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Abstract 13 

Human-robot collaboration is a promising solution to relieve construction workers from 14 

repetitive and physically demanding tasks, thus improving construction safety and productivity. 15 

Many studies have developed various deep learning models for human intention prediction, which 16 

will form the basis for proactive and adaptive robot planning and control to enable intelligent 17 

human-robot collaboration. However, there remain two challenges. First, most research only 18 

focuses on a single type of human intention, without a holistic understanding of multi-level 19 

intention, including both high-level intended actions and objects of interest, and low-level body 20 

movements. Second, conventional deep learning approaches train a centralized model with 21 

aggregated datasets, which requires the sharing of sensitive information (e.g., personal images and 22 

behavior data), posing broad privacy concerns in practical implementation. This study proposes a 23 
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vision-based multi-task federated learning (FL) framework, FedHIP, for multi-level human 24 

intention prediction in human-robot collaborative assembly tasks. Specifically, taking body 25 

movements and assembly components as inputs, a long short-term memory based multi-task 26 

learning model was developed to simultaneously predict multi-level human intention in assembly 27 

tasks. FL was employed to train the model in a distributed and privacy-preserving way on local 28 

clients without the need of transmitting sensitive data. The results show that the proposal FedHIP 29 

without and with pre-train can achieve an accuracy of 80.1% and 85.7% in action prediction, 97.6% 30 

and 97.8% in object prediction, and an average displacement error of 12.7 and 11.7 pixels in 31 

motion prediction, respectively. Models trained from FedHIP were also compared with those 32 

obtained from traditional centralized training and local training. It was found that FL leads to 33 

compatible accuracy with centralized training and much higher accuracy than local training while 34 

preserving data privacy.  35 

1. Introduction 36 

Recent advancement in robotics, artificial intelligence (AI), and sensing technologies have 37 

made it possible for robots to serve as intelligent assistants in various applications, such as smart 38 

home [1], healthcare [2], manufacturing [3], etc. In construction, human-robot collaboration (HRC) 39 

has emerged as a promising solution to relieve construction workers from repetitive and physically 40 

demanding tasks, thus improving construction safety and productivity as well as alleviating 41 

workforce crisis such as labor shortage and aging [4–7]. However, the unstructured and dynamic 42 

workspaces and the diverse and complex construction activities make it extremely difficult to 43 

apply industrial robots that are traditionally pre-programmed to conduct a single task in a fixed 44 

working environment [8]. Without eliminating construction workers, collaborative robots in 45 

construction must be designed to cognitively team up with workers, in order to assist humans in 46 



3 

 

repetitive and physically demanding tasks while leveraging human expertise to handle unexpected 47 

and complex situations. Specifically, robots should be empowered with the intelligence to perceive, 48 

understand, and adapt to human intention for proactive planning in the dynamic environment.  49 

With a focus to facilitate intelligent HRC, different methods have been developed to predict 50 

human intention from various aspects, ranging from potential actions [9] and objects of interest 51 

[10], to the motion of human full body [11] or specific body parts [12]. Most existing studies 52 

leverage deep learning models that predict human intention from heterogenous inputs, such as 53 

imagery data [9], speech [13], EMG signals [14], eye-gaze movements [10], etc.  54 

Despite the achievements of human intention prediction, there remain two knowledge gaps. 55 

First, most existing studies only focus on predicting a single type of human intention, i.e., either 56 

high-level intention such as objects of interests and potential actions or low-level body movement. 57 

There lacks a holistic understanding of multi-level intention (both high-level intended actions and 58 

objects of interest, and low-level body movement), which is critical to developing an intelligent 59 

robot that can figure out “when to help”, “what to help”, and “how to help” simultaneously and 60 

adapt to various human behavior for smooth collaboration. Second, existing methods rely on a 61 

large amount of data that is aggregated to a single dataset, to train the deep learning model in a 62 

centralized way. In the context of HRC in construction tasks, training data with different workers 63 

on various tasks across different projects is needed to ensure the generalizability of the model. The 64 

sharing of human behavior and imagery data poses significant concerns in data privacy and security, 65 

which is more critical in private and fragmented industries like construction [15]. Therefore, there 66 

is a critical need to develop a new learning-based model that can simultaneously predict multi-67 

level human intention in a privacy-preserving way. 68 
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On the other hand, federated learning (FL) is an emerging machine learning mechanism 69 

that is trained across multiple distributed clients with local datasets and then aggregated on a 70 

centralized server. FL can cooperatively implement machine learning tasks without raw data 71 

transmissions. Therefore, it becomes the promising solution to resolve the conflicts between user 72 

privacy and data sharing. Some recent studies have adopted FL in human activity recognition [16–73 

