Geom. Funct. Anal. Vol. 34 (2024) 377-392
https://doi.org/10.1007 /s00039-024-00668-9
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

| GAFA Geometric And Functional Analysis

Check for
updates

A NEW COMPLETE TWO-DIMENSIONAL SHRINKING
GRADIENT KAHLER-RICCI SOLITON

RicHARD H. BAMLER, CHARLES CIFARELLI, RONAN J. CONLON, AND
ALIX DERUELLE

Abstract. We prove the existence of a unique complete shrinking gradient Kéhler-
Ricci soliton with bounded scalar curvature on the blowup of C x P! at one point.
This completes the classification of such solitons in two complex dimensions.

1 Introduction

1.1 Overview. Shrinking Ricci solitons are natural generalizations of Einstein
manifolds with positive scalar curvature. As such, their study and classification has
become a central topic in both Riemannian and Kéhler geometry. Indeed, shrinking
Kahler-Ricci solitons are known to exist on certain Fano manifolds that have ob-
structions to the existence of a Kahler-Einstein metric [Zhu00]. Moreover in Ricci
flow, shrinking Ricci solitons comprise candidate singularity models, thereby mak-
ing their study crucial, for example, in potentially implementing higher-dimensional
surgery constructions.

While in (real) dimensions 2 and 3, a full classification of shrinking Ricci solitons
has been achieved (these are Euclidean or quotients of spheres S2, 5% or the cylinder
S? x R) [Ham82, Per03], the situation is far from clear in (real) dimension 4. Apart
from the obvious examples (R* or quotients of S 5% x R, and S? x R?) and the
ten del Pezzo surfaces [Tia90, Zhu00], the only other example in this dimension was
found by Feldman, Ilmanen, and Knopf [FIK03] nearly 20 years ago. Its construction
was, in part, possible due to its cohomogeneity one U(2)-symmetry, which allowed
the reduction of the soliton equation to a system of ODEs (the solution of which
nevertheless still posed a non-trivial problem).

In this paper we prove the existence of a new complete non-compact shrinking
Kahler-Ricci soliton in complex dimension 2. This soliton is invariant under a real
two-dimensional torus action, hence it has cohomogeneity 2. Its underlying complex
manifold is biholomorphic to the blowup of C x P! at one point, a model that was
already identified as the last remaining candidate in previous work [CCD24] of the
latter three named authors. We therefore complete the classification of shrinking
Kaéhler-Ricci solitons in complex dimension 2. In addition, we employ a novel ap-
proach, in which we construct the soliton indirectly as a blowup limit of a specific
Kahler-Ricci flow on a compact manifold. We use recent estimates obtained by the
first author [Bam201, Bam23, Bam202] combined with Kéhler-Ricci flow techniques
to control the singularity formation of this flow.
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1.2 Main results. We begin by recalling the main definitions.
A Ricci soliton is a triple (M, g, X ), where M is a Riemannian manifold endowed
with a complete Riemannian metric g and a complete vector field X, such that

1
Ricg+§£Xg:/\g (1.1)

for some A € R. The vector field X is called the soliton vector field. If X = V9 f for
some smooth real-valued function f on M, then we say that (M, g, X) (or (M, g, f))
is gradient. In this case, the soliton equation (1.1) becomes

Ric, +V2f — \g =0,

and we call f the soliton potential. In the case of gradient Ricci solitons, the com-
pleteness of X is guaranteed by the completeness of g [Zha09].

Let (M, g, X) be a Ricci soliton. If g is Kéhler and X is real holomorphic, then
we say that (M, g, X) is a Kahler-Ricci soliton. Let w denote the Kéhler form of g.
If (M, g, X) is in addition gradient, then (1.1) may be rewritten as

Po + 100 f = \w,

where p,, is the Ricci form of w and f is the soliton potential.

Finally, a Ricci soliton and a Kéhler-Ricci soliton are called steady if A =0,
expanding if A\ <0, and shrinking if A >0 in (1.1). One can always normalise A,
when non-zero, to satisfy |A\| = 1. We henceforth assume that this is the case.

Our main result is now the following.

Theorem A (Existence and uniqueness). Up to automorphism, there exists a unique
complete shrinking gradient Kdhler-Ricci soliton with bounded scalar curvature on
Bl.(C x PY), that is, the blowup of C x P* at a fived point x of the standard real torus
action on C x P'. Moreover, this soliton is invariant under the induced real torus
action and appears as a parabolic blowup limit of the Kdhler-Ricci flow.

