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Abstract Compound drought-heatwave (CDHW) events threaten ecosystem productivity and are often
characterized by low soil moisture (SM) and high vapor pressure deficit (VPD). However, the relative roles of
SM and VPD in constraining forest productivity during CDHWs remain controversial. In the summer of 2022,
China experienced a record-breaking CDHW event (DH2022). Here, we applied satellite remote-sensing data
and meteorological data, and machine-learning techniques to quantify the individual contributions of SM and
VPD to forest productivity variations and investigate their interactions during the development of DH2022.

The results reveal that SM, rather than VPD, dominates the forest productivity decline during DH2022. We
identified a possible critical tipping point of SM below which forest productivity would quickly decline with the
decreasing SM. Furthermore, we illuminated the evolution of SM, VPD, evapotranspiration, forest productivity,
and their interactions throughout DH2022. Our findings broaden the understanding of forest response to
extreme CDHWs at the ecosystem scale.

Plain Langu age Summary Low soil moisture (SM) and high vapor pressure deficit (VPD) are
widely recognized as the dominant drivers of forest productivity decline during compound drought-heatwave
(CDHW) events. In the summer of 2022, a record-breaking CDHW (DH2022) struck China. In this study, we
decoupled the respective impacts of SM and VPD in determining forest productivity decline during DH2022.
We found that during DH2022, SM, rather than VPD, is the dominant driver of forest productivity decline,
and once SM decreases below a certain threshold, forest productivity would decline sharply. We illuminated
the evolution of SM, VPD, evapotranspiration, forest productivity, and their interactions throughout DH2022.
Our findings promote the understanding of forest response to extreme CDHWs at the ecosystem scale and thus
potentially improve terrestrial ecosystem models' ability to evaluate and predict the impacts of CDHWs.

1. Introduction

Compound drought-heatwave (CDHW) events represent one of the most severe climatic hazards to both natural
and human systems. Low soil moisture (SM) supply and high atmospheric vapor demand (driven by vapor pres-
sure deficit, VPD) are widely recognized as the dominant factors driving forest productivity variations during
CDHWs (Allen et al., 2010; Salomon et al., 2022). SM represents a direct water pool that determines how much
water plant roots can extract. Subseasonal and interannual SM variations can influence short- and long-term
ecosystem productivity (Green et al., 2019; Liu et al., 2020). High VPD caused by elevated temperature and
soil-atmosphere feedback (Zhou et al., 2019) may induce plants to close leaf stomata to minimize water loss and
further reduce plant photosynthesis (Oren et al., 1999). Accurately evaluating the sensitivity of forest productivity
to SM and VPD during CDHWs is critical to effectively mitigate the drought-related risks and reduce uncertain-
ties of terrestrial ecosystem models in quantifying the impacts of dryness stress on forests.

However, since SM and VPD are strongly coupled due to land-atmosphere feedback, particularly in CDHWs (Liu
et al., 2020; Zhou et al., 2019), the relative importance of SM and VPD in determining ecosystem productivity
is still under debate. Previous studies have emphasized the importance of VPD in regulating ecosystem water
and carbon flux (Novick et al., 2016; Sulman et al., 2016). Recently, there is also evidence that SM dominates
dryness stress on ecosystem productivity compared to VPD (Liu et al., 2020). Besides, few studies pay attention
to the development of CDHWs when considering the impacts of SM and VPD. Consequently, discrepancies in
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simulating water stress on ecosystems contribute to large uncertainties for terrestrial ecosystem models or satel-
lite models in evaluating and forecasting the impacts of CDHWs on forests (Knorr & Heimann, 2001; Stocker
etal., 2019).

In the summer of 2022, China experienced an extreme CDHW event (hereafter referred to as DH2022). The
average national temperature was up to 1.1°C higher than the long-term means, the highest recorded during the
same period since 1961 (NCC-CMA, 2022). In some areas, the daily maximum temperature exceeded 42°C.
National precipitation deficits were up to 40.9 mm, 12.3% below the average, and 20%—50% across several
regions (NCC-CMA, 2022). DH2022 threatened the national electric grid and water safety, cascaded into other
hazards including wildfires and crop yield losses, and caused numerous heat-related deaths. Yet, DH2022 also
provides an opportunity to assess the relative importance of low SM and high VPD in extreme CDHWs.

