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The versatility of cellular metabolism in converting various
substrates to products inspires sustainable alternatives to
conventional chemical processes. Metabolism can be
engineered to maximize the yield, rate, and titer of product
generation. However, the numerous combinations of substrate,
product, and organism make metabolic engineering projects
difficult to navigate. A perfect trifecta of substrate, product, and
organism is prerequisite for an environmentally and
economically sustainable metabolic engineering endeavor. As a
step toward this endeavor, we propose a reverse engineering
strategy that starts with product selection, followed by
substrate and organism pairing. While a large bioproduct space
has been explored, the top-ten compounds have been
synthesized mainly using glucose and model organisms.
Unconventional feedstocks (e.g. hemicellulosic sugars and
CO,) and non-model organisms are increasingly gaining
traction for advanced bioproduct synthesis due to their
specialized metabolic modes. Judicious selection of the
substrate—organism-product combination will illuminate the
untapped territory of sustainable metabolic engineering.
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Introduction

Over the past two centuries, humanity has relied pri-
marily on fossil resources for power generation and
chemical production. The one-way process involving the
extraction and combustion of fossil resources has led to

an ever-increasing accumulation of nonbiodegradable
and gas waste. A shift toward utilization of renewable
feedstocks and sustainable processes is needed.
Biotechnology and metabolic engineering allow us to
harness a complex network of highly specific biochem-
ical reactions to produce advanced bioproducts, from
fuels to materials to agrochemicals to medicine. By en-
gineering microorganisms, we can increase access to
these products in a sustainable manner.

A perfect trifecta of substrate, product, and organism is
necessary for bioproduct synthesis that maximizes eco-
nomic and environmental benefits. An integral process of
utilizing more abundant and metabolically efficient
substrates, synthesizing valuable products, and selecting
the organism with specialized metabolic capability
would lead to a quantum leap in biotechnology. In this
review, we explore a reverse engineering approach to
metabolic engineering, starting from selecting a com-
mercially valuable product and an environmentally sus-
tainable substrate to harnessing an organism excelling at
bridging the gap between the substrate and the product
(Figure 1). Focusing initially on product-substrate pair-
ings would allow researchers to ponder on pairs of am-
bitious real-world problems to tackle and invent ‘two
birds one stone’ solutions.

Products

What products are we making?

"T'o explore the product scope of the metabolic engineering
landscape, we searched through literature published be-
tween 1990 and 2019 using the Web of Science database.
‘Metabolic engineering’ and ‘synthetic biology’ were used
as keywords to search for relevant research articles. We
then extracted the abstract of the resulting articles and
selected only those that reported a titer. All prefiltered
abstracts were then manually screened for the micro-
organism that was used and the product that was synthe-
sized. Articles related to iz vitro biocatalysis, cocultures/
consortia, protein production, and biomass production were
removed. Following this approach, we compiled a dataset
consisting of 566 unique small-molecule products that have
been reported. The top-ten products account for ~25% of
the dataset, suggesting that a large degree of diversity is
established for microbial synthesis of chemical compounds
(Figure Za). Many of the top-ten most commonly produced
compounds are platform chemicals that are one or two

www.sciencedirect.com

Current Opinion in Biotechnology 2023, 83:102983


http://www.sciencedirect.com/science/journal/09581669
mailto:steven.liu.91515@gmail.com
mailto:jop@ucla.edu
https://doi.org/10.1016/j.copbio.2023.102983
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2023.102983&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2023.102983&domain=pdf

2 Energy Biotechnology

Figure 1
Substrate Organism Product
ibili . i i jlit Proximity to
= Feasibility Genetic manipulability - )
= Accessibility * Industrial viability Glycolysis/TCA
= Product accumulation = Ease of biosynthesis

Industrial relevance

® ®

Current Opinion in Biotechnology

Proposed reverse metabolic engineering approach for green
chemistry alternatives. Suitable bioprocesses will maximize synergy
between a substrate, organism, and product trifecta. We propose
selecting (1) a product and a reasonable desired starting substrate, (2)
an organism that can either naturally, or via metabolic engineering,
grow on this substrate, and (3) engineer the organism to bridge the
gap between the substrate and product.

