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1. Introduction

Let K; denote the complete graph on t vertices. As a foundation stone of extremal graph theory, Turdn’s theorem in
1941 [10] determines the maximum number of edges in graphs of a given order not containing K; as a subgraph (the t =3
case was proven by Mantel in 1907 [6]). In 1975 Bollobas, Erdés, and Szemerédi [1] investigated the following Turan-type
problem for multipartite graphs.

Problem 1. Given integers n and 3 <t <r, what is the largest minimum degree §(G) among all r-partite graphs G with
parts of size n and which do not contain a copy of K;?

The r =t case of Problem 1 had been a central topic in Combinatorics until it was finally settled by Haxell and Szab6
[4], and Szabé and Tardos [8]. Recently Lo, Treglown, and Zhao [9] solved many r > t cases of the problem, including when
r=—1 (mod t—1) and r = Q(t?).

For simplicity, let G,(n) denote an (arbitrary) r-partite graph with parts of size n. Let K;(s) denote the complete r-partite
graph with parts of size s. In particular, K2(2) = K32 is a 4-cycle C4 and K3(2) = K3 2> is known as the octahedral graph. In
the same paper Bollobas, Erdés, and Szemerédi [1] also asked the following question.

Problem 2. Given a tripartite graph G = G3(n), what §(G) guarantees a copy of K3(2)?

Problem 2 is a natural generalization of the well-known Zarankiewicz problem [11], whose symmetric version asks for
the largest number of edges in a bipartite graph G, (n) that contains no K; s as a subgraph (in other words, K; s-free).

* This paper is a result of the Undergraduate Research Initiations in Mathematics, Mathematics Education and Statistics (RIMMES) at Georgia State University,
in which the first author participated during 2021-2022 under the guidance of the second author. The second author is partially supported by a Simons
Collaboration Grant 710094.

* Corresponding author.

E-mail addresses: abhalkikar1@student.gsu.edu (A. Bhalkikar), yzhao6@gsu.edu (Y. Zhao).

https://doi.org/10.1016/j.disc.2022.113152
0012-365X/© 2022 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.disc.2022.113152
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2022.113152&domain=pdf
mailto:abhalkikar1@student.gsu.edu
mailto:yzhao6@gsu.edu
https://doi.org/10.1016/j.disc.2022.113152

A. Bhalkikar and Y. Zhao Discrete Mathematics 346 (2023) 113152

In [1, Corollary 2.7] the authors stated that §(G) > n + 2~1/2n3/4 guarantees a copy of K3(2). This follows from [1,
Theorem 2.6], which handles the general case of K3(s) for arbitrary s. Unfortunately, there is a miscalculation in the proof
of [1, Theorem 2.6] and thus the bound §(G) > n+2~1/2n3/4 is unjustified. We follow the approach of [1, Theorem 2.6] and
obtain the following result.

Theorem 3. Given an integer s > 2 and ¢ > 0, let n be sufficiently large. If G = G3(n) satisfies §(G) > n + (1 + &)(s —
1)1/GHn1=1/Gs) then G contains a copy of K5 (s).

In particular, Theorem 3 implies that every G = G3(n) with §(G) >n+ (1 + 0(1))n'1/12 contains a copy of K3(2). Using
a result of Erdés on hypergraphs [3], we give a different proof of Theorem 3 under a slightly stronger condition §(G) >
n+ (3n)1=1/3")_ Thus cn!"/12 is a natural additive term for Problem 2 under typical approaches for extremal problems.

On the other hand, the authors of [1] conjectured that §(G) > n + cn'/? suffices for Problem 2. Although not explained
in [1], they probably thought of Construction 10, a natural construction based on the one for the Zarankiewicz problem. We
indeed find many non-isomorphic constructions, Construction 11, with the same minimum degree.

Proposition 4. For any n = q* +q+ 1 where q is a prime power, there are many tripartite graphs G = Gz (n) such that §(G) > n+n1/2
and G contains no K3(2).

