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Sustainable metabolic engineering requires a perfect 
trifecta
Glenn Nurwono1,#, Samantha O’Keeffe2,#, Nian Liu2 and  
Junyoung O Park2

The versatility of cellular metabolism in converting various 
substrates to products inspires sustainable alternatives to 
conventional chemical processes. Metabolism can be 
engineered to maximize the yield, rate, and titer of product 
generation. However, the numerous combinations of substrate, 
product, and organism make metabolic engineering projects 
difficult to navigate. A perfect trifecta of substrate, product, and 
organism is prerequisite for an environmentally and 
economically sustainable metabolic engineering endeavor. As a 
step toward this endeavor, we propose a reverse engineering 
strategy that starts with product selection, followed by 
substrate and organism pairing. While a large bioproduct space 
has been explored, the top-ten compounds have been 
synthesized mainly using glucose and model organisms. 
Unconventional feedstocks (e.g. hemicellulosic sugars and 
CO2) and non-model organisms are increasingly gaining 
traction for advanced bioproduct synthesis due to their 
specialized metabolic modes. Judicious selection of the 
substrate–organism–product combination will illuminate the 
untapped territory of sustainable metabolic engineering.
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Introduction
Over the past two centuries, humanity has relied pri
marily on fossil resources for power generation and 
chemical production. The one-way process involving the 
extraction and combustion of fossil resources has led to 

an ever-increasing accumulation of nonbiodegradable 
and gas waste. A shift toward utilization of renewable 
feedstocks and sustainable processes is needed. 
Biotechnology and metabolic engineering allow us to 
harness a complex network of highly specific biochem
ical reactions to produce advanced bioproducts, from 
fuels to materials to agrochemicals to medicine. By en
gineering microorganisms, we can increase access to 
these products in a sustainable manner.

A perfect trifecta of substrate, product, and organism is 
necessary for bioproduct synthesis that maximizes eco
nomic and environmental benefits. An integral process of 
utilizing more abundant and metabolically efficient 
substrates, synthesizing valuable products, and selecting 
the organism with specialized metabolic capability 
would lead to a quantum leap in biotechnology. In this 
review, we explore a reverse engineering approach to 
metabolic engineering, starting from selecting a com
mercially valuable product and an environmentally sus
tainable substrate to harnessing an organism excelling at 
bridging the gap between the substrate and the product 
(Figure 1). Focusing initially on product–substrate pair
ings would allow researchers to ponder on pairs of am
bitious real-world problems to tackle and invent ‘two 
birds one stone’ solutions.

Products
What products are we making?
To explore the product scope of the metabolic engineering 
landscape, we searched through literature published be
tween 1990 and 2019 using the Web of Science database. 
‘Metabolic engineering’ and ‘synthetic biology’ were used 
as keywords to search for relevant research articles. We 
then extracted the abstract of the resulting articles and 
selected only those that reported a titer. All prefiltered 
abstracts were then manually screened for the micro
organism that was used and the product that was synthe
sized. Articles related to in vitro biocatalysis, cocultures/ 
consortia, protein production, and biomass production were 
removed. Following this approach, we compiled a dataset 
consisting of 566 unique small-molecule products that have 
been reported. The top-ten products account for ∼25% of 
the dataset, suggesting that a large degree of diversity is 
established for microbial synthesis of chemical compounds 
(Figure 2a). Many of the top-ten most commonly produced 
compounds are platform chemicals that are one or two 
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steps removed from glycolysis and the tricarboxylic acid 
(TCA) cycle. The compounds proximal to central carbon 
metabolism lend themselves to biodegradation [1]. To 
examine any trends in different types of chemicals, we 
categorized our dataset into commodity chemicals (che
micals produced in bulk for large global markets), specialty 
chemicals (chemicals used in specific industries such as 
flavors, cosmetics, and adhesives), fuels, natural products 
(secondary metabolites, including terpenes, polyketides, 
phenylpropanoids, and alkaloids), and amino acids (stan
dard, nonstandard, and nonproteinogenic). Specialty che
micals were the largest class of products from microbial 
synthesis (Figure 2b). The proportion of specialty chemi
cals is at 29.5%, natural products at 23.4%, commodity 
chemicals at 21.6%, fuels at 15.8%, and amino acids at 
9.7%. While there is no majority within the specific cate
gories, chemicals that are generally considered low-value 
mass production (commodity, specialty, and fuels) make 
up the majority of bio-produced chemicals. While overall 
microbial bioproduct synthesis endeavors rapidly increased 

Figure 1  
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Proposed reverse metabolic engineering approach for green 
chemistry alternatives. Suitable bioprocesses will maximize synergy 
between a substrate, organism, and product trifecta. We propose 
selecting (1) a product and a reasonable desired starting substrate, (2) 
an organism that can either naturally, or via metabolic engineering, 
grow on this substrate, and (3) engineer the organism to bridge the 
gap between the substrate and product.  

