetric catalysis. Additionally, steady-state kinetic studies showed 
that our evolved enzyme P450arc1 exhibited a kcat of 0.54 ± 0.03 s−1, which 
represented a 15-fold improvement relative to its parent P411Diane2 
(kcat = 0.036 ± 0.004 s−1). The KM of P450arc1 was found to be similar to 
that of the parent enzyme (Supplementary Table 10). The kcat of P450arc1 
is similar to that of previously engineered new-to-nature radical C–H 
azidases25. Although these unnatural radical enzymes have not yet 
reached the catalytic efficiency of natural systems, further directed 

evolution may lead to enhanced enzyme kinetics for unnatural metal-
loredox radical biocatalysis.

Substrate scope of evolved P450 radical cyclases
Using whole E. coli cells harbouring newly evolved P450 radical 
cyclases, we next examined the substrate scope of this enantiocon-
vergent radical C–C bond formation (Fig. 3a). Radical precursors with 
various α-substituents, including a methyl (2a), an ethyl (2b), a propyl 
(2c), an allyl (2d) and an isopropyl (2e), were all transformed with 
excellent enantioselectivities under these biocatalytic conditions, 
showcasing the versatility of engineered biocatalysts. Moreover, 
aromatic rings bearing a diverse range of para-substituents, includ-
ing a fluorine (2f), a chlorine (2g), a bromine (2h), an iodine (2i), a 
methoxy (2j), a methyl (2k), an ethyl (2l) and an isopropyl (2m), all 
underwent radical cyclization with excellent TTNs and enantiose-
lectivities. In addition to methyl esters (2a–2m), ethyl esters (2n) 
were also excellent substrates. Additionally, the N-ethyl substrate 1o 
could also be successfully converted into the corresponding enan-
tioenriched product 2o. The absolute stereochemistry of 2i was 
determined by single-crystal X-ray diffraction analysis. Notably, 
gram-scale biotransformations could be conveniently carried out 
with slightly improved yield and identical enantioselectivity (2b 
and 2i), further demonstrating the synthetic utility of these newly 
evolved enzymes. Furthermore, by lowering the cell density of these 
whole-cell biotransformations (OD600 = 30, 20, 10 and 5), evolved 
enzymes were able to provide the C–C bond formation product 2b 
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Fig. 2 | Discovery and engineering of enantioconvergent P450 radical 
cyclases. a, Evaluation of haem protein catalysts for enantioconvergent 
radical cyclization. b, Evolved final variants P450arc1 and P450arc2 as orthogonal 
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P450arc1. d, Directed evolution of P450arc2. Both active site illustrations were made 
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with up to 12,000 ± 300 TTN (Fig. 3c) without lowering the yield and 
enantioselectivity (88% yield, 98:2 e.r.).

When meta-substituted arene 1p was applied, without further 
engineering, P450arc2 overrode inherent substrate selectivity to 
furnish para-2p as the major product in 78:22 regioisomeric ratio, 
1,530 ± 50 TTN and 85:15 e.r. This result highlighted the potential of 
metalloenzymes to exert regiocontrol over free-radical-mediated 
transformations. By contrast, previously developed radical cyclization 
using photoredox and small-molecule Cu catalysts furnished racemic 
oxindole 2p as a mixture of para- and ortho-product in an approxi-
mately 1:1 ratio, slightly favouring ortho-2p (with photoredox catalyst 
Ir(ppy)3: p-2p:o-2p = 44:56; with Cu(tris(2-pyridyl)methylamine)Br: 
p-2p:o-2p = 39:61; Supplementary Methods). The non-selective nature 
of these reactions underscored the challenge of imposing regiocontrol 
over radical cyclization using conventional approaches.

Next, we sought to generalize this metalloenzymatic radical pro-
cess to the conversion of α-chloro substrates. Gratifyingly, it was found 
that P450arc1 and P450arc2–P74G–L436R–F330V allowed the enantiocon-
vergent conversion of chloride 3a with orthogonal enantiopreferences 
(Fig. 4a). Under optimized reaction conditions (OD600 = 120), P450arc1 
gave rise to (S)-2a in 85% yield, 450 ± 60 TTN and 94:6 e.r. Under similar 
conditions with a lower cell density (OD600 = 30), the enantiocomple-
mentary variant P450arc2–P74G–L436R–F330V furnished (R)-2a in 64% 
yield, 1,200 ± 110 TTN and 12:88 e.r. (Fig. 4a). Furthermore, another 
enzyme variant from this evolutionary lineage, P450arc3 (P450arc1–
G438T–L266H–L78C–V328E–S332A), was found to promote effective 
kinetic resolution of 3a (Fig. 4b). With P450arc3, at a conversion of 55%, 
(R)-3a was recovered in 94:6 e.r. This corresponds to an S factor of 
18 (S = log[(1 − c)(1 − e.e.)]/log[(1 − c)(1 + e.e.)], where c is conversion 
and e.e. is enantiomeric excess, e.e. = ([R] – [S])/([R] + [S])), indicating 

NMe

O

Et

CO2Me

NEt

O

Me

CO2Me

2o
1,550 ± 40 TTN

98% yield
94:6 e.r.

