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FOUR-DIMENSIONAL STEADY GRADIENT RICCI SOLITONS WITH
3-CYLINDRICAL TANGENT FLOWS AT INFINITY

RICHARD BAMLER*, BENNETT CHOW, YUXING DENG™*, ZILU MA, AND YONGJIA ZHANG

Abstract. In this paper we consider 4-dimensional steady soliton singularity models, i.e.,
complete steady gradient Ricci solitons that arise as the rescaled limit of a finite time singular
solution of the Ricci flow on a closed 4-manifold. In particular, we study the geometry at infinity
of such Ricci solitons under the assumption that their tangent flow at infinity is the product of
R with a 3-dimensional spherical space form. We also classify the tangent flows at infinity of
4-dimensional steady soliton singularity models in general.

1. INTRODUCTION

Gaining a better understanding of the formation of singularities is one of the key goals in the
study of higher-dimensional Ricci flows. In this context, gradient solitons serve as an important
class of singularity models. Steady gradient solitons, in particular, are expected to play a crucial
role in the study of Type II singularities (where the curvature blows up at rate > (T —¢)~!) and
have been subject to ongoing research. O. Munteanu and J. Wang [MW11, Theorem 4.2] proved
that any n-dimensional complete noncompact steady gradient Ricci soliton is either connected
at infinity (i.e., has exactly one end) or splits as the product of R with a compact Ricci flat
manifold. In particular, any 4-dimensional steady soliton singularity model must be connected
at infinity. In [CFSZ20] it was shown that a 4-dimensional steady soliton singularity model
must also have bounded curvature. In [DZ20], 4-dimensional noncollapsed steady solitons with
nonnegative sectional curvature decaying linearly are classified. O. Munteanu, C.-J. Sung, and
J. Wang [MSW19| proved that if a steady soliton has faster than linear curvature decay, then it
must have exponential curvature decay. In [CLY11] it was shown that the curvature decay of a
steady soliton is at most exponential under the assumption that the potential function f satisfies
f(z) = oo as x — oo. In [MSW19] the assumption was weakened to f being only bounded from
below.

There has been a considerable amount of progress on shrinking Ricci solitons. For example,
their asymptotic behavior at infinity has been characterized by O. Munteanu and J. Wang [MW15,
MW17, MW19] in many settings. Results regarding rigidity phenomena of shrinking solitons are
due to T. Colding and W. Minicozzi [CM21], B. Kotschwar and L. Wang [KW15, KW22], and
Y. Li and B. Wang [LW21].

In [Bam20a, Bam20b, Bam20c], the first author developed compactness and singularity theories
in all dimensions. In this paper, we apply these theories to certain questions regarding steady
gradient Ricci solitons. In particular, the main aim of this paper is to consider the case where the
tangent flow at infinity is 3-cylindrical.

Theorems 2.40 and 2.46 in [Bam20c], stated for Ricci flows on closed manifolds, also hold for
singularity models. Hence we have the following result of the first author (for the definition of

2020 Mathematics Subject Classification. Primary: 53E20. Secondary: 53C25, 57TR18.
Key words and phrases. Ricci flow, Ricci soliton, singularity model, tangent flow, four-manifold.
* Supported by NSF grant DMS-1906500.
** Supported by NSFC grants 12022101 and 11971056.
1

© 2022 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0001870822001013

2 RICHARD BAMLER™*, BENNETT CHOW, YUXING DENG™*, ZILU MA, AND YONGJIA ZHANG

the tangent flow at infinity, see [Bam20b, §6.8]). For the notation and definitions we use, see §2
below.

Definition 1.1. We say that a Ricci flow (M, g(t)),t € (—o0,0) on a smooth orbifold with isolated
singularities is a singularity model if it is not isometric to Euclidean space and it occurs as a blow-
up model of a given Ricci flow (M,g(t)),t € [0,T), T < oo, on a compact manifold M. By this
we mean that we can find a sequence of points (x;,t;) € M x [0,T) so that, after application of
a time-shift by —t; and parabolic rescaling by some \; — oo, the metric flow pairs corresponding
to (M, g(t), Ve, s.:t), t € [0,%;), F-converge to a metric flow pair (X, (v, .)),t < 0, such that X is
the metric flow induced by (M, ¢(t)),t € (—o0,0) (see [Bam20b, §3.7]).

This notion is a generalization of the notion from [CFSZ20], as in particular it also applies to
the case we consider in this paper in which M is a 4-dimensional smooth orbifold with isolated
singularities and it does not require parabolic rescaling by the curvature at (x;,t;). For example,
R*/T", where T is a nontrivial subgroup of O(4), is a candidate singularity model. The same can be
said with R* replaced by the Bryant soliton. This is the setting we will consider in this paper. A
more general notion of singularity model is considered in [Bam20b], [Bam20c], where it is proved
that the singular set of a singularity model must have codimension 4 in the parabolic sense.

Theorem 1.2. If (M* g(t)), t € (—00,0], is a 4-dimensional singularity model on an orbifold
with isolated singularities, then any tangent flow at infinity (M2, g (t)), t € (—00,0), of (M, g(t))
is a 4-dimensional, smooth, complete, shrinking gradient Ricci soliton on a Riemannian orbifold
with (isolated) comical singularities. Moreover, either (M, o) 18 isometric to R*/T for some
nontrivial finite subgroup I' C O(4) or Ry_y > 0 on all of M. For each t < 0, the conver-
gence to (My, goo(t)) is in the smooth Cheeger—Gromov sense outisde of the discrete set of conical
singularities.

In this paper will prove the following result.

Theorem 1.3. Let (M*, g, f) be a 4-dimensional complete steady gradient Ricci soliton on an
orbifold with isolated singularities that is a singularity model. Then the tangent flow at infinity
is unique. If the tangent flow at infinity is (S*/T) x R, then, for any € > 0, outisde a compact
set we have that each point is the center of an e-neck, has positive curvature operator, and linear
curvature decay.

Examples of 4-dimensional steady solitons with tangent flows at infinity (S*/I") x R are the
Bryant soliton [Bry05] and the Appleton [Appl7] cohomogeneity one steady solitons on real plane
bundles over S?. On the other hand, examples of 4-dimensional steady solitons with tangent flows
at infinity S* x R? have been proven to exist by Yi Lai [Lai20]. In dimension 3, she proved the
existence of flying wing steady solitons as conjectured by Hamilton.