18] and shown promising results in achieving good recognition accuracy while eliminating the 74 

need of data sharing. However, in existing studies, FL was applied in simple classification tasks, 75 

and it remains unknown if FL could be used and how FL may perform in both classification and 76 

regression tasks in a multi-task setting to reliably predict multi-level human intention. 77 

To this end, this study aims to develop a vision-based multi-task federated learning (FL) 78 

framework, FedHIP, for multi-level human intention prediction in human-robot collaborative 79 

assembly tasks, where multi-level human intention includes high-level intended actions and 80 

desired objects, and low-level body movements. Specifically, leveraging body movements and 81 

assembly components extracted from videos, a long short-term memory (LSTM) based MTL 82 

model was developed to simultaneously predict multi-level human intention in assembly tasks. FL 83 

was employed to train the model in a distributed and privacy-preserving way on local clients 84 

without the need of transmitting sensitive data. Furthermore, the feasibility and performance of FL 85 

in a multi-task setting with both classification and regression tasks to reliably predict multi-level 86 

human intention was analyzed and discussed. 87 

The contribution of this study is threefold: 1) an LSTM-based MTL model is developed to 88 

predict multi-level human intention in assembly tasks including high-level intended actions and 89 

desired objects and low-level body movement, leveraging the commonality in human behavior, 90 

where involved assembly components were integrated as task contextual information to augment 91 
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the prediction capability of the model. Even though LSTM model is used as the backbone 92 

considering it being classic approach in time-series prediction with wide use in human intention 93 

prediction, our model is flexible and other state-of-the-art models, such as transformer-based 94 

models [19] and spatial-temporal graph convolutional network (ST-GCN) based models [20] could 95 

also be applied. 2) Leveraging FL, the proposed FedHIP framework allows the protection of 96 

sensitive human behavior data by training models with local data and update global model by 97 

aggregating locally trained models, without sharing and transmitting data to the central server. The 98 

proposed framework demonstrates the efficacy of FL in MTL model that consists of both 99 

classification and regression tasks, and is a pioneer study in construction research. A series of 100 

experiments were conducted to compare the performance of proposed framework with traditional 101 

centralized training and local training, and the results validated the efficacy and benefits of our 102 

approach. 3) The proposed framework could be extended to other applications in manufacturing, 103 

healthcare, etc. It enables robots to answer three important questions in HRC, i.e., “what is needed” 104 

(from object prediction), “when is needed” (from action prediction), and “where to assist” (from 105 

body movement prediction). Such knowledge enhances the intelligence of robot assistants for 106 

proactive and adaptive robot planning and control to improve safe and efficient HRC.  107 

2. Related Studies 108 

2.1. Applications of Human-Robot Collaboration 109 

HRC research explores the physical and cognitive interaction between human and robot to 110 

complete a common task, investigating the feasibility to use robotic platforms (e.g., collaborative 111 

robot) to work in close proximity with human partner to achieve various joint tasks safely and 112 

efficiently [21]. Some studies focus on the cognitive HRC, where robots need to understand the 113 

current work states and human intention to determine its own task and movement, and the typical 114 



6 

 

tasks are collaborative assembly [22,23] and object handover [24,25]. For instance, in [22], robots 115 

need to understand the current step of pipe assembly and pick the corresponding components to 116 

assemble. In [23], the robot provides assistance based on the prediction of human trajectory. For 117 

object handover, it is critical for robots to understand human intention, e.g., the object desired, and 118 

pick the correct one to hand over to human partner [25]. Another type of studies focuses on the 119 

physical HRC, where robots may take more active roles and apply forces to the workpieces [21]. 120 

As a result, research emphasis has been placed to develop motion planning and control methods 121 

for robot manipulators based on the information extracted from the collaboration, with typical 122 

tasks related to collaborative manufacturing [26] and object handling [27].  123 

In construction sector, HRC has attracted increasing attention as a promising solution to 124 

relieve human workers from repetitive and physically demanding tasks and improve construction 125 

safety and productivity, with potential applications in various construction tasks, such as 126 

bricklaying [28], object handover [29], wood assembly [30], etc. Many review studies have been 127 

conducted to discuss the state-of-the-art approaches as well as challenges and future directions of 128 