Figure 2  
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Most produced products ranked by the number of associated entries in the dataset. (a) Number of entries associated with each product relative to the 
total number of entries in the dataset (2644). Only the top ten are shown. (b) Distribution of the number of entries associated with the five major classes 
of products according to the dataset. (c) Five major classes over time. Data shown from 1992 to 2018. (d) Absolute number of entries associated with 
the top-ten products. The database is available on our lab website (https://parklab.ucla.edu/resources.html).
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starting 2010, the proportion of entries between the dif
ferent categories remains relatively similar (Figure 2c). 
This product distribution hinted at the challenges of pro
ducing high-margin compounds.

Top high-volume, low-margin chemicals
While engineering metabolic pathways to generate 
mass-produced chemicals is relatively straightforward, 
optimizing the pathways to achieve economically re
levant production metrics is challenging and a key area 
of current research. Since commodity chemicals as well 
as some fuels and specialty chemicals are typically 
within a few reaction steps from the TCA cycle and 
glycolysis, metabolic engineering efforts are focused on 
downregulating competing pathways while maintaining 
sufficient growth. While a low-cost feedstock is an im
portant consideration, production of bulk commodities 
also requires high titer (g/L) for ease of downstream 
process, high productivity (g/L/hr) for tractable capital 
expenses, and high yield (g of product/g of substrate) for 
lowering operating costs.

The top-three microbially produced high-volume, low- 
margin chemicals are ethanol, succinic acid, and 2,3- 
butanediol (Figure 2d). Ethanol is used as a fuel and fuel 
additive as well as in medicine and synthetic chemistry 
[2,3]. Furthermore, it can be readily derivatized into a 
variety of commodity chemicals, such as ethylene and 
ethyl acetate [4]. Ethanol is derived from pyruvate, the 
end product of glycolysis. The ethanol synthesis 
pathway is endogenous to many organisms, including the 
model organisms E. coli and S. cerevisiae [5]. Thus, en
gineering strategies include overexpressing the en
dogenous or more efficient heterologous biosynthetic 
genes, increasing tolerance to ethanol or inhibitors of its 
synthesis, and increasing or changing substrate pre
ference of the microorganism [6–8]. Non-model organ
isms may already have these advantages, and thus can 
also be used for ethanol bioproduction, but will require 
different engineering strategies such as accelerating 
uptake of alternative substrates or increasing growth [9]. 
Succinic acid is used as a precursor to 1,4-butanediol, 
making it important in many industrial fields for solvents 
and reagents in chemical synthesis and polymers [10], 
though research has been done for direct biosynthesis of 
1,4-butanediol [11]. Being a metabolite in the TCA 
cycle, it requires no additional enzymes for its bio
synthesis. Instead, engineering efforts include removing 
by-product formation pathways, enhancing catalytic ac
tivity of TCA enzymes, and optimizing energy avail
ability and reduced to oxidized nicotinamide adenine 
dinucleotide (NADH/NAD+) ratios [12]. 2,3-Butanediol 
can be derivatized to a variety of polyesters, poly
urethanes, building blocks for use in chemical industry, 
and cosmetics [13]. Although 2,3-butanediol is deriva
tized from pyruvate through several reduction steps, not 
all microorganisms have an endogenous biosynthetic 

route toward it. This pathway is absent in E. coli and 
inefficient in wild-type S. cerevisiae [14], which would 
necessitate incorporating heterologous biosynthetic en
zymes. Other strategies include downregulating com
peting ethanol production and engineering acetoin 
racemase to produce enantiomerically pure 2,3-butane
diol [15].