steps removed from glycolysis and the tricarboxylic acid
(T'CA) cycle. The compounds proximal to central carbon
metabolism lend themselves to biodegradation [1]. To
examine any trends in different types of chemicals, we
categorized our dataset into commodity chemicals (che-
micals produced in bulk for large global markets), specialty
chemicals (chemicals used in specific industries such as
flavors, cosmetics, and adhesives), fuels, natural products
(secondary metabolites, including terpenes, polyketides,
phenylpropanoids, and alkaloids), and amino acids (stan-
dard, nonstandard, and nonproteinogenic). Specialty che-
micals were the largest class of products from microbial
synthesis (Figure 2b). The proportion of specialty chemi-
cals 1s at 29.5%, natural products at 23.4%, commodity
chemicals at 21.6%, fuels at 15.8%, and amino acids at
9.7%. While there is no majority within the specific cate-
gories, chemicals that are generally considered low-value
mass production (commodity, specialty, and fuels) make
up the majority of bio-produced chemicals. While overall
microbial bioproduct synthesis endeavors rapidly increased
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Most produced products ranked by the number of associated entries in the dataset. (a) Number of entries associated with each product relative to the
total number of entries in the dataset (2644). Only the top ten are shown. (b) Distribution of the number of entries associated with the five major classes
of products according to the dataset. (c) Five major classes over time. Data shown from 1992 to 2018. (d) Absolute number of entries associated with
the top-ten products. The database is available on our lab website (https://parklab.ucla.edu/resources.html).
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starting 2010, the proportion of entries between the dif-
ferent categories remains relatively similar (Figure 2c).
"This product distribution hinted at the challenges of pro-
ducing high-margin compounds.

Top high-volume, low-margin chemicals

While engineering metabolic pathways to generate
mass-produced chemicals is relatively straightforward,
optimizing the pathways to achieve economically re-
levant production metrics is challenging and a key area
of current research. Since commodity chemicals as well
as some fuels and specialty chemicals are typically
within a few reaction steps from the TCA cycle and
glycolysis, metabolic engineering efforts are focused on
downregulating competing pathways while maintaining
sufficient growth. While a low-cost feedstock is an im-
portant consideration, production of bulk commodities
also requires high titer (g/l.) for ease of downstream
process, high productivity (g/L/hr) for tractable capital
expenses, and high yield (g of product/g of substrate) for
lowering operating costs.

The top-three microbially produced high-volume, low-
margin chemicals are ethanol, succinic acid, and 2,3-
butanediol (IFigure 2d). Ethanol is used as a fuel and fuel
additive as well as in medicine and synthetic chemistry
[2,3]. Furthermore, it can be readily derivatized into a
variety of commodity chemicals, such as ethylene and
ethyl acetate [4]. Ethanol is derived from pyruvate, the
end product of glycolysis. The ethanol synthesis
pathway is endogenous to many organisms, including the
model organisms K. co/i and §. cerevisiae [5]. Thus, en-
gineering strategies include overexpressing the en-
dogenous or more efficient heterologous biosynthetic
genes, increasing tolerance to ethanol or inhibitors of its
synthesis, and increasing or changing substrate pre-
ference of the microorganism [6-8]. Non-model organ-
isms may already have these advantages, and thus can
also be used for ethanol bioproduction, but will require
different engineering strategies such as accelerating
uptake of alternative substrates or increasing growth [9].
Succinic acid is used as a precursor to 1,4-butanediol,
making it important in many industrial fields for solvents
and reagents in chemical synthesis and polymers [10],
though research has been done for direct biosynthesis of
1,4-butanediol [11]. Being a metabolite in the TCA
cycle, it requires no additional enzymes for its bio-
synthesis. Instead, engineering efforts include removing
by-product formation pathways, enhancing catalytic ac-
tivity of TCA enzymes, and optimizing energy avail-
ability and reduced to oxidized nicotinamide adenine
dinucleotide (NADH/NAD™) ratios [12]. 2,3-Butanediol
can be derivatized to a variety of polyesters, poly-
urethanes, building blocks for use in chemical industry,
and cosmetics [13]. Although 2,3-butanediol is deriva-
tized from pyruvate through several reduction steps, not
all microorganisms have an endogenous biosynthetic

route toward it. This pathway is absent in E. co/i and
inefficient in wild-type §. cerevisiae [14], which would
necessitate incorporating heterologous biosynthetic en-
zymes. Other strategies include downregulating com-
peting ethanol production and engineering acetoin
racemase to produce enantiomerically pure 2,3-butane-
diol [15].

