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The dynamics of cellular pattern formation is crucial for understanding embryonic development and tissue
morphogenesis. Recent studies have shown that human dermal fibroblasts cultured on liquid crystal elastomers
can exhibit an increase in orientational alignment over time, accompanied by cell proliferation, under the
influence of the weak guidance of a molecularly aligned substrate. However, a comprehensive understanding
of how this order arises remains largely unknown. This knowledge gap may be attributed, in part, to a scarcity of
mechanistic models that can capture the temporal progression of the complex nonequilibrium dynamics during
the cellular alignment process. The orientational alignment occurs primarily when cells reach a high density
near confluence. Therefore, for accurate modeling, it is crucial to take into account both the cell-cell interaction
term and the influence from the substrate, acting as a one-body external potential term. To fill in this gap, we
develop a hybrid procedure that utilizes statistical learning approaches to extend the state-of-the-art physics
models for quantifying both effects. We develop a more efficient way to perform feature selection that avoids
testing all feature combinations through simulation. The maximum likelihood estimator of the model was derived
and implemented in computationally scalable algorithms for model calibration and simulation. By including
these features, such as the non-Gaussian, anisotropic fluctuations, and limiting alignment interaction only to
neighboring cells with the same velocity direction, this model quantitatively reproduce the key system-level
parameters—the temporal progression of the velocity orientational order parameters and the variability of
velocity vectors—whereas models missing any of the features fail to capture these temporally dependent
parameters. The computational tools we develop for automating model construction and calibration can be
applied to other systems of active matter.
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I. INTRODUCTION

Active matter refers to systems composed of many in-
dividual agents that interact with each other and consume
energy from their surroundings or an internal source to gen-
erate complex, global behaviors [1–3]. It encompasses a wide
range of biological systems, such as flocks of birds, schools of
fish, groups of humans, herds of sheep, monolayers of cells,
colonies of bacteria, and others, all exhibiting intriguing out-
of-equilibrium phenomena. The dynamics of active matter,
which we term “active dynamics,” is the key to describing the
collective, spatiotemporal self-organization that arises from
interactions and decision-making at the individual-agent level.

Disorder-to-order transitions in biological tissues, charac-
terized by the emergence of patterns, are a common feature
of cellular systems. These transitions have been compared to
phases of matter, such as disordered gas and amorphous solids
[4,5]. They underlie many developmental processes [6], and
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are implicated in cancer invasion [7]. The resulting patterns
impart tissue with form, function, and integrity, as seen in
the basketweavelike pattern of the dermis that serves as a
shield for the deeper layers [8,9], the generation of forces in
blood vessels [10,11], and the coordination of cell fates during
embryonic development [12].

The mechanisms behind these cellular transitions are not
well understood, but traditionally, collective behaviors are
thought to be regulated by cell chemosensing [13] and
upstream biochemical signaling pathways [14]. While bio-
chemical regulations are on demand and short lived, physical
guidance ensures the generation of cell phenotypes and long-
term maintenance of tissue structures [15]. More recently,
simple two-dimensional (2D) transitions of such nature have
been realized through in vitro experiments [16–19], by sub-
jecting a cell monolayer to an external guiding field, such as
a well-aligned molecular field [20], which can lead cells to
collectively orient along a predetermined axis in a density-
dependent manner.

Modeling spontaneous alignment of particles in active
matter systems has been the subject of numerous studies
[21–26]. The two main approaches in modeling are either
by constructing mechanistic models through physical laws,
or by applying data-driven methods to extract information
from observations to construct models [27,28]. Describing
individual cell behaviors often starts from a Langevin equa-
tion of Brownian particles [29]: mv̇ = −ζv + εF , with m, v,
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and ζ being the mass, velocity, and friction coefficient, re-
spectively, and εF being a random force fluctuation, typically
assumed to be a Gaussian white noise. Variants of it have been
widely used for modeling persistent random motions of cells
in experiments and simulation [30–34], whereas the complex
cell-cell interaction at high density, often implicated in tissue
formation and repair, is not explicitly considered in these
models.

In data-driven methods, regression techniques, for in-
stance, are widely applied to estimate linear coefficients of
a set of additive basis [35–37], and to learn particle inter-
action kernel functions by piecewise linear functions [38],
neural networks [39], and Gaussian processes [40]. Learn-
ing the distance-based interaction kernel function has been
successfully applied to model schools of golden shiner [41],
flocks of surf scoters [42], and systems of interacting particles
[38]. However, these approaches are rarely applied to estimate
cell-cell interaction from experiments with a large number of
cellular trajectories, partly because the large computational
cost prohibits accurate interaction kernel learning approaches
[40]. Furthermore, as the underlying mechanism of these
interactions remains largely unknown, a principled way to
identify the relevant input of interaction kernel and delineating
neighboring sets is needed as adding nonrelevant inputs can
dramatically reduce estimation efficiency.

Despite the prevalence of the disorder-to-order transition
observed in experiments [20,43,44], capturing the temporal
progression of dynamic quantities in active matter systems,
such as the orientational order parameter and variability of
velocity, remains a challenging task due to a few reasons. First
of all, active matter systems intrinsically contain large fluc-
tuations. Gaussian distributions of fluctuation, for instance,
are often assumed for modeling the velocity progression in
constructing mechanistic models [45,46]. In a data-driven
approach, the model is usually optimized by minimizing
a loss function. One common choice of the loss function
is the sum of squared errors, and minimizing it is equiv-
alent to finding the maximum likelihood estimator, under
the assumption of having independent Gaussian noises with
equal variances. However, we find that velocity distributions
from our experiments significantly deviate from Gaussian. In
fact, even though models assuming Gaussian distribution of
the velocity fluctuation can fit the magnitude of temporally
dependent velocity, they cannot capture the progression of
orientational order parameters. Non-Gaussian distributions of
displacements have been widely observed in biological sys-
tems, such as particles absorbed on lipid bilayers, immersed
in entangled actin solutions [47], in a bath of swimming
algal cells [48], liposomes in active actin solutions [49], and
receptors on living cell membranes [50]. While models have
been developed to explain the fluctuation of displacements
independent of time [51,52] and for how these distribu-
tions arise [53], the fluctuation distributions have rarely been
incorporated in simulation to reproduce the temporal pro-
gression of velocity and order parameters in nonequilibrium
cell migrations.

Second, in principle, having a large number of observations
containing thousands of particle trajectories over hundreds
of time points can help offset the uncertainty of estimation
due to large fluctuations of the active particles. Nonetheless,

calibrating the simulation model with such a large number of
observations is a nontrivial task. Placing a smooth Bayesian
prior on the interaction kernel function, such as a Gaussian
process prior, can partially filter the noise in estimation but
also leads to large computational costs. Thus, most of the
current studies of learning interaction kernels are restricted
to a small number of particles and time frames [38,54].
Hence, there is a need for robust and computationally scalable
algorithms for feature selection and estimation from a large
number of observations.

This work aims to address these issues by introducing
an efficient workflow to automate model construction, pro-
moting convergence between simulation and experiments.
We take a hybrid approach that integrates physical models
and statistical learning approaches: First, we start from a
conventional form of the physical models (e.g., the Vicsek
model [21,55]). Second, we apply statistical tests for feature
selections. Then, these features are utilized to construct a
data-generative model, instead of minimizing a loss function
as usually adopted in other data-driven discovery approaches.
The data-generative model provides a better physical interpre-
tation of the estimated quantities, and, more importantly, the
uncertainty of the estimation can also be quantified. We de-
velop an automated feature selection and estimation approach,
which is applied to learning physical quantities from live
microscopy of fibroblasts moving on liquid crystal elastomer
substrates, to discover a variety of new features. Simulation
models constructed with these new features can reproduce
the progression of system properties, such as orientational
order parameters and velocity distributions, whereas models
missing any of these features do not match experimental
findings.