HRC in construction. For instance, [7] summarizes the evolution of HRC and identified robot 129 

learning and human-multirobot collaboration as potential future directions for research. [8] 130 

reviews state-of-the-art methods for construction robots to learn workplace skills which could be 131 

categorized as two components, i.e., activity understanding for task planning (e.g., [30]), and 132 

motion learning from demonstration via different machine learning algorithms, such as 133 

reinforcement learning [31] and imitation learning [32]. [33] proposes a multidimensional 134 

taxonomy to characterize HRC in construction field based on the team, task, and environment 135 

characteristics of specific studies. [34] conducted a systematic review to discuss HRC for on-site 136 
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construction and identified three critical areas of research, including adaptive robot programming, 137 

human-robot interface, and safety issues in HRC. 138 

In HRC, it is well acknowledged that the capability to understand ongoing work progress 139 

and interpret human intention is critical for robots to adaptively collaborate and execute desired 140 

tasks. Machine learning models (e.g., HMM, LSTM, CNN) are commonly used to provide 141 

cognitive capabilities for robots to understand human behavior and correspondingly plan their 142 

motion. Specifically, high-level human intention (e.g., objects of interest and goals), human pose, 143 

or movement of specific body part (e.g., hand) are widely studied via a range of sensing inputs, 144 

such as vision, accelerometry, muscular activity and brain activity (e.g., [13,35–37]). In 145 

construction, methods have been developed to recognize multidimensional human states from 146 

different sensors (e.g., haptic sensors [29], cameras [38], EEG [28]) to guide robot response and 147 

task execution. This line of research is most relevant to the present study and is discussed in more 148 

detail in the next section.  149 

2.2. Human Intention Prediction in Human-Robot Collaboration 150 

Human intention prediction has become an active research area in HRC, with applications 151 

in manufacturing, health care, smart home, etc. Many studies focused on predicting high-level 152 

human intention such as objects of interest and potential types of activities/actions. For instance, 153 

in applications of manufacturing operation, [35] developed a Hidden Markov model to predict pre-154 

defined groups of human actions. [37] created a convolutional neural network (CNN)-LSTM 155 

framework to predict potential actions and tools of interest in assembly tasks. [36] developed a 156 

brain-computer interface that detect the focus of human’s overt attention via EEG signal to control 157 

robot motion for safe and efficient HRC. [9] devised a multimodal transfer learning-based model 158 

to classify anticipated human action from scene images and human skeleton positions in human-159 
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robot collaborative assembly. [20] employed a spatial temporal graph convolutional network (ST-160 

GCN) and a FIFO queue-based model to predict assembly procedures from human skeletons 161 

obtained via camera, which will enable robots to understand and generate their tasks 162 

correspondingly. [39] uses ST-GCN and YOLOX models to predict assembly actions and assembly 163 

objects, respectively from video data.  164 

For general human-robot handover tasks, [13] developed a framework to predict human 165 

intention as a group of commands (e.g., stop, continue, slow down, etc.), from natural language 166 

and EMG and IMU sensors using extreme learning machine. To advance the performance of 167 

patient assistive devices, [10] proposes a framework that uses spatial-temporal patterns of gaze 168 

movement with deep learning models to predict human’s objects of interest in daily life. 169 

In construction, [29] proposes a human-adaptative framework for object handover in 170 

construction, where grip states are estimated using semi-supervised methods from haptic sensors 171 

and used for robot to determine when to release the objects. [38] deployed a lightweight CNN 172 

network for hand gesture recognition using thermal images for robot control in construction. [28] 173 

developed methods to assess worker workload based on EEG signals and adjusted robot 174 

movements based on worker’s status. 175 

Other studies focused on human motion prediction, ranging from full-body movement to 176 

the motion of specific body parts. For instance, [11] created a deep learning model that leverages 177 

short-term human dynamics and object affordances in the environment to predict full-body 178 

movement in grasping and placing movements in daily life. [14] proposes a new feature extraction 179 

network to predict human motion intention from sEMG signals for exoskeleton control system. 180 

[12] developed a probabilistic dynamic movement primitive model to predict human hand motion 181 

in tabletop manufacturing task. In construction sector, [40,41] proposed a deep learning framework 182 
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to cluster gaze-hand relationship of different people and predict their hand motion from gaze 183 

trajectories in pipe skid maintenance task and safe construction robot teleoperation. In addition, 184 

[42] reviewed existing studies and associated methods on human motion prediction with a focus 185 

on human trajectory prediction and body movement prediction.  186 

Despite the great achievements of existing studies on human intention prediction from 187 

diverse human behavior data (e.g., images, EMG signals, body motion data, etc.), most of them 188 

focus on predicting a single type of human intention, i.e., either high-level intention such as objects 189 

of interests and potential actions or low-level body movement. There lacks studies to holistically 190 

infer multi-level intention, which is critical to developing an intelligent robot that can figure out 191 