Top high-margin, low-volume chemicals

Microbial production of high-margin, low-volume che-
micals such as natural products for food, agriculture, or
pharmaceutical industries poses a different challenge
than bulk commodity production because natural pro-
ducts are derived from often-long, heterologous sec-
ondary metabolic pathways [16]. Natural products in
endogenous producers are often produced in low quan-
tities and sometimes only in certain environments
[17,18]. Many engineering efforts look to increase the
production of the compound in a model organism with
more synthetic biology tools available for strain en-
gineering. Thus, the primary focus for natural product
synthesis is on incorporating a functional pathway into a
host organism. Challenges arise due to issues related to
cofactor compatibility, enzyme efficiency in hetero-
logous hosts, and altered energetic demand [19,20].
Though their production metrics (i.e. yield, productivity,
and titer) may be lower than that of bulk commodities,
this problem is offset by their high-value nature as
complex chemicals that are challenging to synthesize.
Terpenoids and phenylpropanoids make up the majority
of natural products produced (40.7% and 28.6%, re-
spectively), while polyketides and alkaloids account for
19.2% and 11.5%, respectively (Figure 3a). This dis-
tribution may be due to the prevalence of more struc-
turally simple terpenoids and phenylpropanoids, while
polyketides and alkaloids are often more functionalized.
For the more structurally complex and functionalized
natural products, metabolic engineering endeavors often
reside in the proof-of-concept stage, resulting in fewer
publications.

The three most produced natural products are p-car-
otene, astaxanthin, and resveratrol (Figure 3b). B-
Carotene is a terpenoid mainly used as a nutritional
supplement (as provitamin A) and a food coloring
agent [21]. Astaxanthin is a terpenoid commonly used
in agriculture and aquaculture as a coloring agent and
as a dietary supplement for humans [22]. Common
strategies for increasing terpenoid production are in-
corporating the biosynthetic pathway in a model or-
ganism, introducing additional pathways for increased
supply of terpene carbon backbones (isopentenyl
pyrophosphate and dimethylallyl pyrophosphate),
adenosine triphosphate (ATP), and NADPH [23-25].
Phenylpropanoid-derived resveratrol is a phytoalexin
and antioxidant used as dietary supplement for po-
tential health benefits [26]. Titer can be increased by
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Most produced natural products and categories ranked by the number of associated entries in the dataset. (a) Distribution of the number of entries
associated with the four major classes of natural products according to the dataset. (b) Absolute number of entries associated with the top-ten natural

products.

tethering biosynthetic enzymes together for metabo-
lite channeling and downregulating competing path-
ways [27]. The accumulated knowledge of natural
product biosynthesis so far lays a solid foundation for
future specialty and fine chemicals.

What products can we be making?

With the introduction and advancement of new tech-
nologies, new and diverse compounds can be made.
Using computer-assisted pathway modeling and rational
enzyme engineering, biosynthetic routes can be im-
plemented for new-to-nature chemicals. With improved
genome mining and synthetic biology tools, more bio-
synthetic gene clusters can be discovered and expressed
in novel hosts for production of more complex natural
products. Microbial synthesis of new-to-nature bulk
commodities and complex natural products comes with
unique challenges and benefits.

New-to-nature bulk commodities and specialty chemicals

While there are many examples of microbially produced
bulk commodity chemicals and fuels, a variety of non-
natural chemicals can theoretically be synthesized e
novo by derivatization of the intermediates of glycolysis
and the TCA cycle. Owing to the prevalence of car-
boxylic acid, ketone, and alcohol functionality in primary
metabolites, many synthetic building blocks and sol-
vents have potential to be produced completely through
metabolic engineering, reducing the amount of down-
stream processing. For de novo biosynthesis of non-nat-
ural bulk commodities, the difficulty is developing novel
synthetic routes and novel enzyme activity to produce a

noncanonical metabolite. However, with computer-as-
sisted tools [28,29], moving away from petroleum-based
synthetic routes to bio-based ones is a promising future
direction. As each bulk commodity poses distinct op-
portunities for future engineering, understanding the
unique challenge associated with each chemical is im-
portant for efficient biosynthesis.

