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A NEW COMPLETE TWO-DIMENSIONAL SHRINKING
GRADIENT KÄHLER-RICCI SOLITON

Richard H. Bamler, Charles Cifarelli, Ronan J. Conlon, and

Alix Deruelle

Abstract. We prove the existence of a unique complete shrinking gradient Kähler-
Ricci soliton with bounded scalar curvature on the blowup of C× P

1 at one point.
This completes the classification of such solitons in two complex dimensions.

1 Introduction

1.1 Overview. Shrinking Ricci solitons are natural generalizations of Einstein
manifolds with positive scalar curvature. As such, their study and classification has
become a central topic in both Riemannian and Kähler geometry. Indeed, shrinking
Kähler-Ricci solitons are known to exist on certain Fano manifolds that have ob-
structions to the existence of a Kähler-Einstein metric [Zhu00]. Moreover in Ricci
flow, shrinking Ricci solitons comprise candidate singularity models, thereby mak-
ing their study crucial, for example, in potentially implementing higher-dimensional
surgery constructions.

While in (real) dimensions 2 and 3, a full classification of shrinking Ricci solitons
has been achieved (these are Euclidean or quotients of spheres S2, S3 or the cylinder
S2 ×R) [Ham82, Per03], the situation is far from clear in (real) dimension 4. Apart
from the obvious examples (R4 or quotients of S4, S3 × R, and S2 × R

2) and the
ten del Pezzo surfaces [Tia90, Zhu00], the only other example in this dimension was
found by Feldman, Ilmanen, and Knopf [FIK03] nearly 20 years ago. Its construction
was, in part, possible due to its cohomogeneity one U(2)-symmetry, which allowed
the reduction of the soliton equation to a system of ODEs (the solution of which
nevertheless still posed a non-trivial problem).

In this paper we prove the existence of a new complete non-compact shrinking
Kähler-Ricci soliton in complex dimension 2. This soliton is invariant under a real
two-dimensional torus action, hence it has cohomogeneity 2. Its underlying complex
manifold is biholomorphic to the blowup of C× P

1 at one point, a model that was
already identified as the last remaining candidate in previous work [CCD24] of the
latter three named authors. We therefore complete the classification of shrinking
Kähler-Ricci solitons in complex dimension 2. In addition, we employ a novel ap-
proach, in which we construct the soliton indirectly as a blowup limit of a specific
Kähler-Ricci flow on a compact manifold. We use recent estimates obtained by the
first author [Bam201, Bam23, Bam202] combined with Kähler-Ricci flow techniques
to control the singularity formation of this flow.
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1.2 Main results. We begin by recalling the main definitions.
A Ricci soliton is a triple (M, g, X), where M is a Riemannian manifold endowed

with a complete Riemannian metric g and a complete vector field X , such that

Ricg +
1
2
LXg = λg (1.1)

for some λ ∈ R. The vector field X is called the soliton vector field. If X = ∇gf for
some smooth real-valued function f on M , then we say that (M, g, X) (or (M, g, f))
is gradient. In this case, the soliton equation (1.1) becomes

Ricg +∇2f − λg = 0,

and we call f the soliton potential. In the case of gradient Ricci solitons, the com-
pleteness of X is guaranteed by the completeness of g [Zha09].

Let (M, g, X) be a Ricci soliton. If g is Kähler and X is real holomorphic, then
we say that (M, g, X) is a Kähler-Ricci soliton. Let ω denote the Kähler form of g.
If (M, g, X) is in addition gradient, then (1.1) may be rewritten as

ρω + i∂∂̄f = λω,

where ρω is the Ricci form of ω and f is the soliton potential.
Finally, a Ricci soliton and a Kähler-Ricci soliton are called steady if λ = 0,

expanding if λ < 0, and shrinking if λ > 0 in (1.1). One can always normalise λ,
when non-zero, to satisfy |λ|= 1. We henceforth assume that this is the case.

Our main result is now the following.

Theorem A (Existence and uniqueness). Up to automorphism, there exists a unique

complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on

Blx(C×P
1), that is, the blowup of C×P

1 at a fixed point x of the standard real torus

action on C× P
1. Moreover, this soliton is invariant under the induced real torus

action and appears as a parabolic blowup limit of the Kähler-Ricci flow.

The soliton of Theorem A is constructed as a singularity model of a specific Ricci
flow. More precisely, we consider the blowup N := Blx(P1 × P1) of P1 × P1 at one
point and show that there is a toric Kähler-Ricci flow that contracts the exceptional
divisor and exactly one other (−1)-curve at the singular time T > 0. The volume of
N close to the singular time is ∼ (T − t). Using the estimates from [Bam202], we
analyze possible blowup models of this flow. Thanks to the toricity of the flow and the
topology of the underlying manifold, we are able to exclude orbifold singularities from
appearing in the limit and show that the singularity is close to a smooth shrinking
Kähler-Ricci soliton at most scales. By [CCD24], regions that are close enough to
such Kähler-Ricci solitons must contain a complex curve of self-intersection 0 or −1.
The areas of these curves, which are determined by the Kähler class of the evolving
metric, shrink by at most a linear rate. This observation allows us to bound from
below the scales at which the flow exhibits closeness to a shrinking Kähler-Ricci
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soliton. Consequently, we see that the flow must be Type I, i.e., we have curvature
bounds of the form |Rm| ≤ C/(T − t). As a result, the singularity formation near
every point can be described by a shrinking Kähler-Ricci soliton. Among these, we
are able to exclude the soliton of Feldman-Ilmanen-Knopf because the volume of N
under the flow converges to zero [CCD24]. This only leaves C×P