Theorem 3 and Proposition 4 together show that the answer for Problem 2 lies between n 4+ n'/2 and n + n''/12, The
truth may be closer to the lower bound. If this is the case, then verifying it may be hard given the presence of many
non-isomorphic constructions.

We know less about the minimum degree of Gs3(n) that forces a copy of Ks(s). Theorem 3 shows that §(G3(n)) >
n+cn'=1/6s) suffices. As shown in Remark 12, if there is a K, ¢~free bipartite graph B = Go(n) with 8(B) = Q(n'~1/%), then
our constructions for Proposition 4 provide a tripartite K3(s)-free graph G = G3(n) with §(G) =n + Q(n!=1/%).

2. Proof of Theorem 3

In order to prove Theorem 3, we need the following results from [1].

Lemma 5. [1, Theorem 2.3] Suppose every vertex of G = G3(n) has degree at least n + t for some integer t < n. Then there are at least
t3 triangles in G.

Lemma 6. [1, Lemma 24]Let X ={1,...,N}and Y = {1, ..., p}. Suppose A1, ..., A, are subsets of X such that Zle |Ai| = pwN
and (1 — a)wp > q, where 0 <« < 1 and N, p and q are natural numbers. Then there are q subsets Ay, ..., Aj, such that

N, Ay = Neaws.

Let z(n, s) denote the largest number of edges in a bipartite K; s-free graph with n vertices in each part. Kévari, S6s, and
Turén [5] gave the following upper bound for z(n, s).!

Lemma 7. [5] z(n, s) < (s — 1)"/*n?~1/5 4 sn.
We are ready to prove Theorem 3.

Proof of Theorem 3. Let G be a tripartite graph with three parts Vi, Vo, V3 of size n each. Suppose §(G) > n + t, where
A _
t=(1+e&)(s—1)3 n' 73 s n' T2, By Lemma 5, G contains at least t3 triangles.

We apply Lemma 6 in the following setting. Let Y = V; ={1,...,n} and X = V, x V3 be the set of n® pairs (x, y),
xeV,,ye Vs For 1 <i<n,let A; be the set of pairs (x, y) € X for which {i, x, y} spans a triangle of G. Then Z?:l |Aj| is
the number of triangles in G so Y |_; |Ai| > 3. Let N=n?, p=n, q=s, w=1t3/n3, and & = 1/(1 + ¢). The assumptions of
Lemma 6 hold because pwN =t3 and

3
g [t g
1-—a)wp= Vs —nVnss
14+€e\n 1+¢

as n is sufficiently large. By Lemma 6, there are iy, ...,is € V1 such that

1 In [1] the authors instead used the Turdn number ex(2n, Ks ), which gives a slightly worse constant here.
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N t3 N
)4y = Neaw)? =n® <—3)
L A+e)n

Since
t>(1 +e)%(s—1)3%2n1‘# and L > +e)(s— 1)/~
(1+e)m3 '
we have
N
(A > A+e)5s—Dn> 15 = (s = 1)/n®~ 15 - sn. (1)
j=t

Let B denote the bipartite graph between V, and V3 with E(B) = ﬂ§:1 Aj;. By (1) and Lemma 7, B contains a copy of
K; 5. Since every edge of B forms a triangle with each of iy, ...,is € Vy, this copy of Ks s together with iy,...,is span a
desired copy of K3(s) in G. O

We now give another proof of Theorem 3 with slightly larger §(G) by a classical result of Erdés on hypergraphs [3]. An
r-uniform hypergraph or r-graph is a hypergraph such that all its edges contain exactly r vertices. Let K] (s) denote the
complete r-partite r-graph with s vertices in each part, namely, its vertex set consists of disjoint parts Vq,..., V; of size s,
and edges set consists of all r-sets {vq,..., v;} with v; € V; for all i.

Lemma 8. [3, Theorem 1] Given integers r, s > 2, let n be sufficiently large. Then every r-graph on n vertices with at least nr=s' edges
contains a copy of K} (s).