As pointed out by the first author in [Bam20c, Section 2.7], the tangent flows at infinity should
agree with Perelman’s asymptotic solitons constructed in [Per02, Section 11]. This was recently
confirmed in [CMZ21a] by P.-Y. Chan and two of the authors. In [MZ21] by two of the authors,
Perelman’s constructions are studied on complete ancient Ricci flows, rather than only singularity
models, with different curvature conditions from those in previous approaches.

Acknowledgment: We would like to thank the referee for a number of suggestions which
improved the paper.

2. NOTATION AND PRELIMINARIES

For background on orbifolds, see Chapter 13 of Thurston’s book [T21]. In this paper we consider
smooth 4-dimensional orbifolds M with isolated singularities, so that the local model at a singular
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point is R*/T, where T is a finite subgroup of O(4). A Riemannian metric g on M is smooth when
the local lifts to R* are smooth.

We say that (M, g, f) is a steady gradient Ricci soliton if Ric = V2f, and is a shrinking gradient
Ricci soliton if Ric = V2f + % g; see [Ham93b|. By passing to the local lifts, these equations hold
on all of M, not just its regular part. In particular, Vf = 0 at each isolated singular point. So
the flow of —V f can be defined by passing to local lifts and it preserves the set of regular points.

By an ALE space, we mean an asymptotically locally Euclidean space; see S. Bando, A. Kasue,
and H. Nakajima [BKN89).

For a Ricci flow, the notions and properties of heat kernel vy, 4,.s,, H,-center, and pointed
Nash entropy N, .(7) are defined in [Bam20a]. Defined by the first author are the notions and
properties of metric flow (generalizing Ricci flow) and metric soliton (generalizing gradient Ricci
soliton) [Bam20b, §3], F-distance [Bam20b, §5], and F-convergence (generalizing Cheeger—Gromov
convergence), F-limit, and tangent flow at infinity [Bam20b, §6].

Throughout this paper, unless otherwise specified, we will be in the category of smooth 4-
dimensional orbifolds with a finite number of isolated singularities.

3. PROOFS

In view of Theorem 1.2, via a splitting result and the classification of 3-dimensional shrinking
solitons, we may classify the possible tangent flows at infinity of 4-dimensional steady soliton
singularity models. As indicated earlier, we will be in the category of smooth orbifolds with
isolated singularities.

Proposition 3.1. Any tangent flow at infinity (M2, g.(t)), t € (—00,0), of a nontrivial 4-
dimensional steady gradient Ricci soliton singularity model (M*, g(t)), t € (—o00,0], is either
RY/T (but not R*), (S3/T') x R, S? x R?, or ((S? x R)/Zs) x R. If the tangent flow at infinity is
R*/T, then (M, g(t)) is a (static) Ricci-flat ALE space.

Proof. Firstly, we remark that the definition of a tangent flow at infinity, which uses a space-time
basepoint (zg,ty) € M x (—o00,0] and a sequence \; — 0, may depend on A; but is independent
of the choice of (xg, tp); see [Bam20b, Definition 6.55] and [CMZ21b, Theorem 1.6]. By [Bam20b,
Theorem 6.58], any tangent flow at infinity of a finite time singularity model can be realized as an
F-limit of a sequence of compact Ricci flows (rescalings of the original Ricci flow). By [Bam20c,
§2.7], the Nash entropy of the sequence is uniformly bounded away from —oo and thus the tangent
flows at infinity of singularity models always exist (even if they do not have bounded curvature).

We claim that each tangent flow at infinity is either R*/T' (T # 1 by [Bam20c, Theorem 2.40])
or splits off a line. In the latter case, since it is a smooth orbifold with conical singularities,
by Theorem 1.2 it must be the product of R with a complete shrinking gradient Ricci soliton
(not necessarily with bounded curvature) on a 3-dimensional smooth manifold with R > 0. The
proposition now follows since these have been classified as S*/T', S x R and (S* x R)/Zy; see
Hamilton [Ham93b, §26], Perelman [Per03, Lemma 1.2], Cao, Chen, and Zhu [CCZ08], Ni and
Wallach [NW08], and Petersen and Wylie [PW10].

Now F-convergence (see [Bam20b, Definition 6.2], when the limit is an orbifold with conical sin-
gularities, can be upgraded to pointed Cheeger-Gromov convergence with respect to H,,-centers'
smoothly on compact subsets of the limit minus the conical singularities; see [Bam20b, §9.4].

To prove the claim in the first paragraph of this proof, we consider two cases: (1) V f remains
locally bounded and (2) Vf goes to infinity. Suppose that the rescalings (M, \;g(—A;"), %)
of a steady soliton model, where (z;, —\;') is an H,-center of (zy,0) and \; — 0, limit to a

complete shrinking gradient Ricci soliton (My, goo, 200) On & 4-orbifold with conical singularities,

For the definition of H,-center, see [Bam20a, Definition 3.10].
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after pulling back by diffeomorphisms ¢;. Let S,, denote the set of conical singularities of M,
which is a discrete set of points, and let Ry = My — Sx.

We may assume that the steady soliton solution to the Ricci flow g(t) is equal to ®;g, where &,
is the 1-parameter group of diffeomorphisms generated by —V,f. We define f(x,t) = f(Pi(x)),
so that Ricyy) = Vg(t)f(t). Let g = Mig(—=A; 1) and f; :== f(-,—)\;!). We have z,, € Ry and we
have smooth pointed Cheeger—-Gromov convergence of (M, g;, z;) to the limit on compact subsets

of Ry (see [Bam20b, §9]).

Case 1: Suppose that, for a subsequence, |dfi|g(2;) is uniformly bounded. Pass to this subse-
quence. Let f; = fi — fi(2;). From the smooth convergence, we have that |[Rm,,| is uniformly
bounded away from the conical singularities of the limit (after pulling back by the diffeomorphisms
¢;). In particular, the consequent Ricci curvature bound and the steady soliton equation imply
that [V2 fil,, < C on compact subsets of Ru. Since Ro is connected and |df;]y, () < C, this
implies that |df;i|,, < C on compact subsets of R..