1 and the candidate
from Theorem A as possible blowup limits. Complex geometric reasons allow us to
further rule out a C× P

1 forming near the exceptional divisor. This demonstrates
that an additional soliton, namely that characterized in [CCD24], must exist.

To each complete shrinking Kähler-Ricci soliton (M, g, X) satisfying (1.1) with
λ = 1, one obtains a solution of the Kähler-Ricci flow ∂tg(t) =−Ricg(t). Indeed, set

g(t) :=−tϕ∗
t g, t < 0,

where ϕt is a family of diffeomorphisms generated by the vector field −1
tX with

ϕ−1 = id, i.e.,

∂ϕt

∂t
(x) =−X(ϕt(x))

2t
, ϕ−1 = id .

Then ∂tg(t) = −Ricg(t) for t < 0, and g(−1) = g. In this way, non-flat complete
shrinking gradient Kähler-Ricci solitons with bounded curvature appear as parabolic
rescalings of finite time Type I singularities of the Kähler-Ricci flow [Ses06, CZ11,
EMT11, Nab10]. In other words, they are models for such singularities and hence
this motivates their classification. Theorem A completes such a classification in two
complex dimensions.

Indeed, a complete two-dimensional shrinking gradient Kähler-Ricci soliton with
bounded curvature is either compact, in which case the underlying manifold is Fano
and the resulting soliton is, up to automorphism [TZ00], Kähler-Einstein or the
shrinking gradient Kähler-Ricci soliton given by [WZ04] depending on the Fano
manifold in question, or is non-compact with bounded scalar curvature. Shrinking
gradient Kähler-Ricci solitons are connected at infinity [MW15] and in this latter
case, there is a dichotomy in the sense that the scalar curvature of the soliton either
tends to zero along every integral curve of X , or X has an integral curve along
which the scalar curvature does not tend to zero. In the former case, it follows that
the scalar curvature tends to zero globally (cf. [CCD24, Lemma 2.7]) and hence the
soliton is (up to automorphism) either that of Feldman-Ilmanen-Knopf [FIK03] on
the blowup of C2 at one point or the flat Gaussian shrinking soliton on C

2 [CDS24].
In the latter case, the shrinking soliton is either isometric to the cylinder C× P

1 or
to the shrinking soliton of Theorem A.

Theorem B (Classification of two-dimensional Kähler shrinkers). Let (M, g, X) be

a complete two-dimensional shrinking gradient Kähler-Ricci soliton with bounded

scalar curvature. Then either:

(i) M is Fano and g is, up to automorphism, either Kähler-Einstein or the

shrinking gradient Kähler-Ricci soliton on M given by [WZ04], or:



380 R.H. BAMLER ET AL. GAFA

(ii) (M, g, X) is, up to pullback by an element of GL(2, C), the flat Gaussian

shrinking soliton on C
2, or:

(iii) (M, g, X) is, up to pullback by an element of GL(2, C), the unique U(2)-
invariant shrinking gradient Kähler-Ricci soliton of Feldman-Ilmanen-Knopf

[FIK03] on the total space of O(−1) over P
1, or:

(iv) (M, g, X) is, up to automorphism, the cylinder C× P
1, or:

(v) (M, g, X) is, up to automorphism, the shrinking gradient Kähler-Ricci soli-

ton of Theorem A.

It has recently been shown that the assumption of bounded scalar curvature in this
theorem is automatic [LW23].

Thus, we are left with the following picture. Let (M, g(t))t∈[0, T ) be a Kähler-
Ricci flow developing a finite time Type I singularity when t = T > 0. Take a
blowup limit g∞(t) of the rescaled flows gj(t) := λ−2

j g(T + λ2
j t), t ∈ [−λ−2

j T, 0),
for some sequence λj → 0, centered at a point x ∈ M where the curvature blows
up. If limt→T− vol(M, g(t)) > 0, then [CCD24, Theorem B] asserts that this blowup
limit is the Feldman-Ilmanen-Knopf shrinking soliton on the blowup of C

2 at one
point. On the other hand, if there is finite time collapsing at t = T > 0, i.e., if
limt→T− vol(M, g(t)) = 0, then either limt→T− diam(M, g(t)) = 0, which is a “finite
time extinction”, or lim supt→T− diam(M, g(t)) > 0. In the former case, [TZ18] (see
also [Son14]) asserts that M is Fano and the Kähler class of g(0) lies in a positive
multiple of c1(M). The work of Perelman (see [ST08]) gives us the upper bound
diam(M, g(t)) ≤ C(T − t) 1