Top high-margin, low-volume chemicals
Microbial production of high-margin, low-volume che
micals such as natural products for food, agriculture, or 
pharmaceutical industries poses a different challenge 
than bulk commodity production because natural pro
ducts are derived from often-long, heterologous sec
ondary metabolic pathways [16]. Natural products in 
endogenous producers are often produced in low quan
tities and sometimes only in certain environments 
[17,18]. Many engineering efforts look to increase the 
production of the compound in a model organism with 
more synthetic biology tools available for strain en
gineering. Thus, the primary focus for natural product 
synthesis is on incorporating a functional pathway into a 
host organism. Challenges arise due to issues related to 
cofactor compatibility, enzyme efficiency in hetero
logous hosts, and altered energetic demand [19,20]. 
Though their production metrics (i.e. yield, productivity, 
and titer) may be lower than that of bulk commodities, 
this problem is offset by their high-value nature as 
complex chemicals that are challenging to synthesize. 
Terpenoids and phenylpropanoids make up the majority 
of natural products produced (40.7% and 28.6%, re
spectively), while polyketides and alkaloids account for 
19.2% and 11.5%, respectively (Figure 3a). This dis
tribution may be due to the prevalence of more struc
turally simple terpenoids and phenylpropanoids, while 
polyketides and alkaloids are often more functionalized. 
For the more structurally complex and functionalized 
natural products, metabolic engineering endeavors often 
reside in the proof-of-concept stage, resulting in fewer 
publications.

The three most produced natural products are β-car
otene, astaxanthin, and resveratrol (Figure 3b). β- 
Carotene is a terpenoid mainly used as a nutritional 
supplement (as provitamin A) and a food coloring 
agent [21]. Astaxanthin is a terpenoid commonly used 
in agriculture and aquaculture as a coloring agent and 
as a dietary supplement for humans [22]. Common 
strategies for increasing terpenoid production are in
corporating the biosynthetic pathway in a model or
ganism, introducing additional pathways for increased 
supply of terpene carbon backbones (isopentenyl 
pyrophosphate and dimethylallyl pyrophosphate), 
adenosine triphosphate (ATP), and NADPH [23–25]. 
Phenylpropanoid-derived resveratrol is a phytoalexin 
and antioxidant used as dietary supplement for po
tential health benefits [26]. Titer can be increased by 
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tethering biosynthetic enzymes together for metabo
lite channeling and downregulating competing path
ways [27]. The accumulated knowledge of natural 
product biosynthesis so far lays a solid foundation for 
future specialty and fine chemicals.

What products can we be making?
With the introduction and advancement of new tech
nologies, new and diverse compounds can be made. 
Using computer-assisted pathway modeling and rational 
enzyme engineering, biosynthetic routes can be im
plemented for new-to-nature chemicals. With improved 
genome mining and synthetic biology tools, more bio
synthetic gene clusters can be discovered and expressed 
in novel hosts for production of more complex natural 
products. Microbial synthesis of new-to-nature bulk 
commodities and complex natural products comes with 
unique challenges and benefits.

New-to-nature bulk commodities and specialty chemicals
While there are many examples of microbially produced 
bulk commodity chemicals and fuels, a variety of non- 
natural chemicals can theoretically be synthesized de 
novo by derivatization of the intermediates of glycolysis 
and the TCA cycle. Owing to the prevalence of car
boxylic acid, ketone, and alcohol functionality in primary 
metabolites, many synthetic building blocks and sol
vents have potential to be produced completely through 
metabolic engineering, reducing the amount of down
stream processing. For de novo biosynthesis of non-nat
ural bulk commodities, the difficulty is developing novel 
synthetic routes and novel enzyme activity to produce a 

noncanonical metabolite. However, with computer-as
sisted tools [28,29], moving away from petroleum-based 
synthetic routes to bio-based ones is a promising future 
direction. As each bulk commodity poses distinct op
portunities for future engineering, understanding the 
unique challenge associated with each chemical is im
portant for efficient biosynthesis.