Thus, by fi(z) = 0, |[Vfil,, < Ci(d(-,2)), and Shi’s local derivative of curvature estimates,
we have that |[V*f],, < Ci(d(-, %)) for all k > 0 on compact subsets of R.. Hence the f;
subconverge to a smooth function f,, on R.. By taking the limit of the steady soliton equation
Ric,, = V2 fi, we obtain Ric,, = V2_f. on M, minus the conical singularities. On the other
hand, since (M., go) has a shrinking gradient Ricci soliton structure, there exists a function f
such that Ric, = ngfo + %goo, so that h := f,, — fo satisfies Lypgoo = 2V§wh = (oo ON My,
minus the conical singularities. By adjusting h by an additive constant if necessary, this implies
that [VA[2_ = 5h. Hence p := 2v'h satisfies |Vp|,.. = 1 and Vy,Vp = 0 on R, so that the
integral curves of Vp are unit speed geodesics. This implies that (M, g ) is a flat cone whose
cross sections are the level sets of h.

Since the conical singularities are orbifold points, this implies that (M., gso) = R*/T, where
I is a finite subgroup of O(4). Therefore, on (M, g), we have R,(w;) = \Ry(2) — 0, where
w; = ®_y/3,(2). We also have that |df [2(w;) = N\ildfi]? () = 0. So on (M, g), R+ |df|* = C =0,
which implies Ric, = 0. Since the steady soliton singularity model has R, = 0, by the first
author’s generalization of Perelman’s no local collapsing theorem [Bam20a, Theorem 6.1}, there
exists k > 0 such that Vol,(B¢(xg)) > sr* for r > 0; hence, by definition, g has Euclidean
volume growth. It now follows from Cheeger and Naber [ChN15, Corollary 8.85] that (M, g) is an
ALE space. Note that I' # 1 also follows from the equality case of the Bishop—Gromov volume
comparison theorem.

Case 2: Suppose that, for a subsequence, |dfilg () = Bi_l — 00. Pass to this subsequence.
Let f; := Bi(fi — fi(2:)). Then fi(z) =0, |dfi],,(z) = 1, and thﬁ- — 0 on compact subsets of
Roo. Again, we have higher derivative estimates for f;. Thus, the f; subconverge to a smooth
function fo on R satisfying V2 foo = 0 on Ro and [dfuclg,, (200) = 1. This implies the splitting
of (Reo, o). Since the singularities are conical, there are no singularities and hence (Mu, goo)
splits. O

The discreteness of the space of 3-dimensional shrinking solitons occurring in Proposition 3.1
implies the following.

Proposition 3.2. Any 4-dimensional steady gradient Ricci soliton singularity model (M*, g(t)),
with potential function f(t), has a unique tangent flow at infinity.

Proof. 1f one tangent flow at infinity is R*/T, then (M, g(t)) is a Ricci flat ALE space as we have
seen in the proof of Proposition 3.1, and thus in this case any tangent flow at infinity is R*/T". So
we may assume that no tangent flow at infinity is R*/T.
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Let X be the metric flow induced by the Ricci flow (M*, g(t)); see [Bam20b, Definition 3.2].
Let I =[—2,—1/2] and let
T := {metric solitons (Y, (1)) that arise as tangent flows at infinity of X, restricted to I} ;

see [Bam20b, Definition 3.57] for the definition of metric soliton, and see [Bam20b, Definition 3.10]
for the definition of the restriction of a metric flow. By Proposition 3.1, the elements of 7 are
the metric solitons associated to N x R, where N is a 3-dimensional complete shrinking gradient
Ricci soliton structure that is isometric to S?/T', S? x R, or (S* x R)/Z,. Note that these are the
splitting quotients of S¥ x R*~* with the metrics 2(k — 1)gst + gra—+, k = 2,3. Hence the metric
space (T ,d3) is discrete, where dif denotes the F-distance introduced in [Bam20b, §5.1] and where
J is taken to be {—1} for convenience. By [Bam20b, Theorem 7.4], T is compact and thus finite.

Let 10e be the smallest distance between elements of (7, d{) and suppose that this distance is
attained by (VF,u¥) € T,k =0,1, i.e.,

10e = dg (V7. (1)), (V1. () -

Then there are sequences of scales Ay ; — 0 as j — oo such that
. 0Ak; (. Ok
lim df (OF, (b)), (A7, (1022)) ) = 0,

for k = 0,1 and where X~27* denotes the time-shift by —AT and then parabolic rescaling by A
of X as in [Bam20b, §6.8].

By discarding some scales, we may assume that Ao ; < Ay ;. There is a j such that if j > 7,
0Me; (. Ok
af (O (b)), (A0, () ) < e
It follows that
A (207, (A5)). (A0, (40))) > e
Note that there is a continuous curve connecting the two rescaled flows:
0, 0,

vi(m) = (X7, (vake))
for n € [Aoj, A1,;]. So there is some 7; € (A ;, A1j) such that

2 (). (0 (20))) € P24
meanwhile,
di (%(m), (A7, (uﬁ;j;vj))) > 2.

By the existence of tangent flows at infinity, a subsequence of v;(n;) converges to a splitting
metric soliton (Z, (u;)). Hence

di ((Zr, (1)), V7, (1)) € [2¢,4€], di (21, (1)), V1 (1)) > 2e,

which is a contradiction to the definition of e.
O

We have the following heat kernel concentration bound. This result also holds for general
4-dimensional singularity models under the additional assumption of bounded curvature.

Lemma 3.3. Let (M* g(t), f(t)), t € R, be a 4-dimensional steady gradient Ricci soliton singular-
ity model that satisfies the global non-collapsedness condition N ,(17) > =Y for all (z,t) € M xR,
T > 0, where Y < oo is some uniform constant. Suppose we normalize the metric so that



6 RICHARD BAMLER™*, BENNETT CHOW, YUXING DENG™*, ZILU MA, AND YONGJIA ZHANG

R+|Vf|*=1. Let zg € M and denote iy := vy 04 Jor each t < 0. Suppose that —A < s <t < —1,
t—s <4, and (z,t) is an Hy-center of (x9,0). If 6 < (Y, A), then

ts(B(z,t,8v/Hylt] ) > 1/2.
Proof. Claim: For any vy, 4. € M,

di(y1,92) — dlglil(yyht;sv Vyptis) < W(I]Y),
where W(0|Y) depends on 4, Y and ¥(§|Y) — 0 as § — 0 for each fixed Y.