The soliton of Theorem A is constructed as a singularity model of a specific Ricci
flow. More precisely, we consider the blowup N := Bl (P! x P!) of P! x P! at one
point and show that there is a toric Kéhler-Ricci flow that contracts the exceptional
divisor and exactly one other (—1)-curve at the singular time 7" > 0. The volume of
N close to the singular time is ~ (7' — t). Using the estimates from [Bam202], we
analyze possible blowup models of this flow. Thanks to the toricity of the flow and the
topology of the underlying manifold, we are able to exclude orbifold singularities from
appearing in the limit and show that the singularity is close to a smooth shrinking
Kahler-Ricci soliton at most scales. By [CCD24], regions that are close enough to
such Kéhler-Ricci solitons must contain a complex curve of self-intersection 0 or —1.
The areas of these curves, which are determined by the Kéhler class of the evolving
metric, shrink by at most a linear rate. This observation allows us to bound from
below the scales at which the flow exhibits closeness to a shrinking Kéahler-Ricci
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soliton. Consequently, we see that the low must be Type I, i.e., we have curvature
bounds of the form |[Rm| < C/(T —t). As a result, the singularity formation near
every point can be described by a shrinking Kéhler-Ricci soliton. Among these, we
are able to exclude the soliton of Feldman-Ilmanen-Knopf because the volume of N
under the flow converges to zero [CCD24]. This only leaves C x P! and the candidate
from Theorem A as possible blowup limits. Complex geometric reasons allow us to
further rule out a C x P! forming near the exceptional divisor. This demonstrates
that an additional soliton, namely that characterized in [CCD24], must exist.

To each complete shrinking Kéhler-Ricci soliton (M, g, X) satisfying (1.1) with
A =1, one obtains a solution of the Kéhler-Ricci flow 0;g(t) = — Ricy. Indeed, set

g(t) :=—tyig, t<0,

where ; is a family of diffeomorphisms generated by the vector field —%X with
p_1 =id, i.e.,

ot 2t ’

Then 0;g(t) = —Ricyy) for t <0, and g(—1) = g. In this way, non-flat complete

Y1 =id.

shrinking gradient Kéhler-Ricci solitons with bounded curvature appear as parabolic
rescalings of finite time Type I singularities of the Kéhler-Ricci flow [Ses06, CZ11,
EMT11, Nab10]. In other words, they are models for such singularities and hence
this motivates their classification. Theorem A completes such a classification in two
complex dimensions.

Indeed, a complete two-dimensional shrinking gradient Kahler-Ricci soliton with
bounded curvature is either compact, in which case the underlying manifold is Fano
and the resulting soliton is, up to automorphism [TZ00], Kéhler-Einstein or the
shrinking gradient Ké&hler-Ricci soliton given by [WZ04] depending on the Fano
manifold in question, or is non-compact with bounded scalar curvature. Shrinking
gradient Kéahler-Ricci solitons are connected at infinity [MW15] and in this latter
case, there is a dichotomy in the sense that the scalar curvature of the soliton either
tends to zero along every integral curve of X, or X has an integral curve along
which the scalar curvature does not tend to zero. In the former case, it follows that
the scalar curvature tends to zero globally (cf. [CCD24, Lemma 2.7]) and hence the
soliton is (up to automorphism) either that of Feldman-Ilmanen-Knopf [FIK03] on
the blowup of C? at one point or the flat Gaussian shrinking soliton on C? [CDS24].
In the latter case, the shrinking soliton is either isometric to the cylinder C x P! or
to the shrinking soliton of Theorem A.

Theorem B (Classification of two-dimensional Kéahler shrinkers). Let (M, g, X) be
a complete two-dimensional shrinking gradient Kdahler-Ricci soliton with bounded
scalar curvature. Then either:

(i) M is Fano and g is, up to automorphism, either Kdhler-Finstein or the
shrinking gradient Kdhler-Ricci soliton on M given by [WZ04], or:
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(ii) (M, g, X) is, up to pullback by an element of GL(2, C), the flat Gaussian
shrinking soliton on C2, or:

(iii) (M, g, X) is, up to pullback by an element of GL(2, C), the unique U(2)-
invariant shrinking gradient Kdahler-Ricci soliton of Feldman-Ilmanen-Knopf
[FIKO3] on the total space of O(—1) over P, or:

(iv) (M, g, X) is, up to automorphism, the cylinder C x P, or:

(v) (M, g, X) is, up to automorphism, the shrinking gradient Kdihler-Ricci soli-
ton of Theorem A.

It has recently been shown that the assumption of bounded scalar curvature in this
theorem is automatic [LW23].