Adipic acid is a dicarboxylic acid and is used as a pre
cursor for polymers and plasticizers, most notably nylon 
[30]. Adipic acid represents a new-to-nature chemical 
with various noncanonical pathways established in the 
literature [31]. The synthetic enzymatic routes to adipic 
acid generally start with the condensation of acetyl-CoA 
and succinyl-CoA and utilize various reduction steps to 
yield the final product [32]. Further research can be 
done to establish biosynthesis in microorganisms with 
higher precursor availability or a more efficient synthetic 
route toward adipic acid. 1-Octanol is an important pri
mary alcohol in chemical industry, which is often ester
ified for use in various flavorings and fragrances and is a 
precursor for polymers and surfactants [33]. As a straight- 
chain alcohol, microbial production requires reduction of 
octanoyl-acyl carrier protein (ACP) or octanoyl-CoA. 
With a straightforward noncanonical metabolic route, 
improving 1-octanol synthesis requires the engineering 
of enzymes for higher specificity and activity. A recent 
paper by Lozada et al. demonstrates the viability of 
identifying and optimizing acyl-CoA reductases and 
synthetases [34]. Levulinic acid is a keto acid that is 
often used as a platform chemical, being synthesized 
into polymers, pharmaceuticals, and fragrances [35]. 

Figure 3  
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Most produced natural products and categories ranked by the number of associated entries in the dataset. (a) Distribution of the number of entries 
associated with the four major classes of natural products according to the dataset. (b) Absolute number of entries associated with the top-ten natural 
products.  
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There is no record of microbial production, and thus 
levulinic acid represents a chemical where computa
tional tools to develop novel routes can be utilized. A 
recent paper by Vila-Santa et al. provided a systematic 
framework for constructing synthetic routes in micro
organisms and demonstrated its applicability for levu
linic acid [36]. In this paper, the optimal route used the 
natural 3-oxoadipic acid as the precursor, followed by 
two decarboxylase steps and one methylketone synthase 
step. Future work can implement and compare the in 
vivo viability of the various proposed routes. While all 
three bulk commodities discussed here can potentially 
be synthesized by derivatizing central carbon metabo
lites, future metabolic engineering endeavors may result 
in more efficient microbial production.

Pharmaceutical and agrochemical natural products
The unique benefit of metabolism is its ability to syn
thesize complex natural products with high specificity. 
Considering the most commonly produced natural pro
ducts, one can notice the lack of functionalization, which 
adds challenging reaction steps to carbon backbone 
synthesis (Table 1). Furthermore, engineering of entire 
biosynthetic pathways of complex natural products re
mains a daunting task with the sheer number of en
zymes, though better tools for gene integration and 
protein engineering would facilitate the creation of mi
crobial strains capable of producing potent natural pro
ducts. Although many natural products have elucidated 
biosynthetic pathways, one must consider the length, 
precursors, and complexity of these routes. For example, 
strong heterologous oxygenase expression is often diffi
cult to accomplish, as these enzymes can be heavily 
dependent on correct cellular localization and energy 

supply [37]. These new advances can help identify and 
overcome the challenges of de novo biosynthesis.

Avermectins are a group of related polyketides found in 
Streptomyces avermitilis that have potent insecticidal and 
anthelmintic bioactivity [38]. They are 16-membered 
macrocyclic lactones that are produced by a type-I 
polyketide synthase, before further modification and 
glycosylation. Avermectins thus represent a typical 
glycosylated macrolide polyketide, posing the chal
lenge of requiring a large and diverse array of enzymes 
for biosynthesis. To date, the only metabolic en
gineering efforts have been in S. avermitilis through 
engineering regulators and increasing precursor supply 
[39,40]. Thus, research into heterologous expression of 
the polyketide synthase or tailoring and glycosylation 
enzymes for semisynthesis or de novo biosynthesis 
would provide a novel approach. Nodulisporic acid is an 
indole diterpene natural product derived from Hypox
ylon pulicicidum that has potential in pharmaceutical and 
agricultural industries, with selective toxicity to insects 
over mammals [41]. As its biosynthesis requires pre
nylation of an indole ring [42], nodulisporic acid re
presents a natural product where efficient convergent 
biosynthesis of two classes of metabolites is needed. No 
metabolic engineering efforts have been identified, 
though the recent elucidation of its biosynthesis will 
hopefully spur investigation into heterologous expres
sion of the involved oxygenases, transferases, and cy
clase. Pyrrolnitrin is a halogenated tryptophan-derived 
alkaloid with potent antifungal activity that was found 
in various Pseudomonas species [43]. Its four-step bio
synthesis from tryptophan consists of two halogenases, 
a synthase, and an oxygenase [44,45]. Although its 
biosynthesis is short compared with other natural 

Table 1 

Table of commonly made chemicals and potential chemicals to be made. 