Proof of the claim. Since R < 1 on M x R, we can use Perelman’s Harnack inequality [Per03, 9.5]
to deduce that the conjugate heat kernel K (y,t;-,-) based at any (y,t) € M x {t} satisfies

K(y,t:y,s) > (4n(t — s)) ™% exp ( 2\/tT/ Vt—t R(y,t)d ) > (dn(t — 5)) "2~ t=9)/3,

(3.4)
On the other hand, [Bam20a, Theorem 7.2] implies that for any Hy-center (2/,s) of (y,t) we have

K(ntin9) < Ot =) oxp (g2 ). 35)
Combining (3.4) and (3.5) implies
d3(y, 2')
9t —5) <InCY)+ (t—s) <InC(Y) + 9,

which yields a distance bound of the form
dy(y,2') < C(Y)V0.
So
A% (8, Vys) < A% (8, 020) + A% (0., Vy6) < dy(y, 2') + VHo(t — s) < C(Y)V6,  (3.6)

where the latter denotes some generic constant.
Applying (3.6) for two points y,y € M yields

ds(yh 92) - d?}[g/l (52,(17 5 )

< d%f/l (O, Uy t3s) + dlg/Isfl (Vyht;sv Vs tis) T dlg/Is/I (Vy2,t;sv Oy )

< QO(Y)\/S + d%lsll (Vg 55 Vi ti5) -
Hence

dg\sfl(yyut;sv Vys tis) = ds(y1,y2) — C(Y)\/g~
Let @, be the 1-parameter family of diffeomorphisms generated by —V f. Then
dS(yla y2) = d(CDS(yl)? ¢8(y2))-
Since
d(Dy(x / IV f(®.(x))dr < (t—s) (3.7)
by |V f| <1, we have
di(y1, y2) — ds(y1,92) < d(Pi(y1), Ps(yn)) + d(Pe(y2), Ps(y2)) < 2(t — 5) < 20.

Thus

di(y1,y2) — diy, (Vs sy Vyartis) < de(y1,2) — ds(y1,y2) + C(Y)VS < W(d]Y).
We have finished the proof of the claim.
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We can now apply [Bam20b, Lemma 4.18] with W therein equal to M since Var(uy) < HyA for
t" € [-A,0]. Thus there is a metric space Z with embeddings ¢, : (M, ds) — Z and ¢; : (M,d;) —
Z such that
dz(ps(2), pi(2)) < W(O]Y, A),
and
Ay, ((9s)stts, (91)wpie) < U(S]Y, A).
Since (M, g(t), f(t)) is a steady soliton, by (3.7),

B<Z7 S, 7 \% H4|t‘) - B(’Zv l 8 V H4’t|>
if § < 0. Let n be the cutoff function on Z defined by
n(z) = (1 —dz(x, Bz(ei(2), 5/ Halt]))) ,
which is 1-Lipschitz and has compact support. Then

NS(B(z7t78 H4‘t’)) = NS(B<’Z>577 H4’t‘)) = ((PS*MS)(BZ(SOS(Z)77 HWD)

2(@3*”5)(BZ<901‘/(2)76 H4’t‘)) Z/;nd<905*ﬂs>

> /an(QDt*Mt) - \I/(5|Y, A) 2 Mt(B<Z7t’5 H4|t|)) - \11(5|Y> A) 2 1/27

since U(4|Y, A) — 0 as 6 — 0 for fixed Y and A. O

When a tangent flow at infinity is (S*/T") x R, we obtain a canonical neighborhood-type result.
The idea of the proof is that in lieu of proving continuity of H,-centers (which are not unique) in
the variable A, we show an overlapping property for e-necks centered at H,-centers.

Proposition 3.8. Suppose that a 4-dimensional steady gradient Ricci soliton singularity model
(M*,g(t), f(t)) has a tangent flow at infinity isometric to (S*/T) x R. Then, for any € > 0, there
exists a compact set K, C M such that any x € M — K, is the center of an e-neck with respect to

=9(0).
Proof. By Proposition 3.2, there exists a finite subgroup I' of O(4) such that each tangent flow at
infinity of (M, g(t)) is ((S*/T") X R, gey1), where
geyl = 4gs3 /v + gr-
Let A > 0, let (z), —1/)\) be an Hy-center of (x¢,0), and define ¢, (t) = Ag(t/A). By the above, there
exist € = €(A) > 0 and a diffeomorphism ¥, : Bfﬁ — B(zx, 1/€; gx(—1)) such that limy_,o€e(A) =0
and
[W3gr(—1) — 9cy1||c[1/e1(B;ﬁ) <6

where B;ﬂ denotes a ball of radius 1/e in ((S?/T') X R, gey1). That is, 2 is the center of an e-neck in
(M, gx(—1)). Note that g\(—1) = AP, g, where g := g(0) and &, : M — M is the l-parameter
group of diffeomorphisms generated by —V,f. We have the composition of diffeomorphisms

D_1/x

B;}/Il &) B(ZA? 1/6;9)\(—1)) — B(w)\, 1/(\/Xe);g) = {TI)”
where wy 1= ®_;/5(25). So
||)\(CI)_1/)\ o \I/,\)*g - gcyIHC[l/e](B;}/'le) <e.

In particular,
|[Rmy|(x) ~ cA for allx € M,.
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Choose A > 0 to be small enough so that if A < A, then ¢(\) < 1075 and
Vi i= B(2x, 10V Hi; ga(—1)) = B(2x, 10V/ Ha/ A5 9(=1/))
is diffeomorphic to the corresponding ball in (S*/T") x R. Write
U)\ = B(w)\,lO H4/)\,g) == (I)—l/A(VA)- (39)
We will next show that
M — K, c | J 100,
A>0
for some compact set Ky, where we denote by
aB(z,r;g) = B(x,ar; g)

for any o > 0. This suffices to show that every point outside of K| is the center of an e-neck.

Claim: For any A\g > 0, there is a 6(Ag) > 0 such that if |A — A\¢| < J, then

UxNU,, # 0.

Proof. Proof of the claim. Set
4 4
Vy= gVA = B(2x, 8V Hyiga(—1)), Uy = gUA = ®_y,5(VY) = B(wx, 8/ Ha/X3 g).

Suppose, for a contradiction, that there exist Ao > 0 and a sequence A; — Ao such that
Ux, MUy, = 0.
By applying the diffeomorphism @/, to this, we obtain
Vi N @Tlo,%j(VAj) = 0. (3.10)

For any sufficiently small 3 > 0, there exists j = j(3, \g) such that for j > j,
1 1
5= — — 2 e (=BA).
J /\0 /\j ( 67 5)

For each x € V/\’j, by definition,

d(x, 2,5 95, (1)) < 8/ Hy.
Then

0
A3, (@) aign, (D) < | [ 19 fly @) ds| < I514/1/ < BVEF T < 1

if 3 < B()\g). Thus (3.10) yields
Vi, € ®5(Vy,), and hence Vi NVy =0.