“when to help”, “what to help”, and “how to help” simultaneously and adapt to various human 192 

behavior for smooth collaboration. Furthermore, existing studies require collecting behavior data 193 

from different people and form a global dataset to train deep learning models in a centralized way. 194 

From practical implementation perspective, to ensure that the trained modal achieves good 195 

prediction accuracy and generalizability in desired tasks, data should be collected from realistic 196 

scenarios and reflect behavior pattern of heterogeneous people. However, the sharing of human 197 

behavior data from different workspaces/parties to form a centralized dataset could pose significant 198 

concerns in data privacy and security, which is more critical in private and fragmented industries 199 

like construction [15]. Therefore, there is a critical need to develop a new learning-based model 200 

that can simultaneously predict multi-level human intention in a privacy-preserving way. 201 

2.3. Federated Learning 202 

Federated learning (FL) [43] is a novel distributed machine learning paradigm, originally 203 

proposed by Google. In an FL system, a machine learning model is trained across multiple 204 

distributed clients with local datasets and then aggregated on a centralized server. FL is able to 205 
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cooperatively implement machine learning tasks without raw data transmissions, thereby 206 

promoting clients’ data privacy [44]. Besides, transmitting the model update saves communication 207 

bandwidth than transmitting the raw data, as model update usually are smaller than raw data. FL 208 

has been applied to various data-sensitive scenarios, such as smart health care [45], E-commerce 209 

[46], edge computing [47,48], etc. 210 

Recently, FL has been applied in human activity recognition. For instance, [16] employed 211 

FL to deep neural network-based human activity classifier and found that FL could produce models 212 

with slightly worse, but acceptable, accuracy compared to centralized models. [17] designed a new 213 

feature extractor network for each user in FL, which achieves better activity recognition results 214 

compared to existing FL systems. [18] focused on developing new FL algorithms with different 215 

model updating and learning mechanisms to improve model performance. On the other hand, FL 216 

has yet to be explored in construction domain. Only one study [15], to the best of authors’ 217 

knowledge, applied FL in worker images for operators’ facial fatigue recognition. Furthermore, all 218 

of the above studies employ FL in simple classification tasks. It is unknown how FL will perform 219 

in both classification and regression tasks in a MTL setting. Therefore, this study aims to develop 220 

a MTL model for human intention prediction, and exploit the feasibility and performance of FL in 221 

both classification and regression tasks.  222 

3. Methodology 223 

The proposed framework consists of three modules, as shown in Figure 1. First, given 224 

videos, human body movements were tracked as time-series skeleton positions using a deep 225 

learning-based pose tracking model. Second, an LSTM-based MTL model was created to predict 226 

multi-level human intention, including anticipated actions, objects of interest, and human body 227 

movement, by integrating observed body movements and involved assembly objects as contextual 228 
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information. The proposed LSTM-MTL model is based on our previous study [49]. Finally, FL 229 

was employed to train the above model on local data of individual participants and update the 230 

global model without the need of transmitting sensitive data.  231 

 232 
Figure 1. Overall workflow 233 

3.1.Skeleton-based Pose Tracking 234 

In this study, low-level body movement is represented as time-series locations of human 235 

skeleton key points, such as head, neck, shoulders, elbows, ankles, etc. A deep learning-based pose 236 

tracking algorithm, Pose Flow, developed by [50], was adopted in this study to track key point 237 

movements because of its computational efficiency and good performance in multi-person 238 

scenarios. First, skeleton pose in each image frame was extracted using multi-person pose 239 

estimation developed by Fang et al. [51]. Second, poses of the same person cross different frames 240 

were associated based on the similarity between different poses, forming multiple pose flows. 241 

Finally, non-maximum suppression mechanism was used to remove redundant pose flows and re-242 

link temporal disjoint ones based on the confidence score of each pose flows and the distance 243 

between multiple flows. More details could be found in Xiu et al. [50]. It should be noted that the 244 

original Pose Flow algorithm tracks full-body movement with 17 key points, whereas only 13 key 245 

points of upper body (including hips), which were mainly involved in the assembly tasks, were 246 

considered in this study as lower body was occluded by the workbench. 247 
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3.2.LSTM-MTL Model for Multi-Level Intention Prediction  248 