Adipic acid is a dicarboxylic acid and is used as a pre-
cursor for polymers and plasticizers, most notably nylon
[30]. Adipic acid represents a new-to-nature chemical
with various noncanonical pathways established in the
literature [31]. The synthetic enzymatic routes to adipic
acid generally start with the condensation of acetyl-CoA
and succinyl-CoA and utilize various reduction steps to
yield the final product [32]. Further research can be
done to establish biosynthesis in microorganisms with
higher precursor availability or a more efficient synthetic
route toward adipic acid. 1-Octanol is an important pri-
mary alcohol in chemical industry, which is often ester-
ified for use in various flavorings and fragrances and is a
precursor for polymers and surfactants [33]. As a straight-
chain alcohol, microbial production requires reduction of
octanoyl-acyl carrier protein (ACP) or octanoyl-CoA.
With a straightforward noncanonical metabolic route,
improving 1-octanol synthesis requires the engineering
of enzymes for higher specificity and activity. A recent
paper by Lozada er /. demonstrates the viability of
identifying and optimizing acyl-CoA reductases and
synthetases [34]. Levulinic acid is a keto acid that is
often used as a platform chemical, being synthesized
into polymers, pharmaceuticals, and fragrances [35].

Current Opinion in Biotechnology 2023, 83:102983
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There is no record of microbial production, and thus
levulinic acid represents a chemical where computa-
tional tools to develop novel routes can be utilized. A
recent paper by Vila-Santa ¢ «/. provided a systematic
framework for constructing synthetic routes in micro-
organisms and demonstrated its applicability for levu-
linic acid [36]. In this paper, the optimal route used the
natural 3-oxoadipic acid as the precursor, followed by
two decarboxylase steps and one methylketone synthase
step. Future work can implement and compare the #
vivo viability of the various proposed routes. While all
three bulk commodities discussed here can potentially
be synthesized by derivatizing central carbon metabo-
lites, future metabolic engineering endeavors may result
in more efficient microbial production.

Pharmaceutical and agrochemical natural products

The unique benefit of metabolism is its ability to syn-
thesize complex natural products with high specificity.
Considering the most commonly produced natural pro-
ducts, one can notice the lack of functionalization, which
adds challenging reaction steps to carbon backbone
synthesis (‘T'able 1). Furthermore, engineering of entire
biosynthetic pathways of complex natural products re-
mains a daunting task with the sheer number of en-
zymes, though better tools for gene integration and
protein engineering would facilitate the creation of mi-
crobial strains capable of producing potent natural pro-
ducts. Although many natural products have elucidated
biosynthetic pathways, one must consider the length,
precursors, and complexity of these routes. For example,
strong heterologous oxygenase expression is often diffi-
cult to accomplish, as these enzymes can be heavily
dependent on correct cellular localization and energy

Table 1

supply [37]. These new advances can help identify and
overcome the challenges of e novo biosynthesis.

Avermectins are a group of related polyketides found in
Strepromyces avermitilis that have potent insecticidal and
anthelmintic bioactivity [38]. They are 16-membered
macrocyclic lactones that are produced by a type-I
polyketide synthase, before further modification and
glycosylation. Avermectins thus represent a typical
glycosylated macrolide polyketide, posing the chal-
lenge of requiring a large and diverse array of enzymes
for biosynthesis. To date, the only metabolic en-
gineering efforts have been in §. avermitilis through
engineering regulators and increasing precursor supply
[39,40]. Thus, research into heterologous expression of
the polyketide synthase or tailoring and glycosylation
enzymes for semisynthesis or ¢ novo biosynthesis
would provide a novel approach. Nodulisporic acid is an
indole diterpene natural product derived from Hypox-
ylon pulicicidum that has potential in pharmaceutical and
agricultural industries, with selective toxicity to insects
over mammals [41]. As its biosynthesis requires pre-
nylation of an indole ring [42], nodulisporic acid re-
presents a natural product where efficient convergent
biosynthesis of two classes of metabolites is needed. No
metabolic engineering efforts have been identified,
though the recent elucidation of its biosynthesis will
hopefully spur investigation into heterologous expres-
sion of the involved oxygenases, transferases, and cy-
clase. Pyrrolnitrin is a halogenated tryptophan-derived
alkaloid with potent antifungal activity that was found
in various Pseudomonas species [43]. Its four-step bio-
synthesis from tryptophan consists of two halogenases,
a synthase, and an oxygenase [44,45]. Although its
biosynthesis is short compared with other natural

Table of commonly made chemicals and potential chemicals to be made.