Thus, we are left with the following picture. Let (M, g(t))cjo, ) be a Kéhler-
Ricci flow developing a finite time Type I singularity when t =T > 0. Take a
blowup limit g (t) of the rescaled flows g;(t) := )\]-_Qg(T + M), te [—)\j_zT, 0),
for some sequence A; — 0, centered at a point x € M where the curvature blows
up. If lim;_,7— vol(M, g(t)) > 0, then [CCD24, Theorem B]| asserts that this blowup
limit is the Feldman-Ilmanen-Knopf shrinking soliton on the blowup of C? at one
point. On the other hand, if there is finite time collapsing at ¢t =T > 0, i.e., if
lim,_,7— vol(M, g(t)) = 0, then either lim;_,r- diam(M, g(t)) =0, which is a “finite
time extinction”, or limsup,_,,— diam(M, g(t)) > 0. In the former case, [TZ18] (see
also [Sonl4]) asserts that M is Fano and the Kéhler class of g(0) lies in a positive
multiple of ¢;(M). The work of Perelman (see [ST08]) gives us the upper bound
diam(M, ¢(t)) < C(T — t)%, which, for the re-scaled limit g (t), t <0, translates
as diam(M, g-(t)) < C(—t)%, t < 0. This latter bound implies that the rescaled
limit is compact, hence being a shrinking soliton, is Fano with its (up to automor-
phism [TZ00]) unique shrinking soliton structure. In the latter case, the blowup
limit cannot be Fano as the compactness of such a manifold would imply that
lim; .- diam(M, g(t)) = 0, a contradiction. By [CCD24, Theorem B], the blowup
limit cannot be the shrinking soliton of Feldman-Ilmanen-Knopf [FIK03]. Hence the
only possibility is that the blowup limit is the cylinder C x P! or the soliton of
Theorem A, where the latter model corresponds to the contraction of a (—1)-curve.

2 Proof of Theorem A

Let 0: N = Bl (P! x P!) —» P! x P! denote the blowup of P! x P! at one of the
four fixed points = of the standard real torus action on P! x P!, let £ C N denote
the corresponding exceptional divisor, and write J for the complex structure of N.
Denote the two fixed points on each factor by p, g € P!, so that without loss of
generality we can take z = (p, p) € P! x P1. Consider N endowed with the induced
action of a real torus T? and set Dy = o 1(P! x {¢}) and Dy = o *({q} x P!) so
that D; are torus-invariant divisors in N satisfying [D;]? =0, [D1].[D2] =1, and
[D;].[E] = 0. Then we can choose a Kahler metric gy on N invariant under the torus
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action such that for the associated Kéhler-Ricci flow (g(t))sejo,r), T' > 0, we have
vol(Dy,4(t)), vol(E, g(t)) P 0, wvol(Da,g(t)) #— 0.
—

Indeed, g(0) can be chosen as follows. HY1(N) = R3 is generated by the Poincaré
duals to Dy, Do, and E. Using the Nakai-Moishezon criterion for positivity and the
fact that in the toric category, it suffices to check this only on irreducible torus-
invariant curves, a computation shows that the Kéhler cone Ky of N is given by

Ky :{a1[D1] +a2[D2] —b[E] ‘ a1 >b>0, as >b>0}.

Since for any inital Kéhler g(0), the Kéhler class of the evolving Kéhler form w(t)
satisfies

O[w(®t)] = —[puw] = —2mc1(N),
we find that
[w(t)] = [w(0)] — 2tmer (N). (2.1)

The first Chern class ¢;(IV) of N is given by 2mwc¢; (N) = 2[D1] + 2[Ds] — [E]. Hence
for any initial Kéhler form w(0) in the Kéhler class a1[D1] 4 as[Ds] — b[E] € Ky, we
find that

[w(t)] = (a1 = 2t)[D1] + (az — 2t)[D2] — (b— 1) [E]. (2.2)
In particular, the volume of D;, i =1, 2, is given by
VOl(Di,W(t)) = /1;) [w(t)] = (ag_i — 2t)[D1][D2] = a3—; — Qt,
whereas the volume of F is given by

vol(E,w(t)):/E[w(t)]:-(b-t)[E]?:b—t.

Therefore it suffices to choose g(0) to lie in a Kéhler class with ag = 2b and a1 > as.
The singular time 7> 0 of the flow is then given by T'=b = %. By averaging, we
can guarantee that g(0) is invariant under the torus action.

Our Ricci flow has the following property.

LEMMA 2.3. vol(N, g(t)) — 0 and (T —t)~2vol(N, g(t)) /— 0.
Proof. The volume vol(M, g(t)) is given by

vol(M, g(t)) = 5 [ [wlt)]? = (@ = 26)(az — 20) — 5 (b~ 1)

:4(%4) (T—t)—%(T—t)z.