Product Category Pathway length # of oxygenases Value Market size

Ethanol Fuels → 0 $ ••••
Succinic acid Bulk commodities → 0 $ •••
2,3-butanediol Fuels → 0 $ ••
β-carotene Natural products →→→ 0 $$$ •••
Astaxanthin Natural products →→→ 0 $$$ •••
Resveratrol Natural products →→→ 0 $$$ ••
Adipic acid Bulk commodities →→ 0 $ ••••
1-octanol Fuels →→ 0 $$ ••••
Levulinic acid Bulk commodities → 0 $ •
Avermectins Natural products →→→→ 1 $$$$ •••
Nodulisporic acids Natural products →→→ 3 $$$$ •
Pyrrolnitrin Natural products →→→→ 1 $$$$ •

Pathway length denotes the number of enzymatic steps from the nearest intermediates of central carbon metabolism, where → denotes <  5 steps, 
→→ denotes 5–10 steps, →→→ denotes 10–20 steps, and →→→→ denotes >  20 steps. For value, $ denotes <  $3/kg, $$ denotes $3–9/kg, $$$ 
denotes $10–500/kg, $$$$ denotes >  $500/kg (prices from Alibaba, Sigma-Aldrich, and Biosynth). For market size, • denotes data not available or 
<  $100 million, •• denotes $100–199 million, ••• denotes $200 million–1 billion, and •••• denotes >  $1 billion (data from GrandView Research, 
Future Market Insights, and StrategyHelix).
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products, pyrrolnitrin represents a natural product with 
difficult biocatalytic steps that require enzyme en
gineering for efficient microbial production. Hetero
logous expression of the biosynthetic genes has been 
done [46], but high titers have yet to be reached. The 
three complex natural products encompass different 
natural product categories and have unique challenges 
to overcome in metabolic engineering endeavors.

Substrates
The criteria for an ideal substrate for green chemistry 
can be grouped under two main ideas: feasibility and 
accessibility. For specific products, certain substrates 
will be inherently more efficient and/or bioenergetically 
favorable. Therefore, the relevant existing or engineered 
pathways for production will play an important role in 
process feasibility and substrate selection. Before con
sidering a substrate, either natural pathways to metabo
lize it should be known or plans for engineered pathways 
should be well underway. Novel substrates can be used 
by integrating pathways from one organism into another, 
or by pretreating the substrate to convert it to other more 
well-known starting points for biochemical reactions. 
Related to the ideas of accessibility, is the idea of scale. 
To make an impact, the substrate should be abundant 
and made at scale. To be considered accessible, it should 
be inexpensive, renewable and/or sourced from waste, 
not compete with food sources, and not involve complex 
or energy-intensive pretreatment processes.

Sugars
Different families of organisms utilize different path
ways to metabolize nutrients and transform them to 
biomass and bioproducts. Familiarity with the relevant 
natural pathways and organisms that possess these 
pathways is essential to picking an initial starting sub
strate. The most widely used substrates are sugars such 
as glucose and sucrose [47–49]. Glucose is catabolized in 
the glycolysis pathway where it is converted to two 
molecules of pyruvate as well as cellular energy ATP and 
NADH. Sucrose is cleaved by invertase and split into 
fructose and glucose. Sugars are simple and reliable 
substrates, with abundant natural pathways and organ
isms to work with.

Unfortunately, the use of sugars directly competes with 
food security, and the common sources of sugar are 
nonrenewable due to its cultivation being water-in
tensive. Furthermore, sucrose and glucose are not in
expensive starting materials, creating a need for alternate 
substrates. Plant cell wall and storage polysaccharides 
can be broken down into monosaccharides. Starch is a 
storage polysaccharide found in cereal grains and con
sists of multiple glucose units and is an abundant re
newable raw material [50]. Plant detritus, such as 
lignocellulose, which is the inedible woody part, 

represents a large renewable feedstock. Lignocellulose is 
composed of cellulose, hemicellulose, and lignin. Cel
lulose is a polymer of glucose, hemicellulose a polymer 
of various sugars, and lignin has a phenolic backbone 
[51]. Thus, a spectrum of sugars can be extracted from 
lignocellulose and used as substrates for fermentation 
[52]; however, the complex pretreatment and toxic 
lignin by-products make it a challenging starting sub
strate [53–55]. Strategies have been developed to im
prove strain resistance to these stressors [56,57].