Our main contribution is to develop an efficient feature
selection and estimation approach for cellular movement ex-
periments on liquid crystal elastomer substrates from video
microscopy. The four selected features can be classified into
two groups. The first group concerns cell-substrate interac-
tions. We found that the velocity of the cells is anisotropic
and has heavier tails than a Gaussian distribution, motivating
the use of a Laplace distribution or generalized Gaussian
distribution of fluctuation for characterizing cell-substrate in-
teraction. Though Laplace distribution was used to fit the
probability distribution of the displacements [47,49,56] and
the mechanism of exponentially distributed cellular motility
was explored in [53], its effect on capturing the progression
of the orientational order parameter in simulations has not
been demonstrated. The second group of discoveries con-
cerns cell-cell interactions. We observe from experiments that
when cells interact, cell bodies become elongated, suggesting
cells pulling each other along through a tensional network.
Our findings indicate that cells are not perfectly aligned with
the average of their neighbors in the prior time frame, as is
the case in the classic Vicsek model [21]; instead, effects from
the previous step shrink towards zero, likely due to a frictional
force term in the Langevin equation [29]. Additionally, we
discovered that cells traveling in the opposite direction may
be excluded from the neighboring set, leading to improved
predictions of the velocity at the subsequent time point. This
likely arises from the nematic nature of cell-cell interactions
[43], where cells traveling in the opposite direction can simply
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FIG. 1. (a) Schematics of the two types of substrates (isotropic and nematic) tested in this study. On the nematic substrate, the molecular
alignment (denoted by a red double-sided arrow), is parallel to x. (b) A stitched view of a snapshot of long-term cell imaging where cell
cytoplasm is labeled in red. (c) Correlation plots in exploratory data analysis, where x, y velocity components are plotted against those of the
neighboring average in the previous step. The slope of the fit (red solid lines) is smaller than 1 (black dashed lines). (d) Parameter estimation
of the slope parameters, ω, the slope value of the red solid line in (c), and their 95% confidence intervals (shaded area). The statistical tests
yield four potential features (green blocks), representing new features added to the classical Vicsek model in fitting the current data set. (e) The
grid-based system to search for the neighbors. In order to find the neighbor of the target cell i (circled in red), a radius of r will be searched.
The computational procedure is simplified by only searching through neighboring squares connected to the square cell i is located in. This
workflow generates various physical parameters via simulation to compare to quantities computed from the experiment.

glide past each other without influencing each other’s velocity.
Typical cell trajectories and interactions are illustrated in a
small video in the Supplemental Material [57].

Furthermore, we develop scalable computational tools for
analyzing and simulating dynamical processes of active mat-
ter. Figure 1 illustrates an instance of the particle-based
module of our computational tools. In Fig. 1(c), we present
a plot showing the correlation between cellular velocity and
the mean velocity of neighboring cells in the previous time
point. The slopes of the best-fit lines (red solid curve) are
smaller than 1 for both x and y directions. To determine if
this result applies to all time points, we plot the fitted weight
parameters [equivalent to the slope of the fit in Fig. 1(c)]
over time and calculate the 95% confidence interval, which is
represented by the shaded area in Fig. 1(d). The upper bounds
of the 95% confidence intervals are substantially smaller than
1, indicating that the weight parameters must be included in
the simulation model. All the identified features are included
in the simulation model, and a maximum likelihood estimator
is derived for efficient parameter estimation (Appendixes A
and B). For both parameter estimation and simulation, we
employ a grid-based approach [58] by storing the particles in
a coarse-grained grid [Fig. 1(e)], which can improve the effi-
ciency in searching for neighbors. With a typical microscopy
video of n ≈ 2500 cells and T ≈ 100 time frames, the time it
takes to perform feature selection, parameter estimation, and
simulation of dynamics with particle interactions is less than
30 s on a desktop computer. This provides almost immediate
feedback that can be used to inversely guide the design of the
experiment. The data sets and code used in the article have
been made publicly available [59].

II. FEATURE SELECTION
FROM EXPERIMENTAL RESULTS

We begin by discussing experimental methods for live cell
imaging and the process of extracting trajectories from cells
cultured on aligned (nematic) and disordered (isotropic) liquid
crystal elastomer substrates. We then conduct exploratory data
analysis and statistical tests to identify significant features
from the experimental data. These features are used as build-
ing blocks to extend a baseline model. Lastly, we perform
simulations to validate our findings in Sec. III.

A. Experimental setting: In vitro cell alignment experiment

The experimental data were derived from [20], consisting
of cell trajectories. Liquid crystal elastomer (LCE) substrates
were fabricated with a mixture of reactive monomers RM82
and RM23 (SYNTHON Chemicals GmbH & Co.) in a 1:1
molar ratio with the molecular field having either isotropic
or nematic (uniform along the x direction) configurations.
The monomers were crosslinked to make a solid film, which
was topographically flat but molecularly aligned, previously
examined by wide angle x-ray scattering and atomic force
microscopy [20]. Human dermal fibroblasts (HDFs, American
Type Culture Collection) were seeded onto the substrates at
cell density ρ ≈ 50 mm−2 and grown to desired ρ. Prior to
imaging, cell nuclei and cytoplasm were stained with Dyes
Hoechst 33342 and CellTracker Deep Red (both from Ther-
moFisher), respectively. Cells are maintained at 37 ◦C, 5%
CO2, and imaged every 20 min for about 36 h. Tens of
images were taken at every time point and stitched together
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FIG. 2. Parameters estimated from the data set. (a) The standard deviation of the cell velocities is shown in yellow circles and green
triangles. The light-colored histogram denotes the cell number count. [(b), (c)] The velocity distribution at a representative time of 20 h. The
dashed black lines denote the best-fit normal distribution. The solid orange lines denote the best-fit Laplace distribution. (d) The blue squares
denote the polar order parameter, and the polar histograms of the velocity angle at two different time points are plotted in (e) and (f).

to construct an image on the order of square millimeters in
area. LCE nematic substrates impose a molecular direction
to guide HDF growth. During the experiment, cell density
ρ grows from roughly 350 to 400 mm−2. With an increase
in cell density, the monolayer undergoes a disorder-to-order
transition. Initially, there were approximately 2600 cells cap-
tured within the frame. When we finished imaging, the count
had increased to about 2950 cells. To obtain the trajectories
as inputs, we fit an ellipse to the nuclei and track particle
trajectories using IMAGEJ [60], a standard cellular imaging
tool. On the nematic substrate, cells develop a long-range
order along the x direction, the same direction as the molec-
ular orientation in the aligned substrate, but not on isotropic
substrates.

From the experiment, we extract the 2D position vec-
tor si(t ) = (si,x(t ), si,y(t ))T and velocity vector vi(t ) =
(vi,x(t ), vi,y(t ))T of cell i, at time frame t , for i = 1, . . . , nt ,
with nt being the number of cells on time frame t , for t =
1, . . . ,T . The velocity is computed by dividing the displace-
ment over time intervals as follows: vi,x = si,x (t+�t )−si,x (t )

�t , and
similarly for vi,y. We then store the data matrix, where each
row contains the 2D position, velocity, and a unique cell iden-
tification number resulting from trajectory linking. The goal
is to construct an interpretable model and constrain the model
by data, for reproducing the temporally dependent variability
of the velocity and orientational order parameter. We plot
the standard deviation of the velocity at x and y directions
at each time frame in Fig. 2(a). Since the nucleus does not
distinguish between the head and tail—its order is apolar—
we cannot apply the polar order parameter to quantify the
system alignment [61]. Instead, we first transform the ve-
locity angle of particle i at time frame t , denoted by θi(t )

= arctan(vi,y(t )/vi,x (t )), to [0, π ] by letting

θ̃i(t ) =
{
θi(t ) + π if θi(t ) < 0
θi(t ) if θi(t ) � 0.

(1)

The orientational order parameter at time t is an ensem-
ble of transformed velocity angles among all cells: S(t ) =
〈cos(2θ̃i(t ))〉i. This way, antiparallelly traveling cell pairs (θi
= θ j + π ) have the same contribution to orientational order
parameters. In Fig. 2(d), we show that the orientational or-
der parameter S(t ) increases with time. The distributions of
the velocity angles at two different time points are plotted
in Figs. 2(e) and 2(f), showing that over time the velocity
distribution becomes more parallel along the x direction.

To account for observed migrational patterns, we start
by identifying unexpected deviations of the magnitude and
distributions from the classical Vicsek model. Exploratory
data analysis (EDA) [62] is a useful step to visualize patterns
from complex experimental data before performing statistical
tests and modeling. Here, we first perform EDA on various
aspects of the data, followed by statistical tests and estimation
to identify features to include in the modeling. The main
text focuses on the analysis of an experiment where cells
initially cover roughly 50% of the substrates. During the
experiment, the order parameter increases rapidly with
cell proliferation. We present results on the analysis of
two additional experiments at different cell densities or on
isotropic substrates in Appendix D.