NMe

O

Me

CO2Et

2n
1,260 ± 20 TTN

79% yield
91:9 e.r.

2b
4,160 ± 50 TTN

88% (90%)a yield, 98:2 e.r.
[gram scale]

[gram scale]

N

O

Br

(rac)-1

R

E. coli cells
harbouring P450arc

M9-N buffer (pH = 7.4)
D-Glucose
RT, 12 h

O

NR

NMe

O

CO2Me
NMe

O

Me

CO2Me

F

NMe

O

nPr

CO2Me

2f
1,420 ± 30 TTN

76% yield
90:10 e.r.

NMe

O

iPr

CO2Me

2c
3,680 ± 50 TTN

78% yield
88:12 e.r.

2d
3,600 ± 120 TTN

76% yield
93:7 e.r.

2e
3,600 ± 110 TTN

77% yield
92:8 e.r.

a

b

NMe

O

Me

CO2Me

Cl

NMe

O

Me

CO2Me

Br

NMe

O

Me

CO2Me

I

2g
1,600 ± 110 TTN

86% yield
92:8 e.r.

2h
1,600 ± 60 TTN

86% yield
95:5 e.r.

2i
1,300 ± 120 TTN

68% (73%)a yield, 94:6 (93:7)a  e.r.

NMe

O

Me

CO2Me

OMe

NMe

O

Me

CO2Me

Me

NMe

O

Me

CO2Me

Et

NMe

O

Me

CO2Me

iPr

2l
1,700 ± 120 TTN

94% yield
90:10 e.r.

2j
1,450 ± 40 TTN

79% yield
90:10 e.r.

2k
1,600 ± 20 TTN

87% yield
86:14 e.r.

2m
1,310 ± 80 TTN

73% yield
80:20 e.r.

X-ray crystal 
structure of 2i

2

N

O

CO2MeMe

Br
Me

(rac)-1p

OMe

p-2p o-2p

NMe

O

Me

CO2Me

MeO

NMe

O

Me

CO2Me

OMe
+

c

p-2p: o-2p = 78:22
1,530 ± 50 TTN   

59% yield
85:15 e.r. (p-2p)

OD = 5

OD = 10

OD = 20

TTN

OD = 30

0 2,000 4,000 6,000 8,000 10,000 12,000

Fig. 3 | Substrate scope of P450arc-catalysed enantioconvergent radical 
cyclization. a, Substrate scope of α-bromoesters (OD600 = 15–35 unless otherwise 
noted; Supplementary Methods). All the reactions were performed in triplicate 

and averaged results and standard deviations are provided. b, Biocatalytic 
site-selective radical cyclization of meta-substituted substrate 1p. c, Whole-cell 
radical cyclization of 1b with high TTNs. aGram-scale reaction.

http://www.nature.com/natcatal


Nature Catalysis

Article https://doi.org/10.1038/s41929-023-00986-5

excellent enantiodiscrimination by this kinetic resolution enzyme. 
Additionally, P450arc3 furnished cyclization product 2a in 55% yield 
and 64:36 e.r. Additionally, it was found that (S)-3a, the enantiomer 
undergoing faster radical cyclization with P450arc3, exhibited the same 
stereochemistry at the α-position as the major enantiomeric product 
(S)-2a (Fig. 4b). Together, these results demonstrated the highly malle-
able nature of this metalloenzyme platform to affect both enantiocon-
vergent radical cyclization and kinetic resolution with evolutionarily 
related mutants.

Mechanistic and computational studies
Enzymes capable of accommodating and transforming both enantiom-
ers of a racemic substrate that are configurationally stable into the same 
major enantiomeric product are rare in natural biosynthetic machiner-
ies, despite a handful of recently developed new-to-nature biocatalytic 
enantioconvergent transformations15,16,18,40. To date, detailed enan-
tioconvergent mechanisms of these unnatural biocatalytic processes 
remain poorly understood. With a panel of highly efficient P450arc 
enzymes permitting the enantioconvergent transformation of both 
α-bromo and α-chloro substrates, we studied the evolution of the e.r. 
of formed products and recovered substrates as a function of substrate 
conversion (Fig. 5).