Product Category Pathway length # of oxygenases Value Market size
Ethanol Fuels - 0 $ eoee
Succinic acid Bulk commodities - 0 $ see
2,3-butanediol Fuels - 0 $ oo
B-carotene Natural products - 0 $$$ oee
Astaxanthin Natural products EEGENEN 0 $$$ ()
Resveratrol Natural products RGN 0 $$$ oo
Adipic acid Bulk commodities - 0 $ seee
1-octanol Fuels - 0 $$ (LI
Levulinic acid Bulk commodities - 0 $ J
Avermectins Natural products S 1 $5$$ oee
Nodulisporic acids Natural products NN 3 $$5% U
Pyrrolnitrin Natural products o 1 $$$$ o

Pathway length denotes the number of enzymatic steps from the nearest intermediates of central carbon metabolism, where — denotes < 5 steps,
—— denotes 5-10 steps, —-—— denotes 10-20 steps, and ———— denotes > 20 steps. For value, $ denotes < $3/kg, $$ denotes $3-9/kg, $$$
denotes $10-500/kg, $$$$ denotes > $500/kg (prices from Alibaba, Sigma-Aldrich, and Biosynth). For market size, ® denotes data not available or
< $100 million, e denotes $100-199 million, eee denotes $200 million—1 billion, and eeee denotes > $1 billion (data from GrandView Research,

Future Market Insights, and StrategyHelix).
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products, pyrrolnitrin represents a natural product with
difficult biocatalytic steps that require enzyme en-
gineering for efficient microbial production. Hetero-
logous expression of the biosynthetic genes has been
done [46], but high titers have yet to be reached. The
three complex natural products encompass different
natural product categories and have unique challenges
to overcome in metabolic engineering endeavors.

Substrates

The criteria for an ideal substrate for green chemistry
can be grouped under two main ideas: feasibility and
accessibility. For specific products, certain substrates
will be inherently more efficient and/or bioenergetically
favorable. Therefore, the relevant existing or engineered
pathways for production will play an important role in
process feasibility and substrate selection. Before con-
sidering a substrate, either natural pathways to metabo-
lize it should be known or plans for engineered pathways
should be well underway. Novel substrates can be used
by integrating pathways from one organism into another,
or by pretreating the substrate to convert it to other more
well-known starting points for biochemical reactions.
Related to the ideas of accessibility, is the idea of scale.
To make an impact, the substrate should be abundant
and made at scale. To be considered accessible, it should
be inexpensive, renewable and/or sourced from waste,
not compete with food sources, and not involve complex
or energy-intensive pretreatment processes.

Sugars

Different families of organisms utilize different path-
ways to metabolize nutrients and transform them to
biomass and bioproducts. Familiarity with the relevant
natural pathways and organisms that possess these
pathways is essential to picking an initial starting sub-
strate. The most widely used substrates are sugars such
as glucose and sucrose [47-49]. Glucose is catabolized in
the glycolysis pathway where it is converted to two
molecules of pyruvate as well as cellular energy ATP and
NADH. Sucrose is cleaved by invertase and split into
fructose and glucose. Sugars are simple and reliable
substrates, with abundant natural pathways and organ-
isms to work with.

Unfortunately, the use of sugars directly competes with
food security, and the common sources of sugar are
nonrenewable due to its cultivation being water-in-
tensive. Furthermore, sucrose and glucose are not in-
expensive starting materials, creating a need for alternate
substrates. Plant cell wall and storage polysaccharides
can be broken down into monosaccharides. Starch is a
storage polysaccharide found in cereal grains and con-
sists of multiple glucose units and is an abundant re-
newable raw material [50]. Plant detritus, such as
lignocellulose, which is the inedible woody part,

represents a large renewable feedstock. Lignocellulose is
composed of cellulose, hemicellulose, and lignin. Cel-
lulose is a polymer of glucose, hemicellulose a polymer
of various sugars, and lignin has a phenolic backbone
[S51]. Thus, a spectrum of sugars can be extracted from
lignocellulose and used as substrates for fermentation
[52]; however, the complex pretreatment and toxic
lignin by-products make it a challenging starting sub-
strate [53-55]. Strategies have been developed to im-
prove strain resistance to these stressors [56,57].