2 , which, for the re-scaled limit g∞(t), t < 0, translates
as diam(M, g∞(t)) ≤ C(−t) 1

2 , t < 0. This latter bound implies that the rescaled
limit is compact, hence being a shrinking soliton, is Fano with its (up to automor-
phism [TZ00]) unique shrinking soliton structure. In the latter case, the blowup
limit cannot be Fano as the compactness of such a manifold would imply that
limt→T− diam(M, g(t)) = 0, a contradiction. By [CCD24, Theorem B], the blowup
limit cannot be the shrinking soliton of Feldman-Ilmanen-Knopf [FIK03]. Hence the
only possibility is that the blowup limit is the cylinder C × P

1 or the soliton of
Theorem A, where the latter model corresponds to the contraction of a (−1)-curve.

2 Proof of Theorem A

Let σ : N = Blx(P1 × P
1) → P

1 × P
1 denote the blowup of P

1 × P
1 at one of the

four fixed points x of the standard real torus action on P
1 × P

1, let E ⊂N denote
the corresponding exceptional divisor, and write J for the complex structure of N .
Denote the two fixed points on each factor by p, q ∈ P

1, so that without loss of
generality we can take x = (p, p) ∈ P

1 × P
1. Consider N endowed with the induced

action of a real torus T 2 and set D1 = σ−1(P1 × {q}) and D2 = σ−1({q} × P
1) so

that Di are torus-invariant divisors in N satisfying [Di]2 = 0, [D1].[D2] = 1, and
[Di].[E] = 0. Then we can choose a Kähler metric g0 on N invariant under the torus
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action such that for the associated Kähler-Ricci flow (g(t))t∈[0,T ), T > 0, we have

vol(D1, g(t)), vol(E,g(t))−−−→
t→T

0, vol(D2, g(t)) �−→ 0.

Indeed, g(0) can be chosen as follows. H1,1(N) = R
3 is generated by the Poincaré

duals to D1, D2, and E. Using the Nakai-Moishezon criterion for positivity and the
fact that in the toric category, it suffices to check this only on irreducible torus-
invariant curves, a computation shows that the Kähler cone KN of N is given by

KN = {a1[D1] + a2[D2]− b[E] | a1 > b > 0, a2 > b > 0} .

Since for any inital Kähler g(0), the Kähler class of the evolving Kähler form ω(t)
satisfies

∂t[ω(t)] =−[ρω(t)] =−2πc1(N),

we find that

[ω(t)] = [ω(0)]− 2tπc1(N). (2.1)

The first Chern class c1(N) of N is given by 2πc1(N) = 2[D1] + 2[D2]− [E]. Hence
for any initial Kähler form ω(0) in the Kähler class a1[D1] + a2[D2]− b[E] ∈KN , we
find that

[ω(t)] = (a1 − 2t)[D1] + (a2 − 2t)[D2]− (b− t)[E]. (2.2)

In particular, the volume of Di, i= 1, 2, is given by

vol(Di, ω(t)) =
∫
Di

[ω(t)] = (a3−i − 2t)[D1].[D2] = a3−i − 2t,

whereas the volume of E is given by

vol(E,ω(t)) =
∫
E
[ω(t)] =−(b− t)[E]2 = b− t.

Therefore it suffices to choose g(0) to lie in a Kähler class with a2 = 2b and a1 > a2.
The singular time T > 0 of the flow is then given by T = b = a2

2 . By averaging, we
can guarantee that g(0) is invariant under the torus action.

Our Ricci flow has the following property.

Lemma 2.3. vol(N, g(t))−→ 0 and (T − t)−2 vol(N, g(t)) �−→ 0.

Proof. The volume vol(M, g(t)) is given by

vol(M, g(t)) =
1
2

∫
M

[ω(t)]2 = (a1 − 2t)(a2 − 2t)− 1
2
(b− t)2

= 4
(
a1

2
− t

)
(T − t)− 1

2
(T − t)2.

The lemma now follows since a1
2 > a2

2 = T . �
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Lemma 2.4. Let Γ ⊂ O(4) be a non-trivial, finite group acting freely on S3. Then

the following cannot occur: There are sequences ti ∈ [0, T ), λi > 0, an exhaustion

U1 ⊂ U2 ⊂ · · · ⊂ (R4 − {0})/Γ, and diffeomorphisms ψi : Ui → ψi(Ui) = Vi ⊂N such

that λ2
iψ

∗
i g(ti) converges locally smoothly to the Euclidean metric on R

4/Γ.

Note that we don’t impose any T 2-equivariance assumptions on ψi in Lemma 2.4.

Proof. Suppose that there were such sequences. Set gi := λ2
i g(ti) and fix a cutoff

function η : [0,∞)→ [0,1] with η ≡ 1 near 0 and η ≡ 0 on [1,∞). Let injgi :N →R+
denote the injectivity radius with respect to gi and define (uε ∈C0(N))ε>0 by

uε(p) :=
∫
N

injgi(q)η(d(p, q)/ε)dgi(q)
/ ∫

N
η(d(p, q)/ε)dgi(q).