To enable prediction of multi-level human intention, including high-level intentions of 249 

intended action and object of interest, and low-level intention of body movement, MTL mechanism 250 

was adopted considering its ability to capture both commonality and difference among different 251 

aspects of intention for efficient learning. It could also handle the situation where specific classes 252 

have limited training data [52,53]. Specifically, three tasks were formulated for the above three 253 

intentions, respectively, where Task 1 action prediction and Task 2 object prediction are multi-254 

class classification problems, and Task 3 movement prediction is a regression problem. 255 

Furthermore, an LSTM encoder-decoder model was used as a backbone for multi-level human 256 

intention prediction, considering it being a classic approach for time-series prediction with wide 257 

adoption and good performance in human intention prediction [37,54]. As a result, an LSTM based 258 

MTL model with encoder-decoder architecture was created for multi-level human intention 259 

prediction, as illustrated in Figure 2. In recent studies, other modern models, such as transformer-260 

based models [19] and ST-GCN based models [20] were used to recognize and predict human body 261 

movements and other assembly intentions, and could also be potentially used as the backbone in 262 

the proposed model.  263 

 264 

Figure 2. Proposed LSTM-MTL model for multi-level human intention prediction 265 
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In the proposed model, the inputs of LSTM encoder consider the observed human 266 

movement and corresponding objects of interest over a past period. Specifically, at time step t, the 267 

input is a 27-dimentional feature vector, denoted as 𝑿𝑡 = [𝑥𝑡
1, 𝑦𝑡

1, 𝑥𝑡
2, 𝑦𝑡

2, … , 𝑥𝑡
13, 𝑦𝑡

13, 𝑜𝑡], where 𝑥𝑡
𝑖 268 

and 𝑦𝑡
𝑖 (𝑖 ∈ [1,13]) are the normalized x and y coordinates of 13 human key points obtained from 269 

pose tracking in Section 3.1. 𝑜𝑡 is the type of object associated with current time step and was 270 

incorporated as task contextual information, represented as a categorical variable. The time-series 271 

features are then constructed by chaining a series of time-variant feature vectors over a time period, 272 

denoted by {𝑿𝑡 , 𝑿𝑡+∆𝑡, 𝑿𝑡+∆2𝑡, … , 𝑿𝑡+𝑇}, where t is the starting time, ∆𝑡 is the temporal resolution 273 

that determined by data frequency, and T is the observation duration. Consequently, the LSTM 274 

network acts as an encoder that takes above time-series features as inputs to capture the temporal 275 

dependencies of human movements and work context. The architecture and principle of the LSTM 276 

network used in this study could be found in [55], and a dropout layer was applied in the states of 277 

LSTM encoder to mitigate overfitting issue. 278 

The encoder outputs an encoded vector that is the hidden state of the last LSTM cell. The 279 

encoded vector encapsulates the information from observed movement and corresponding work 280 

context. In the proposed MTL mechanism, the encoded vector was shared among different tasks 281 

and captured the common representation, which was then fed into a second LSTM decoder 282 

followed by a dense layer. Then, task-specific dense layers were used to learn the uniqueness of 283 

individual tasks, leading to separate outputs for each task. Benefit from the encoder-decoder 284 

architecture, the model can generate predicted human intention over multiple time steps, i.e., one 285 

prediction for each LSTM decoder cell, denoted as {𝒀𝑜𝑏𝑠+∆𝑡 , 𝒀𝑜𝑏𝑠+2∆𝑡, … , 𝒀𝑜𝑏𝑠+𝑛∆𝑡}, where obs 286 

is the observation duration, and 𝑛∆𝑡  indicates the prediction duration. Furthermore, for each 287 

predicted result, it consists of three types of human intention, i.e., 𝒀𝑡 =288 



14 

 

[𝑎𝑡 , 𝑜𝑡 , (𝑥𝑡
1, 𝑦𝑡

1, 𝑥𝑡
2, 𝑦𝑡

2, … , 𝑥𝑡
13, 𝑦𝑡

13)  ], where 𝑎𝑡 is the intended action for Task 1, 𝑜𝑡 is the desired 289 

object for Task 2, and (𝑥𝑡
1, 𝑦𝑡

1, 𝑥𝑡
2, 𝑦𝑡

2, … , 𝑥𝑡
13, 𝑦𝑡

13)  is the future body movement for Task 3.  290 

The model was trained end-to-end to minimize a joint loss function that is the weighted 291 

combination of losses for each task. The joint loss function is formulated as 𝐿(𝜃) =  𝑤1𝐿1(𝜃) +292 