B. Permutation F-test on variances of the velocities

To test whether the variances of the velocities along x
and y directions are the same at all time frames, we first
compute the sample standard deviation of the velocity vector
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FIG. 3. A permutation F-test shows that the variance of the fluc-
tuation along x and y directions is indeed unequal at time = 20 h.

at x and y coordinates: σ̂ 2
x (t ) = ∑nt

i=1(vi,x(t ) − v̄x(t ))2/(nt −
1) and σ̂ 2

y (t ) = ∑nt
i=1(vi,y(t ) − v̄y(t ))2/(nt − 1), where v̄x(t )

and v̄y(t ) are the mean of the velocity at time t computed
from an ensemble of all cells in the system, and both are
close to zero. As shown in Fig. 2(a), we found that the
standard deviation of the velocity along the x coordinate is
always larger compared to that along y. The larger magni-
tude of cellular velocity along the x coordinate is induced
by the liquid crystal elastomer substrate, which is molecu-
larly aligned along the x direction in this experiment. As the
velocity magnitudes along x and y directions become more
unequal over time, the orientational order parameter increases
[Fig. 2(d)].

Is the observed difference between σx(t ) and σy(t ) due to
signal or noise? Typically, testing the equality of the variance
is performed using the F-test assuming both populations are
normally distributed. However, as we will see later, velocity
distributions do not follow a normal (Gaussian) distribution,
while the F-test is sensitive to the normality assumption [63].

Here we circumvent the normality assumption by run-
ning a permutation F-test. The permutation test is a general
nonparametric test that is insensitive to the distributional
assumption. At each time t , we begin by combining the ve-
locities at x and y directions into a long vector. Subsequently,
we randomly assign these combined velocity values into two
groups of equal size, creating a permuted sample. We repeat
this step B times to collect B permuted samples: v(b)

x (t ) =
[v(b)

1,x(t ), . . . , v(b)
nt ,x(t )] and v(b)

y (t ) = [v(b)
1,y(t ), . . . , v

(b)
nt ,y(t )] for

b = 1, . . . ,B. Then we compute the permuted F-test statis-
tics F (b)(t ) = σ̂ 2

b,x (t )/σ̂ 2
b,y(t ), where σ̂ 2

b,x (t ) and σ̂ 2
b,y denote

the sample variances of the velocity for x and y directions,
respectively, from the permuted sample b. The p-value is
twice the minimum of the probabilities Pr(F (b)(t ) > F (t ))
and Pr(F (b)(t ) < F (t )), which can be computed empirically
using the permuted samples.

Figure 3 shows the distribution of the F-test statistics of
the permuted samples and the observed F-test statistics for
velocity observations at time equal to 20 h. Since the observed
F-test statistics is larger than any of the permutation sample,
the p-value is smaller than 10−4, indicating that the variance
of the velocity along x and y directions is unequal at this time
frame. We perform the permutation F-test for each of the time
points and verify that the variances σ 2

x (t ) �= σ 2
y (t ) for all time

FIG. 4. Shapiro-Wilk test for normality. The figure shows the
p-value of individual frames, which is a statistical measurement
applied to validate whether or not the observed data follow a normal
distribution. A small p-value indicates statistical significance. The
inset shows a representative quantile-quantile (QQ) plot at time =
20 h to compare the sample quantiles of normalized velocity with
the theoretical quantiles from the standard normal distribution. The
black curve indicates the linear curve with slope 1 (normal).

points. Thus, cellular movements are anisotropic when cells
are grown on a molecularly aligned substrate.

C. Shapiro-Wilk test for normality of velocity distribution

While at first glance cell motility bears much resem-
blance to passive, freely diffusing particles, our study reveals
that velocity distributions in our system deviate from the
Gaussian distribution typically observed for passive parti-
cles in a homogeneous environment. To illustrate that, we
plot the probability density function of velocity distribu-
tions at a representative time [Figs. 2(b) and 2(c)]. Both
velocity distributions along x and y have spiky modes and
heavy tails, which cannot be captured by the best-fit Gaus-
sian distribution (Fig. 2, black dashed curves), for which
the mean and standard deviation are specified as the sam-
ple mean and sample standard deviation, respectively. The
shape of the probability density distribution suggests the
use of the Laplace distribution [Figs. 2(b) and 2(c), orange
solid curves], which fits the velocity distributions reasonably
well.

To test whether the velocity distribution follows the normal
distribution at each time frame, we compute p-values of the
Shapiro-Wilk test for normality [64], plotted in Fig. 4. The
p-values are all extremely small, indicating the velocity distri-
bution at any time frame substantially deviates from Gaussian.
Furthermore, we plot the sample quantile versus theoretical
quantile from a normal distribution (QQ plot) of the velocities
along both directions at 20 h, both of which deviate from
theoretical quantiles, shown as the black line in the inset.
The p-values get smaller at later time frames when the sys-
tem approaches jamming, as the network effects are larger.
Furthermore, the p-values for velocities along the y direction
are smaller than those from the x direction, indicating that
the deviation from normality is also bigger, signaling more
confinement along the y direction.
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FIG. 5. Effects of accounting for different neighbor ensembles. [(a)–(c)] Parameters and correlation plots using the neighbor ensemble
of the classical Vicsek model for time = 20 h. [(d)–(f)] The scenario where only cells traveling in the same direction are considered. [(b),
(c), (e), (f)] The correlation between the cell at t versus the mean of the velocity of its neighbors at t − 1. (g) Correlations between velocity
vi,x (t ), vi,y(t ) of any cell i and mean velocity of the neighboring cells from the previous step v̄i,x (t − 1), v̄i,y(t − 1), where the 95% confidence
intervals, shown in faint shades, are computed based on Fisher transformation of correlation coefficients. Two scenarios are shown, either by
including all neighbors (bottom two curves), or only the same direction neighbors (top two curves). (h) The estimated weights, equivalent to
the fitted slopes, ω̂x (t ), ω̂y(t ) from these two scenarios and their confidence intervals are plotted.

D. Neighboring feature construction for cellular interaction

Next, we discuss the contribution of the neighbor ensemble
to cell alignment. For any cell, the conventional choice of
the neighboring set is to include all cells within a radial dis-
tance r [as shown in Fig. 5(a)]. Evidence of cell intercalation,
where cells squeeze past their neighbors and they exchange
positions, is increasingly found in recent studies [65,66].
When antiparallelly aligned cells move past each other, they
minimally impact each other’s velocity. This motivates us
to investigate a neighboring set that excludes the cells with
opposite velocities, as shown in Fig. 5(d). To compare these
two approaches of accounting for the neighbors, in Fig. 5(b),
we plot the cellular velocity of each particle, vi,x(t ), at time
= 20 h versus the mean velocity of neighboring cells at the
previous time frame at the x coordinate, while in Fig. 5(e)
the same quantities are computed when the cells with oppo-
site velocities are excluded from the neighboring set. As the
neighboring set in the previous step includes the cell itself,
it is not surprising that both approaches yield a relatively
high one-step forecast accuracy, since individual cells tend to
migrate with a persistent velocity [67].

The correlation in Fig. 5(e) is around 0.64, which is sub-
stantially higher than the correlation of 0.41 in Fig. 5(b),
indicating that excluding the particles from the neighbors sub-
stantially improves the one-step predictive accuracy. The same
conclusion holds for velocity updates along the y coordinate,
shown in Figs. 5(c) and 5(f). Furthermore, by evaluating the
one-step correlation over all time points [Fig. 5(g)], we find
that the method including only same-direction neighbors sub-
stantially outperforms the one including all of the neighbors,
as in the Vicsek model. These results indicate that the HDF
cells in our experiment appear to distinguish between head
and tail polarities [68], despite extensive analogy that has
been drawn between weakly interacting fibroblasts and active
nematics [43,69].

E. Reduced magnitude of local alignment

Unlike [70], we do not normalize the velocity to keep the
velocity magnitude to be the same, as the velocities can also
change due to an increase in cell density. Figures 5(e) and
5(f) indicate that the velocity of the cell i at time t may
be modeled by the mean of the velocity of the neighboring
cells at time t − 1, that is, E[vi,x(t )] = wx(t )v̄i,x(t − 1) and
E[vi,y(t )] = wy(t )v̄i,y(t − 1), where v̄i,x(t − 1) and v̄i,y(t − 1)
are the mean of the velocity of the neighboring cells at time
t − 1. To further test whether the statement is statistically
significant, we compute the maximum likelihood estimator of
the weights when the random fluctuation follows a Laplace
distribution and generalized Gaussian distribution, with a dif-
ferent set of parameters at x and y coordinates.