Next note that injgi ◦ψi converges locally uniformly to the injectivity radius on
(R4 − {0})/Γ, which itself is linear in the radial coordinate. So if W := A(0, 1

2 ,2)/Γ
denotes an annulus around the origin in R

4/Γ, then for small enough ε > 0 we have
smooth convergence of (uε ◦ψi)|W to a radial function on W without critical points.
So for large i, the function uε has a regular level set that contains a component
Σi ⊂M diffeomorphic to S3/Γ. By construction, Σi is invariant under the T 2-action
on N . Since we may choose Σi to be an arbitrary level set of uε, we may assume in
addition that the T 2-action on Σi has no fixed point.

Consider now the moment map μ : N → R
2 of the real T 2-action, which exists

because N is simply connected. As is well-known, μ(N) can be realised as a convex
polytope P ⊆ R

2 with vertices (−1,0), (−1,1), (1,1), (1,−1), (0,−1), with the facet
joining (−1, 0) and (0, −1) corresponding to E. P is the orbit space of the T 2-action.
Indeed, the pre-image under μ of points in the interior of P are generic T 2-orbits,
the pre-image under μ of points along the facets are S1-orbits, and the pre-images
of the vertices are points, corresponding to fixed points of the T 2-action. The image
μ(Σi) ⊆ P defines a smooth path whose endpoints lie in the facets of P ; it is not
closed, because otherwise π1(Σi) would be infinite.

Let F1, F2 denote the two (not necessarily distinct) facets of P which contain the
endpoints of μ(Σi). Since Σi does not contain any fixed point of the torus action,
the two endpoints of μ(Σi) must lie in the interior of F1 and F2. These facets are de-
fined by the linear equalities 〈νj , x〉=−1, where νj ∈ {±(1, 0), ±(0, 1), (1, 1)}. First
suppose that F1 and F2 are parallel. Then the moment map μ contracts at each
endpoint the same S1-factor of the T 2-fibration in the interior so that Σi defines
a trivial S1-bundle over S2, i.e., Σi must be diffeomorphic to S2 × S1. This con-
tradicts the fact that Σi

∼= S3/Γ. Next, suppose that the normals ν1, ν2 are linearly
independent. Then running through the various possibilities for νj , we see that the
cone C = {x ∈ R

2 | 〈νj , x〉 ≥ 0, j = 1,2} ⊆ R
2 satisfies the Delzant condition [Cif22,

Definition 7] so that the complex cone defined by C is biholomorphic to C2. If F1
and F2 are consecutive edges, then Σi lies in a neighborhood of N that is (C∗)2-
equivariantly biholomorphic to C

2. As such, Σi can be smoothly deformed to a link
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of the cone structure for C
2, and hence must be diffeomorphic to S3, thereby con-

tradicting our assumption that Γ is non-trivial. Notice that N has precisely three
invariant (−1)-curves, namely those corresponding to the facets of P with inner nor-
mals (1,0), (1,1), and (0,1), respectively. Therefore if F1, F2 are not consecutive,
then they must be separated by some facet of P corresponding to one of these (−1)-
cuves. Blowing down this particular curve, we see that Σi descends to a hypersurface
Σ̃i inside a toric surface Ñ biholomorphic to either P1 ×P

1 or to the blowup of P2 at
one point. Choosing an invariant Kähler metric on Ñ in an appropriate cohomology
class, we obtain a new moment map μ̃ : Ñ → R

2 with image a convex polytope P̃

such that the endpoints of μ̃(Σ̃i) lie in consecutive edges F̃1, F̃2 of P̃ with the same
inner normals as F1, F2, respectively. The previous argument then gives that Σ̃i, and
hence Σi, is again diffeomorphic to S3, a contradiction.

Alternatively, one may conclude the argument in the following way. If Σi∩E = ∅,
then Σi descends to a hypersurface Σ′

i ⊂ P
1 × P

1 invariant under the torus action,
which must either be an invariant S3 or an S2 × S1 in P

1 × P
1. If Σi ∩E �= ∅, then

Σi intersects one of D1,D2, the strict transform of P1 × {p} or {p} × P
1, or E itself

in a separate point. As we have seen, if Σi intersects E in two distinct points, then
Σi

∼= S2 × S1, contradicting the fact that Σi
∼= S3/Γ. Suppose that Σi meets either

D1 or D2. By symmetry, we may assume without loss of generality that Σi ∩D2 �= ∅.
Then Σi is diffeomorphic to the boundary of a small tubular neighborhood of the
strict transform of P1 × {p} in N , which has self-intersection −1. Thus Σi must be
diffeomorphic to S3, contradicting our assumption that Γ is non-trivial. To treat
the last possibility, assume without loss of generality again that Σi meets the strict
transform of {p}× P

1. Then Σi is diffeomorphic to the boundary of a small tubular
neighborhood of a fixed point of the T 2-action, and so we see once again that Σi must
be diffeomorphic to S3, contradicting again our assumption that Γ is non-trivial. �

Lemma 2.5. Let (M, g, X) be a two-dimensional complete shrinking gradient

Kähler-Ricci soliton with X = ∇gf for a smooth real-valued function f : M → R.