𝑤2𝐿2(𝜃) + 𝑤3𝐿3(𝜃), where 𝐿1 and 𝐿2 are categorical cross-entropy loss and 𝐿3 is mean squared 293 

error (MSE) loss. The weights could be set based on the relatively importance of each task and the 294 

scale of each loss function. In this study, a series of trial experiments were conducted, and the 295 

weights are set as 𝑤1: 𝑤2: 𝑤3 = 1: 1: 5 for better performance. 296 

3.3.FedHIP – Federated Learning for Privacy Preserving Model Training 297 

In the proposed FedHIP framework, federated learning mechanism was deployed to train 298 

the above multi-level intention prediction model collectively among multiple participants without 299 

sharing individual data (see Figure 3). Specifically, in the considered FL system, there is a central 300 

server which orchestrates the training process. Each client is a person that performs assembly tasks, 301 

whose behavior data are continuously collected via cameras. Due to privacy concerns, the data is 302 

stored locally and never disclosed to third parties. The training process of FedHIP can be 303 

summarized as follow: 304 

In each communication round,  305 

1. The server maintains a global model, and the server broadcasts the global model to all clients.  306 

2. The client receives the global model and uses it to initialize its local model parameter. 307 

3. The client updates the local model on its local training data with several local epochs. 308 

4. The client uploads the local model to the cloud server. 309 

5. The server receives the local models from all clients and uses them to compute the latest global 310 

model (through different aggregation algorithms discussed below). 311 



15 

 

In the first communication round, two approaches were considered for global model 312 

initialization in Step 1: 1) The global model is randomly initialized to consider the scenario where 313 

there is no existing model or public dataset for the intended task (i.e., multi-level human intention 314 

prediction in this study), and the model is trained solely relying on data collected from individual 315 

clients via FL mechanism. 2) The initial global model is pre-trained using data from partial clients 316 

that are used to simulate potential public dataset or data collected from initial experiments without 317 

privacy concern. After that, the pre-trained global model is updated via FL training process 318 

following steps 2-5. In this study, the number of clients used to pre-train initial global model is 319 

varied to examine the impact of pre-train data size on the model performance.  320 

 321 
Figure 3. Architecture of proposed FedHIP 322 

In FL, the critical process is the update of global model from the aggregation of local 323 

models in Step 5, and model aggregation algorithms will directly influence the performance of 324 

global model. This study will compare two commonly used aggregation algorithms in FL, i.e., 325 

FedAvg [43] and FedProx [56]. FedAvg is the first aggregation algorithm in FL and demonstrates 326 

empirical success in different settings. In FedAvg, the weights of different local models are 327 

averaged to obtain the weights of global model. Despite the simplicity, FedAvg may suffer from 328 

high heterogeneity of local data. On the other hand, FedProx is developed as a generalization of 329 

FedAvg by allowing variable amounts of work performed by different clients. Thus, it provides 330 
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improved robustness and stability for heterogeneous federated networks. Considering the potential 331 

heterogeneity of behavior data for different people, both aggregation algorithms were adopted and 332 

compared.  333 

4. Implementation 334 

4.1.Design of Collaborative Assembly Tasks 335 

To validate the efficacy and evaluate the performance of the proposed framework, six 336 

collaborative assembly tasks were designed, which involve different actions (e.g., pick, carry, 337 

assemble, etc.) and components (e.g., main structure, connector). 54 experiments were conducted 338 

and recorded where each of nine participants performed all six tasks. 339 

In this study, column-like stone structures were designed where unprocessed stones were 340 

connected by 3D-printed connectors for dry-joined assembly without any adhesives. Due to the 341 

perfect fit of dry-stacked unprocessed stones and the digitally designed and fabricated connectors, 342 

these structures required high precision during assembly [57]. For each structure, stones were 343 

aligned along the vertical thrust line with their center of mass. To accommodate unique geometry 344 

of each stone, the stones 3D scanned and reconstructed via photogrammetry techniques and 345 

connectors were digitally designed and 3D-printed based on the arrangement of the stones. Six 346 

structures were designed with different levels of complexity, where tasks 1-3 consistent of three 347 

stones and two connectors for more complex scenarios, and tasks 4-6 include two stones and one 348 

connector for simpler scenarios (see Figure 4).  349 

 350 

 351 
Figure 4. Assemble tasks (Tasks 1-3 are more complex than Tasks 4-6) 352 
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The designed assembly tasks require the participants to adjust relative positions and 353 

orientations between stones and connectors to precisely align with the design, so that the structure 354 

is stable without the need of extra fixation, such as glues, nails, and screws. Therefore, it could 355 

simulate complex assembly tasks in construction that require human dexterity and experience, 356 

where robots could serve as assistants to hand over components and tools following human needs. 357 