Nonsugar substrates
Alternatively, gluconeogenesis can be used to convert 
nonsugar substrates (e.g. lactate, glycerol, amino acids, 
acetate, etc.) to glucose. Among these substrates, acetate 
is particularly interesting as it can be produced from CO/ 
CO2 and renewably generated H2 with high efficiency 
[58]. Acetate can be viewed as an accessible and scalable 
liquid-phase intermediate, circumventing the challenges 
associated with the utilization of renewable gaseous 
substrates (CO, CO2, and H2) by microbes. Numerous 
studies have demonstrated the feasibility of using 
acetate as the starting substrate of fermentation [59]. 
Chen et al. engineered E. coli metabolism to synthesize 
bioplastics polyhydroxyalkanoates from acetate rather 
than glucose [60]. Bioplastics can be produced from 
glucose, but the high environmental and economic cost 
of glucose-derived plastics make them a poor competitor 
to replace petroleum-based plastics. Their engineering 
approach included the overexpression of the existing 
phosphotransacetylase/acetate kinase pathway to im
prove acetate assimilation, and they further engineered 
the strain to produce poly-3-hydroxybutyrate, poly(3- 
hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hy
droxybutyrate-co-3-hydroxyvalerate).

The use of acetate is particularly advantageous for fatty 
acid, terpenoid, and polyketide production. Acetyl-CoA 
is the initial substrate of their biosynthetic pathways, 
and it can be generated from acetate without loss of 
carbon in fewer enzymatic steps than from glucose, 
which goes through glycolysis and decarboxylation for 
acetyl-CoA generation. However, the slower microbial 
growth on acetate is often a drawback, and NADPH 
generation using acetate is also a major challenge [61]. 
One way to overcome this issue is to introduce secondary 
substrates that can be dedicated to generating the lim
iting factors [62,63].

One-carbon substrates
Use of waste one-carbon (C1) substrates (CO2, CO, 
formate, methanol, and methane) is particularly in
dustrially relevant, since these represent a large per
centage of pollutants and greenhouse gases that the 
industrialized society emits. Both formate and methanol 
can be produced electrochemically from CO2 with high 
efficiency and renewable energy. Kim et al. have used a 
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four-step modular engineering approach to develop a 
linear synthetic pathway, the reductive glycine 
pathway), which supports E. coli growth on formate or 
methanol [64]. Their short-term laboratory evolution 
experiment resulted in cells with improved growth on 
formate with the promise of further improvement. At
tractive alternatives include starting from organisms (e.g. 
methylotrophs and acetogens) that natively utilize C1 
substrates to grow [65,66]. To get the best out of these 
C1-utilizing organisms, autotrophic or near-autotrophic 
growth is desired from the perspective of carbon yield, 
which often comes at the cost of lower titer and pro
ductivity.

Potential and challenges for waste substrate utilization
An attractive benefit of bioprocesses is the ability to 
convert industrial waste and pollutants into value-added 
products with fewer separation steps. Engineering ap
proaches such as directed evolution, rational design, and 
modular engineering of novel pathways can be used to 
reprogram organisms to produce bioproducts from waste 
carbon, nitrogen, and hydrogen sourced from the che
mical industry [67]. A variety of waste sources can be 
used to derive the starting sugars, starches, non
carbohydrate precursors, and C1 substrates discussed 
above. About 1.3 billion tons of food waste (FW) is 
produced globally each year [68]. FW is difficult to dis
pose of safely without polluting groundwater and emit
ting toxic gases [69]. FW is rich in organic matter that 
can be converted to value-added products by microbes. 
CO2 and CO are pollutants emitted by the chemical, 
steel, energy, and agriculture industries that can serve as 
carbon substrates. Steel mill flue gas contains CO2, CO, 
and H2 that can be used as feedstock for gas fermenta
tion [70–75].

While waste substrates sound exciting on paper, it can 
be inherently difficult to source these at the scale 
needed to transform the industry. For example, the 
technology to convert waste cooking oil (WCO) to jet 
diesel is well-established; however, the poor recovery 
rate and lack of infrastructure to properly separate WCO 
on the restaurant scale makes commercialization difficult 
[76]. The necessary pretreatment and separation steps 
required for upcycling waste compounds are also a major 
challenge.