As shown in Fig. 5(h), the maximum likelihood estimators
of weights wx(t ) and wy(t ) are both smaller than 1. Further-
more, the shaded area shows the 95% confidence intervals of
the estimation, which is calculated by the residual bootstrap
estimate [71]. In all plots, we found the upper bounds of
the 95% confidence intervals of wx(t ) and wy(t ) are smaller
than 1 at any time frame, indicating that the velocity of a
cell aligns with the velocity of neighboring cells, while the
velocity alignment is offset by other forces, such as frictional
force between substrates and cells [13,23,72,73].

F. Summary of data-driven findings and model development

Here, we summarize the discovery from the EDA and sta-
tistical tests. First, variances of the random motion along the
x and y coordinates are distinct, and both decrease over time
due to cell proliferation. Second, the probability density of
the velocity distribution at both x and y directions has shown
non-Gaussian behavior with a heavy tail and spiky mode near
zero. Third, excluding cells with opposite velocities substan-
tially improves the correlation between cellular velocity and
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mean velocity of the neighboring cells at the previous time
step, as cells glide across each other in a manner reminiscent
of intercalation [74]. Fourth, the slope of the coefficient of
a linear fit between the particle density and mean of neigh-
boring particles in the prior time frame is smaller than 1,
indicating velocity alignment with its neighboring particles is
offset by cell-substrate forces. All of the statistical tests we
have developed so far are not restricted to the context of exter-
nally guided alignment; they are generally applicable to video
microscopy, which contains rich spatiotemporal data. Next,
we illustrate how these analyses can be utilized to develop
simulation models and parameter estimation for these models.

III. MODEL CONSTRUCTED FROM SELECTED
FEATURES AND MAXIMUM LIKELIHOOD ESTIMATION

Our objective is to develop a minimum physical model
that can account for temporally dependent orientational order
parameters and velocities. We begin our model construction
based on the seminal work by Vicsek [21], consisting of
agents moving at a constant speed and updating their direction
of movement at each step. The “new” velocity direction is
determined by the summation of the average of the velocities
of neighboring agents in the prior time frame, plus a random
fluctuation. Despite its simplicity, this system exhibits a wide
range of phenomena, including a transition from disordered
to ordered behavior by adjusting the magnitude of the fluctu-
ation. Later modification to this model includes incorporation
of distance-dependent interactions [23], which effectively re-
produces observed phenomena such as local cohesion [70]
and jamming transitions [75]. These phenomena are char-
acteristic of a migrating epithelium [76], which has strong
cell-cell junctions. Here we utilized a data-driven approach
to make systematic improvements to the Vicsek model by in-
corporating the four selected features into the model. Though
some of these aspects have been noted to some extent in
literature, to our knowledge, there has been no work incorpo-
rating all of them and systematically testing their applicability
for quantitatively reproducing the evolving orientational or-
der observed in the experiment. The velocity vector of the
ith particle at time frame t , vi(t ) = (vi,x(t ), vi,y(t ))T , for
t = 1, . . . ,T and i = 1, . . . , nt , is modeled by two terms. The
first and second terms represent the cell-cell and cell-substrate
interactions, respectively, as follows:

vi,x (t ) = wx(t )v̄i,x(t − 1) + εi,x(t ), (2)

vi,y(t ) = wy(t )v̄i,y(t − 1) + εi,y(t ), (3)

where εi,x(t ) and εi,y(t ) are independent zero-mean random
variables with variances V [εi,x(t )] = τ 2

x (t ) and V [εi,y(t )] =
τ 2
y (t ), respectively, v̄i,x(t − 1) and v̄i,y(t − 1) are the mean

of the x and y directional velocities of neighboring particles
at time t − 1, and wx(t ) and wy(t ) are real-valued scalars
denoting the weights. The mean of the velocity at the x and
y coordinates is modeled by

v̄i,x(t − 1) = 1

pnei (t−1)

∑
j∈nei (t−1)

v j,x (t − 1), (4)

v̄i,y(t − 1) = 1

pnei (t−1)

∑
j∈nei (t−1)

v j,y(t − 1), (5)

where nei(t − 1) is the neighboring set of cell i at
time frame t − 1 and pnei (t−1) is the number of cells
in the neighboring set. Let si(t − 1) be the 2D posi-
tion of cell i at time frame t − 1. The neighboring set
is defined as nei(t − 1) = { j : ||s j (t − 1) − si(t − 1)|| <

r and v j (t − 1) · vi(t − 1) > 0}, which contains particles
within a radius distance r but excludes particles with opposite
velocities.

Section II C provides compelling evidence that the fluc-
tuation distribution in the model significantly deviates from
Gaussian distributions. Here, we introduce two distribu-
tions to model the random fluctuations in velocity: the
Laplace distribution (or the double exponential distribution)
and the generalized Gaussian distribution (or the stretched
exponential distribution). Both distributions have been fit
to the probability distribution of displacements that go be-
yond Gaussian assumptions, particularly when the system
approaches jamming [49,56,77,78]. Yet, finding the maximum
likelihood estimator of the parameters with non-Gaussian
fluctuations is not a computationally trivial task, given that
the video contains 102 time frames and each frame has over
2000 cells. Hence, we introduce computationally scalable ap-
proaches to compute the maximum likelihood estimator for
models with these non-Gaussian fluctuations.

A. Maximum likelihood estimator with Laplace fluctuation

For the sake of simplicity, we will only demonstrate the
model using velocity along the x direction as an example. The
model for velocity along the y direction can be constructed
in a similar manner. To model the fluctuation by the Laplace
distribution εi,x(t ) ∼ Laplace(0, τx(t )) entails that the residual
of velocity of particle i at time t , ei,x (t ) = vi,x(t ) − wx(t )v̄i,x
(t − 1), follows

p(ei,x (t ) | τx(t )) = 1√
2τx(t )

exp

(
−

√
2|ei,x (t )|
τx(t )

)
. (6)

The maximum likelihood estimator of wx(t ) can be
obtained by iterative algorithms such as the expectation-
maximization algorithm and iterative reweighted least squares
algorithm [79,80], while a faster alternative is through linear
programming [81,82]. The likelihood function and the max-
imum likelihood estimator of the weight parameter, ŵx(t ),
are introduced in Appendix A. The maximum likelihood es-
timator of the standard deviation of the random fluctuation
can be obtained by maximizing the profile likelihood after
substituting in ŵx(t ):

τ̂x(t ) =
√

2

nt

nt∑
i=1

|vi,x(t ) − ŵx(t )v̄i,x(t − 1)|. (7)

B. Maximum likelihood estimator with generalized
Gaussian distribution

In general, both the Laplace and the Gaussian distribu-
tion are special cases of the generalized Gaussian distribution
(GGD), also referred to as a stretched exponential distribution
[83,84]. Here, we illustrate the formulation by applying the
model to fit the velocity component along the x direction. We
assume that the residual ei,x (t ) follows a zero-mean GGD with

013009-7



MENGYANG GU, XINYI FANG, AND YIMIN LUO PRX LIFE 1, 013009 (2023)

FIG. 6. Reproducing orientational order parameters and mean absolute deviation of velocity with different simulation models at a
representative radius r = 75 µm. The left, middle, and right panels compare simulations using the Gaussian, Laplace, and GGD fluctuation
with experimental observations. For each type of fluctuation distribution, simulations of different interaction rules are presented. [(a)–(c)] The
orientational order parameter and [(d)–(f)] the average absolute deviation of the velocities.

parameters αx(t ) and βx(t ) at time frame t :

p(ei,x (t ) | αx(t ), βx(t ))

=
(

βx(t )

2αx(t )

(

1
βx (t )

)
)

exp

{
−

( |ei,x (t )|
αx(t )

)βx (t )
}

. (8)

The variance of the GGD follows τ 2
x (t ) = V [ei,x(t )] =

α2
x (t )
(3/βx(t ))/
(1/βx(t )), with 
(·) denoting the gamma

function. When βx(t ) = 2 and αx(t ) = √
2τx(t ), GGD re-

duces to a Gaussian distribution. When βx(t ) = 1 and αx(t ) =
τx(t )/

√
2, GGD reduces to a Laplace distribution. Therefore,

the shape parameter βx(t ) controls how close the GGD re-
sembles a Gaussian distribution. Similarly, the GGD of the
residual along y can also be defined in terms of parameters
αy(t ) and βy(t ) at any given time frame t .

It should be noted that at each time frame, the GGD has
three parameters, and some of these parameters, such as the
power parameter, are notoriously difficult to estimate [85].
Hence, we derive closed-form derivatives to numerically com-
pute the maximum likelihood estimator of the parameters,
introduced in Appendix B.