Suppose that there are sequences pi ∈ M and λi → 0 such that we have smooth

Cheeger-Gromov convergence

(M,λ−2
i g, pi)

CG−−−→
i→∞

(M∞, g∞, p∞)

with (M∞, g∞) a shrinking gradient Ricci soliton. Then (M∞, g∞) is, up to automor-

phism, either the cylinder C× P
1 or Euclidean space C

2.

Proof. Let f∞ be a soliton potential for (M∞, g∞). Rescaling the soliton equation of
(M,g, f) yields for all k ≥ 0,

|∇k+2,λ−2
i gf |λ−2

i g ≤ |∇k,λ−2
i gRicλ−2

i g|λ−2
i g +Ckλ

2
i . (2.6)
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So if |∇λ−2
i gf |(pi) remains bounded, then after passing to a subsequence, we have

local smooth convergence

f − f(pi)
C∞

loc−−−→
i→∞

f ′
∞

for some f ′
∞ ∈C∞(M∞) with

Ricg∞ +∇2f ′
∞ = 0.

This implies that

∇2(f ′
∞ − f∞) = g∞.

Therefore f ′
∞ − f∞ is proper and attains a unique minimum at some point x′ ∈M∞

and we have that f ′
∞ − f∞ = 1

2d
2(x′, ·). Moreover, the flow of the gradient vector

field ∇(f ′
∞ − f∞) consists of homotheties. This implies that (M∞, g∞) is isometric

to C
2.

Next, suppose that ai := |∇λ−2
i gf |(pi) → ∞. Then by (2.6), we find that

a−1
i (f − f(pi)) converges locally smoothly to a non-trivial function on M∞ with

vanishing Hessian. This implies that the limit splits off a line. Due to the Kähler
condition, the limit must split off another line, hence must be isometric to C×P

1 or
C

2. �

Lemma 2.7. Let (M ′, J ′, g′) be a (not necessarily complete) Kähler surface. Sup-

pose that C ′
0 ⊂M ′ is a J ′-holomorphic curve in M ′ biholomorphic to P

1 with self-

intersection −1 or 0. Then there exists ε(M ′, J ′, g′,C ′
0) > 0 such that the following

holds true. Suppose that there is a diffeomorphism onto its image ψ : M ′ →N such

that for some λ > 0 and t ∈ [0, T ) we have

‖λ−2ψ∗g(t)− g′‖C[1/ε] ≤ ε, ‖ψ∗J − J ′‖C[1/ε] ≤ ε, (2.8)

where the second bound can be dropped if (M ′, g′) is isometric to an open subset of

C× P
1. Then

λ≥
(
π

V

) 1
2
(T − t)

1
2 , (2.9)

where V = vol(C ′
0, g

′).

Note that we will mainly be interested in Lemma 2.7 in the case where (M ′, g′)
is an open subset of a complex curve in C× P

1 or of the shrinking gradient Kähler-
Ricci soliton of Feldman-Ilmanen-Knopf [FIK03]. In these cases, the assumption of
the lemma is inferred by pointed Cheeger-Gromov closeness of these model spaces
modulo rescaling by λ−1.

Proof. If (M ′, g′) is isometric to an open subset of C×P
1, then Jε := ψ∗J converges

locally smoothly to a g′-parallel complex structure J ′
0 on M ′ as ε→ 0. By [CCD24,
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Claim 3.3], J ′
0 coincides with J ′ up to a sign on each factor, so in this case we may

assume without loss of generality that J ′
0 = J ′. Thus, after possibly adjusting ε, we

may assume that both bounds in (2.8) hold.
Let α ∈ {−1, 0} denote the self-intersection of the J ′-holomorphic curve C ′

0 in
M ′. Then by [CCD24, Corollary 2.3] when α = 0, and [CCD24, Corollary 2.4] when
α =−1, and regularity theory [MS94, Proposition 3.3.5 and Section B.4], there exists
a Jε-holomorphic curve C ′

ε in M ′ with self-intersection α converging smoothly to C ′
0

as ε→ 0. Since λ−2ψ∗g(t)→ g′ and C ′
ε →C ′

0 in C1 as ε→ 0, we can assert that
∣∣∣vol(C ′

ε, λ
−2ψ∗g(t))− V

∣∣∣ → 0 as ε→ 0.