Processes that utilize a combination of multiple waste 
sources and abundant renewable sources will be most 
industrially relevant. More complex processes, such as 
bioelectrochemical processes [77,78], biorefineries, or 
coculture systems, can be combined with metabolic 
engineering to help us utilize challenging substrates and 
combine waste streams. Biorefineries improve substrate 
accessibility by converting biomass from multiple 
sources into a variety of sugars and then to a range of 
chemical products via microbial fermentation [79].

Organisms
What organisms have we been using?
Using our compiled database, we explored the variety of 
organisms used over the last 30 years. The prokaryotic 
bacteria E. coli and the eukaryotic yeast S. cerevisiae were 
the organism of choice for nearly half of all the metabolic 
engineering products made (Figure 4a). These are 
model organisms with sequenced genomes and a ple
thora of available synthetic biology tools [80–82], and 
their prevalence in academia is paralleled in industry as 
well [83]. None of the top-ten most-used organisms are 
classically recognized as prolific natural product-produ
cing organisms (Figure 4b), perhaps resulting in more 
bulk commodities being made over natural products. 
Looking at the history of organism usage, E. coli has 
always been the most extensively used chassis for me
tabolic engineering, with its usage increasing more than 
other organisms during the 2010s (Figure 4c). Further
more, S. cerevisiae has always been the second most-uti
lized organism, as the eukaryotic model organism 
counterpart to E. coli, allowing for more complex pro
teins and higher industrial potential [84]. As new chassis 
are increasingly utilized with the growth of the meta
bolic engineering field, the dominance of E. coli has 
been on the decline since mid-2010s. The rankings of 
organisms based on the number of unique products 
mirrored the rankings of most-used organisms in the 
literature with the top five of these rankings being 
identical (Figure 4d). Unsurprisingly, these model or
ganisms boast high product diversity. The number of 
unique products seems to reflect the engineerability of 
the organism.

What considerations go into choosing an organism?
In metabolic engineering, the organism bridges the gap 
between the starting substrate and the target product. 
Careful organism selection can alleviate engineering 
challenges and facilitate industrial implementation, and 
thus several considerations are warranted. Genetic ma
nipulability allows easier engineering of strains, as many 
model organisms have large synthetic biology toolboxes. 
Some organisms such as autotrophic and cellulolytic or
ganisms naturally utilize more desirable substrates. 
Differences in growth and basal metabolic rate can im
pact viability, as heterotrophs often grow faster than 
autotrophs. Growth conditions such as pH, temperature, 
osmolarity, and nutrient requirements are also important 
considerations [85]. For example, low-temperature yeast 
fermentation may reduce energy costs, while high-tem
perature culturing of thermophiles in warmer regions 
may reduce potential for contamination [86]. Some or
ganisms are more amenable to product accumulation, 
such as increased ethanol tolerance in S. cerevisiae and 
sequestration of hydrophobic compounds to lipid dro
plets in Yarrowia lipolytica [87,88]. Thus, there is no one- 
size-fits-all organism, and the advantages and the 
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disadvantages of different biological systems should be 
carefully weighed for chassis selection.

Model organism advantages
Model organisms for metabolic engineering, namely E. 
coli and S. cerevisiae, are robust and inexpensive chassis 
for bioproduction. Their well-understood biology, fast 
growth rates, and availability of different strains and 
tools propel the large proportion of metabolic en
gineering projects. They have the benefit of a wide 
range of available in silico and in vivo tools, highly an
notated genomes, and numerous previous efforts to re
ference [80,81,89,90]. These recent advancements in 
systems biology, synthetic biology, and pathway en
gineering make engineering these model organisms 
more streamlined [91]. With these more sophisticated 
tools, model organisms have been engineered to make a 
wide variety of bulk commodities, fuels, and natural 
products, as over the last twenty years, publications 
about E. coli and S. cerevisiae have covered over 300 and 
nearly 150 products, respectively (Figure 4d).

Using these model organisms also makes bioprocesses 
more implementable at a large industry scale since their 
fermentation conditions are already well-established 

[92]. For example, yeast fermentation plants for ethanol 
have been implemented in various locations of Brazil 
and the United States [93,94]. Many of industrial fer
mentation plants make bulk commodities, though in
dustrial precedents for these organisms allow for product 
scope expansion, as different products will not require 
major changes in equipment. Combined with their un
derstood physiology and molecular genetics, model or
ganisms are well-suited for scaling up fermentation 
processes in industry.