IV. RESULTS

Here we perform simulations to compare models with and
without the selected features, and the simulation details are
provided in Appendix C.

A. Model comparison by simulated orientational order
parameter and velocity variability

We compare models using simulated order parameters
and variability of velocity. The simulated order parameters
are computed by S(t ) = 〈cos(2θ̃i(t ))〉i with θ̃i(t ) defined in
Eq. (1). As the velocity distribution more closely resembles
a Laplace distribution, we use the average absolute deviation
or L1 loss to measure the variability of velocity, σ̃x(t ) =
1
nt

∑nt
i=1 |vi,x(t ) − v̄x(t )| and σ̃y(t ) = 1

nt

∑nt
i=1 |vi,y(t ) − v̄y(t )|

with v̄x(t ) ≈ 0 and v̄y(t ) ≈ 0, instead of the more commonly
used variance or L2 loss to quantify the variability of the
velocity. This is because the velocity distribution is closer to
a Laplace distribution than a Gaussian distribution [Figs. 2(b)
and 2(c)], and thus the L1 loss is more appropriate to account
for the variability of the distribution.

In Fig. 6, we compare experimental observations and sim-
ulated results of the particle-based simulation, from which we
computed the dynamics of the orientational order parameters
and the average absolute deviation of the velocity. We apply
the estimation and simulation procedure to scenarios where
either all features are present or one or more of them are miss-
ing. Remarkably, we find that simple models from Eqs. (2)
and (3) with four features found in Sec. II A can reproduce
the dynamical progression of order parameters [solid curves
in Figs. 6(b) and 6(c)] and average absolute deviation of the
velocity [Figs. 6(e) and 6(f)], even though we do not fit a loss
function for these ensemble properties directly. In Figs. 12 and
13 in Appendix D, we show the simulation using the estimated
parameters from two other experiments and observe that our
model is sufficiently general to capture the progression of sys-
tem characteristics with varying initial densities and substrate
materials.

In all simulation models, the magnitude and variability
of the velocity along the x coordinate are both larger than
those along the y coordinate, stemming from our first finding
that the velocity distribution is anisotropic. The growing
anisotropy of the velocity induced by the molecularly
aligned substrate leads to the increase of orientational order
parameters.

Second, the simulation with neighbor ensembles that in-
clude only cells traveling in the same direction (solid curves
in Fig. 6) more accurately reproduces both the progression
of the orientational order and velocity than the simulation
with interactions that includes all cells within a radial dis-
tance. This finding, which is derived solely from tracking
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the nuclei, reflects what has been observed from the video
microscopy [57]: cells elongate, pulling on one another, as
they migrate in the same direction. Conversely, when a pair
of cells move past each other in opposite direction, both cells
maintain similar direction and velocities before the encounter.
This effect likely occurs because of the complex interplay of
cell-cell interactions, which are mediated through a cascade of
signaling molecules. Consequently, the direction and polarity
of contact are crucial factors in determining the strength of
cell-cell interaction [68].

Third, the weight parameters wx(t ) and wy(t ) estimated
by observations are always smaller than 1 [Fig. 5(h)]. In the
simulation, we find that the model with estimated weights
typically outperforms the model where the weights are con-
strained to be 1, particularly for reproducing the dynamical
progression of the average absolute deviation of the velocity
[Figs. 6(a)–6(c)]. If the estimated slope parameters are equal
to 1, the simulated velocity magnitude is frequently larger
than what is observed. In comparison, the inclusion of the
estimated weights appears to resolve this issue, as the veloc-
ity is constrained. This effect likely arises due to a loss of
momentum to friction. Furthermore, a unique aspect of our
formulation is that the variability of velocity can change over
time, applying estimated weights enables us to capture a wider
array of behaviors, such as slowdowns. For instance, with
increasing cell density, the average magnitude of the velocity
must change. Ultimately, crowding leads to arrested dynam-
ics [5]. Nonetheless, simulation models often oversimplify
this aspect by only modeling the velocity angle, over-
looking the important role of slowdowns or heterogeneous
dynamics [21,25].

Lastly, we find that the simulation model validates the
finding that velocities are not normally distributed (Fig. 4)—
the model with fluctuations following Laplace distributions
[Fig. 6(b)] better reproduces the progression of the ori-
entational order parameter than the model with Gaussian
fluctuation [Fig. 6(a)], even if they contain the same number
of fitting parameters. Besides, the model with GGD fluctua-
tion [Fig. 6(c)] fits slightly better than the one with Laplace
fluctuation, but it also contains one more parameter at each
time point than both the Gaussian and Laplace distributions,
and thus it has more flexibility in controlling the decay of
the tail of the distribution. It is important to note that re-
producing solely the variability of the velocity is inadequate
to replicate the velocity orientational order parameter in our
system, which is sensitive to the change in the velocity
distribution.

To further explore the difference between the effect of
different random fluctuation distributions, in Fig. 7 we show
the distribution of the simulated residuals in the x direction
[Figs. 7(a)–7(c)], esimi,x = vsim

i,x (t ) − ŵx(t )v̄sim
i,x (t − 1), and in the

y direction [Figs. 7(d)–7(f)], esimi,y = vsim
i,y (t ) − ŵy(t )v̄sim

i,y (t −
1) by the colored circles and triangles, and the solid curve
denotes the distribution of the residuals in the simulations.
The fitted weight is derived from the maximum likelihood
estimator where the fluctuations follow Gaussian, Laplace,
and GGD, from the left to the right. Simulated Gaussian
fluctuation distributions along x and y directions are shown
in Figs. 7(a) and 7(d), which underestimates the number of
cells with near-zero velocities in both directions. Instead,

FIG. 7. Distributions of random fluctuations between the ob-
servations and simulated models at a representative radius r = 75
µm and time = 20 h with the distributions of the fluctuation in
the simulation following [(a), (d)] Gaussian, [(b), (e)] Laplace, and
[(c), (f)] GGD.

simulation fluctuation distributions with either Laplace distri-
bution or GGD better reproduce the experiments, as shown in
Figs. 6(b), 6(c), 6(e), and 6(f).

Here we use a neighbor radius of r = 75 µm. The fit
of orientational order parameters by models with different
neighbor radii is plotted in Appendix E, and no significant
difference among them has been observed. Thus, the radius
seems to play a role in refining the fit, but to a much lesser
degree than the choice of neighbor and fluctuation models.
To further explore the difference between models, we present
a summary of the results of incorporating various modeling
parameters and compare the simulation to the experimentally
obtained orientational order parameter in Table I. The root
mean squared error (RMSE) of the velocity orientational order

TABLE I. RMSES for the orientational order parameter esti-
mates. All assumed the weight parameters from the fluctuation from
the x and y directions are separately estimated. The standard devi-
ation of the velocity orientational order parameter is 0.050 and an
effective method (highlighted in bold) has RMSES smaller than this
value. AN (“all neighbors”) and SDN (“same direction neighbor”)
stand for methods with all neighboring cells within the radius and the
same direction neighboring cells, respectively. Gau, Lap, and GGD
are Gaussian, Laplace, and generalized Gaussian distributions of the
fluctuation.

Orientational order
ω = 1 ω �= 1

parameter RMSES Gau Lap GGD Gau Lap GGD

r = 25 µm AN 0.17 0.12 0.14 0.090 0.061 0.058
r = 25 µm SDN 0.12 0.16 0.14 0.077 0.034 0.038

r = 50 µm AN 0.11 0.13 0.12 0.079 0.047 0.043
r = 50 µm SDN 0.041 0.12 0.033 0.069 0.022 0.025

r = 75 µm AN 0.13 0.11 0.10 0.081 0.058 0.042
r = 75 µm SDN 0.15 0.060 0.099 0.063 0.020 0.018
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TABLE II. RMSE for the average absolute deviation of the velocity estimates σ̃x and σ̃y. All assumed the weight parameters from the
fluctuation from the x and y directions are separately estimated. The benchmark RMSE of the average absolute deviation (calculated by
the standard deviation of the average absolute deviation) for σ̃x and σ̃y are 5.7 × 10−4 and 5.3 × 10−4, respectively. An effective method
(highlighted in bold) has RMSE smaller than this value. AN (“all neighbors”) and SDN (“same direction neighbor”) stand for methods with
all neighboring cells within the radius and the same direction neighboring cells, respectively. RMSE = (table value) ×10−4.