Nonsugar substrates

Alternatively, gluconeogenesis can be used to convert
nonsugar substrates (e.g. lactate, glycerol, amino acids,
acetate, etc.) to glucose. Among these substrates, acetate
is particularly interesting as it can be produced from CO/
CO; and renewably generated H, with high efficiency
[58]. Acetate can be viewed as an accessible and scalable
liquid-phase intermediate, circumventing the challenges
associated with the utilization of renewable gaseous
substrates (CO, CO,, and H;) by microbes. Numerous
studies have demonstrated the feasibility of using
acetate as the starting substrate of fermentation [59].
Chen et al. engineered E. co/i metabolism to synthesize
bioplastics polyhydroxyalkanoates from acetate rather
than glucose [60]. Bioplastics can be produced from
glucose, but the high environmental and economic cost
of glucose-derived plastics make them a poor competitor
to replace petroleum-based plastics. Their engineering
approach included the overexpression of the existing
phosphotransacetylase/acetate kinase pathway to im-
prove acetate assimilation, and they further engineered
the strain to produce poly-3-hydroxybutyrate, poly(3-
hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hy-
droxybutyrate-co-3-hydroxyvalerate).

The use of acetate is particularly advantageous for fatty
acid, terpenoid, and polyketide production. Acetyl-CoA
is the initial substrate of their biosynthetic pathways,
and it can be generated from acetate without loss of
carbon in fewer enzymatic steps than from glucose,
which goes through glycolysis and decarboxylation for
acetyl-CoA generation. However, the slower microbial
growth on acetate is often a drawback, and NADPH
generation using acetate is also a major challenge [61].
One way to overcome this issue is to introduce secondary
substrates that can be dedicated to generating the lim-
iting factors [62,63].

One-carbon substrates

Use of waste one-carbon (C1) substrates (CO,, CO,
formate, methanol, and methane) is particularly in-
dustrially relevant, since these represent a large per-
centage of pollutants and greenhouse gases that the
industrialized society emits. Both formate and methanol
can be produced electrochemically from CO, with high
efficiency and renewable energy. Kim ¢z /. have used a

Current Opinion in Biotechnology 2023, 83:102983
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four-step modular engineering approach to develop a
linear synthetic pathway, the reductive glycine
pathway), which supports E. co/i growth on formate or
methanol [64]. Their short-term laboratory evolution
experiment resulted in cells with improved growth on
formate with the promise of further improvement. At-
tractive alternatives include starting from organisms (e.g.
methylotrophs and acetogens) that natively utilize C1
substrates to grow [65,66]. To get the best out of these
Cl-utilizing organisms, autotrophic or near-autotrophic
growth is desired from the perspective of carbon yield,
which often comes at the cost of lower titer and pro-
ductivity.

Potential and challenges for waste substrate utilization
An attractive benefit of bioprocesses is the ability to
convert industrial waste and pollutants into value-added
products with fewer separation steps. Engineering ap-
proaches such as directed evolution, rational design, and
modular engineering of novel pathways can be used to
reprogram organisms to produce bioproducts from waste
carbon, nitrogen, and hydrogen sourced from the che-
mical industry [67]. A variety of waste sources can be
used to derive the starting sugars, starches, non-
carbohydrate precursors, and C1 substrates discussed
above. About 1.3 billion tons of food waste (FW) is
produced globally each year [68]. FW is difficult to dis-
pose of safely without polluting groundwater and emit-
ting toxic gases [69]. FW is rich in organic matter that
can be converted to value-added products by microbes.
CO; and CO are pollutants emitted by the chemical,
steel, energy, and agriculture industries that can serve as
carbon substrates. Steel mill flue gas contains CO,, CO,
and H, that can be used as feedstock for gas fermenta-
tion [70-75].