Furthermore, the study on 3D printing and robotic-assisted assembly could also facilitate the 358 

development of contemporary architecture construction using irregular materials [57].  359 

In HRC research, studies have shown that robot could learn from conventions in human-360 

human interactions [58], thus, human behavior collected during human-human collaboration in 361 

similar settings could be used to train models for human intention prediction. Such configuration 362 

makes experiments and data collection easier and more achievable. Therefore, in this study, the 363 

above tasks were performed collaboratively by nine groups of participants. In each group, one 364 

person simulates the robot assistant to pass stones and connectors to another person who acts like 365 

the human partner in HRC and only focuses on the assembly tasks. There are three object classes 366 

considered, i.e., stone, connector, and stone with connector. In addition, the designed tasks involve 367 

six types of actions, i.e., pick, carry, assemble, adjust, inspect, and release (see Figure 5). The 368 

duration and order of each action varies across different participants and different tasks. Some 369 

actions may be even absent from certain experiments, for instance, some participants may not 370 

“inspect” and/or “adjust” the components when assembling simple structures. Such variability 371 

leads to heterogeneity in the data distribution generated by different participants in different tasks 372 

and highlights the importance of generalization capability for deep learning-based human intention 373 

prediction. 374 
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 375 
Figure 5. Samples actions involved in assembly tasks 376 

4.2.Data Collection and Pre-processing 377 

A total of 54 videos were collected at 15 frames per second (fps) where 9 participants were 378 

recorded to perform all of six assembly tasks, resulting in a total of 27,314 image frames. The 379 

movements of upper human body (with 13 key points) were first extracted from the videos using 380 

the Pose Flow algorithm [50]. Besides, the actions and objects involved in each frame were 381 

manually annotated. Based on relevant studies in motion prediction, e.g., [59], the observation 382 

duration was set to 400ms (i.e., 6 frames) and the prediction duration was set to 400ms (i.e., 6 383 

frames) for short-term prediction. 384 

In the proposed FedHIP, each person is treated as a client with their own data forming local 385 

datasets that do not share with others to protect privacy. Then, the local dataset for each person 386 

was randomly partitioned by 80% and 20% for training and testing, respectively, forming local 387 

training and test datasets. Global training and testing datasets were composed by pooling all 388 

people’s training and testing data, respectively. In FedHIP, the global model is evaluated on the 389 

global testing dataset at every communication round. Table 1 lists sample size for each person (i.e., 390 

client). Figure 6 illustrates the heterogeneity in the distribution of different action classes across 391 

different people. It necessitates the adoption of aggregation algorithms designed for heterogeneous 392 

dataset like FedProx.  393 

Table 1. Sample size by person 394 

ID 1 2 3 4 5 6 7 8 9 

Train 4380 4920 4086 4128 3018 4020 5304 5928 6906 

Test 1092 1230 1020 1026 750 1002 1326 1482 1722 

 395 
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 396 

Figure 6. Distribution of different action classes across different people. X-axis shows person ID; 397 

Y-axis is the label for six different actions; Circle size represents the data fraction, computed as 398 

percentage of specific action class over entire data for specific person. 399 

4.3.Experiment Settings 400 

Inspired by relevant studies on FL in human activity recognition [16,60], five series of 401 

experiments with different training and testing configurations were conducted to analyze the 402 

efficacy and benefits of proposed FedHIP framework, compared to conventional centralized 403 

training and local training.  404 

1. Centralized training was used as a benchmark, where the proposed LSTM-MTL model was 405 

trained on global training dataset. Such a mechanism is expected to achieve high prediction 406 

accuracy considering the use of all available training data. However, it poses significant 407 

privacy concerns by aggregating all local data for centralized training. Furthermore, to 408 

demonstrate the effectiveness of MTL mechanism for multi-level intention prediction, the 409 

results were compared with those obtained via conventional single task learning (STL), where 410 

three separate LSTM models were trained and tested for three types of intentions respectively. 411 

2. Proposed FedHIP framework was trained from scratch, where the model is trained using local 412 

data and then used to update the global model (with global model randomly initialized in the 413 

first communication round). The resulting global model trained via FL paradigm is tested on 414 
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global dataset for accuracy evaluation. This approach may result in slightly lower prediction 415 

accuracy, but can preserve user privacy by eliminating data sharing and keeping data local.  416 