ω = 1 ω �= 1

Average absolute deviation of
velocity estimates Gaussian Laplace GGD Gaussian Laplace GGD

RMSEσ̃x , RMSEσ̃y×104 σ̃x σ̃y σ̃x σ̃y σ̃x σ̃y σx σ̃y σ̃x σ̃y σ̃x σ̃y

r = 25 µm AN 38 35 38 30 39 32 1.1 2.7 1.4 0.56 1.3 0.67
r = 25 µm SDN 137 68 140 59 130 63 3.0 3.5 2.9 1.1 2.6 1.4

r = 50 µm AN 24 20 20 17 25 20 2.4 3.1 0.83 0.52 0.89 0.54
r = 50 µm SDN 74 40 88 36 77 37 3.4 3.4 2.4 0.67 1.7 0.83

r = 75 µm AN 14 14 14 12 16 13 3.0 3.6 0.87 0.47 0.72 0.53
r = 75 µm SDN 42 34 52 32 49 32 3.9 3.4 2.1 0.56 1.5 0.51

parameter is calculated as the following:

RMSES =
√√√√ T∑

t=1

(S∗
t − St )2

T
, (9)

where S∗
t and St are the ensemble orientational order param-

eters from the simulation and experiments at time frame t ,
respectively. The RMSE for σ̃x and σ̃y can be defined sim-
ilarly, and they are shown in Table II. RMSE values that
are better than the baseline average absolute deviation are
bolded. Values from Tables I and II indicate that, while there
are several effective methods to describe the average abso-
lute deviation of velocity, it is more difficult to capture the
progression of the order parameter. This is not surprising as
the order parameter is a complex function of the distribu-
tion, which is not explicitly controlled by any parameters
in the likelihood function, given vi,x and vi,y are modeled
independently. When modeling the velocity fluctuation, ap-
proaches incorporating Laplace and GGD fluctuations better
capture the progression of the orientational order parameter,
which is the main characteristic of the system, compared to
the model with the Gaussian fluctuation.

B. Sensitivity analysis of the simulation

As captured by Eqs. (2) and (3), the anisotropy of substrate
materials induces asymmetric velocities in cells, which are
manifested through both interactions and fluctuations. These
contributions are temporally dependent, as changes in cell
density due to proliferation lead to fluctuations in the ve-
locity magnitude. For a given set of model parameters and
fluctuation distribution, it will be helpful to understand their
impacts on the asymptotic order parameters, such as those that
can be achieved after enough time has elapsed, for refining
experimental designs and controls.

Here, we perform a sensitivity analysis for simulation with
Laplace fluctuations and all other selected features. We vary
the ratio of the variance of the fluctuation, τx/τy, and the
ratio of their weights, ωx/ωy, in the model [Eqs. (2) and (3)].
While the variation of the order parameter is controlled by
four parameters (τx, τy, ωx, and ωy), we find that the esti-
mated ωx [Fig. 5(h)] does not change drastically over time.

Furthermore, we show in Appendix B that simulations with
two different choices of τx do not have a large impact on the
variation of the order parameter so long as the ratios of ω’s
and τ ’s remain the same. Hence, we are able to represent the
asymptotic value of the order parameter on a 2D plot with
τx = 0.02 and ωx = 0.7 fixed to be the mean of estimation
over all time frames. Each simulation is implemented in 70
time points, where the order parameter fully equilibrates after
20 time points (see the evolution of the order parameter for
select simulation parameter in Appendix B). Due to this, the
order parameter in Fig. 8 was computed by averaging the last
50 time points.

We find that the asymptotic order parameter increases
when either τx/τy or ωx/ωy increases (Fig. 8). The order
parameters computed from the experiment at different time
points are overlaid on top of the diagram, where the warmer
colors represent a larger magnitude of the order parameter,
consistent with the color scheme of the phase diagram. The
ratio ωx/ωy fluctuates around a fixed value ∼1.2, potentially

FIG. 8. Change of order parameters due to the change of sim-
ulation parameters with τx = 0.02 and wx = 0.7. The color bar
corresponds to the simulated order parameter at long times. The
dashed lines and circles denote the actual path of the experimental
results plotted against the phase diagram. The colors of the markers
correspond to the order parameter as denoted by the color bar. Red
and blue X’s denote the beginning and the end of the trajectory,
respectively.
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due to fixed properties of the external substrate guiding cells
to migrate preferentially along x. That is to say, the substrate
has a fixed modulus ratio along the x and y directions, as
found in [20]. This ratio is reflected in the variance of the
velocity along the corresponding directions, thereby restrict-
ing their ratio. As the system evolves over time, the caging
effect becomes more prominent along y, which increases the
ratio τx/τy. This analysis provides further evidence to support
our conclusion that substrate anisotropy and cell crowding
both influence alignment. However, at low cell densities, the
alignment effect is likely drowned out by noise. Our findings
also open up exciting design opportunities, where τx/τy can
potentially be controlled by varying the initial cell density or
the composition of the substrate [19], so the cell alignment
dynamics can be tuned as a result. Overall, good agreements
between the experiment and simulation are obtained.

V. DISCUSSIONS

Cells can be induced to form aligned structures through
a complex cascade of physiochemical signaling processes in
both in vitro and in vivo settings. Experiments have shown
that cells can migrate preferentially following the molecular
orientation of the substrate. This preferential migration results
from two interrelated effects: cell-cell and cell-substrate inter-
actions. The former is due to the crowding due to the presence
of other cells, and the latter is from cell polarization due to the
substrate. Cell polarization occurs due to anisotropic interac-
tions between the cell and the substrate or the extracellular
matrix, including friction, damping, binding, and directional
proliferation. Cell-cell and cell-substrate interactions both
drive the progression of velocity and order parameters.
Neither the effect from one-body external potential acting
on the random fluctuation term nor cell-cell interaction can
be overlooked in our system. The combination of these
two effects distinguishes our system and models from many
prior studies [30–32,86]. We model these two contributions
separately and quantitatively to reproduce the temporally
dependent order parameters and velocity from the nonequi-
librium process of cell alignment.

Here, we extract the cellular trajectory of a few thou-
sand interacting cells from video microscopy, and use this
trajectory information to identify key factors required for
reproducing the progression of velocities and alignment
order parameters. We found that when fibroblasts are cul-
tured on an anisotropic substrate, global cellular alignment
typically develops at high cell density but not low cell den-
sity [20]. This distinction sets our work apart from previous
studies [17,18], as alignment forces acting on individual
cells alone were insufficient in inducing alignment. Thus,
our system cannot be simply regarded as particle alignment
driven by a one-body potential from an external field, and
the cell-cell interaction has to be included in modeling. To
model complex cell-cell interactions and anisotropic random
fluctuations, we develop data-driven methods to select fea-
tures and expand the baseline Vicsek model, by utilizing
these selected features. Our findings highlight the impor-
tance of anisotropic, non-Gaussian distributions of velocities
in reproducing the progression of cell movements guided
by the molecularly aligned substrates. Of equal importance

is the construction of neighboring interaction, by eliminat-
ing contributions from cells with opposite velocities and
applying weights different from unity. These features are
reminiscent of recent works that take into account the di-
rectionality of cell-cell instantaneous velocity in modeling
interaction, particularly in the context of cell-extracellular ma-
trix interaction [87], and models that include contact-induced
inhibition [13,88,89].

The shape of the probability density of the temporally de-
pendent velocity has a significant impact on accurately repro-
ducing orientational order parameters and velocities through
simulation. We observe that the experimental velocity distri-
bution vastly deviates from a Gaussian distribution (Fig. 4), as
the velocity distributions of a large number of cells that have
undergone minimal movement, along with a non-negligible
group of cells that have moved a substantially long distance
over a specific time interval h. Non-Gaussian distribution of
displacement has previously been reported in systems with
heterogeneous dynamics, as noted in [48,90]. The high con-
centration of immobile cells centered at zero can be attributed
to cells that are confined by their neighbors. On the other
hand, the presence of heavy tails of the velocity distribution
can be attributed to the coordinated movements of many par-
ticles, also known as “jumps,” as discussed in [56]. Empirical
studies have also shown that a significant jump is often fol-
lowed by other jumps [47]. Consequently, these probability
densities exhibit slower rates of decay in the tail of the distri-
bution compared to a Gaussian distribution, whereas they are
more appropriately captured by the Laplace distribution [49].
Although various experiments have shown anomalous distri-
butions of displacement probability [47–49,51,90], it has been
less recognized that the distribution of random fluctuations
plays a critical role in reproducing the progression of orien-
tational order parameters observed in the experiments, partly
because of a lack of means of efficient parameter estimation.
Our work has filled in this gap by developing a maximum like-
lihood estimator for model parameters and a fast simulation
scheme for non-Gaussian dynamics with the estimated param-
eters. Our findings demonstrate that the temporal progression
of orientational order parameters can be more accurately
captured when modeling cell-substrate interactions using a
Laplace fluctuation of noise, as opposed to a Gaussian fluc-
tuation, despite both having the same number of parameters.