First, when the α-bromo substrate 1b was used, with P450arc2 as the 
biocatalyst (Fig. 5a), the e.r. of product 2b remained constant (97:3) 
throughout the course of the reaction, with (R)-2b as the major enan-
tiomeric product. During this enantioconvergent transformation, as 
the reaction proceeded, gradual enrichment of (S)-1b in recovered 1b 
was observed, showcasing kinetic resolution. With P450arc2, this kinetic 
resolution occurred with low levels of enantiodiscrimination, as evi-
denced by a small S factor of 1.4 ± 0.1. Thus, although (R)-1b underwent 
faster conversion relative to its enantiomer (S)-1b, product 2b derived 
from (R)-1b and (S)-1b exhibited identical e.r.

Second, when P450arc1 was applied to transform 1b (Fig. 5b), 
although the product enantiopreference was reversed to favour (S)-
2b, the same (R)-enantiomer of 1b still underwent faster conversion, 
similar to that with P450arc2. Furthermore, as the reaction proceeded 

to higher conversions, the e.r. of product 2b increased, indicating 
that the slow-reacting enantiomer (S)-1b was converted to 2b with 
a slightly higher e.r. Similar to P450arc2, P450arc1 also displayed a low 
kinetic-resolution selectivity toward the substrate (S factor = 1.8 ± 0.1).

Third, starting from the α-chloro substrate 3a, P450arc1 furnished 
the same major enantiomeric product (R)-2a as that from the bromo 
substrate 1a (Fig. 5c). Kinetic resolution of the substrate was also 
observed (S factor = 3.4 ± 0.5), with (R)-3a being transformed faster 
than (S)-3a. Using the same biocatalyst P450arc1, the (R)-enantiomer 
of both the chloro (3a) and the bromo (1a) substrate underwent 
faster transformation. Interestingly, as the reaction proceeded, 
a slight decrease in the e.r. of 2a was observed, suggesting that the 
slow-reacting (S)-3a furnished 2a with a lower enantioselectivity. 
This trend is contrary to that of the bromo substrate 1b with the same 
enzyme variant (vide supra). Together, these experiments demonstrate 
that for all these newly evolved enantioconvergent biocatalysts, kinetic 
resolution of the substrate occurs with modest selectivities, despite 
the ability of these biocatalysts to fully transform the racemic substrate 
with excellent product enantioselectivities. Furthermore, all three pos-
sible product e.r. evolution patterns, including constant e.r. (Fig. 5a),  
slowly increasing e.r. (Fig. 5b) and slowly decreasing e.r. (Fig. 5c), were 
uncovered in this study, revealing subtle differences in enzymatic 
stereocontrol over enantioconvergent radical cyclization.