Proposition 9. Let s > 2 and n be sufficiently large. Every tripartite graph G = G3(n) with 8(G) > n + (3n)!~1/G) contains a copy
of K3(s).

Proof. Suppose G = G3(n) satisfies 5(G) > n + (3n)'~1/35), By Lemma 5, G contains at least (3n)3~1/5’ triangles. Let H be
the 3-graph on V(G), whose edges are triangles of G. Then H has 3n vertices and at least (3n)3*572 edges. By Lemma 8
with r =3, H contains a copy of K;’ (s), which gives a copy of K3(s) in G. O

3. Proof of Proposition 4

In this section we prove Proposition 4 by constructing many tripartite K3(2)-free graphs G3(n) with §(G3(n)) >n+n'/2.

One main building block is a bipartite K, »-free graph Go = G,(n) with 8§(Gg) > +/n. First shown in [7], such a graph
exists when n =q2 +q+ 1 and a projective plane of order q exists. Indeed, two parts of V(G) correspond to the points and
lines of the projective plane and a point is adjacent to a line if and only if the point lies on the line. It is easy to see that
such graph contains no K, and is regular with degree ¢+ 1> /n.

Construction 10. Suppose G = G3(n) has parts V1, V, and V3 each of size n. Let the bipartite graphs between V1 and V, and between
V1 and V3 be complete, while the bipartite graph between V, and V3 is Gg defined above.

Since degg, (v) > /1 for v e Vo U V3, we have §(G) > n+ /n. Furthermore, G contains no K3(2) because by the definition of Gy,
there is no K (2) between V, and V3.

We now provide a family of constructions with the same properties. (See Fig. 1.)

Construction 11. Let G = G3(n) be a tripartite graph with parts V1, V,, and V3 of size n each. Partition V, = X, U Y, arbitrarily
such that an < |X3| < |Y2| for some o € (0, 1/2). Partition V3 = X3 U Y3 arbitrarily such that | X3| = |Y2| and |Y3| = |X3|.

The bipartite graphs (V1, X2), (X2, Y3), (Y3, Y2), (Y2, X3), and (X3, V1) are complete, in other words, V1, X2, Y3, Y2, X3 form a
blowup of Cs. Let the bipartite graph between V1 and Y, U Y3 be isomorphic to Go (note that | X2| + |Y2| = | X3] + |Y3| =n).

For any vertex v € X, deg(v) = |V1| + |Y3| > n + an. The vertices v € X3 satisfy deg(v) = |V1| + |Y2| = n + n/2. For any
v € Yy, deg(v) > |V3| + 8(Go) > n + /n. The same holds for the vertices of Ys. At last, every vertex v € Vy satisfies deg(v) >
|X2| + |X3] 4+ 8(Go) > n + /n. These together show that §(G) > n + /n.

Suppose G contains a copy of K3(2) with vertex set S. Then |SN V| =2 fori =1, 2, 3. Since there is no edge between X, and X3,
either SN Xy =@ or SN X3 = (. Suppose, say, S N X, =, which forces |S N Y| = 2. Hence SN Y, and S N Vq span a copy of K3 2,
contradicting the definition of Go.
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Fig. 1. Graph from Construction 11.

If letting X, =¥ = Y3 in Construction 11, then we obtain Construction 10. Nevertheless, we prefer viewing Construc-
tions 10 and 11 as different constructions because after removing o(n?) edges, Construction 11 contains many 5-cycles
while Construction 10 does not.

Remark 12. If we replace Go by a K s-free bipartite graph with n vertices in each part in Constructions 10 and 11, then we
obtain a K3(s)-free tripartite graph G3(n). It has been conjectured that there exist a K s-free bipartite graph with n vertices
in each part and Q(n%~1/%) edges (this is known for s = 2,3 [2,7]). If there exists such a bipartite graph which is regular,
then (revised) Constructions 10 and 11 provide a K3(s)-free tripartite graph G = G3(n) with §(G) =n + Q(n!=1/%).
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