While waste substrates sound exciting on paper, it can
be inherently difficult to source these at the scale
needed to transform the industry. For example, the
technology to convert waste cooking oil (WCO) to jet
diesel is well-established; however, the poor recovery
rate and lack of infrastructure to properly separate WCO
on the restaurant scale makes commercialization difficult
[76]. The necessary pretreatment and separation steps
required for upcycling waste compounds are also a major
challenge.

Processes that utilize a combination of multiple waste
sources and abundant renewable sources will be most
industrially relevant. More complex processes, such as
bioelectrochemical processes [77,78], biorefineries, or
coculture systems, can be combined with metabolic
engineering to help us utilize challenging substrates and
combine waste streams. Biorefineries improve substrate
accessibility by converting biomass from multiple
sources into a variety of sugars and then to a range of
chemical products via microbial fermentation [79].

Organisms

What organisms have we been using?

Using our compiled database, we explored the variety of
organisms used over the last 30 years. The prokaryotic
bacteria E. co/i and the eukaryotic yeast §. cerevisiae were
the organism of choice for nearly half of all the metabolic
engineering products made (Figure 4a). These are
model organisms with sequenced genomes and a ple-
thora of available synthetic biology tools [80-82], and
their prevalence in academia is paralleled in industry as
well [83]. None of the top-ten most-used organisms are
classically recognized as prolific natural product-produ-
cing organisms (Figure 4b), perhaps resulting in more
bulk commodities being made over natural products.
Looking at the history of organism usage, K. co/i has
always been the most extensively used chassis for me-
tabolic engineering, with its usage increasing more than
other organisms during the 2010s (Figure 4¢). Further-
more, §. cerevisiae has always been the second most-uti-
lized organism, as the eukaryotic model organism
counterpart to K. coli, allowing for more complex pro-
teins and higher industrial potential [84]. As new chassis
are increasingly utilized with the growth of the meta-
bolic engineering ficld, the dominance of E. co/i has
been on the decline since mid-2010s. The rankings of
organisms based on the number of unique products
mirrored the rankings of most-used organisms in the
literature with the top five of these rankings being
identical (Figure 4d). Unsurprisingly, these model or-
ganisms boast high product diversity. The number of
unique products seems to reflect the engineerability of
the organism.

What considerations go into choosing an organism?

In metabolic engineering, the organism bridges the gap
between the starting substrate and the target product.
Careful organism selection can alleviate engineering
challenges and facilitate industrial implementation, and
thus several considerations are warranted. Genetic ma-
nipulability allows easier engineering of strains, as many
model organisms have large synthetic biology toolboxes.
Some organisms such as autotrophic and cellulolytic or-
ganisms naturally utilize more desirable substrates.
Differences in growth and basal metabolic rate can im-
pact viability, as heterotrophs often grow faster than
autotrophs. Growth conditions such as pH, temperature,
osmolarity, and nutrient requirements are also important
considerations [85]. For example, low-temperature yeast
fermentation may reduce energy costs, while high-tem-
perature culturing of thermophiles in warmer regions
may reduce potential for contamination [86]. Some or-
ganisms are more amenable to product accumulation,
such as increased ethanol tolerance in §. cerevisiae and
sequestration of hydrophobic compounds to lipid dro-
plets in Yarrowia lipolytica [87,88]. Thus, there is no one-
size-fits-all organism, and the advantages and the
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Most-used organisms ranked by the number of associated entries in the dataset. (a) Number of entries associated with each strain relative to the total
number of entries in the dataset (2632). Only the top ten are labeled. (b) Absolute number of entries associated with each strain. (c) Top-five most-
used organisms with number of entries from 1992 to 2018. (d) Top-ten most-used organisms ranked by the number of unique products.

disadvantages of different biological systems should be
carefully weighed for chassis selection.

Model organism advantages

Model organisms for metabolic engineering, namely ¥
coli and §. cerevisiae, are robust and inexpensive chassis
for bioproduction. Their well-understood biology, fast
growth rates, and availability of different strains and
tools propel the large proportion of metabolic en-
gineering projects. They have the benefit of a wide
range of available iz sifico and in vivo tools, highly an-
notated genomes, and numerous previous efforts to re-
ference [80,81,89,90]. These recent advancements in
systems biology, synthetic biology, and pathway en-
gineering make engineering these model organisms
more streamlined [91]. With these more sophisticated
tools, model organisms have been engineered to make a
wide variety of bulk commodities, fuels, and natural
products, as over the last twenty years, publications
about E. coli and §. cerevisiae have covered over 300 and
nearly 150 products, respectively (Figure 4d).