To provide further insights into the reaction mechanism, we per-
formed density functional theory (DFT) calculations using a model Fe 
porphyrin system, which has been used in our previous computational 
studies (Fig. 6)23,24,40,41. DFT calculations showed that the Fe porphy-
rin catalyst remains at high spin throughout the catalytic cycle23,24. 
Due to the relatively weak C–Br bond in α-bromo-β-amidoester 1a 
(bond-dissociation enthalpy = 47.6 kcal mol–1), the Fe-catalysed radi-
cal initiation to afford an α-carbonyl radical 4a is highly exergonic 
(ΔG = −35.5 kcal mol–1). With this model system bearing an anionic meth-
oxide axial ligand, the radical initiation step prefers an outer-sphere 
dissociative electron transfer mechanism (ΔG‡ = 2.0 kcal mol–1) 
over the inner-sphere electron transfer pathway (TS1 in Fig. 6, 
ΔG‡ = 15.5 kcal mol–1). The subsequent radical cyclization to the pen-
dant aromatic ring has an activation barrier (ΔG‡) of 14.2 kcal mol–1, 
indicating a sufficient lifetime for the enantioconvergent conversion 
of racemic starting materials via the conformational change and C–C 
bond rotation of radical 4a. For the radical–polar crossover step, sev-
eral proton/electron transfer pathways from the dearomatized radical 
intermediate 8a to the oxindole product 2a were considered. The most 
favourable mechanism features a concerted proton–electron transfer 
(CPET)43, as previously studied in a related haem system44, where elec-
tron transfer from 8a to the haem Fe and proton transfer from 8a to 
the haem propionate occur in a concerted manner. This CPET pathway 
displays a low free-energy barrier of 1.1 kcal mol–1. Stepwise proton 
transfer–electron transfer and electron transfer–proton transfer pro-
cesses are kinetically less favourable, because of the higher barriers to 
form the relatively unstable intermediates 11 and 12, respectively. This 
finding indicates that the carboxylate group of the haem cofactor may 
serve as a base catalyst to facilitate the radical–polar crossover event, 
demonstrating the potential role of the haem cofactor as a bifunc-
tional catalyst to greatly lower the activation barrier of radical–polar 
crossover. Although other basic residues in the enzyme active site 
may serve as the base catalyst, these DFT calculations suggest that 
this CPET process is more favourable, as it bypasses the formation of 
high-energy intermediates resulting from stepwise electron or proton 
transfer. Additionally, as this CPET enables a fast and irreversible pro-
cess to trap the cyclized radical intermediate 8a, radical cyclization 
(TS2 in Fig. 6) is expected to be the enantioselectivity-determining 
step with the enzyme catalyst. This mechanistic scenario is consist-
ent with kinetic isotope effect experiments that suggest irreversible 
radical cyclization because of the kinetically facile trapping of 8a  
(see Supplementary Fig. 7).
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Conclusion
We have developed a unifying metalloenzyme platform for the asym-
metric radical cyclization to arenes, allowing challenging quaternary 
stereogenic centres to be formed with excellent enantioselectivities. 
Directed evolution enabled the rapid engineering of an orthogonal 
set of P450 radical cyclases P450arc1–2, allowing either enantiomeric 
product to be accessed via enantioconvergent radical cyclization. Fur-
thermore, kinetic resolution biocatalyst P450arc3 was also developed, 
giving rise to enantioenriched tertiary alkyl chlorides. Thus, closely 
related biocatalysts were engineered to catalyse both enantiocon-
vergent transformation and kinetic resolution of the same racemic 
substrates via a common radical mechanism. DFT calculations suggest 
that the radical–polar crossover event with ferric haem is facilitated 
by proton-coupled electron transfer and the C–C bond-forming radi-
cal addition determines the stereoselectivity of enantioconvergent 
processes. Collectively, the promiscuous nature and the excellent 
tunability of this metalloenzyme platform highlight its potential to 
tackle challenging problems in asymmetric radical transformations 
via unnatural biocatalysis.

Methods
Expression of P450arc variants
E. coli (E. cloni BL21(DE3)) cells carrying plasmid encoding the appro-
priate P450arc variant were grown overnight in 3 ml of Luria-Bertani 
medium with 0.1 mg/mL ampicillin (LBamp). Preculture (1.5 ml) was 
used to inoculate 28.5 ml of Hyperbroth (AthenaES) with 0.1 mg/mL  

ampicillin (HBamp) in an Erlenmeyer flask (125 mL). This culture was incu-
bated at 37 °C and 230 r.p.m. for 2 h. It was then cooled on ice for 20 min 
and induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside 
and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression 
was conducted at 22 °C and 150 r.p.m. for 20 h. E. coli cells were then 
transferred to a conical tube (50 ml) and pelleted by centrifugation 
(3,000g, 5 min, 4 °C). Supernatant was removed and the resulting 
cell pellet was resuspended in M9-N buffer to OD600 = 5–60 (usually 
15–30). An aliquot of this cell suspension (2 ml) was taken to determine 
protein concentration using the pridine hemochromagen assay after 
lysis by sonication.

Stereoselective radical cyclization using whole E. coli cells 
harbouring P450arc

Suspensions of E. coli (E. cloni BL21(DE3)) cells expressing the appropri-
ate P450arc variant in M9-N buffer (typically OD600 = 30) were kept on ice. 
In another conical tube, a solution of d-glucose (500 mM in M9-N) was 
prepared. The suspension of E. coli cells expressing P450arc (typically 
OD600 = 30, 345 μl) and the solution of d-glucose (40 μl of 500 mM stock 
solution in M9-N buffer) were added to a vial (2 ml). This vial was then 
transferred into an anaerobic chamber, where the organic substrate 
(15 μl of stock solution (267 mM in EtOH)) was added. The final reac-
tion volume was 400 μl; the final concentrations were 10 mM substrate 
and 50 mM d-glucose. (Note: the reaction performed with E. coli cells 
resuspended to OD600 = 30 indicates that 345 μl of OD600 = 30 cells were 
added, and likewise for other reaction OD600 descriptions.) The vials 
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were sealed and agitated in a Corning digital microplate shaker at room 
temperature and 680 r.p.m. for 12 h.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data are available in the main text and the Supplementary Infor-
mation or available from the authors upon reasonable request. X-ray 
crystal structures of 2i and (R)-3a are available free of charge from the 
Cambridge Crystallographic Data Centre under reference numbers 
CCDC 2184585 and 2184586. Plasmids encoding P450arcs reported in 
this study are available for research purposes from Y.Y. under a material 
transfer agreement with the University of California Santa Barbara.
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