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Bollobás, Erdős, and Szemerédi (1975) [1] investigated a tripartite generalization of the 
Zarankiewicz problem: what minimum degree forces a tripartite graph with n vertices in 
each part to contain an octahedral graph K3(2)? They proved that n + 2−1/2n3/4 suffices 
and suggested it could be weakened to n + cn1/2 for some constant c > 0. In this note we 
show that their method only gives n + (1 + o(1))n11/12 and provide many constructions 
that show that if true, n + cn1/2 is best possible.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let Kt denote the complete graph on t vertices. As a foundation stone of extremal graph theory, Turán’s theorem in 
1941 [10] determines the maximum number of edges in graphs of a given order not containing Kt as a subgraph (the t = 3
case was proven by Mantel in 1907 [6]). In 1975 Bollobás, Erdős, and Szemerédi [1] investigated the following Turán-type 
problem for multipartite graphs.

Problem 1. Given integers n and 3 ≤ t ≤ r, what is the largest minimum degree δ(G) among all r-partite graphs G with 
parts of size n and which do not contain a copy of Kt?

The r = t case of Problem 1 had been a central topic in Combinatorics until it was finally settled by Haxell and Szabó 
[4], and Szabó and Tardos [8]. Recently Lo, Treglown, and Zhao [9] solved many r > t cases of the problem, including when 
r ≡ −1 (mod t − 1) and r = �(t2).

For simplicity, let Gr(n) denote an (arbitrary) r-partite graph with parts of size n. Let Kr(s) denote the complete r-partite 
graph with parts of size s. In particular, K2(2) = K2,2 is a 4-cycle C4 and K3(2) = K2,2,2 is known as the octahedral graph. In 
the same paper Bollobás, Erdős, and Szemerédi [1] also asked the following question.

Problem 2. Given a tripartite graph G = G3(n), what δ(G) guarantees a copy of K3(2)?

Problem 2 is a natural generalization of the well-known Zarankiewicz problem [11], whose symmetric version asks for 
the largest number of edges in a bipartite graph G2(n) that contains no Ks,s as a subgraph (in other words, Ks,s-free).
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In [1, Corollary 2.7] the authors stated that δ(G) ≥ n + 2−1/2n3/4 guarantees a copy of K3(2). This follows from [1, 
Theorem 2.6], which handles the general case of K3(s) for arbitrary s. Unfortunately, there is a miscalculation in the proof 
of [1, Theorem 2.6] and thus the bound δ(G) ≥ n + 2−1/2n3/4 is unjustified. We follow the approach of [1, Theorem 2.6] and 
obtain the following result.

Theorem 3. Given an integer s ≥ 2 and ε > 0, let n be sufficiently large. If G = G3(n) satisfies δ(G) ≥ n + (1 + ε)(s −
1)1/(3s

2)n1−1/(3s2) , then G contains a copy of K3(s).

In particular, Theorem 3 implies that every G = G3(n) with δ(G) ≥ n + (1 + o(1))n11/12 contains a copy of K3(2). Using 
a result of Erdős on hypergraphs [3], we give a different proof of Theorem 3 under a slightly stronger condition δ(G) ≥
n + (3n)1−1/(3s2) . Thus c n11/12 is a natural additive term for Problem 2 under typical approaches for extremal problems.

On the other hand, the authors of [1] conjectured that δ(G) ≥ n + cn1/2 suffices for Problem 2. Although not explained 
in [1], they probably thought of Construction 10, a natural construction based on the one for the Zarankiewicz problem. We 
indeed find many non-isomorphic constructions, Construction 11, with the same minimum degree.

Proposition 4. For any n = q2 +q +1where q is a prime power, there are many tripartite graphs G = G3(n) such that δ(G) ≥ n +n1/2

and G contains no K3(2).

Theorem 3 and Proposition 4 together show that the answer for Problem 2 lies between n + n1/2 and n + n11/12. The 
truth may be closer to the lower bound. If this is the case, then verifying it may be hard given the presence of many 
non-isomorphic constructions.

We know less about the minimum degree of G3(n) that forces a copy of K3(s). Theorem 3 shows that δ(G3(n)) ≥
n + cn1−1/(3s2) suffices. As shown in Remark 12, if there is a Ks,s-free bipartite graph B = G2(n) with δ(B) = �(n1−1/s), then 
our constructions for Proposition 4 provide a tripartite K3(s)-free graph G = G3(n) with δ(G) = n + �(n1−1/s).