Non-model organism advantages
The variety of non-model organisms offers the potential 
for discovering more beneficial physiological or meta
bolic traits over model organisms, providing a unique 
advantage for utilization of unconventional substrates 
and synthesis of complex natural products. Although the 
substrate of choice is often glucose for model organisms 
(without further engineering), the use of other organisms 
readily unlocks access to a wide range of substrates that 
are more renewable, such as Clostridium cellulolyticum 
being able to degrade cellulose or Cupriavidus necator 
being able to fix CO2 [95–97]. Thus, by utilizing the 
endogenous metabolism of a non-model organism, one 
can bypass engineering steps to confer alternative 

Figure 4  

Current Opinion in Biotechnology

Most-used organisms ranked by the number of associated entries in the dataset. (a) Number of entries associated with each strain relative to the total 
number of entries in the dataset (2632). Only the top ten are labeled. (b) Absolute number of entries associated with each strain. (c) Top-five most- 
used organisms with number of entries from 1992 to 2018. (d) Top-ten most-used organisms ranked by the number of unique products.  
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substrate utilization and focus on improving product 
synthesis. Furthermore, certain non-model organisms 
have inherent metabolic capacity to make advanced 
product at high metrics (i.e. titer, yield, and pro
ductivity). For example, Y. lipolytica is increasingly used 
as a host for lipophilic terpenoids and carotenoids. Its 
strong mevalonate pathway flux, large capacity for lipo
philic compound storage, and ability to grow to high 
culture densities make it a more suitable organism for 
these specific compounds over model organisms [98].

Non-model organisms can endogenously produce var
ious compounds of interest. For example, 2,3-butanediol 
is natively produced in the generally recognized as safe 
microorganism Klebsiella oxytoca, where engineering ef
forts can focus on increasing precursor supply rather than 
heterologous expression [99]. Less genetic modification 
provides an advantage in long-term fermentation as it 
does not require heterologous enzymes and potential 
expression issues. Episomal-based model organism 
strains can be unstable over the course of fermentation, 
as even in minimal or selective media, they can lose their 
plasmid [100]. Thus, finding a non-model organism that 
is inherently capable of utilizing an environmentally and 
economically sensible substrate and synthesizing a de
sirable product and has analogous physiology to a model 
organism can benefit biotechnology.

Coculture systems
Cocultures allow us to harness synergistic physiology 
and metabolism of multiple microbes. Coculture systems 
can relieve the metabolic burden from one single or
ganism and accelerate conversion of complex raw ma
terials, as long as both organisms can coexist [69,101]. 
Each organism in a coculture can catabolize a different 
part of a heterogeneous complex substrate. FW is a 
complex combination of organic substrates that are dif
ficult to convert with a single organism. An artificial 
microbial consortium (AMC) of Bacillus amyloliquefaciens 
and Y. lipolytica has been used for the efficient conver
sion of FW to lipopeptides [69]. The AMC takes ad
vantage of Y. lipolytica being able to convert oily waste 
into fatty acids and B. amyloliquefaciens to convert starchy 
waste and fatty acid into lipopeptides. Thus, judicious 
selection of multiple organisms allows for collective 
utilization of environmentally and economically sensible 
substrates and synthesis of desirable products.

Conclusion
With broad spectra of substrates, products, and organ
isms in nature, careful consideration, including tech
noeconomic analysis of the combinations of these three 
components of metabolic engineering, can lead to a 
quantum leap in biotechnology by eliciting synergies. 
With the wide variety of bioproducts that can be syn
thesized, one must consider the compound’s metabolic 

demands, the available enzymes and pathways, and how 
many heterologous or difficult enzymatic steps are re
quired. Different substrates are routed to different me
tabolic pathways, providing biochemical precursors and 
cellular energy for bioproduct synthesis and cell pro
liferation differently. Organisms can help bridge the gap 
between product and substrate, which can be chosen 
through consideration of its genetic manipulability, 
physiology, and metabolism. All three components must 
be compatible and collectively optimized for sustainable 
metabolic engineering and biotechnology.
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