The lemma now follows since %1 > “72 =T. O
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LEMMA 2.4. Let T C O(4) be a non-trivial, finite group acting freely on S3. Then
the following cannot occur: There are sequences t; € [0,T), A\; >0, an exhaustion
U CUyC---C(R*—{0})/T, and diffeomorphisms 1; : U; — 1;(U;) = V; C N such
that \29¥g(t;) converges locally smoothly to the Euclidean metric on R*/T.

Note that we don’t impose any T?-equivariance assumptions on v; in Lemma, 2.4.

Proof. Suppose that there were such sequences. Set g; := A\?g(t;) and fix a cutoff
function 7 : [0,00) — [0,1] with 7 =1 near 0 and n =0 on [1,00). Let inj,, : N — R,
denote the injectivity radius with respect to g; and define (u. € C°(N)).>¢ by

w(p) = [ ini, (@n(d(p.0)/2)dg(@) | [ dln.0)/2)daita).

Next note that injy, oy; converges locally uniformly to the injectivity radius on
(R* — {0})/T', which itself is linear in the radial coordinate. So if W := A(0, 3,2)/T
denotes an annulus around the origin in R*/T, then for small enough ¢ > 0 we have
smooth convergence of (u.o;)|w to a radial function on W without critical points.
So for large 4, the function u. has a regular level set that contains a component
¥; C M diffeomorphic to S3/T". By construction, ¥; is invariant under the T%-action
on N. Since we may choose X; to be an arbitrary level set of u., we may assume in
addition that the T™?-action on ¥; has no fixed point.

Consider now the moment map s : N — R? of the real T?-action, which exists
because N is simply connected. As is well-known, p(N) can be realised as a convex
polytope P C R? with vertices (—1,0), (—=1,1), (1,1),(1,—1), (0,—1), with the facet
joining (—1, 0) and (0, —1) corresponding to E. P is the orbit space of the T?-action.
Indeed, the pre-image under p of points in the interior of P are generic T2-orbits,
the pre-image under u of points along the facets are S'-orbits, and the pre-images
of the vertices are points, corresponding to fixed points of the T?-action. The image
w(3;) € P defines a smooth path whose endpoints lie in the facets of P; it is not
closed, because otherwise m;(%;) would be infinite.

Let Fy, Fy denote the two (not necessarily distinct) facets of P which contain the
endpoints of p(X;). Since ¥; does not contain any fixed point of the torus action,
the two endpoints of 1(3;) must lie in the interior of F} and F5. These facets are de-
fined by the linear equalities (v;,z) = —1, where v; € {£(1, 0), £(0, 1), (1, 1)}. First
suppose that F; and Fj are parallel. Then the moment map p contracts at each
endpoint the same S'-factor of the T2-fibration in the interior so that ¥; defines
a trivial S'-bundle over S?, i.e., ¥; must be diffeomorphic to S? x S'. This con-
tradicts the fact that ¥; = S3/T. Next, suppose that the normals vy, 15 are linearly
independent. Then running through the various possibilities for v;, we see that the
cone C' = {zx € R? | (v;,z) >0, j = 1,2} CR? satisfies the Delzant condition [Cif22,
Definition 7] so that the complex cone defined by C is biholomorphic to C2. If Fy
and F, are consecutive edges, then X; lies in a neighborhood of N that is (C*)2-
equivariantly biholomorphic to C2. As such, 3; can be smoothly deformed to a link
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of the cone structure for C?, and hence must be diffeomorphic to S2, thereby con-
tradicting our assumption that I' is non-trivial. Notice that N has precisely three
invariant (—1)-curves, namely those corresponding to the facets of P with inner nor-
mals (1,0), (1,1), and (0,1), respectively. Therefore if Fi, F5 are not consecutive,
then they must be separated by some facet of P corresponding to one of these (—1)-
cuves. Blowing down this particular curve, we see that ¥; descends to a hypersurface
Y, inside a toric surface N biholomorphic to either P' x P! or to the blowup of P? at
one point. Choosing an invariant Kahler metric on N in an appropriate cohomology
class, we obtain a new moment map fi: N — R? with 1mage a convex polytope P
such that the endpoints of fi(%;) lie in consecutive edges Fy, Fy of P with the same
inner normals as F}, Fy, respectively. The previous argument then gives that 3;, and
hence ¥;, is again diffeomorphic to S3, a contradiction.