2. Proof of Theorem 3

In order to prove Theorem 3, we need the following results from [1].

Lemma 5. [1, Theorem 2.3] Suppose every vertex of G = G3(n) has degree at least n + t for some integer t ≤ n. Then there are at least 
t3 triangles in G.

Lemma 6. [1, Lemma 2.4] Let X = {1, . . . , N} and Y = {1, . . . , p}. Suppose A1, . . . , Ap are subsets of X such that 
∑p

i=1 |Ai | ≥ pwN
and (1 − α)wp ≥ q, where 0 < α < 1 and N, p and q are natural numbers. Then there are q subsets Ai1 , . . . , Aiq such that ∣∣∣⋂q

j=1 Ai j

∣∣∣ ≥ N(αw)q.

Let z(n, s) denote the largest number of edges in a bipartite Ks,s-free graph with n vertices in each part. Kővári, Sós, and 
Turán [5] gave the following upper bound for z(n, s).1

Lemma 7. [5] z(n, s) ≤ (s − 1)1/sn2−1/s + sn.

We are ready to prove Theorem 3.

Proof of Theorem 3. Let G be a tripartite graph with three parts V1, V2, V3 of size n each. Suppose δ(G) ≥ n + t , where 
t = (1 + ε)(s − 1)

1
3s2 n

1− 1
3s2 > n

1− 1
3s2 . By Lemma 5, G contains at least t3 triangles.

We apply Lemma 6 in the following setting. Let Y = V1 = {1, . . . , n} and X = V2 × V3 be the set of n2 pairs (x, y), 
x ∈ V2, y ∈ V3. For 1 ≤ i ≤ n, let Ai be the set of pairs (x, y) ∈ X for which {i, x, y} spans a triangle of G . Then 

∑n
i=1 |Ai | is 

the number of triangles in G so 
∑n

i=1 |Ai | ≥ t3. Let N = n2, p = n, q = s, w = t3/n3, and α = 1/(1 + ε). The assumptions of 
Lemma 6 hold because pwN = t3 and

(1 − α)wp = ε

1+ ε

(
t

n

)3

n >
ε

1+ ε
n−1/s2 n > s

as n is sufficiently large. By Lemma 6, there are i1, . . . , is ∈ V1 such that

1 In [1] the authors instead used the Turán number ex(2n, Ks,s), which gives a slightly worse constant here.
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∣∣∣∣∣∣
s⋂

j=1

Ai j

∣∣∣∣∣∣ ≥ N(αw)q = n2
(

t3

(1+ ε).n3

)s

Since

t > (1 + ε)
2
3 (s − 1)

1
3s2 n

1− 1
3s2 and

t3

(1+ ε)n3
> (1 + ε)(s − 1)1/s

2
n−1/s2 ,

we have∣∣∣∣∣∣
s⋂

j=1

Ai j

∣∣∣∣∣∣ > (1+ ε)s(s − 1)1/sn2−1/s ≥ (s − 1)1/sn2−1/s + sn. (1)

Let B denote the bipartite graph between V2 and V3 with E(B) = ⋂s
j=1 Ai j . By (1) and Lemma 7, B contains a copy of 

Ks,s . Since every edge of B forms a triangle with each of i1, . . . , is ∈ V1, this copy of Ks,s together with i1, . . . , is span a 
desired copy of K3(s) in G . �

We now give another proof of Theorem 3 with slightly larger δ(G) by a classical result of Erdős on hypergraphs [3]. An 
r-uniform hypergraph or r-graph is a hypergraph such that all its edges contain exactly r vertices. Let Kr

r (s) denote the 
complete r-partite r-graph with s vertices in each part, namely, its vertex set consists of disjoint parts V1, . . . , Vr of size s, 
and edges set consists of all r-sets {v1, . . . , vr} with vi ∈ Vi for all i.

Lemma 8. [3, Theorem 1] Given integers r, s ≥ 2, let n be sufficiently large. Then every r-graph on n vertices with at least nr−s1−r
edges 

contains a copy of Kr
r (s).

Proposition 9. Let s ≥ 2 and n be sufficiently large. Every tripartite graph G = G3(n) with δ(G) ≥ n + (3n)1−1/(3s2) contains a copy 
of K3(s).