Now, the key to the proof is that by the Gaussian concentration estimate of [Bam20a, Propo-
sition 3.13],

1
Vag0i-1/20(V3g) = 1 — 509
We may assume —1/\g < —1/); as the other case can be proved similarly. By Lemma 3.3,
(V) = 112,

for sufficiently large j, which is a contradiction to the fact that Vi N V/\’j = (). This proves the
claim. O
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By Munteanu and Wang [MW11], M is connected at infinity if it does not split for smooth steady
solitons. We include in the appendix a proof of their result for the case of smooth 4-orbifolds with
isolated singularities assuming that the tangent flow at infinity is 3-cylindrical. Thus M — U,
has two components when A < . Let W be the unbounded component of M — Uy and let
WY = M — W¢°, which is clearly bounded.

Now let Ky = WSE)' Then K is compact. Fix = ¢ K,. Consider

A:={Xe(0,1):z e W}

Let Ao = inf A. We claim that Ay € (0,\]. In fact, A\ < X directly follows from the definition.
If Ao = 0, then there is a sequence \; — 0 such that z € W;\’j and thus there is a sequence
y; € 8W§J‘_’ C 9JUy, that stays bounded. By passing to a subsequence, we may assume that
y; — y for some point y € M. Then |Rm|(y) = lim; o [Rm|(y;) < lim;_,o C,A; = 0, which is a
contradiction to the assumption that R > 0 on M.

By definition, there exists A\; > A\ such that A\; € A and A\; — \g < 0(\g)/2. Pick Ay € (0, o)
such that \g — \y < /2. We proved above that

Uy, NUy, # 0.
Since x € WY , we have x € 10U,,. Thus

M — Ko c | ] 100,

A>0
As 10 < 5 ( and 10U, lies in the middle of the neck region M, := 106( UA, we have that every
point out81de of Ky is the center of an e-neck. This completes the proof of the proposition. O

As a result, we can see that if (M?, g(t), f(t)) is a steady gradient Ricci soliton singularity model
whose tangent flow at infinity is (S*/T") x R, then it is asymptotically (quotient) cylindrical
in the following sense: for any sequence x; — 00,

(M7 R(mj)gvl'j) — ((Sg/r) X R,g,l'oo)

(without passing to a subsequence), where g is the rescaling of the standard cylindrical metric
with scalar curvature R(g) = 1. In fact, for any z; — oo, by the last proposition, z; € 10Uy, for
some \; > 0. Since R(z;) = 1.5A; 4+ 0(1) and 10Uy, C Ny, is an e-neck, we have the convergence.

By a result of Munteanu and Sesum [MS13, Corollary 5.2], whose proof applies in the orbifold
setting (see also Wu [Wul3, Theorem 1.1]), we have the following.

Proposition 3.11. If (M™, g, f) is a complete noncompact non-Ricci-flat steady gradient Ricci
soliton and o € M, then there exists a constant C such that for r > 1,
r—Cyr< sup f<r+C. (3.12)

0Br(0)
We prove an a priori curvature estimate.

Lemma 3.13. If a complete steady gradient Ricci soliton (M™, g, f) is asymptotically cylindrical,
then
lim R(x)r?(z) = oo,

T—00

where r(z) = d(x,0) and o is a fixed point.

Proof. Suppose that there is a sequence x; — oo such that R(z;)r?*(z;) < A? for some con-
stant A < oo. Since (M, g) is asymptotically cylindrical, there is a sequence A; — oo such that

(B(asj, \/I;‘—Z_wj); 9), R(x;)g, a:j> converges to ((S"!/T') X R, g, Zs) in the pointed Cheeger—Gromov
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sense. Since dg(y;)y(0,7;) < A and since the scalar curvature is constant on the cylinder, we have

R(o)
that R(ey)

the fact that g is not Ricci flat (since it is asymptotically cylindrical).

=1+ 0(1). Now, letting j — oo, we obtain that R(0) = 0, which is a contradiction to

4

Lemma 3.14. If a steady gradient Ricci soliton (M™,g, f) is asymptotically cylindrical, then
f@) _q
r(z)

A proof of this is in [CDM20, Theorem 2.1 because Ric(V f, V f) > 0 outside a compact set by
(3.20). For completeness, we include an alternative argument.

lim, o0

Proof. Fix o € K., where K. is given by Proposition 3.8 and e¢ > 0 is sufficiently small. Let p,
be sufficiently large so that x € M — K, whenever r(x) > po. By Proposition 3.11, there exists
Yo € 0B,,(0) such that py — C/po < f(yo) < po + C. Moreover, we have that yo is the center of

an e-neck N. Let ¢ : B?/'l — M be a diffeomorphism such that R(yg)¢*g is e-close to g, where Bf}'l

is a ball of radius 1/e in (S*/T") x R. We denote by Sy = ¢ ((S*!/T") x {0}) the center sphere of
M. We know Sy is diffeomorphic to S"~!/T" and

diam Sy < <o(py) as py— oo, (3.15)

R(yo)
by Lemma 3.13.
Let L= 10C,//R(go). Set S = 6 ((§"7/T) x {=L}), S = 6 (§"/T) x {L}).
Claim.
9By, (0) C ¢ ((S"'/T) x [-L, L]) =: N(L).

We know that S, S, are both diffeomorphic to S*!'/I" and that they share the same diameter
estimate (3.15) as that of Sy. Suppose that the claim is not true and there is some y; € 9B,,(0) —
M(L). We may assume y; lies in the bounded component of M — (L) since the proof of the
other case is similar. Since (M, g) is asymptotically cylindrical and has only one end, when py is
sufficiently large, 0B, (0) is connected; hence there exists y, € 9B, (0) N Si. Suppose yo = (%o, 0)
for some yo € S"1/T". Let 29 = ¢(4o, —L). Then d(29,y0) < L + € and

po=1(yo) >7r(z0) + L —€>r(ys) —diamS; + L — e = py — diamS; + L — e,
which is a contradiction. This proves the claim.

It follows from the claim that for each y € 9B,,(0),

d(y,y0) < L +diam Sy < C,,/+/ R(yo) < o(po).
As [V f| <1, for each y € 0B,,(0),

f) = f(yo) — d(y,y0) = po — C/po — 0(po).
Hence lim, ., f(z)/r(xz) = 1.