Using these model organisms also makes bioprocesses
more implementable at a large industry scale since their
fermentation conditions are already well-established

[92]. For example, yeast fermentation plants for ethanol
have been implemented in various locations of Brazil
and the United States [93,94]. Many of industrial fer-
mentation plants make bulk commodities, though in-
dustrial precedents for these organisms allow for product
scope expansion, as different products will not require
major changes in equipment. Combined with their un-
derstood physiology and molecular genetics, model or-
ganisms are well-suited for scaling up fermentation
processes in industry.

Non-model organism advantages

The variety of non-model organisms offers the potential
for discovering more beneficial physiological or meta-
bolic traits over model organisms, providing a unique
advantage for utilization of unconventional substrates
and synthesis of complex natural products. Although the
substrate of choice is often glucose for model organisms
(without further engineering), the use of other organisms
readily unlocks access to a wide range of substrates that
are more renewable, such as Clostridium cellulolyticum
being able to degrade cellulose or Cupriavidus necator
being able to fix CO, [95-97]. Thus, by utilizing the
endogenous metabolism of a non-model organism, one
can bypass engineering steps to confer alternative
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substrate utilization and focus on improving product
synthesis. Furthermore, certain non-model organisms
have inherent metabolic capacity to make advanced
product at high metrics (i.e. titer, yield, and pro-
ductivity). For example, Y. /ipolytica is increasingly used
as a host for lipophilic terpenoids and carotenoids. Its
strong mevalonate pathway flux, large capacity for lipo-
philic compound storage, and ability to grow to high
culture densities make it a more suitable organism for
these specific compounds over model organisms [98].

Non-model organisms can endogenously produce var-
ious compounds of interest. For example, 2,3-butanediol
is natively produced in the generally recognized as safe
microorganism Klebsiella oxytoca, where engineering ef-
forts can focus on increasing precursor supply rather than
heterologous expression [99]. Less genetic modification
provides an advantage in long-term fermentation as it
does not require heterologous enzymes and potential
expression issues. Episomal-based model organism
strains can be unstable over the course of fermentation,
as even in minimal or selective media, they can lose their
plasmid [100]. Thus, finding a non-model organism that
is inherently capable of utilizing an environmentally and
economically sensible substrate and synthesizing a de-
sirable product and has analogous physiology to a model
organism can benefit biotechnology.

Coculture systems

Cocultures allow us to harness synergistic physiology
and metabolism of multiple microbes. Coculture systems
can relieve the metabolic burden from one single or-
ganism and accelerate conversion of complex raw ma-
terials, as long as both organisms can coexist [69,101].
Each organism in a coculture can catabolize a different
part of a heterogencous complex substrate. FW is a
complex combination of organic substrates that are dif-
ficult to convert with a single organism. An artificial
microbial consortium (AMQ) of Bacillus amyloliquefaciens
and Y. /ipolytica has been used for the efficient conver-
sion of FW to lipopeptides [69]. The AMC takes ad-
vantage of Y. /ipolytica being able to convert oily waste
into fatty acids and B. amyloliquefaciens to convert starchy
waste and fatty acid into lipopeptides. Thus, judicious
selection of multiple organisms allows for collective
utilization of environmentally and economically sensible
substrates and synthesis of desirable products.

Conclusion

With broad spectra of substrates, products, and organ-
isms in nature, careful consideration, including tech-
noeconomic analysis of the combinations of these three
components of metabolic engineering, can lead to a
quantum leap in biotechnology by eliciting synergies.
With the wide variety of bioproducts that can be syn-
thesized, one must consider the compound’s metabolic

demands, the available enzymes and pathways, and how
many heterologous or difficult enzymatic steps are re-
quired. Different substrates are routed to different me-
tabolic pathways, providing biochemical precursors and
cellular energy for bioproduct synthesis and cell pro-
liferation differently. Organisms can help bridge the gap
between product and substrate, which can be chosen
through consideration of its genetic manipulability,
physiology, and metabolism. All three components must
be compatible and collectively optimized for sustainable
metabolic engineering and biotechnology.
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