Fix ε > 0 small enough such that C ′
ε exists and such that

vol(C ′
ε, λ

−2ψ∗g(t))≤ 2V. (2.10)

Next, using (2.1), the adjunction formula, and the fact that ψ(C ′
ε) is J -

holomorphic with self-intersection α in N , we compute that

vol(C ′
ε, λ

−2ψ∗g(t))

= λ−2 vol(C ′
ε, ψ

∗g(t))

= λ−2 vol(ψ(C ′
ε), g(t))

= λ−2
∫
ψ(C′

ε)

[
ω(t)|ψ(C′

ε)

]

= λ−2
∫
ψ(C′

ε)

([
ω(0)|ψε(C′

ε)

]
− 2πtc1

(
−KN |ψ(C′

ε)
))

= λ−2
∫
ψ(C′

ε)

(([
ω(0)|ψε(C′

ε)

]
− 2πTc1

(
−KN |ψ(C′

ε)
))

+ 2π(T − t)c1
(
−KN |ψ(C′

ε)
))

= λ−2
(

2(α+ 2)π(T − t) + lim
s→T−

vol(ψ(C ′
ε), g(s))

)

≥ 2λ−2π(T − t).

Combined with the bound (2.10), we derive (2.9). �

Lemma 2.11. The flow (g(t))t∈[0,T ) is Type I, i.e., there is a constant C <∞ such

that

|Rm| ≤ C

T − t
.

Proof. Suppose not, i.e., there exists a sequence (xi, ti) ∈N × [0, T ) with

(T − ti)|Rm|(xi, ti) →∞. (2.12)
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Using the language1 of [Bam23, Bam202], consider the sequence of parabolic Type I
rescalings based at (xi, ti):

(
N, ((T − ti)−1g((T − ti)t+ ti))− ti

T−ti
≤t≤0, (νxi,0;t)

)
. (2.13)

Here (νxi,0;t) denotes the conjugate heat kernel measure based at (xi,0) of the rescaled
flow; this corresponds to the conjugate kernel measure based at (xi, ti) of the original
flow. By [Bam23, Bam202] and after passing to a subsequence, these metric flow pairs
F-converge to an ancient metric flow pair

(X , (νx∞;t)t≤0)

which is smooth away from a codimension 4 singular set. Due to (2.12), this flow is
singular at x∞, meaning that the pointed Nash-entropy satisfies limτ→0Nx∞(τ) < 0
(see also [Bam201, Theorem 10.2]). So the metric flow X has a non-trivial (i.e.,
non-Euclidean) tangent flow at x∞ [Bam202, Theorem 2.40]:

(X ′, (νx′
∞;t)t≤0),

i.e., there is a sequence λj → 0 such that

λ−1
j (X , (νx∞;t)t≤0)

F−−−→
j→∞

(X ′, (νx′
∞;t)t≤0). (2.14)

By [Bam202, Theorems 2.40, 2.18, and 2.46], this limit is a metric soliton and all
of its time-slices are homothetic to a non-flat, smooth shrinking gradient Ricci soli-
ton orbifold (M ′, g′, f ′) with isolated singularities. The smooth convergence in (2.14)
on the regular part of X ′ implies that there is an exhaustion U1 ⊂ U2 ⊂ · · · ⊂ M ′

of the regular part of M ′ and a sequence of diffeomorphisms onto their images
ψj : Uj →R−λ2

j
into the regular part of X such that

λ−2
j ψ∗

j g
R
−λ2

j

C∞
loc−−−→

j→∞
g′. (2.15)

Since we have smooth convergence of the flows (2.13) on the regular part R of X ,
this implies that for any j there is an i(j) <∞ such that for all i≥ i(j) there is a
diffeomorphism onto its image φj,i : Uj →N with

λ−2
j (T − ti)−1φ∗

j,ig(ti − λ2
j(T − ti))

C∞
loc−−−−−−−→

j→∞, i≥i(j)
g′. (2.16)

This means that the C∞
loc-convergence from (2.16) holds for any sequence ij ≥ i(j).

It also implies that g′ is Kähler on the regular part of M ′.

1 Note that in this paper we are using the Ricci flow equation ∂tg(t) = −Ricg(t) which is more
common in the Kähler setting. By a simple reparameterization of the time parameter, any such
flow can be converted to a Ricci flow satisfying ∂tg(t) = −2Ricg(t), which is the subject of [Bam23,
Bam202].
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If M ′ had an orbifold singularity, then a blowup near each singularity would be of
the form R

4/Γ for Γ as in Lemma 2.4. Combined with (2.16), this would produce a
sequence as in Lemma 2.4 and therefore a contradiction. Consequently M ′ is smooth
and (2.16) implies that we can recover (M ′, g′) as a smooth, pointed Cheeger-Gromov
limit of the rescaled metrics λ−2

j (T −ti)−2g(ti−λ2
j (T −ti)). Moreover, since the scalar

curvature of g(t) is uniformly bounded from below, we have R≥ 0 on (M ′, g′). If we
had R = 0 at some point of M ′, then the strong maximum principle applied to the
evolution equation for R would imply that Ric = 0 and ∇2f = g, which would lead
to a contradiction as in the proof of Lemma 2.5. As a result, R> 0 on M ′.

Claim 2.17. M ′ is non-compact.