OJ
We have the following result of Brendle [Brel4]. For completeness, we include his proof.
Proposition 3.16. If (M", g, f) is asymptotically cylindrical, then
-1
fR=" — +o(1). (3.17)

This implies that
d(z,p)|Rmy|(z) = ¢, as z — oo.
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Proof. By Lemma 3.14, there exists a constant C' such that
Clr(z)—C < f(z) <r(z)+C.
Since R = o(1), we have
IVf>=140(1). (3.18)

Because an exact n-dimensional quotient cylinder ((S"~!/T") x R, g) satisfies the scale-invariant
identities R;?Ay;R; = 0 and (n — 1)R;?| Ricg |* = 1, we have

AR=o0(R*) and (n-—1) IRic|* = R* + o (R?). (3.19)
Indeed, if (3.19) is not true, then there exists a sequence of points tending to infinity about whose

rescalings limit to a solution which is not a cylinder (S*!/T") x R. Hence standard formulas imply
that

—(Vf,VR) = AR + 2|Ric|* = %RQ +o0(R?). (3.20)
Using this and (3.18), we compute that
_ 2 2 (Vf,VR)
. 1 _ 2 ) _
(959 (0~ 22} = 2o s ET oy

Now we show that integrating this over integral curves to —V f yields the proposition. Choose
ro so that

1
IV£]? > 5 on M — B,,(0). (3.22)

Let z € M — B,,(0) and let 0 : (—00,00) — M be the integral curve to —V f with ¢(0) = z. By
(3.22), there exists a smallest ug > 0 such that o(ug) € By, (0). Define ¢ = R~ — 2= f. We have

¢u»—¢ww@»=[va¢ammdu (3.23)

_ /0 <Vf, v (R1 _ %f)> (o(u))du

Note that, for u € [0, ug],
flotw) = flotuo) = = [ 194 (oteyde = 5 (m -,

so that d(o(u),0) > ¢ (ug —u) — C, where ¢ and C' are independent of x and w. This and (3.21)
justify the third equality in (3.23) and thus complete the proof of the proposition.
O

Recall that wy = ®_1/x(2)), where (2, —1/X) is an H,,-center of (x¢,0). We have that R(w,y) =
1.5A 4+ o(1) as A — 0. By Proposition 3.16,

lim Af (w,) = 1.

We have the following result, which was proved by Xiaohua Zhu and the third author in dimen-
sion 4 [DZ20, Theorem 1.5].

Proposition 3.24. If (M", g, f) is a complete steady gradient Ricci soliton that is asymptotically
cylindrical, then there exists a compact set K such that (M — K, g) has positive curvature operator
and satisfies

CYd(z,p)”" < |Rmy|(z) < Cd(z,p)™" for x€ M — K. (3.25)
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Proof. For simplicity, assume that dim M = n = 4. The proof of the general case is the same.
Since (M*, g) is asymptotically cylindrical, for any sequence z; — oo,

(M, R(x;)g(t/R(z;)), (z;,—1)) = ((§%/T) x R, §(t), (2, 1))

in the pointed Cheeger—-Gromov sense. Under this convergence of metrics, the rescaled vector
fields R~Y2(x;)V, f converge in C:2, to the vector field 9, on (S?/T") x R, where s is the coordinate
on the R-factor; this fact can be proved in the same way as in Brendle [Brel3, Proposition 2.5].

The main issue is to show that sectional curvatures of planes containing the radial directions of
the e-necks are positive. To this end, define

4
Aj = Z RijeVifVof,

i0=1

where our curvature sign convention is such that for orthonormal vectors v, w, R;jpevsw;wiv, is
the sectional curvature of the plane spanned by v, w. By standard equations for steady solitons,
we have

Ajk = Vlf (Vszk - Vlek)
= AR + 2RijpeRie — Vif Vi Ry
= ARji + 2R;jkeRie — V (VifRix) + V;Vif Ri

1
= ARy + 2Ry Rie = 5V, ViR = Ry,

Indeed, this is the steady version of a formula Hamilton derived for expanding solitons in [Ham93a,
§3]. Since our steady soliton is asymptotically cylindrical, we have |VRic| = o(R%2),|ARic| =
o(R?) and |V2R| = o( R?).
Moreover, for the round cylinder g with scalar curvature R(g) = 1 and local coordinates
{2,272, 2%} on S? and 7* the Euclidean coordinate for R, we have for 1 < j, k < 3 that
. - S e
Ajp = ARy + 2Ry Rig — §VijR — RjiRiy = g ik

since Rjjre = %(giggjk — Gixgje) and Rijpg = 0 for 1 < 4,5, k, ¢ < 3. Let {z'} be local coordinates
on M with ;2; = Vf and z', 2%, 2% tangent to the level sets of f. Thus, we have for 1 < j, k < 3,

2

R
Ryjra = RijreVifVof = Ajp = 5 ik +o(R?).
We have for 1 <4, 75, k, ¢ < 3,

R
Rijie = 5 (Giegjx — girgje) + o(R).

Moreover, for 1 <14, 7,k < 3,
Rijk4 = Vlek - Vlek = O<R3/2).

To show that the curvature operator is positive away from a compact set, we consider an

arbitrary nontrivial 2-form ¢ = Z?Fl a;; 0; \ 0; + Zizl b Ox ANV f at a point, where a;; = —a;;.
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Write A = (a;j),b = (by). We compute that
3

3 3
Rm(¢, ¢) = Z ;e Rijre + Z bibr Rajpa — 2 Z ;b Rijia

i,j,k,0=1 G k=1 ij,k=1
>§A21— 1 R—2b21— 1)) — |A||b]| o( R??
_3||( 0())+9||( o(1)) — [A|[b] o( RY7)
>0

outside of a sufficiently large compact set. x Finally, (3.25) follows from (3.17). O

APPENDIX A.

In this appendix, we prove that for any 4-dimensional steady soliton on an orbifold with isolated
singularities, if its tangent flow at infinity is (S*/T') x R, then it has only one end, and all of the
singular points must lie in a compact set. This is the slight extension of Munteanu and Wang’s
result stated in the proof of Proposition 3.8. As a consequence, all of our arguments in the previous
section are applicable to solitons on orbifolds with isolated singularities satisfying the conditions
assumed in our main theorem.

Theorem A.1. Let (M* g, f) be a steady soliton on an orbifold with isolated singularities such
that the tangent flow at infinity of its canonical form is (S3/T') x R. Then (M*, g, f) is connected
at infinity.

