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ABSTRACT: The synthetic utility of heterotelechelic polydimethylsiloxane 5%l | Heterotelechelic PDMS
(PDMS) derivatives is limited due to challenges in preparing materials with ”~sr\/s|</\/ o Os(° oSG, . <S|i </>v0wo < 4 {> 4 <
high chain-end fidelity. In this study, anionic ring-opening polymerization - T aRrOP 2 n
(AROP) of hexamethylcyclotrisiloxane (D;) monomers using a specifically
designed silyl hydride (Si—H)-based initiator provides a versatile approach V' Hioh fdelity chain end
toward a library of heterotelechelic PDMS polymers. A novel initiator, where ngll- dl eg nl g dch:tlg rgPeIZ chelic PDMS o
the Si—H terminal group is connected to a C atom (H—Si—C) and not an O ¥ Functional bottlebrushes Rz/\,<5i:/>2\/°\/\0<5i%>5i\/m
atom (H—Si—O) as in traditional systems, suppresses intermolecular transfer ’
of the Si—H group, leading to heterotelechelic PDMS derivatives with a high degree of control over chain ends. In situ termination
of the D; propagating chain end with commercially available chlorosilanes (alkyl chlorides, methacrylates, and norbornenes) yields
an array of chain-end-functionalized PDMS derivatives. This diversity can be further increased by hydrosilylation with functionalized
alkenes (alcohols, esters, and epoxides) to generate a library of heterotelechelic PDMS polymers. Due to the living nature of ring-
opening polymerization and efficient initiation, narrow-dispersity (D < 1.2) polymers spanning a wide range of molar masses (2—11
kg mol™") were synthesized. With facile access to a-Si—H and w-norbornene functionalized PDMS macromonomers (H—PDMS—
Nb), the synthesis of well-defined supersoft (G’ = 30 kPa) PDMS bottlebrush networks, which are difficult to prepare using
established strategies, was demonstrated.
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Bl INTRODUCTION

Polydimethylsiloxane (PDMS) is the most common siloxane
polymer due to excellent optical, electrical, and mechanical
properties including low glass-transition temperature (Tg) , low
surface energy, and high gas permeability.'~* Based on these
properties, PDMS is used in a broad range of applications such
as coatings,” photolithography,” "' microfluidics,"*™"* elec-
tronics,'>~'” and biomedicine.””~** For these and many other
applications, simple derivatives with identical chain ends are
employed which is in direct contrast to vinyl and anionic ring-

conventional AROP for PDMS include the polymerization of
hexamethylcyclotrisiloxane (D) initiated with an alkyl-lithium
reagent, such as n-butyl lithium, followed by termination with a
functionalized chlorosilane,** ™% to give monofunctionalized
(w-functionalized) PDMS derivatives.

While a wide range of low-dispersity, @-monofunctionalized
PDMS derivatives are commercially available, access to
functional heterotelechelic PDMS systems is limited. In
2016, Goft et al. reported the AROP of D; using lithium
vinyldimethylsilanolate as an initiator (Figure la).”’ After
termination with dimethylchlorosilane, a-vinyl-w-silyl hydride

opening systems, such as poly(ethylene oxide), where the
synthesis of polymers with heterotelechelic chain ends is
readily achieved and their orthogonal reactivity enhances the
performance of imaging agents,” targeting ligands,”**’
- 1. 26—28 . . 29-31
nanoparticles, engineered surfaces, and proteins.
To similarly translate PDMS to additional high-value
applications, a robust and user-friendly synthesis of hetero-
telechelic PDMS derivatives with different functional groups at
each chain end is required.