Our analysis has also revealed that the distinct behaviors
of cells on isotropic or nematic substrates can be largely
attributed to the presence or absence of anisotropic velocity.
Our model captures this phenomenon by demonstrating that a
difference in variability of the velocity along x and y directions
leads to alignment (Figs. 6 and 12), while cells on isotropic
substrates do not develop any order (Fig. 13). We further show
that asymptotic alignment can be controlled by the ratio of the
weights and variance parameters (Fig. 8), and the order tends
to approach zero as the velocity becomes more isotropic.

Our procedure has several distinctive features that show-
case data-driven discovery. A popular approach is to include
a dictionary basis [36,91] and use regression to estimate the
coefficients of this basis. However, including irrelevant fea-
tures is like adding unnecessary noise into the models, which
can drastically reduce the efficiency of estimation. Rather than
including all potential covariates, we begin by selecting the
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features to be included through exploratory data analysis and
statistical tests. Such an approach produces more interpretable
models and improves the efficiency of estimation, since only
features with significant effects will be included. Second,
we provide a method for the feature selection and testing
for cell studies. Conventionally comparing all models with
a combination of p features requires 2p simulations, which
could be very inefficient. Here the statistical test of a feature
does not depend on assumptions of other features, and thus
only p tests are needed for feature selection. This hybrid
approach can be utilized in other systems to aid physicists
in automating the tasks of visualization and feature selection,
and extending baseline physics models by incorporating the
selected features. Lastly, by using the selected features we
define a data-generative model, instead of minimizing a loss
function as conventionally adopted in other machine learning
approaches. The data-generative model provides a probabilis-
tic mechanism, where the uncertainty of the estimation can be
rigorously estimated and propagated throughout the analysis.
We demonstrate that the selected features are key ingredients
to capture the progression of alignment dynamics.

A few additional directions are of interest for future work.
First, it would be helpful to quantify the effect and estab-
lish the physical mechanism of the selected features. These
include, for instance, quantifying diminished influence of
opposite-direction neighbors by morphological analysis of
their deformations. It is also worthwhile exploring fluctu-
ation distributions with multiplicative noise variances (i.e.,
the noise variance of the fluctuation depending on individual
cellular velocities), as these models were found to approxi-
mate the Laplace distribution in previous studies of cellular
experiments [30,31]. In addition, the role of imaging noise
and tracking error will be quantified.

Second, position-dependent interaction kernels were esti-
mated using observations of larger objects such as golden
shiner [41], surf scoters [42], and simulated particles [38,40].
It would be interesting to include a second interaction term
with cellular positions as the inputs. Various extensions of
existing computational tools would be needed to achieve this
goal, such as accelerating the estimation of kernel function
with Laplace fluctuation distributions, and enabling tempo-
rally dependent interaction kernel functions. Furthermore,
though the current model takes into account the influence
of neighboring cells on velocity changes [30,31], it is im-
portant to note that cells also exhibit persistent motion as
they travel, resulting in relatively smooth, one-dimensional
spatial patterns [67]. Characterizing this feature may require
inferring second-order statistics from observations, whereas
a discretized model with first-order approximation may not
be sufficient [34]. On the other hand, the effect of increasing
cell count and the corresponding slowdown as the system
approaches jamming must be more carefully modeled in order
to effectively forecast the variance of the velocity fluctuation.

Ultimately, the velocity changes are governed by forces
[92–94]. Direct, in situ force measurements will help further
elucidate mechanisms and refine our models. Efforts must
be made to reconcile the anisotropic nature of the substrate
that induces cell alignment with the isotropic assumption
often made in mechanical analysis to deduce force, as in
the case of traction force microscopy [95]. Other important

considerations that can also be integrated are cell shapes and
the restructuring of their subcellular structures such as actin
filaments, which provide mechanical supports. When track-
ing cell migration, we largely rely on fitting an ellipse to
the nuclei. In order to monitor the dynamics of aforemen-
tioned features, algorithms without particle tracking, such as
Fourier-based differential dynamic microscopy [96–98], can
be applied to extract system properties such as mean squared
displacements, for inspecting the mechanical properties of
the system. Finally, in the case of other types of cells and
microenvironments, similar procedures can be followed to
discern the presence of different cell movement features in
the model construction.
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APPENDIX A: MAXIMUM LIKELIHOOD ESTIMATOR
WITH LAPLACE FLUCTUATION

Here, we discuss the maximum likelihood estimator when
the noise fluctuation follows the Laplace distribution. We use
the observations for the x coordinate as an example and the
derivation for the y coordinate follows similarly. We denote
the observation vector vx = (vTx (1), vTx (2), . . . , vTx (T ))T with
vx(t ) = (v1,x(t ), . . . , vnt ,x(t ))T for time frame t = 1, . . . ,T ,
and assume that the initial velocity vx(0) is given. The like-
lihood function of the parameters wx = (wx(1), . . . ,wx(T ))T

and τx = (τx(1), . . . , τx(T ))T can be written as

p(vx | wx, τx, vx(0))

=
T∏
t=1

p(vx(t ) | vx(t − 1),wx(t ), τx (t ))

=
T∏
t=1

nt∏
i=1

p(vi,x(t ) | v̄i,x(t − 1),wx(t ), τx (t ))

= (
√

2τx(t ))−
∑T

t=1 nt exp

(
−

T∑
t=1

nt∑
i=1

√
2|ei,x (t )|
τx(t )

)
,

where the residual of the ith particle at time frame t is defined
as ei,x (t ) = vi,x(t ) − wx(t )v̄i,x(t − 1).

For any time frame t , the maximum likelihood estimator
of wx(t ) is equivalent to the least absolute deviation (LAD)
regression below:

ŵx(t ) = argmin
τx (t ),wx (t )

nt∑
i=1

|vi,x(t ) − wx(t )v̄i,x (t − 1)|. (A1)
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Although there is no closed-form solution for the estimator
in the LAD regression, fast algorithms, such as the Barrodale-
Roberts (BR) algorithm [82], which can transform the LAD
regression into a linear programming problem, are available.
The BR algorithm is available in standard software platforms.
For instance, the package “L1pack” in the Comprehensive R
Archive Network (CRAN) implements the BR algorithm to
solve a LAD problem. After obtaining the estimator ŵx(t ),
we substitute it into the likelihood function and maximize the
profile likelihood to obtain the maximum likelihood estimator
of τx(t ), which is given in Eq. (7).

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATOR
WITH GENERALIZED GAUSSIAN FLUCTUATION

Next, we discuss the maximum likelihood estimator
for models with generalized Gaussian fluctuation. To do
so, we denote three vectors of parameters wx, αx, and βx,
each having T dimensions. The logarithm of the likelihood
function follows

log(p(vx | wx,βx,αx ))

=
T∑
t=1

{
nt log

(
βx(t )

2αx(t )

(

1
βx (t )

)
)

−
nt∑
i=1

( |ei,x (t )|
αx(t )

)βx (t )
}

,

where ei,x (t ) = vi,x(t ) − wx(t )v̄i,x(t − 1) and 
(·) denotes
the gamma function, with wx(t ) ∈ R, αx(t ) ∈ R+ and
βx(t ) ∈ R+.

We first differentiate the likelihood function with respect
to αx(t ) and set it to zero. For any given βx(t ) and wx(t ), the
likelihood is maximized when

α̂x(t ) =
(

βx(t )

nt

nt∑
i=1

|ei,x(t )|βx (t )

) 1
βx (t )

. (B1)

After substituting the α̂x(t ) from Eq. (B1) into the
log-likelihood function, we obtain the logarithm of the profile
likelihood of (wx,βx ):

log(p(vx | wx,βx, α̂x ))

=
T∑
t=1

{
nt log

(
βx(t )

2

(

1
βx (t )

)
)

− nt
βx(t )

× log

(
βx(t )

nt

nt∑
i=1

|ei,x(t )|βx (t )

)
− nt

βx(t )

}
. (B2)

Denoting the logarithm of the profile likelihood by
�(wx,βx ) = log(p(vx | wx,βx, α̂x )) and differentiating
Eq. (B2) with respect to wx(t ) and αx(t ), we then find

∂�(wx,βx )

∂wx(t )

= nt
∑nt

i=1 |ei,x(t )|βx (t )−1v̄i,x (t − 1)sgn(ei,x(t ))∑nt
i=1 |ei,x(t )|βx (t )

, (B3)

∂�(wx,βx )

∂βx(t )
= nt

βx(t )
+ nt

β2
x (t )

�

(
1

βx(t )

)

+ nt
β2
x (t )

log

(
βx(t )

nt

nt∑
i=1

|ei,x(t )|βx (t )

)

FIG. 9. Parameter estimation with interval (shaded) for a gener-
alized Gaussian distribution following Eq. (8) along the x direction
(yellow), and along the y direction (green).