Proof. Let us fix a point o on M and let Uy, where A > 0, be the open ball defined by (3.9) in
the proof of Proposition 3.8. By the claim in the proof of Proposition 3.8, we have that the open
set

U= | 100, (A.2)
A<
is connected and covered by e-necks, and is therefore an end of (M, g), where ) is a small positive

number defined in the same way as in Proposition 3.8. For a contradiction, let us assume that U
is not the unique end. Then we can find a sequence {z;}3°, of points in M such that

dy(U, ;) S 0. (A.3)

Next, we consider the canonical form (M, g(t))ic(—o0,0 Of the steady soliton in question. By the
assumption of the theorem, we have that, fixing any ¢, for any sequence A\p \, 0 it holds that
(M, \eg(\ '), V%_VO;/\;%) converges in the F-sense to (S*/T") x R. Since (S*/T") x R is smooth, this
convergence is also smooth. As a consequence, we have that for any ¢ > 0, whenever \ is small
enough, it holds that (B(z;, 1/e; Ag(=A71)), A\g(—=A™1)) is e-close to the corresponding subset of
(S?/T") x R in the smooth sense, where

(zix, —A ') is some H,,-center of (z;,0) with respect to g(t). (A.4)

Now we fix a small positive number ¢ < 107% and define ); as follows:
(1) For all A < A\, (B(zi,)\, 1/¢; )\g(—)\_l)),)\g(—)\_l)) is e-close to the corresponding subset
of (S*/T') x R in the smooth sense. Here, as before, (z;y, —A™!) is an H,-center of (z;,0)
with respect to g(t).
(2) (B(2ipis 1/6Xi9(=A71), Xig(=A; 1)) is not e/2-close to any subset of (S*/T) x R.
Note that such a positive \; must exist, since the blow-up limit at any point must be Euclidean
space or a Fuclidean cone. Now we split our argument into two cases.
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Case 1. The sequence \; is bounded from below, namely, there is a positive number ¢ such that
Ai > ¢ for alli.
Let w;x = ®_1/x(2;,») for all ¢ > 0. Then we have

dg(w; x, wo \) = d(zm, 2’07)\;9(—)\_1)) <dy(x;, x0) + 2+/ Hy /A (A.5)

So we must have that w; » € U when A is small enough. Indeed, suppose this is not true. Recall
that wy  is the center of an e-neck with radius approximately VA~1, and this e-neck is contained
in U. Therefore, any point outside U must be at least distance e 1v/ =1 away from wp x. This is
clearly a contradiction to (A.5) when A is small enough.

Arguing in the same way as for the claim in Proposition 3.8, for each ¢, we can construct an
open set

U; := | J 10B(win, 10/Ha/ X5 g)
A<c

which is also connected and covered by e-necks. Obviously, U; is also an end of (M, g) and,
according the the argument in the previous paragraph, there exists a compact set K; C M such

By the proof of the claim in Lemma 3.3,

dg(w; e, z;) < C(Y)/c, (A.6)

where Ny, o(7) > =Y for any 7 > 0. By the assumption (A.3) for a contradiction and by (A.6),
we also have d (U, w;.) /* 0o. This shows that U; ¢ U. On the other hand, if U ¢ Uj;, then their
boundaries would intersect. However, by definition, dU; is approximately distance ve—! away
from w; ., and this is clearly impossible. In conclusion, we have U C U;. By the same argument,
we also have U; C U; if j > 1. Therefore,

Us = Ui

i>1

is an e-tube with infinite length on both ends, and it must be the whole manifold M, for otherwise
M is not connected. This also implies that (M?, g, f) is a steady soliton on a smooth manifold
with two ends, which is impossible by Munteanu and Wang [MW11]. Alternatively, we may also
use the closeness to (S*/T') x R and deduce that 9, R(-,t) > ¢ > 0, which contradicts the fact that
all time-slices are isometric and the uniform bound R < 1.

Case I1. )\; is not bounded from below.
Let us consider the sequence of rescaled flows

{(M, Nig(\; ), Vmi’o;)\i—lt) }i:1. (A.7)

By [Bam20b, Bam20c|, after passing to a subsequence, there is an F-limit X whose singular set has
space-time Minkowski dimension no greater than 2. Since X" is a blow-down limit, the potential
functional f of the original steady soliton gives rise to a parallel vector field on the regular part
of X. Since f o ®, is a solution to the heat equation, we may apply [Bam20c, Theorem 15.50] to
)\3 /2 f o ®, and conclude that X splits as R x )}, where ) is a 3-dimensional metric flow whose
singular set has space-time Minkowski dimension no greater than 1, and hence must be a smooth
ancient Ricel flow. Letting X := R X (N2, goo () )te(—c0,0), We then have that (21,4, —1) is not the
center of an $-neck, but (2, —A™') is the center of an e-neck for all A < 1, where (2) 00, —A™")
is the limit of the sequence of space-time points {(z;a,, —A™')} (c.f. (A.4)) in the sequence of
rescaled flows (A.7). This further shows that (Nu, goo(t)) is e-close to S?/T for all ¢ < —1, but not
£-close to S*/T" at t = —1. This is clearly a contradiction by Hamilton’s theorem [Ham82]. O



4-DIMENSIONAL STEADY RICCI SOLITONS WITH 3-CYLINDRICAL TANGENT FLOWS AT INFINITY 15

[Appl7]
[Bam20a]
[Bam20b)
[Bam20c]|
[BKNSY]
[Brel3]
[Brel4]
[Bry05]
[CCZ08]
[Chalg]
[CMZ21a)
[CMZ21b)
[ChN15]
[CDM20]

[CFSZ20]

[CLY11]
[CM21]
[DZ20]
[Ham8?2]

[Ham93a]
[Ham93b)

[KW15]
[KW22]
[Lai20]

[LW21]
[MZ21]

[MS13]
[MSW19]

MW11]

REFERENCES

Appleton, Alexander. A family of non-collapsed steady Ricci solitons in even dimensions greater or
equal to four. arXiv:1708.00161v4 (2017).

Bamler, Richard H. Entropy and heat kernel bounds on a Ricci flow background, arXiv:2008.07093v3
(2020).

, Compactness theory of the space of super Ricci flows, arXiv:2008.09298v2 (2020).

, Structure theory of non-collapsed limits of Ricci flows, arXiv:2009.03243v2 (2020).

Bando, Shigetoshi; Kasue, Atsushi; Nakajima, Hiraku. On a construction of coordinates at infinity
on manifolds with fast curvature decay and mazimal volume growth. Invent. Math. 97 (1989), no. 2,
313-349.