Synthetic methods for PDMS can be classified into three
polymerization types: polycondensation, thermodynamically
controlled ring-opening polymerization, and kinetically con-
trolled anionic ring-opening polymerization (AROP).**™**
Among them, AROP is the most common polymerization
method to access polymers with high chain-end fidelity, high
molecular weight, and low molar mass dispersity. Examples of
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(Si—H) PDMS with good chain-end fidelity was obtained,
although the coreactivity of vinyl and Si—H groups precluded
secondary functionalization without chain—chain coupling. In
2020, Fuchise et al. reported the AROP of Dj initiated from
functionalized silanols and catalyzed by a strong organic base
leading to a mixture of hetero- and homofunctionalized PDMS
derivatives.*”*" In this system, the synthesis and purification of
different silanol initiators are required to control the @-chain-
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Figure 1. Comparison of synthetic approaches to heterotelechelic
PDMS derivatives.

end functional group. Notably, initiation with Si—H containing
silanols results in an undesired mixture of telechelic byproducts
as well as the desired heterotelechelic derivative. This mixture
was attributed to intermolecular transfer of the Si—H group
between propagating chains. Based on these challenges, the
allure of preparing a library of heterotelechelic PDMS
derivatives with a single Si—H chain end is driven by the
versatility of hydrosilylation chemistry. Using a variety of
catalysts, hydrosilylation is widely employed in industry and
proceeds under mild conditions with high selectivity and
yield.”*~** Furthermore, the Si—H moiety can undergo other
quantitative reactions includin§ carbonyl hydrosilylation,~*
Piers—Rubinsztajn chemistry,”’ >* and oxidative coupling.

To enable new opportunities with PDMS-based materials, a
novel synthetic route is reported to access a wide range of
heterotelechelic PDMS derivatives via a scalable one-pot
AROP process. Key to the success of this strategy is the
development of an initiator containing an H—Si—C motif that
suppresses chain scrambling (Figure 1), which replaces the
more labile Si—O bond found in the aforementioned
traditional systems. As a result, a single Si—H a-chain-end is
maintained throughout the polymerization, which can be
further functionalized via hydrosilylation. This orthogonality
also allows a wide variety of w-chain-ends to be easily
incorporated by simple termination of the propagating siloxy
anion with a range of commercially available functionalized
chlorosilanes. To showcase the high chain-end fidelity and
utility of these materials, we also demonstrate a simple and
scalable method for preparing well-defined PDMS bottlebrush
networks. Access to these PDMS-based super-soft materials
has otherwise been limited by the synthetic availability of w-
functionalized PDMS.

2,53

B RESULTS AND DISCUSSION

A key feature of this strategy is the design of a novel Si—H-
functionalized initiator. In order to prevent the formation of
telechelic byproducts, we hypothesized that replacing the labile
H-Si—O terminal unit with a H-Si—C motif would
significantly reduce nucleophilic cleavage and intermolecular
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chain transfer due to the increased stability of the Si—C bonds.
The synthesis of this new initiator was achieved by
hydrosilylation of 1,2-bis(dimethylsilyl)ethane with ethylene
glycol allyl ether catalyzed by Karstedt’s catalyst (10 ppm in
toluene) (Scheme 1). Following purification, the H—Si—C

Scheme 1. Synthesis of H—Si—C Initiator via
Hydrosilylation

/\/o\/\OH

|
H*Si/\/s'\/\/o\/\OH

| ~

|
s
| Karstedt's catalyst

initiator was obtained as a colorless oil in 52% yield, with
purity and long-term stability confirmed by 'H-, 1*C-, and *°Si-
nuclear magnetic resonance (NMR) spectroscopy (Figures
S1-S3).

Anionic ring-opening polymerization of D3 was then
investigated by initial lithiation of the H—Si—C initiator with
lithiumhexamethyldisilazane (LIHMDS) in anhydrous hexanes.
After the mixture was stirred for 10 min at room temperature,
D; monomer was added followed by DMF as a promoter.
While AROP of D, does not proceed in nonpolar solvents such
as hexanes, polymerization does occur once a E_olar cosolvent,
commonly referred to as a promoter, is added.” After 15 min,
the polymerization was quenched at 60% conversion
(calculated from '"H-NMR) by adding 3-methacryloxypropyl-
dimethylchlorosilane to obtain the desired heterotelechelic
PDMS derivative with a 1:1 ratio of a-Si—H and w-
methacrylate PDMS (H—PDMS—MA) chain ends as con-
firmed by integration of unique resonances in the 'H-NMR
spectrum (Figure 2a, peaks “a” and “m”). In addition, *°Si-
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Figure 2. (a) 'H NMR spectrum of H-PDMS—MA with unique
resonances for the a-Si—H and w-methacrylate chain ends labeled.
(b) ¥Si-NMR spectrum of H-PDMS—MA shows four distinct Si
resonances well-separated from the PDMS backbone (—23 to —20
ppm) that are attributed to the well-defined chain ends.