Alternatively, one may conclude the argument in the following way. If ;N E = (),
then 3; descends to a hypersurface ) C P! x P! invariant under the torus action,
which must either be an invariant S% or an S? x S' in P! x P, If ¥; N E # (), then
¥; intersects one of Dy, Dy, the strict transform of P! x {p} or {p} x P!, or E itself
in a separate point. As we have seen, if ¥; intersects ' in two distinct points, then
¥; & 8% x S, contradicting the fact that ¥; = S3/I". Suppose that Y; meets either
D; or Dy. By symmetry, we may assume without loss of generality that 3; N Dy # (.
Then ¥; is diffeomorphic to the boundary of a small tubular neighborhood of the
strict transform of P! x {p} in N, which has self-intersection —1. Thus %; must be
diffeomorphic to S3, contradicting our assumption that I' is non-trivial. To treat
the last possibility, assume without loss of generality again that >; meets the strict
transform of {p} x P. Then ¥; is diffeomorphic to the boundary of a small tubular
neighborhood of a fixed point of the T2-action, and so we see once again that 3; must
be diffeomorphic to S3, contradicting again our assumption that I" is non-trivial. [

LEMMA 2.5. Let (M, g, X) be a two-dimensional complete shrinking gradient
Kdhler-Ricci soliton with X = VIf for a smooth real-valued function f: M — R.
Suppose that there are sequences p; € M and A\; — 0 such that we have smooth
Cheeger-Gromov convergence

_ CG
(M7 )\Z 29,]%) Q (MooagOCMPOO)

with (M, o) @ shrinking gradient Ricci soliton. Then (Mo, goo) 1S, up to automor-
phism, either the cylinder C x P! or Euclidean space C2.

Proof. Let fo be a soliton potential for (M, go ). Rescaling the soliton equation of
(M, g, f) yields for all k>0,

|vk+27)\;2gf’)\._2g < ‘vk,)\;QQRiCA‘_29|)\V_2g + Ck)\? (26)
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So if |V °g f|(p;) remains bounded, then after passing to a subsequence, we have
local smooth convergence

for some f. € C*°(My) with
Ric, +V2fl, =0
This implies that

VA(fo = foo) = goo-

Therefore f. — f is proper and attains a unique minimum at some point 2’ € M,
1

and we have that f, — f. = 5d*(a, -). Moreover, the flow of the gradient vector
field V(f., — fx) consists of homotheties. This implies that (Mu, goo) is isometric
to C2.

Next, suppose that a; := |V’\;29f|(pi) — 00. Then by (2.6), we find that
a; '(f — f(pi)) converges locally smoothly to a non-trivial function on M., with
vanishing Hessian. This implies that the limit splits off a line. Due to the Ké&hler
condition, the limit must split off another line, hence must be isometric to C x P! or

C2. O

LEMMA 2.7. Let (M',J',q") be a (not necessarily complete) Kdihler surface. Sup-
pose that Cyy C M' is a J'-holomorphic curve in M’ biholomorphic to P* with self-
intersection —1 or 0. Then there exists e(M',J',¢',C}) > 0 such that the following
holds true. Suppose that there is a diffeomorphism onto its image v : M' — N such
that for some A >0 and t € [0,T) we have

A2 g(t) — ¢'llcnse <e, [*T = J'[|cuse <, (2.8)

where the second bound can be dropped if (M',q’) is isometric to an open subset of
C x P'. Then

A2<V>%Twi (2.9)

where V =vol(C}, ¢').

Note that we will mainly be interested in Lemma 2.7 in the case where (M’, ¢')
is an open subset of a complex curve in C x P! or of the shrinking gradient Kéhler-
Ricci soliton of Feldman-Ilmanen-Knopf [FIK03]. In these cases, the assumption of
the lemma is inferred by pointed Cheeger-Gromov closeness of these model spaces
modulo rescaling by A7!.

Proof. If (M',g') is isometric to an open subset of C x P!, then J. :=¢*.J converges
locally smoothly to a ¢g’-parallel complex structure Jj on M’ as ¢ — 0. By [CCD24,
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Claim 3.3], J| coincides with J’ up to a sign on each factor, so in this case we may
assume without loss of generality that J) = J'. Thus, after possibly adjusting e, we
may assume that both bounds in (2.8) hold.