Here, we applied satellite remote-sensing and meteorological data to quantify the individual contributions of SM and
VPD to forest productivity variations during DH2022 using a machine-learning method. We aim to disentangle the
relative roles of SM and VPD in determining forest productivity and further investigate their interactions along with
the development of DH2022. The results can advance the understanding of forest response to extreme CDHWSs and
therefore potentially improve terrestrial ecosystem models for better assessment and prediction of CDHW impacts.

2. Data and Methods
2.1. Study Area

This study focused on the southern region of China (<[33°N), which was the most severely-affected area during
DH2022. The ecosystem is representative of evergreen broadleaf forests covering large areas in southern China
(Figure S1 in Supporting Information S1), and areas dominated by evergreen broadleaf forests were selected
to reduce the differences in vegetation types. To further investigate the specific response of forests to DH2022
development and reduce spatial heterogeneity, we selected 3 areas of interest with a size of 1.25° longitude x 1°
latitude: AOI,,, AOI,,, and AOL. In addition to suffering from the severe CDHW in July and August (temperature
anomaly >1.5°C, precipitation anomaly <—40%), the three AOIs are characterized by distinctive gross primary
productivity (GPP) temporal variations (Table S1 in Supporting Information S1) representing the typical patterns
of GPP variations in the study area.

2.2. Data Collection

The meteorological data used in this study, including precipitation (P), 2m air temperature (T2m), potential
evapotranspiration (PET), evapotranspiration (ET), soil volumetric water in the layer of 0—7 cm, 7-28 cm, and
28-300 cm (SM,, SM,, SM,), photosynthetically active radiation (PAR) and VPD, were obtained or derived from
an enhanced global data set for the land component of the fifth generation of European ReAnalysis (ERAS5-Land)
from 1992 to 2022 with a spatial resolution of 0.1° x 0.1°(Mufioz-Sabater et al., 2021).

The Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) (Didan, 2021),
TROPOspheric Monitoring Instrument (TROPOMI) solar-induced chlorophyll fluorescence (SIF) (Koéhler
et al., 2018), and FluxSat GPP (Joiner & Yoshida, 2020) were used to evaluate vegetation dynamics during
DH2022. However, there were available observations of only 3 days in August 2022, and SIF analysis thus
excluded August 2022. To distinguish the vegetation types in the study area, the MODIS Land Cover Type
(MCD12Q1) Version 6.1 data product (Friedl & Sulla-Menashe, 2022) in 2021 was applied (Figure S1 in
Supporting Information S1). The specific data introduction and processing were presented in Text S1 in Support-
ing Information S1. SM data set from ERAS5-Land was also compared with that from SMCI1.0 (SM of China
by in situ data, version 1.0) based on in situ measurement and machine learning (Q. Li et al., 2022) to assess its
reliability (Text S2 and Figure S2 in Supporting Information S1).

2.3. Anomaly Calculation

For the comparability between different variables, we calculate anomalies of climatic factors and vegetation
dynamics (AVar) as:
AVar = VBF;W (1)
Var
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where Var is the 2022 value of variables including P, PAR, VPD, SM, ;, EVI, SIF, and GPP, and Var is the aver-
age value for 2018-2021. As trends may exist in the long-term time series due to climatic or anthropogenic factors
such as CO, fertilization (Mohammed et al., 2022; Pascoa et al., 2020), the averages of 2018-2021 were selected
as a benchmark. In terms of T2m, the anomaly AT2m was defined as the difference between the 2022 value and
the 2018-2021 average value to prevent excessively low values.

2.4. Decoupling the Relative Roles of SM and VPD
2.4.1. Calculating the Individual Contributions of Climatic Factors

eXtreme Gradient Boosting (XGBoost) is a widely used machine learning algorithm used for supervised regres-
sion and classification problems based on the gradient boosting framework (Chen & Guestrin, 2016). The train-
ing about the XGBoost model was presented in Text S3 in Supporting Information S1. In the selected AOIs, the
contributions of each climatic factor including SM, ,, T2m, P, PAR, VPD, and EVI, were calculated the following
three steps: (a) for each trained model, the unmodified predictors were input to get the prediction Pred,. Then,
the predictors where the 2022 value of the target variable was replaced with the 2018-2021 average were input to
(b) the difference S, between Pred, and Pred,, was calculated for each model; (c) the
average and standard deviation of S, from all models were calculated as the contribution of each climatic factors

get the prediction Pred; var

and the error, respectively. The caveats in using the XGBoost algorithm for attributions were also discussed in
Text S5 in Supporting Information S1.