− nt
βx(t )

∑nt
i=1(|ei,x(t )|βx (t ) log |ei,x (t )|)∑nt

i=1 |ei,x (t )|βx (t )
, (B4)

where �(z) = 
′(z)/
(z) stands for the ratio between the
derivative of a gamma function and a gamma function
for any z, and sgn(ei,x(t )) denotes the sign of ei,x(t ) =
vi,x(t ) − wx(t )v̄i,x (t − 1). Thereafter, we iteratively maximize
the likelihood function with respect to wx(t ) and βx(t ) using
the profile likelihood in Eq. (B2) and closed-form derivative
in Eqs. (B3) and (B4) by the low-storage quasi-Newton
optimization method (L-BFGS) [99]. Note that, for each t , we
only need to iteratively maximize the log profile likelihood
with respect to two parameters, making the computational
procedure both fast and robust. The maximum likelihood
estimators of parameters αx(t ), αy(t ), βx(t ), βy(t ), wx(t ),
and wy(t ), assuming the fluctuation follows the generalized
Gaussian distribution, are shown in Fig. 9. The estimated βx(t )
and βy(t ) are both close to 1, which means that the fluctuation
is closer to the Laplace distribution. In addition, βy(t ) is
typically smaller than βx(t ), as there is more confinement in
the y direction because of the substrate-imposed directionality.
Furthermore, both wx(t ) and wy(t ) are smaller than 1 for any
t , which is consistent with the findings when previously
assuming the fluctuation follows the Laplace distribution.

To demonstrate the impact of parameter selection on the
order parameter, we investigate the 2D parameter space de-
fined by the ratios ωx/ωy and τx/τy. Figure 8 illustrates one
possible path of order development, using a selected set of
parameters τx = 0.01 and ωx = 0.7. Next, we show that when
τx = 0.01 and τx = 0.04, encompassing the experimentally
observed values range, the order parameter exhibits consistent
behavior along the temporal course of the experiment for
different τx values (= 0.01, 0.02, 0.04) [Fig. 10(a) and 10(b)].
To determine the order parameter, we average the last 50 steps
in the simulation, as it reaches a plateau after the first 20 steps
(Fig. 11).

APPENDIX C: DETAILS ON SIMULATION

We first briefly introduce the setup of the simulation: Cells
are modeled as particles, and their initial velocities and po-
sitions are imported from the data. For simplicity, we assume
that the cell number remains constant. We start by partitioning
the space into grids, and the spacing between gridlines is no
smaller than the cell-cell interaction radius r. In our simula-
tion, grids are populated with cells based on cells’ positions
si(t ) = (si,x(t ), si,y(t ))T [Fig. 1(e)]. The grid-based approach
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FIG. 10. Change of order parameters due to the change of simu-
lation parameters with (a) τx = 0.01 and (b) τx = 0.04, which cover
the range of the observed τ ’s. wx = 0.7 is assumed for both cases.
Red and blue X’s denote the beginning and the end of the trajectory.

[58] improves computational efficiency for searching neigh-
bors in simulation since, as such, identifying a cell’s neighbors
only requires searching the nine grids surrounding it. Using
this method, computing the likelihood function for param-
eter estimation and simulation only requires O(

∑T
t=1 nt )

operations, which is much faster than the conventional ap-
proach requiring O(

∑T
t=1 n

2
t ) operations, where nt is the

number of cells at time frame t . We note that this coarse-
graining strategy to search for neighbors only improves
computational efficiency, but does not change the simulation
results.

The velocities vi,x(t ) and vi,y(t ) are updated according to
Eqs. (2) and (3), with three types of distribution of fluctuations
due to the cell-substrate interaction (Gaussian, Laplace, or
GGD), two types of neighbors (interactions with all neigh-
boring cells or only neighboring cells with the same direction
velocity), and weights (ωx and ωy) of the interaction fixed to
be 1 or estimated from the data, which are due to cell-cell
interactions. All parameters are estimated based on the maxi-
mum likelihood estimators introduced in Sec. III.

FIG. 11. Several typical simulation progressions, where the first
20 steps are regarded as burn-ins and left out in computing the
averages in the phase diagram.

APPENDIX D: ADDITIONAL RESULTS
ON EXPERIMENTAL DATA

The four features are used to construct a minimum physics
model that can quantitatively capture the progression of the
orientational order parameter and velocity distribution, for
various experiments with different initial cell densities and
liquid crystal elastomer substrates. The results of several
additional experiments are also analyzed to validate the gen-
erality of our algorithm (Figs. 12 and 13). Similar to the main
text, we evaluate the models by velocity orientational order
parameter and the average absolute deviation of the velocity
at each time point.

The experimental setup in Fig. 12 has the same substrate
material as the one presented in Fig. 6, except that at the start
of imaging, cell density is higher. During the course of the
experiment, the cell density ρ grows from ρ = 500 to 650
mm−2. The simulation model with selected features can accu-
rately capture the progression of orientational order parameter
and velocity magnitude, shown in upper and lower panels in
Fig. 12. Models without all selected features cannot reproduce
some of the properties. In particular, if Gaussian fluctuation is
used with the other three features [blue curve in Fig. 12(a)],
the model substantially underestimates the orientational order
parameter, while the model with Laplace or GGD fluctuations,
shown by blue curves in Figs. 12(b) and 12(c), respectively,
reproduces the progression of these parameters reasonably
well. Furthermore, all approaches incorporating estimated
weights and considering neighbor ensembles of only cells
traveling in the same direction capture the average absolute
deviation of velocities σ̃x and σ̃y reasonably well.

On the other hand, results presented in Fig. 13 are derived
from cell movements on an isotropic substrate; during this
time, cell density changes from ρ = 420 to 470 mm−2. We
have observed that, on the isotropic substrate, we reproduce
order parameters that are around zero with any type of fluc-
tuations [Figs. 13(a)–13(c)], signaling the lack of order, and
the velocity variance is also isotropic [Figs. 13(d)–13(f)].
It can be noted that when the cell moves on an isotropic
substrate, choices of neighbor, fluctuation distributions, and
weights become less important in fitting the order parameter
[Figs. 13(a)–13(c)]. Nonetheless, the absolute deviation σ̃x

and σ̃y change over time due to proliferation. Approaches that
utilize estimated weights and consider ensembles of neighbor-
ing cells traveling in the same direction effectively capture and
accommodate these changes.

APPENDIX E: ADDITIONAL RESULTS ON SIMULATION
USING DIFFERENT NEIGHBOR RADII

Here, we explore the effect of radii in reproducing the ve-
locity order parameter for the entire monolayer. Given the cell
width ≈20 µm and length ≈100 µm in projection, we explore
length scales comparable to these dimensions. Below, we plot
the order parameters reproduced by using different pairwise
distances: 25, 50, and 75 µm, in simulation (Fig. 14). All sim-
ulations are reproduced by including only the same-direction
neighbors and applying weights less than 1, as discussed be-
fore. Our results show that the variation in r plays a much
smaller role than changing the model for fitting the velocity
fluctuations.
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FIG. 12. Reproducing [(a)–(c)] orientational order parameter and [(d)–(f)] average absolute deviation of velocities from different simula-
tion models at a representative radius r = 75 µm for experiments of cells migrating on a nematic substrate when starting at a higher initial
density.

FIG. 13. Reproducing [(a)–(c)] orientational order parameter and [(d)–(f)] average absolute deviation of velocities with different simulation
models at a representative radius r = 75 µm for experiments of cells moving on an isotropic substrate, which do not align, and have isotropic
velocity.

FIG. 14. Reproducing orientational order parameters with different radii. The left, middle, and right panels compare simulations using
the Gaussian, Laplace, and GGD fluctuation with experimental observations. Open square symbols show the order parameter calculated from
experimental data; the dark blue solid line, yellow dash-dotted line, and red dashed line represent simulation results of different radii 75, 50,
and 25 µm.
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