Proof. Suppose G = G3(n) satisfies δ(G) ≥ n + (3n)1−1/(3s2) . By Lemma 5, G contains at least (3n)3−1/s2 triangles. Let H be 
the 3-graph on V (G), whose edges are triangles of G . Then H has 3n vertices and at least (3n)3−s−2

edges. By Lemma 8
with r = 3, H contains a copy of K 3

3 (s), which gives a copy of K3(s) in G . �
3. Proof of Proposition 4

In this section we prove Proposition 4 by constructing many tripartite K3(2)-free graphs G3(n) with δ(G3(n)) ≥ n +n1/2.
One main building block is a bipartite K2,2-free graph G0 = G2(n) with δ(G0) ≥ √

n. First shown in [7], such a graph 
exists when n = q2 + q + 1 and a projective plane of order q exists. Indeed, two parts of V (G) correspond to the points and 
lines of the projective plane and a point is adjacent to a line if and only if the point lies on the line. It is easy to see that 
such graph contains no K2,2 and is regular with degree q + 1 >

√
n.

Construction 10. Suppose G = G3(n) has parts V1, V2 and V3 each of size n. Let the bipartite graphs between V1 and V2 and between 
V1 and V3 be complete, while the bipartite graph between V2 and V3 is G0 defined above.

Since degG0
(v) ≥ √

n for v ∈ V2 ∪ V3 , we have δ(G) ≥ n +√
n. Furthermore, G contains no K3(2) because by the definition of G0 , 

there is no K2(2) between V2 and V3 .

We now provide a family of constructions with the same properties. (See Fig. 1.)

Construction 11. Let G = G3(n) be a tripartite graph with parts V1, V2 , and V3 of size n each. Partition V2 = X2 ∪ Y2 arbitrarily 
such that αn ≤ |X2| ≤ |Y2| for some α ∈ (0, 1/2). Partition V3 = X3 ∪ Y3 arbitrarily such that |X3| = |Y2| and |Y3| = |X2|.

The bipartite graphs (V1, X2), (X2, Y3), (Y3, Y2), (Y2, X3), and (X3, V1) are complete, in other words, V1, X2, Y3, Y2, X3 form a 
blowup of C5 . Let the bipartite graph between V1 and Y2 ∪ Y3 be isomorphic to G0 (note that |X2| + |Y2| = |X3| + |Y3| = n).

For any vertex v ∈ X2 , deg(v) = |V1| + |Y3| ≥ n + αn. The vertices v ∈ X3 satisfy deg(v) = |V1| + |Y2| ≥ n + n/2. For any 
v ∈ Y2 , deg(v) ≥ |V3| + δ(G0) ≥ n + √

n. The same holds for the vertices of Y3. At last, every vertex v ∈ V1 satisfies deg(v) ≥
|X2| + |X3| + δ(G0) ≥ n + √

n. These together show that δ(G) ≥ n + √
n.

Suppose G contains a copy of K3(2) with vertex set S. Then |S ∩ Vi | = 2 for i = 1, 2, 3. Since there is no edge between X2 and X3 , 
either S ∩ X2 = ∅ or S ∩ X3 = ∅. Suppose, say, S ∩ X2 = ∅, which forces |S ∩ Y2| = 2. Hence S ∩ Y2 and S ∩ V1 span a copy of K2,2 , 
contradicting the definition of G0.
3
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Fig. 1. Graph from Construction 11.

If letting X2 = ∅ = Y3 in Construction 11, then we obtain Construction 10. Nevertheless, we prefer viewing Construc-
tions 10 and 11 as different constructions because after removing o(n2) edges, Construction 11 contains many 5-cycles 
while Construction 10 does not.

Remark 12. If we replace G0 by a Ks,s-free bipartite graph with n vertices in each part in Constructions 10 and 11, then we 
obtain a K3(s)-free tripartite graph G3(n). It has been conjectured that there exist a Ks,s-free bipartite graph with n vertices 
in each part and �(n2−1/s) edges (this is known for s = 2, 3 [2,7]). If there exists such a bipartite graph which is regular, 
then (revised) Constructions 10 and 11 provide a K3(s)-free tripartite graph G = G3(n) with δ(G) = n + �(n1−1/s).
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