Brendle, Simon. Rotational symmetry of self-similar solutions to the Ricci flow, Invent. math. 194
(2013), 731-764.

Brendle, Simon. Rotational symmetry of Ricci solitons in higher dimensions, J. Diff. Geom. 97 (2014),
no. 2, 191-214.

Bryant, Robert.  Ricci  flow  solitons in  dimension  three  with  SO(3)-symmetries,
http://www.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf. (2005).

Cao, Huai-Dong; Chen, Bing-Long; Zhu, Xi-Ping. Recent developments on Hamilton’s Ricci flow, Sur-
veys in differential geometry. Vol. XII. Geometric flows, 47-112, Int. Press, Somerville, MA, 2008.
Chan, Pak-Yeung. Curvature estimates for steady gradient Ricci solitons, Trans. Amer. Math. Soc. 372
(2019), no. 12, 8985-9008.

Chan, Pak-Yeung; Zilu Ma; Yongjia Zhang. Ancient Ricci flows with asymptotic solitons.
arXiv:2106.06904 (2021).

Chan, Pak-Yeung; Zilu Ma; Yongjia Zhang. On Ricci flows with closed and smooth tangent flows.
arXiv:2109.14763 (2021).

Cheeger, Jeff; Naber, Aaron. Regularity of Finstein manifolds and the codimension 4 conjecture, Annals
of Mathematics 182 (2015), 1093-1165.

Chow, Bennett; Deng, Yuxing; Ma, Zilu. On four-dimensional steady gradient Ricci solitons that di-
mension reduce, arXiv:2009.11456 (2020).

Chow, Bennett; Freedman, Michael; Shin, Henry; Zhang, Yongjia. Curvature growth of some 4-
dimensional gradient Ricci soliton singularity models, Advances in Mathematics, 372 (2020), article
number 107303.

Chow, Bennett; Lu, Peng; Yang, Bo. Lower bounds for the scalar curvatures of noncompact gradient
Ricci solitons, Comptes Rendus Mathematique Ser. I, 349 (2011), 1265-1267.

Colding, Tobias Holck; Minicozzi, William P. II. Singularities of Ricci flow and diffeomorphisms,
arXiv:2109.06240 (2021).

Deng, Yuxing; Zhu, Xiaohua. Classification of gradient steady Ricci solitons with linear curvature decay,
Science China Mathematics 63 (2020), 135-154.

Hamilton, Richard S. Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982),
no. 2, 255-306.

Hamilton, Richard S. The Harnack estimate for the Ricci flow, J. Diff. Geom. 37 (1993), no. 1, 225-243.
Hamilton, Richard S. The formation of singularities in the Ricci flow. Surveys in differential geometry,
Vol. II (Cambridge, MA, 1993), 7-136, Internat. Press, Cambridge, MA, 1995.

Kotschwar, Brett; Wang, Lu. Rigidity of asymptotically conical shrinking gradient Ricci solitons, J. Diff.
Geom., 100 (2015), 55-108.

Kotschwar, Brett; Wang, Lu. A uniqueness theorem for asymptotically cylindrical shrinking Ricci soli-
tons, J. Diff. Geom., to appear (2022).

Lai, Yi. A family of 3d steady gradient solitons that are flying wings, J. Diff. Geom., to appear,
arXiv:2010.07272 (2020).

Li, Yu; Wang, Bing. Rigidity of the round cylinders in Ricci shrinkers, arXiv:2108.03622 (2021).

Ma, Zilu; Zhang, Yongjia. Perelman’s entropy on ancient Ricci flows, J. Funct. Anal. 281 (2021), no. 9,
Paper No. 109195, 31 pp.; MR4290285.

Munteanu, Ovidiu; Sesum, Natasa. On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539-561.
Munteanu, Ovidiu; Sung, Chiung-Jue Anna; Wang, Jiaping. Poisson equation on complete manifolds,
Adv. Math. 348 (2019), 81-145.

Munteanu, Ovidiu; Wang, Jiaping. Smooth metric measure spaces with non-negative curvature, Com-
munications in Analysis and Geometry 19 (2011), No. 3, 451-486.



16
[MW15]
[MW17]
[MW19]
[NWOS]
[Per02]

[Per03]
[PW10]

[T21]

[Wul3]

RICHARD BAMLER™*, BENNETT CHOW, YUXING DENG™*, ZILU MA, AND YONGJIA ZHANG

Munteanu, Ovidiu; Wang, Jiaping. Geometry of shrinking Ricci solitons. Compos. Math. 151 (2015),
no. 12, 2273-2300.

Munteanu, Ovidiu; Wang, Jiaping. Conical structure for shrinking Ricci solitons. J. Eur. Math. Soc.
(JEMS) 19 (2017), no. 11, 3377-3390.

Munteanu, Ovidiu; Wang, Jiaping. Structure at infinity for shrinking Ricci solitons, Annales Scien-
tifiques de I’Ecole Normale Superieure 52 no. 4 (2019), 891-925.

Ni, Lei; Wallach, Nolan. On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008),
941--955.

Perelman, Grisha. The entropy formula for the Ricci flow and its geometric applications,
arXiv:math.DG/0211159 (2002).

Perelman, Grisha. Ricci flow with surgery on three-manifolds, arXiv:math.DG /0303109 (2003).
Petersen, Peter; Wylie, William. On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010),
2277--2300.

Thurston, William P. The Geometry and Topology of Three-Manifolds: With a Preface by Steven P.
Kerckhoff, Collected Works IV, Volume 27 (2021).

Wu, Peng. On the potential function of gradient steady Ricci solitons. J. Geom. Anal. 23 (2013), no. 1,
221-228.

RICHARD BAMLER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, 970 EVANS
HAaLL #3840, BERKELEY, CA, 94720-3840 USA, RBAMLER@QBERKELEY.EDU.

BENNETT CHOW, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 9500 GILMAN
DRIVE #0112, LA JorLrA, CA 92093-0112, USA, BECHOWQUCSD.EDU.

YUXING DENG, SCHOOL OF MATHEMATICS AND STATISTICS, BEIJING INSTITUTE OF TECHNOLOGY, BEIJING,

100081,

CHINA, 6120180026@BIT.EDU.CN

ZILU MA, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 9500 GILMAN DRIVE
#0112, LA JoLLA, CA 92093-0112, USA, ziM022QUCSD.EDU.

YONGJIA ZHANG, SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455,
ZHANT298QUMN.EDU