NMR revealed resonances fully consistent with both unique
chain ends and a high degree of chain-end fidelity (Figure 2b).
The retention of the reactive and orthogonal Si—H chain end
was further confirmed by Fourier transform infrared (FT-IR)
spectroscopy, where a strong absorbance at 2100 cm™' is
observed (Figure S7).

A significant reduction in intermolecular transfer was verified
by matrix-assisted laser desorption/ionization (MALDI) mass
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Figure 3. MALDI mass spectrum of H-PDMS—MA synthesized from either the (a) H—Si—C or (b) H—Si—O initiator. Intermolecular transfer of
the dimethylsilyl group is suppressed through the use of the H—Si—C initiator, illustrating improved stability.

spectrometry, where only one set of periodic peaks was
observed for the heterotelechelic derivative (Figure 3a).
Further analysis in each case reveals a mass difference of 74
Da between peaks that correspond with the dimethylsiloxane
repeat unit (74 Da). In addition, the observed m/z values for
each peak correlate with the calculated molar mass of H—
PDMS—MA (plus associated sodium cation). In direct
contrast, AROP of D; using 1-hydroxy-1,1,3,3,5,5,7,7-tetrasi-
loxane (H—(SiOMe,),—OH) as the initiator (containing an
H—Si—O unit) under the same polymerization conditions
yields multiple sets of peaks with m/z values that correspond
to a mixture of telechelic H-PDMS—H and MA—-PDMS—MA
chains as well as the desired heterotelechelic H-PDMS—MA
product (Figures 3b and S10—S16). These results clearly
illustrate the presence of byproducts caused by intermolecular
transfer and the critical role played by the stable H—Si—C unit
of the initiator. The stability of this linkage also allows
heterotelechelic polymers with high chain-end fidelity to be
obtained by suppressing the intermolecular transfer of the Si—
H group.

For the AROP of D; using the novel H—Si—C initiator, the
living character was then investigated by following the
evolution of the molecular weight M, with both time and
conversion. As shown in Figure 4, quenching the polymer-
ization at different conversions leads to a linear increase in
molecular weight while retaining low dispersity (P < 1.2), even
at high conversions (>80%) (Figure 4a). The living nature of
this polymerization system also allowed the molar mass of
heterotelechelic PDMS derivatives to be readily controlled by
varying the monomer/initiator (M/I) ratio. Figure 4b shows
size-exclusion chromatography (SEC) chromatograms for
different M/1 ratios (20, 45, and 90) with all polymerizations
quenched at 15 min, targeting 60% conversion. SEC analysis
indicates a close correlation between the experimental and
theoretical molecular weights for molar masses as high as 11 kg
mol ™" with D < 1.2. Notably, this degree of control is difficult
to achieve with other polymerization methods such as
polycondensation or thermodynamically controlled ring-open-
ing polymerization.””**> Higher molar masses (M, > 20 kg
mol™") can also be obtained, although with a larger degree of
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Figure 4. (a) Plot of M, and D with conversion for the AROP of D,
using the H-Si—C initiator. (b) SEC trace in chloroform of
heterotelechelic H-PDMS—MA derivatives polymerized with differ-
ent M/I ratios (20, 45, and 90, corresponding with 3, 7, and 11 kg
mol™!, respectively). Narrow distributions are maintained even for
high molecular weight polymers (e.g, M, = 11 kg mol™).

uncertainty when characterizing the heterotelechelic function-
ality due to increased difficulty in reliably quantifying polymer
chain ends using MALDI or NMR techniques.