2.4.2. Regional Analysis

For the entire study area, the GPP anomaly (AGPP) across all pixels from July to October was divided into high
level (<—15%) and low level (>—15%), and then the distributions of ET, SM, VPD, and SIF anomaly (ASIF)
were analyzed for each level. The selection of the threshold and its impacts on conclusions were discussed in Text
S6 in Supporting Information S1. Moreover, to investigate the correlation among SM, VPD, and GPP, we sorted
the VPD and SM into 10 x 10 percentile bins and calculated the mean AGPP and ASIF of each percentile bin
across all pixels from July to October. It should be noted that since SM, was strongly correlated with SM, and
SM, (Figure S3 in Supporting Information S1), and contributed most to AGPP and ASIF (See Results 3.2), SM,
was selected to represent SM variations.

3. Results
3.1. Climate and Vegetation Variations During DH2022

We analyzed the spatiotemporal variations of climatic factors during DH2022. In July and August, high positive
AT2m, positive APAR, and negative AP were widespread in China, particularly in southern China, where local
extremes of T2m and P (AT2m > 2°C, AP < —50%) occurred (Figure S4 in Supporting Information S1). More-
over, relative to severe and moderate drought, extreme drought accounted for the largest proportion (>47%) of
all drought-affected areas (Figure S5 in Supporting Information S1). Compared to the past 30 years, the extent of
drought and the proportion of extreme drought were the highest during the same period (Figure S5 in Support-ing
Information S1). Simultaneously, high negative ASM (<—30%) in southern China started in July, peaked in
August and September, and receded in October (Figure 1a). High positive AVPD (>80%) developed similarly to
ASM from August to October but appeared in many parts of southern China in July (Figure 1b).

ASIF and AGPP captured the forest productivity variations. As shown in Figures 1c and 1d. The spatial distri-
butions of ASIF and AGPP were consistent but the magnitude of ASIF was higher than that of AGPP, possibly
because the small variations in SIF caused the large variations in anomalies (as the denominator was a small
value) due to the weak signal of SIF. In southern China dominated by evergreen broadleaf forests, SIF, and
GPP were nearly normal or even increased (AGPP: —10%—+10%, ASIF: —30%—30%) in July and generally
declined (AGPP: —=10% — 0, and <—25% in some areas, ASIF was missing) in August. In September and October,
the extent of high negative ASIF (<—30%) and AGPP (<—20%) continued expanding. Notably, in some areas
such as southeast coasts subjected to severe drought and heatwave in July and August, SIF and GPP remained
near-normal from July to October. AEVI, capturing forest structure variations, also exhibited a relatively consist-
ent spatiotemporal pattern with ASIF and AGPP (Figure S6 in Supporting Information S1). The results revealed
that there seem to be 3 typical patterns of forest GPP variations during DH2022: (a) a substantial decline in
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Figure 1. Climate and vegetation variations from July to October: (a) Soil Moisture in the layer of 7-28 cm (SM,); (b) vapor pressure deficit; (c) gross primary
productivity; (d) solar-induced chlorophyll fluorescence (SIF). SIF data for August 2022 was missing. The square denotes the selected areas of interest.

August when DH2022 was the most severe, followed by a recovery in subsequent months (e.g., AOI,); (b) an
intensifying decline from July to September or October when the heatwave receded (e.g., AOI,); (c) near-normal
variations from July to October (e.g., AOIL).

3.2. Contributions of SM and VPD to Forest Productivity Variations During DH2022

The XGBoost algorithm demonstrates high performance in predicting AGPP with a mean absolute error of 1.66%
and acceptable performance in predicting ASIF with a mean absolute error of 12.78% (Figure S7 in Supporting
Information S1). The trained models were then used to compare the contributions of SM and VPD with other
climatic factors during DH2022 in three AOIs with typical patterns of GPP variations. As presented in Figure 2,
in general, SM, and VPD were dominant factors affecting AGPP and ASIF from July to October in all AOlIs,
with SM, contributing more than VPD when AGPP and ASIF were lower than —15% and —30%, respectively.
However, the impacts of EVI on AGPP and ASIF were not evident.