Let aw € {—1, 0} denote the self-intersection of the .J'-holomorphic curve Cj, in
M’. Then by [CCD24, Corollary 2.3] when a =0, and [CCD24, Corollary 2.4] when
a = —1, and regularity theory [MS94, Proposition 3.3.5 and Section B.4], there exists
a J.-holomorphic curve C? in M’ with self-intersection « converging smoothly to C{)
as € — 0. Since A~ 2¢*g(t) — ¢’ and C. — C}, in C* as € — 0, we can assert that

‘VOI(C, g V‘ -0 ase—0.
Fix £ > 0 small enough such that C? exists and such that
vol(CL, A\ "2p*g(t)) < 2V. (2.10)

Next, using (2.1), the adjunction formula, and the fact that ¢(C.) is J-
holomorphic with self-intersection « in N, we compute that

vol(CL, A2 g(t))
=\? vol(CL, ¥*g(t))
= A2 vol(y(CL), g(t))

/w<c' ()lyo |
o /wm;) ([©Oy.ie)] = 2mter (~Enluen)

¥ /ww') ([l = 27Ter (=Kvluen)) +27(T = ther (= Knluen)

=72 (2a+ 2r(T — 1)+ lim vol(6(CL), g(6)))

s—T—

Combined with the bound (2.10), we derive (2.9). O

LEMMA 2.11. The flow (g(t))cjo,r) i Type I, i.e., there is a constant C' < oo such
that

C
< —.
[Rn| < 77—

Proof. Suppose not, i.e., there exists a sequence (z;,t;) € N x [0,T") with

(T — t;)|Rm| (24, ;) — 0. (2.12)
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Using the language! of [Bam23, Bam202], consider the sequence of parabolic Type I
rescalings based at (z;,t;):

(N (=80T = 1)t 4+ 1) sy (00))- (2.13)

Here (v, 0.¢) denotes the conjugate heat kernel measure based at (z;,0) of the rescaled
flow; this corresponds to the conjugate kernel measure based at (x;,t;) of the original
flow. By [Bam23, Bam202| and after passing to a subsequence, these metric flow pairs
F-converge to an ancient metric flow pair

(X, (Veooit)i<0)

which is smooth away from a codimension 4 singular set. Due to (2.12), this flow is
singular at .., meaning that the pointed Nash-entropy satisfies lim, o N,__ (7) <0
(see also [Bam201, Theorem 10.2]). So the metric flow X has a non-trivial (i.e.,
non-Euclidean) tangent flow at xo, [Bam202, Theorem 2.40]:

(X', (Var_t)t<0),
i.e., there is a sequence \; — 0 such that

XX (rhizo) = (X, (s e iso). (2.14)
By [Bam202, Theorems 2.40, 2.18, and 2.46|, this limit is a metric soliton and all
of its time-slices are homothetic to a non-flat, smooth shrinking gradient Ricci soli-
ton orbifold (M',¢', f’) with isolated singularities. The smooth convergence in (2.14)
on the regular part of X’ implies that there is an exhaustion Uy C Uy C --- C M’
of the regular part of M’ and a sequence of diffeomorphisms onto their images
i Uj— R_,\? into the regular part of X such that

—2 7 x R C’loooc !
Since we have smooth convergence of the flows (2.13) on the regular part R of X,
this implies that for any j there is an i(j) < oo such that for all i > i(j) there is a
diffeomorphism onto its image ¢;;: U; — N with
_ 1k Cige
)‘jQ(T_ti) ! j,ig(ti_)‘?(T_ti)) — . (2.16)
J—00,i2i(j)
This means that the C7°-convergence from (2.16) holds for any sequence i; > i(j).
It also implies that ¢’ is Kahler on the regular part of M’.

! Note that in this paper we are using the Ricci flow equation 0tg(t) = — Ricg(¢) which is more
common in the Kéhler setting. By a simple reparameterization of the time parameter, any such
flow can be converted to a Ricci flow satisfying 0:g(t) = —2Ricy(s), which is the subject of [Bam23,
Bam?202].
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If M’ had an orbifold singularity, then a blowup near each singularity would be of
the form R*/TI" for I as in Lemma 2.4. Combined with (2.16), this would produce a
sequence as in Lemma 2.4 and therefore a contradiction. Consequently M’ is smooth
and (2.16) implies that we can recover (M’', ¢') as a smooth, pointed Cheeger-Gromov
limit of the rescaled metrics )\]-_2(T —t;)7%g(t; — \3(T —t;)). Moreover, since the scalar
curvature of g(t) is uniformly bounded from below, we have R >0 on (M’,¢"). If we
had R =0 at some point of M’, then the strong maximum principle applied to the
evolution equation for R would imply that Ric =0 and V2f = ¢, which would lead
to a contradiction as in the proof of Lemma 2.5. As a result, R >0 on M’'.

CrAIM 2.17. M’ is non-compact.