After establishing the controlled AROP of D; monomer
from the H—Si—C initiator, a library of heterotelechelic PDMS
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derivatives was prepared through a two-step process involving
functional termination of the propagating silanoate chain end
followed by orthogonal postpolymerization transformation of
the Si—H chain end using hydrosilylation chemistry. To
demonstrate the versatility of this process, a variety of
functional groups were installed on the w-chain-end by
quenching the AROP with commercially available vinyl-,
chloropropyl (Cl), or norbornene (Nb)-functionalized chlor-
osilanes. These derivatives—fully characterized by '"H-NMR,
*C-NMR, *’Si-NMR, SEC, MALD], and FT-IR—illustrate the
stability of the Si—H chain end during polymerization and
functional termination (Figures S17—S34). From this initial
library, the a-Si—H chain end could be selectively function-
alized postpolymerization under mild conditions using
Karstedt’s catalyst with a range of terminal alkenes. Hydro-
silylation of H-PDMS—MA with hydroxy, epoxy, and
trimethoxy silyl [(MeO);Si]-containing alkenes was quantita-
tive and resulted in telechelic PDMS derivatives with a single
HO—, epoxy—, and (MeO);Si—PDMS—MA chain end
(Figures S and S35—S52). Of particular note, a common
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Figure 5. General scheme for the synthesis of a heterotelechelic
PDMS library. Methacrylate (MA), chlorine (Cl), norbornene (Nb),
and vinyl groups were introduced at the @-chain-end by terminating
the AROP with functional chlorosilanes. Introduction of hydroxy
(HO), epoxy, trimethoxysilyl ((MeO),Si), and a-bromo carbonyl
(ATRP) at the a-chain-ends by hydrosilylation with terminal alkenes.

initiator for atom-transfer radical polymerization (ATRP)
based on a tertiary a-bromo carbonyl group was readily
coupled with H-PDMS—CI (Figures S53—S58) to give the
ATRP-PDMS-CI macroinitiator (M, = 3.1 kg mol™", D < 1.2)
which allows for facile access to PS-b-PDMS—CIl block
copolymers via ATRP with styrene (M, = 5.5 kg mol™!, D <
1.1, Figures 6 and S59—S62). These results illustrate the
general nature of this orthogonal strategy for preparing a range
of heterotelechelic PDMS systems.

To demonstrate the utility of this scalable strategy to
heterotelechelic PDMS derivatives, a variety of PDMS
bottlebrushes was prepared via grafting-through polymer-
ization starting from heterotelechelic macromonomers. This
leads to multifunctional bottlebrush polymers with a single Si—
H end-group for each grafted arm—an otherwise challenging
proposition with traditional strategies. Ring-opening meta-
thesis polymerization (ROMP) was used to polymerize H—
PDMS—Nb with Grubbs’ third-generation catalyst (G3)
targeting a backbone degree of polymerization Npg = 50 and
100. In both cases, 'H NMR spectroscopy confirmed
quantitative conversion of the norbornene end-group with
successful bottlebrush synthesis being demonstrated by SEC
(Ngg = 50: M, = 52 kg mol ™, D < 1.4; Ny = 100: M, = 128 kg
mol™, P < 1.6). Analysis of the crude samples showed minor
amounts of residual macromonomer (~1-2% by peak area),
with no evidence of a high molecular weight shoulder that
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Figure 6. Synthesis of the PS—b-PDMS—CI block copolymer via
ATRP. SEC trace in chloroform shows a well-defined PS—b-PDMS—
Cl block copolymer (M, = 5.5 kg mol™", P < 1.1) obtained by chain
extension of ATRP—PDMS—CI (M, = 3.1 kg mol™!, D < 1.2) with
styrene.

would indicate the presence of bifunctional Nb—PDMS—Nb
impurities in the original macromonomer (Figures 7 and S63—
S67). Significantly, full retention of the Si—H group after
ROMP and bottlebrush formation was confirmed by "H-NMR,
2Si-NMR, and FT-IR spectroscopy (Figures S63—S66).
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Figure 7. ROMP of the H-PDMS—Nb macromonomer to form a
Si—H-functionalized bottlebrush polymer. SEC trace in chloroform of
the crude sample illustrates high chain-end fidelity for the starting
macromonomer.