AOI;, was the most affected area by DH2022 in July and August (Figures 2a and 2b). However, despite signifi-
cant decreases in SM and increases in VPD compared to their levels of the same period in 2018-2021 (hereafter
referred to as the historical level) in July, GPP and SIF remained close to the historical level. In August, when
VPD and SM, reached their highest ((2.9 kPa) and lowest ([0.17 m3/m?3) levels, respectively, AGPP exceeds
—25% with VPD and SM, contributing similarly and most ([112%/26%). In September, VPD was nearly normal,
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Figure 2. Contributions of various climatic factors to AGPP and ASIF in the selected AOIs: (a) gross primary productivity (GPP) AOI,,, (b) SIF AOI,,, (c) GPP AOI,,,
(d) SIF AOI,,, (¢) GPP AOI,, (f) GPP AOI. The upper right panels in the GPP plots are the dynamics of SM, and vapor pressure deficit in the corresponding AOIs from
July to October. The legends Truth and Prediction denote the FluxSat-derived (TROPOMI-derived) and model-predicted AGPP (ASIF), respectively.
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and SM, increased slightly but remained at an extremely low level (L0.24 m3/m?3). AGPP and ASIF fell to —27.8%
and —43.6%, respectively, with SM, the dominant factor (AGPP: [17.9%/27.8%, ASIF: [21.08%/43.6%). The
difference between August and September implies that a large productivity decline did not necessarily occur with
high VPD.

AOI,, exhibited high negative AGPP and ASIF in September and October (Figures 2c and 2d). In August, VPD
peaked ([1.8 kPa), SM, decreased from 0.40 m3/m, to 0.27 m*m?, and GPP declined by [7% relative to the
historical level. In September and October, VPD was down slightly but still close to double the historical level,
and SM, continued decreasing slightly. Conversely, GPP and SIF declined sharply relative to the historical level.
It appears that a slight SM, decrease around a certain value induced the sharp forest productivity decline.

Compared with AOI,; and AOI,,, AOI was mildly influenced by DH2022 (Figures 2e and 2f), with GPP remain-
ing close to the historical level from July to October except for August. Although SM, varied from July to Octo-
ber, its contribution to forest AGPP and ASIF was not evident, suggesting SM, within a certain range may be not
a limitation for AOI, during DH2022.

3.3. Relative Roles of VPD and SM During DH2022

The data across the entire study area from July to October were aggregated to disentangle the relative roles
of VPD and SM in determining forest productivity during DH2022 (Figure 3). As shown in Figure 3a, b, a
threshold (40th percentile, [0.34 m3/m?) appeared to exist in the response of forest GPP and SIF to SM,. When
SM, fell below this threshold, its negative impact on forest GPP and SIF became significantly more intense
(AGPP<—10%; ASIF<—15%). The threshold for SM, could also be found in the high-level (<—15%) AGPP
from August to October, except for July when the water stress may not be the dominant limitation (Figure 3c).
However, a range of AGPP and ASIF values from low (>—5%) to high (<—10%) could be observed across all
VPD percentiles, and despite VPD exceeding the extremely high level, low AGPP and ASIF (>—5%) could exist
(Figures 3a and 3b). ASIF exhibited a consistent pattern with AGPP in September and October (Figure 3c). The
difference in VPD between high-level (<—15%) and low-level (>—15%) AGPP was not significant (<0.2 kPa) in
September and October (Figure 3c). Overall, during DH2022, substantial forest GPP and SIF decline generally
occurred with extremely low SM but not necessarily with high VPD. The threshold response of forest produc-
tivity may exist in SM rather than VPD. Furthermore, the difference in AEVI between high-level and low-level
AGPP was not remarkable. In July, the AEVI of high-level AGPP was even positive and higher than that of
low-level AGPP (Figure S8a in Supporting Information S1). These findings suggested that the dynamics of GPP
and EVI may be not synchronized.