Proof. Suppose that M ′ was compact. Then we would have Uj =M ′ for large j and
the convergence (2.16) would imply that there was a sequence of times t′j → T such
that Rmin(t) := minN R(·, t) satisfies

lim
j→∞

(T − t′j)Rmin(t′j) =∞,

because minM ′ R> 0. However, the evolution equation

∂tR =�R+ |Ric|2 ≥�R+ 1
4R

2

implies that ∂tRmin(t)≥ 1
4R

2
min(t), from which it follows that Rmin(t)≤ 4/(T − t). �

Claim 2.18. There are no sequences yk ∈M ′ and λ′
k > 0 with lim supk→∞ λ′

k <∞
such that (M ′, λ′−2

k g′, yk) converges to the round cylinder C × P
1 in the smooth,

pointed Cheeger-Gromov sense. In particular, (M ′, g′) is not isometric to C× P
1.

Proof. Suppose for sake of a contradiction that there were such sequences. Then
we can use (2.16) for some sequences jk, ik ≥ i(jk), to argue that we have smooth,
pointed Cheeger-Gromov convergence of

(N,λ−2
jk

(T − tik)−1λ′−2
k g(tik − λ2

jk
(T − tik)), φjk,ik(yk))

to C× P
1. Here we need to choose jk sufficiently large based on the location of yk

and then ik ≥ i(jk). We may also ensure that jk →∞. By Lemma 2.7, this implies
that for large k we have

λjk(T − tik)1/2λ′
k >

(
T − (tik − λ2

jk
(T − tik)

)1/2
≥ (T − tik)1/2.

This, however, contradicts the fact that λjk → 0 and limsupk→∞ λ′
k <∞. �

Claim 2.19. (M ′, g′) has bounded curvature.

Proof. Assume for sake of a contradiction that |Rm|(yk) →∞ along some sequence
yk ∈M ′ =R′

−1. Thus, for any τ > 0 we have lim supk→∞Nyk(τ)< 0 [Bam201, Theo-
rem 10.2] and so by monotonicity of the pointed Nash-entropy, we can find sequences
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Ak →∞, τk → 0, such that

|Nyk(Akτk)−Nyk(A
−1
k τk)| → 0, lim sup

k→∞
Nyk(τk)< 0.

Consider now the sequence of rescaled metric flow pairs

τ−1
k (X ′, (νyk;t)t≤0).

After passing to a subsequence, this sequence converges to another metric flow pair
(X ′′, (νy∞;t)t≤0), which must be a metric soliton. Let (M ′′, g′′, f ′′) be the associated
orbifold. The metric on the regular part of (M ′′, g′′) arises as a smooth local limit
of rescalings of pullbacks of the metrics g′−1−τk

, akin to (2.15). As these metrics are
homothetic to the metric g′ on M ′, this implies that the metric on the regular part
of (M ′′, g′′) is a pointed blowup limit of (M ′, g′) along a certain sequence of points
converging to infinity. Combining this with (2.16), we may again rule out orbifold
singularities as before. Hence M ′′ is smooth. By Lemma 2.5 this implies that (M ′′, g′′)
must be isometric to C× P

1, contradicting Claim 2.18. �

Claim 2.20. M ′ does not contain a J ′-holomorphic P
1 with self-intersection −1,

where J ′ is a sublimit of the pullbacks φ∗
j,ijJ for some sequence ij ≥ i(j).

Proof. We argue as in the proof of Claim 2.18. If the claim were false, then by
Lemma 2.7 there would be a uniform constant c > 0 such that for large j and i≥ i(j)
we have

λj(T − ti)1/2 ≥ c(T − ti)1/2.

This contradicts the fact that λj → 0. �

So (M ′, g′, f ′) is a non-compact, complete, shrinking gradient Kähler-Ricci soli-
ton with bounded curvature that is not biholomorphic to C × P

1 and does not
contain a J ′-holomorphic P

1 with self-intersection −1. This contradicts [CCD24,
Theorem A(i)] and completes the proof of the lemma. Alternatively, we can first
argue that |Rm| → 0 at infinity on M ′, because otherwise (M ′, g′, pi) would con-
verge in the pointed Cheeger-Gromov sense to a cylinder for some pi →∞, which
would contradict Claim 2.18 (see for example [Nab10, Corollary 4.1]). Therefore
by [CDS24, Theorem E(3)], (M ′, g′, f ′) must be the shrinking gradient Kähler-Ricci
soliton of Feldman-Ilmanen-Knopf [FIK03], which contains a J ′-holomorphic P

1 with
self-intersection −1. This contradicts Claim 2.20. �

The following lemma concludes the proof of Theorem A.