Proof. Suppose that M’ was compact. Then we would have U; = M’ for large j and
the convergence (2.16) would imply that there was a sequence of times t;- — T such
that Rupin(t) :=miny R(-,t) satisfies

lim (T — %) Rnin (t;) = 00,

j—00 J J
because miny;s R > 0. However, the evolution equation
O R=AR+ Ric|” > AR+ 1R’

implies that 0 Ruyin(t) > LR2. (t), from which it follows that Ry (t) < 4/(T —t). O

4+ “min
CramM 2.18. There are no sequences yp € M' and X, > 0 with limsup,_, ., A}, < 0o

such that (M’,A;C_Qg’,yk) converges to the round cylinder C x P! in the smooth,
pointed Cheeger-Gromov sense. In particular, (M',g') is not isometric to C x P!,

Proof. Suppose for sake of a contradiction that there were such sequences. Then
we can use (2.16) for some sequences ji, ix > i(jx), to argue that we have smooth,
pointed Cheeger-Gromov convergence of

(N’ )‘j_kz (T - tik)il)\;ﬂ_Qg(tik - )‘?k (T — i, ))a ¢jk7ik (yk))

to C x P!. Here we need to choose jj;. sufficiently large based on the location of vy,
and then i; > i(jr). We may also ensure that jr — co. By Lemma 2.7, this implies
that for large k we have

1/2

/\jk (T - tik)l/z)‘;c > (T - (tik - )‘JQk (T - tlk)) > (T - tik)l/z'

This, however, contradicts the fact that \;, — 0 and limsup,,_, A}, < co. O
CLAM 2.19. (M’,¢') has bounded curvature.

Proof. Assume for sake of a contradiction that |[Rm|(y;) — oo along some sequence
yr € M' =R’ ,. Thus, for any 7 > 0 we have limsup;,_,. Ny, (7) <0 [Bam201, Theo-
rem 10.2] and so by monotonicity of the pointed Nash-entropy, we can find sequences
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Ay — 00, 7, — 0, such that

Ny (A7) — Ny, (A,;lrk)\ — 0, lim sup Ny, (1) < 0.

k—o00

Consider now the sequence of rescaled metric flow pairs
—1(
Tk (X ) (Vyk§t)t§0)‘

After passing to a subsequence, this sequence converges to another metric flow pair
(X", (Vyoit)t<0), which must be a metric soliton. Let (M”,¢", f”) be the associated
orbifold. The metric on the regular part of (M”,g") arises as a smooth local limit
of rescalings of pullbacks of the metrics g’ |, , akin to (2.15). As these metrics are
homothetic to the metric ¢’ on M’, this implies that the metric on the regular part
of (M",g¢") is a pointed blowup limit of (M’,¢’) along a certain sequence of points
converging to infinity. Combining this with (2.16), we may again rule out orbifold
singularities as before. Hence M" is smooth. By Lemma 2.5 this implies that (M”, g”)
must be isometric to C x P!, contradicting Claim 2.18. O

CramMm 2.20. M’ does not contain a J'-holomorphic P! with self-intersection —1,
where J' is a sublimit of the pullbacks Pji,J for some sequence i; > i(j).

Proof. We argue as in the proof of Claim 2.18. If the claim were false, then by
Lemma 2.7 there would be a uniform constant ¢ > 0 such that for large j and ¢ > i(j)
we have

MN(T — )2 > (T —t;)2.
This contradicts the fact that A\; — 0. O

So (M’,¢', f') is a non-compact, complete, shrinking gradient Kéhler-Ricci soli-
ton with bounded curvature that is not biholomorphic to C x P! and does not
contain a J'-holomorphic P! with self-intersection —1. This contradicts [CCD24,
Theorem A(i)] and completes the proof of the lemma. Alternatively, we can first
argue that |[Rm| — 0 at infinity on M’, because otherwise (M’,¢’,p;) would con-
verge in the pointed Cheeger-Gromov sense to a cylinder for some p; — oo, which
would contradict Claim 2.18 (see for example [Nabl0, Corollary 4.1]). Therefore
by [CDS24, Theorem E(3)], (M’,¢', f') must be the shrinking gradient Kéhler-Ricci
soliton of Feldman-Ilmanen-Knopf [FIK03], which contains a .J’-holomorphic P! with
self-intersection —1. This contradicts Claim 2.20. O

The following lemma concludes the proof of Theorem A.