ET as the bridge of land-atmosphere water and energy exchange was selected to analyze the interactions between
SM and VPD during DH2022. ET was higher in July, but gradually lower from August to October, than the histor-
ical level (Figure S8b in Supporting Information S1), implying DH2022 significantly altered the land-atmosphere
flux. Figure 3d displayed the relationships among SM,, VPD, and ET. SM, decreased rapidly when VPD was
in the range of 0—1.5 kPa, while the rate of decrease slowed down when VPD exceeded 1.5 kPa. High VPD
(>2 kPa) tended to be accompanied by low SM, (<0.3 m3/m?). High ET (>3 mm/d) occurred at moderate or
higher VPD (>[0.8 kPa) but also required adequate SM,. This pattern could also be observed in SM, and SM,
(Figure S9 in Supporting Information S1). As presented in Figure 3c, in July and August, ET and VPD showed a
consistent difference between high-level and low-level AGPP. However, in September and October, although the
VPD of high-level AGPP was slightly higher than that of low-level AGPP, the difference between high-level and
low-level AGPP was consistent for ET and SM,,. It appears that ET was determined by VPD in July and August
but by SM in September and October during DH2022.

4. Discussion and Conclusions

The dry-hot extreme that struck China in the summer of 2022 was a record-breaking compound climate hazard
but also provided an opportunity to assess the relative importance of low SM and high VPD in extreme CDHWs.
This study attempted to disentangle the individual effects of SM and VPD on forest productivity and further
investigate their interactions during the development of DH2022.

Our findings revealed that a substantial reduction in GPP and SIF was associated with low SM, but not necessar-
ily high VPD during DH2022. Consistent with a recent global assessment of SM and VPD stress on ecosystem
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Figure 3. Correlation of vapor pressure deficit (VPD), SM,, ASIF, and AGPP from July to October in 2022 across the study area: (a) Mean AGPP in each percentile

bin of SM, and VPD, (b)

Mean ASIF in each percentile bin of SM, and VPD, (c) VPD, SM,, ET, ASIF for high level (<—15%) and low level (>—15%) AGPP per

month. In the boxplot, the white circles, center lines, cross marks, and box bounds indicate the mean values, median values, extremes, and 25th/75th percentile values,
respectively; and the whiskers indicate the 25th/75th percentile values plus or minus 1.5 x (75th percentile values — 25th percentile values). 1.21 kPa and 0.34 m3/m?,
as the 25 percentiles of VPD and SM, in the study area from July to October 20182021, respectively, were used as the reference of the extreme level. (d) Scatters of

SM,, VPD, and ET. The color of the scatters represents the magnitude of ET. The histograms on the top and right represent the density of data points along the VPD axis

and the SM, axis, respectively. The red line is the fit line of VPD and SM,.

production concluding that SM dominated dryness stress on ecosystem production (Liu et al., 2020), our results
further demonstrated that this conclusion still held for forests under extreme CDHWSs. VPD could indeed reduce
stomatal closure, leading to a decline in GPP (Figure 2). However, when SM was sufficient, plant root systems
can effectively absorb water, allowing photosynthesis to occur even with the partial stomatal closure induced by
high VPD. Moreover, the plants can actively regulate stomatal conductance to improve the water-use efficiency
(the gain of carbon per unit of water loss) in response to high VPD (Bastos et al., 2020; Peters et al., 2018). Conse-
quently, the sensitivity of forest productivity to VPD may be moderate when SM is sufficient during CDHWs .
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Figure 4. Schematic diagram of DH2022 impacts on forest productivity. T, vapor pressure deficit (VPD), ET, gross primary productivity (GPP), Gre, and soil
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respectively, relative to the historical period. The amount of symbols indicates the magnitude (e.g., (++) indicates severely higher than the historical level, and (---)
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In contrast, GPP and SIF would decline largely and rapidly once SM dropped below a certain threshold (Figures 2
and 3), which has been demonstrated in tropical rainforests (Meir et al., 2015). Although the root system could
penetrate the deep-water zone and resist slight-to-mild SM deficiencies, forests would suffer destruction or even
death when SM dropped to a threshold where stomatal closure was further reinforced and the hydraulic transfer
from soils to leaves was impaired (Sperry et al., 2002). In our study, the threshold was identified as [0.34 m3/m,

in SM, (ASM,: T 30%), which resulted in a reduction of approximately 15% in GPP in southern China during
DH2022. A recent study pointed out that such threshold occurred at values > 10th percentile of soil water anom-
alies in [70% of global areas, suggesting that vegetation can respond sharply even when the drought stress was
smaller than the severity of those 1-in10 worst drought events in many locations (X. Li et al., 2023). The thresh-old
decreased from low to high forest coverage due to the presence of a deeper root system in denser forests.
Additionally, forests in tropical climates exhibited a much higher threshold (i.e., lower resistance) than those
in temperate and boreal climates, possibly associated with a higher sensitivity of vegetation in tropical areas to
drought stress (X. Li et al., 2023).