Lemma 2.21. There exists a complete shrinking gradient Kähler-Ricci soliton with

bounded curvature on Blx(C × P
1) whose associated flow appears as the pointed

blowup limit centered at any point of E of the rescaled flows gi(t) := λ−2
i g(T + λ2

i t),
t ∈ [−λ−2

i T,0), for every sequence λi → 0.
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Proof. Let q ∈ E and consider the pointed Kähler-Ricci flows (N, gi(t), q). By the
previous lemma, the Kähler-Ricci flow is Type I, therefore from [Ses06, CZ11,
EMT11, Nab10] we know that a subsequence of the flows converges smoothly to a
pointed flow (M∞, (g∞(t)), q∞), which is the flow associated to the shrinking gradient
Ricci soliton (M∞, g∞ := g∞(−1), f∞) with strictly positive scalar curvature for some
smooth soliton potential f∞. Moreover, we have smooth pointed Cheeger-Gromov
convergence of the time-slices (M,gi(−1) = λ−2

i g(T − λ2
i ), q) to (M∞, g∞, q∞). Thus,

(M∞, g∞) is Kähler with respect to some complex structure J∞.
If M∞ is compact, then by the smooth Cheeger-Gromov convergence we have

that

λ−4
i vol(N,g(T − λ2

i )) = vol(N,λ−2
i g(T − λ2

i ))−−−→
i→∞

vol(M∞, g∞)<∞.

This contradicts Lemma 2.3 and so M∞ is non-compact.
Next we claim that there is an integral curve of ∇f∞ along which the scalar

curvature on M∞ does not tend to zero. If this were not the case, then the scalar
curvature would tend to zero globally [CCD24, Lemma 2.7], hence being non-flat,
(M∞, g∞, f∞) would be the U(2)-invariant shrinking gradient Kähler-Ricci soliton
of Feldman-Ilmanen-Knopf [FIK03]; see [CDS24, Theorem E(3)]. This in turn would
imply that volt→T−(N, g(t))> 0 [CCD24, Theorem B] in contradiction to Lemma 2.3.

[CCD24, Theorem A] and [Cif22, Corollary C] now apply and tell us that
(M∞, g∞) is either the cylinder C × P

1 or a shrinking gradient Kähler-Ricci soli-
ton on Blx(C× P

1) with bounded curvature. Thus, to prove the lemma, it suffices
to rule out the case C× P

1. So for sake of a contradiction, assume that (M∞, g∞)
is the cylinder C× P

1. Then by the smooth Cheeger-Gromov convergence, there is
an exhaustion U1 ⊂ U2 ⊂ · · · ⊂ M∞ and a sequence of diffeomorphisms onto their
image ψi : Ui → N such that ψ∗

i gi(−1) converges to g∞ locally smoothly and such
that ψi(q∞) = q. Let Ji := ψ∗

i J , where J denotes the complex structure on N . Then,
as we have seen in the proof of Lemma 2.7, we may assume without loss of generality
that Ji → J∞ locally smoothly as i→∞, where J∞ denotes the complex structure
on C× P

1.
Let Ĉ∞ = {z}× P

1 ⊂M∞, z ∈C, denote the unique J∞-holomorphic curve pass-
ing through q∞ with trivial self-intersection. Then by [CCD24, Corollary 2.3], there
exists a sequence of Ji-holomorphic curves Ĉi with q∞ ∈ Ĉi and Ĉi.Ĉi = 0 converging
smoothly to Ĉ∞ as i→∞. (Here we have applied [MS94, Proposition 3.3.5 and Sec-
tion B.4] to deduce the smooth convergence.) This yields a sequence of J -holomorphic
curves Ci := ψi(Ĉi) in N with Ci.Ci = 0. Using this together with the evolution [ω(t)]
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of the Kähler class as dictated by (2.1), we compute that

vol(Ĉi, ψ
∗
i gi(−1))

= vol(Ci, λ
−2
i g(T − λ2

i ))

= λ−2
i vol(Ci, g(T − λ2

i ))

= λ−2
i

∫
Ci

[
ω(T − λ2

i )
∣∣∣
Ci

]

= λ−2
i

∫
Ci

([
ω(0)|Ci

]
− 2π(T − λ2

i )c1 (−KN |Ci)
)

= λ−2
i

∫
Ci

([
ω(0)|Ci

]
− 2πTc1 (−KN |Ci)

)
+ 2π

∫
Ci

c1 (−KN |Ci)

= λ−2
i lim

s→T−
vol(Ci, g(s)) + 4π.

(2.22)

Since the left-hand side of (2.22) converges to vol(Ĉ∞, g∞) = 2π as i → ∞, this
implies that

lim
i→∞

lim
s→T−

vol(Ci, g(s)) = 0. (2.23)

Write [Ci] = α1,i[D1] + α2,i[D2] + βi[E] for α1,i, α2,i, βi ∈ Z. Using (2.2), we com-
pute that for s ∈ [0, T ),

vol(Ci, g(s)) = α1,i(a2 − 2s) + α2,i(a1 − 2s) + βi(b− s)−−−−→
s→T−

α2, i(a1 − a2),

where we recall that T = a2
2 = b and a1 > a2. Combining this with (2.23), the fact

that α2,i ∈ Z implies that α2,i = 0 for large i.
Now, the fact that Ci.Ci = 0 implies that for large i,

β2
i = 2α1,iα2,i = 0.

However, since Ci intersects E in q, we know that

0<E.Ci = βi.

This yields the desired contradiction. �
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