LEMMA 2.21. There exists a complete shrinking gradient Kahler-Ricci soliton with
bounded curvature on Bl,(C x P') whose associated flow appears as the pointed
blowup limit centered at any point of E of the rescaled flows g;(t) := \; 2g(T + N\?t),
t € [-A\;2T,0), for every sequence \; — 0.
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Proof. Let g € E and consider the pointed Kéahler-Ricci flows (N, g;(t), ¢). By the
previous lemma, the Kéahler-Ricci flow is Type I, therefore from [Ses06, CZ11,
EMT11, Nab10] we know that a subsequence of the flows converges smoothly to a
pointed flow (M, (goo(t)), goo ), which is the flow associated to the shrinking gradient
Ricci soliton (Moo, goo := goo(—1), foo) With strictly positive scalar curvature for some
smooth soliton potential f.,. Moreover, we have smooth pointed Cheeger-Gromov
convergence of the time-slices (M, gi(—1) = A\;2g(T — A?), q) t0 (Muo, goos Goo)- Thus,
(Moo, goo) is Kéhler with respect to some complex structure Ju.

If My is compact, then by the smooth Cheeger-Gromov convergence we have
that

)\Z-_4 vol(N, g(T — Af)) = vol(N, )\Z-_Qg(T - AZQ)) —— vol(Mu, goo) < 00.
21— 00

This contradicts Lemma 2.3 and so M, is non-compact.

Next we claim that there is an integral curve of V f,, along which the scalar
curvature on M, does not tend to zero. If this were not the case, then the scalar
curvature would tend to zero globally [CCD24, Lemma 2.7], hence being non-flat,
(Moo, gooy foo) would be the U(2)-invariant shrinking gradient Kéhler-Ricci soliton
of Feldman-Ilmanen-Knopf [FIKO03]; see [CDS24, Theorem E(3)]. This in turn would
imply that vol, _,7- (N, g(t)) > 0 [CCD24, Theorem B] in contradiction to Lemma 2.3.

[CCD24, Theorem A] and [Cif22, Corollary C] now apply and tell us that
(Muo, goo) is either the cylinder C x P! or a shrinking gradient Kéhler-Ricci soli-
ton on Bl,(C x P!) with bounded curvature. Thus, to prove the lemma, it suffices
to rule out the case C x P!. So for sake of a contradiction, assume that (M, goo)
is the cylinder C x P!. Then by the smooth Cheeger-Gromov convergence, there is
an exhaustion Uy C Uy C --- C My and a sequence of diffeomorphisms onto their
image ; : U; — N such that ¢;g;(—1) converges to g, locally smoothly and such
that 1;(g0) = q. Let J; := 1 J, where J denotes the complex structure on N. Then,
as we have seen in the proof of Lemma 2.7, we may assume without loss of generality
that J; — J» locally smoothly as i — co, where J denotes the complex structure
on C x P!,

Let 500 = {2} x P! € M, z € C, denote the unique .J,.-holomorphic curve pass-
ing through ¢, with trivial self-intersection. Then by [CCD24, Corollary 2.3], there
exists a sequence of J;-holomorphic curves CA’Z with ¢ € CA'Z and CA*ZCA’l =0 converging
smoothly to CA‘OO as ¢ — oo. (Here we have applied [MS94, Proposition 3.3.5 and Sec-
tion B.4] to deduce the smooth convergence.) This yields a sequence of J-holomorphic

~

curves C; :=¢;(C;) in N with C;.C; = 0. Using this together with the evolution [w(?)]
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of the Kéahler class as dictated by (2.1), we compute that

~

vol(C, 97 gi(—1))
= vol(Cy, A 2g(T — A?))

)

— X 2vol(C g(T — X2))

= A7 |w(T =X

C;

C} (2.22)
=7 [ ([€(Ol] ~27(T  N)er (~Enle,)

i Cz')

=\ . ([W(ONCJ — 21Ty (—Ky Cl)) + 27 /Cl 1 (—Kn

=\;2 lim vol(C;, g(s)) + 4.
s—=T—

~

Since the left-hand side of (2.22) converges to vol(Cu, goo) = 27 as i — 00, this
implies that

lim lim vol(C;,g(s))=0. (2.23)

1—00 s—T'—

Write [C;] = a1,[D1] + oo, [D2] + Bi[E] for an 4,0, B; € Z. Using (2.2), we com-
pute that for s € [0, T'),

vol(Cy, g(s)) = aui(az — 2s) + ao (a1 — 25) + Bi(b— s) —T——> ag (a1 —ag),
s—T~

where we recall that T'= % = b and a; > az. Combining this with (2.23), the fact
that oo ; € Z implies that oy ; =0 for large i.
Now, the fact that C;.C; =0 implies that for large i,

2
ﬁi = 20[1@0&271' =0.

However, since C; intersects E in ¢, we know that

This yields the desired contradiction. O
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