However, we found that high VPD tended to occur with extremely low SM (Figure 3), potentially due to ET
variations during DH2022. The strong correlation between SM and VPD constituted a confounding factor, which
was frequently overlooked when assessing their impacts on forest productivity, particularly during CDHWs (Liu
et al., 2020). Elevated temperature can increase atmospheric water demand, and high VPD can exacerbate SM
depletion by enhancing ET (Teuling et al., 2013). In turn, the reduction of SM due to the initial precipitation
deficit can reduce ET, thereby enhancing the heating and drying of the near-surface atmosphere, leading to higher
VPD (Miralles et al., 2014). The decrease in ET further lowered land-atmosphere water exchange, increased
sensible heat, and suppressed cloud formation and precipitation, ultimately exacerbating both soil and atmos-
phere water deficits (Seneviratne et al., 2010). Moreover, this land-atmosphere feedback was projected to be
enhanced by climate warming, resulting in stronger correlations between SM and VPD and hence the more
frequent occurrence of CDHWs (Dirmeyer et al., 2012; Zhou et al., 2019).

Opverall, the impact process of DH2022 on forests can be divided into four stages at a monthly scale (Figure 4):
(a) Early phase (i.e., July). Sufficient SM can support enhanced ET to alleviate VPD outbreaks due to elevated
temperature. Yet, the increase in VPD reduced GPP (SIF) and hence greenness. (b) Middle phase (i.e., August).
High temperature and precipitation deficit persist. The decrease in SM due to precipitation deficit weakened ET,
intensifying higher VPD, while higher VPD exacerbated SM depletion. High VPD and low SM continued to
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reduce GPP and hence greenness, and once SM decreased below a certain threshold, GPP and greenness declined
sharply. (c) Late phase (i.e., September or October). High temperature retreated but precipitation deficit persisted.
Extreme low SM resulted in lower ET and thus higher VPD than normal during the same period. GPP and green-
ness remained at extremely low levels compared with normal conditions. (d) End phase. Precipitation replenished
SM, and temperature, SM, VPD, and ET returned to normal. Yet, the recovery of plant growth and ecosys-tem
productivity entailed months or even years, which remained controversial (Anderegg et al., 2015; Schwalm et al.,
2017). The relationship between greenness and productivity during CDHWs, and the specific evolution of forests
and CDHWs were discussed in Text S7 and Text S8 in Supporting Information S1, respectively. Accu-rately
understanding the progression of CDHWs provides valuable insights for forest drought management strate-gies.
For example, regulating SM (e.g., irrigation) before reaching critical thresholds may effectively alleviate the
damage of CDHWs on forest productivity. Land-atmosphere feedback characterized by the interactions between
SM, VPD, and ET is needed to be considered when estimating the response of the carbon cycle to climatic change
globally, as well as when conducting field-scale investigations of the response of the ecosystem to CDHWs.

This study disentangled the relative roles of VPD and SM in determining forest productivity during the devel-
opment of this extreme CDHW event in China, and demonstrated that SM, rather than VPD, dominates the
forest productivity decline at the monthly scale during extreme CDHWs. We identified a possible critical tipping
point of SM below which forest productivity would quickly decline with the decreasing SM. Furthermore, we
illuminated the evolution of SM, VPD, evapotranspiration, forest productivity, and their interactions throughout
DH2022. These findings broaden the understanding of forest response to CDHWs at the ecosystem scale and thus
potentially improve terrestrial ecosystem models' ability to evaluate and predict the impacts of CDHWs.

Data Availability Statement

ERAS-Land data can be downloaded at https://doi.org/10.24381/cds.68d2bb30. FluxSat data can be downloaded
at https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat GPP. MOD13A1 and MCD12Q1 data can be downloaded at
https://doi.org/10.5067/MODIS/MOD13A1.061 and https://doi.org/10.5067/MODIS/MCD12Q1.061, respec-
tively. MODIS-related data were processed at the Google Earth Engine platform (https://code.earthengine.
google.com, Gorelick et al., 2017). XGBoost (Chen & Guestrin, 2016) code is publicly available on GitHub
(https://github.com/dmlc/xgboost).
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