The ability to successfully homopolymerize H—Si macro-
monomers further opens up the potential to modulate the level
of chain-end functionality through copolymerization with
monofunctional PDMS macromonomers. In turn, this
versatility allows well-defined, solvent-free PDMS bottlebrush
networks to be prepared via controlled cross-linking, for
example, by copolymerizing H-PDMS—Nb with Bu—PDMS—
Nb (N = 100, NscBu-poms-nb = 48, Nsc H.ppms-Nb = 42). For
demonstration purposes, the ratio of H-PDMS—Nb to Bu—
PDMS—Nb was 1:4 (Figures S68—S73) and the resulting
bottlebrush copolymers (Ngs = 100, M, = 129 kg mol™!, D <
1.6, Figures S74—S78) could be mixed with commercially
available bis-vinyl PDMS cross-linker and dimethyl maleate
(inhibitor) followed by the addition of Karstedt's catalyst.
Without dimethyl maleate (inhibitor), network formation
occurred almost immediately on mixing at room temperature.
In contrast, in the presence of an inhibitor, the mixture
maintained a liquid-like state and underwent gelation at ~4 h
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which allows the reaction mixture to be easily poured into a
mold and cured at 100 °C for 2 h to give a fully cross-linked
material (Figure 8). The stability of this formulation also

80eq. 20eq. 2 eq.
[ AL
\(SLO)SI\/
ROMP 'n
+ _— —_—
/ / Karstedt's catalyst
/fSi\— /2,\_ Inhibitor
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Figure 8. Synthesis of PDMS bottlebrush networks cross-linked
through coupling of the divinyl cross-linker with the Si—H bonds of
the bottlebrush copolymer. Photographs before and after heating.

allows in situ cross-linking kinetics to be measured at 100 °C in
an oscillatory rheometer by monitoring the curing process.
Curing was observed to proceed rapidly as the temperature
approaches 100 °C and plateaus after 30 min as evidenced by
measurement of the storage modulus (Figure S79). Following
cross-linking, samples were cooled to 25 °C, and the
rheological properties were examined. Frequency sweeps at
room temperature reveal a low rubbery plateau modulus of 30
kPa (Figure S80) that can be attributed to the bottlebrush
architecture.”™*> Significantly, these well-defined bottlebrush
networks are considerably softer than Sylgard 184 (filled
system) as well as comparable high molecular weight silicone
elastomers (unfilled system) (~1 and 0.6 MPa, respec-
tively)."”**” The orthogonal nature of the hydrosilylation
and ROMP chemistries also leaves open the possibility of
installing other chain end functional groups in the network
either before or after curing.

B CONCLUSIONS

In summary, a versatile synthetic approach was developed to
access a range of heterotelechelic PDMS derivatives via living
AROP. Key to the success of this robust synthetic strategy is
the development and use of a new H—Si—C-functionalized
initiator. The H—Si—C units play a critical role in preventing
the intermolecular transfer of the chain end and allow a library
of heterotelechelic PDMS materials to be prepared with
accurate control over molecular weight while maintaining a low
dispersity. Multiple functional groups can be introduced at the
w-chain-end by using a variety of commercially available
chlorosilane terminators with the functional group tolerance of
hydrosilylation allowing a range of a-chain-ends to be prepared
via hydrosilylation. The modular nature of this two-step
synthetic strategy illustrates the power of developing new
initiators for AROP and the generality of this process for
producing well-defined heterotelechelic PDMS derivatives.
Furthermore, to highlight the fidelity and orthogonal nature
of this approach, a range of “super-soft” bottlebrush networks
were prepared using end-functionalized H—Si PDMS bot-
tlebrushes and commercially available bis-vinyl PDMS cross-
linker. These functional “super-soft” materials®*™®' are of
interest in a variety of applications ranging from hi§h—
sensitivity capacitive sensors’’ to biological tissue mimics®”**
and efficient dielectric accuators.”**®
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