3. The training and testing processes are the same as in the second scenario, expect that the initial 417 

global model was pre-trained by a public dataset (composed of training data from partial 418 

clients), and the final global model was evaluated on the test dataset consisting of test data 419 

from remaining clients. This scenario is to examine the influence of pre-trained global model 420 

on the performance of FedHIP. For experiments 2 and 3, both FedAvg and FedProx were used 421 

as model aggregation algorithm for comparison. 422 

4. The model was trained and tested on local training and test dataset for each client, respectively. 423 

This setting is to simulate the training of personalized model, which may achieve highest 424 

performance on its local dataset and can eliminate privacy concern. However, the 425 

generalization ability may be poor and cannot work well in unseen data. 426 

5. The model was trained on local training dataset while tested on global dataset. This evaluation 427 

provides valuable insights on how the model can be generalized on unseen data, which is 428 

crucial for human intention prediction considering the heterogeneity in performed tasks and 429 

human behavior.  430 

Table 2 summarizes the settings and difference of five experiments. For all experiments, 431 

hyper-parameters were set as follows, learning rate: 0.0002; batch size: 10; optimizer: Adam; and 432 

dropout: 0.2; local epoch (for FL): 1; the weights of loss functions for the three tasks were set as 433 

1:1:5. The learning rate was decayed by half at 50% and 75% of total training rounds. For FedProx, 434 

the coefficient of regularization was set as 0.005. 435 

Table 2 Experiment configuration 436 

Experiment Training 

mechanism 

Global model 

initialization 

Training data Testing data 
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1 Centralized 

learning 

N/A Global dataset Global dataset 

2 Federated 

learning 

Randomized Local dataset Global dataset 

3 Federated 

learning 

Pre-trained Local dataset Global dataset 

4 Local learning N/A Local dataset Local dataset 

5 Local learning N/A Local dataset Global dataset 

4.4.Evaluation Metrics 437 

In this study, the performance of action and object prediction was primarily evaluated using 438 

accuracy, computed as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 +𝐹𝑁 + 𝐹𝑃
× 100%, where TP is true positive; TN is true 439 

negative; FP is false positive; and FN is false negative. It measures the percentage of images being 440 

correctly classified for action and object classes. For motion prediction, two metrics were used, 441 

i.e., average displacement error (ADE) and Final displacement error (FDE). ADE measures the 442 

average distance between predicted positions of all key points and the ground-truth positions 443 

across all predicted time steps, calculated as 
1

𝑁×𝑇
∑ ∑ ‖𝒚̂𝑡

𝑖 − 𝒚𝑡
𝑖 ‖𝑡=𝑇

𝑡=0
𝑁
𝑖=1 , where N is sample size, 𝒚̂𝑡

𝑖  444 

is predicted positions of ith data at time t, 𝒚𝑡
𝑖  is ground-truth position of ith data at time t, and T is 445 

prediction duration. FDE measures distance between final predicted key point positions and 446 

ground-truth positions, computed as 
1

𝑁
∑ ‖𝒚̂𝑇

𝑖 − 𝒚𝑇
𝑖 ‖𝑁

𝑖=1  . It is noted that to make the results 447 

comparison consistent across different experiments, the evaluation metrics was computed as the 448 

average performance among all clients, e.g., the reported accuracy for Task 1 action prediction is 449 

the average accuracy on each client’s testing dataset. 450 

5. Results and Discussion 451 

5.1.Performance of Centralized Model for Multi-level Intention Prediction 452 

The proposed multi-task LSTM model is effective for multi-level human intention 453 

prediction, and achieves an accuracy of 87.7% and 97.3% for action and object prediction, 454 

respectively, and an ADE of 10.2 pixels and an FDE of 11.7 pixels in movement prediction. Table 455 



22 

 

3 lists the comparison between MTL and STL regarding both prediction performance and 456 

processing time. From Table 3, MTL achieves significant improvement in computational efficiency, 457 

with 59.0% and 55.6% reduction in training and test time, respectively, compared to STL. It shows 458 

a major advantage in MTL, especially in the application of HRC where computing resources are 459 

limited and real-time performance is required. Regarding prediction performance, MTL achieves 460 

better accuracy in action prediction and almost the same high accuracy in objective prediction 461 

while higher ADE and FDE, compared to STL. A potential reason for the improvement in action 462 

prediction could be that the prediction of body motion facilitates the prediction of intended action, 463 

as human’s potential action is reflected by their body movement. On the other hand, future body 464 

movement is primarily predicted based on the observed body movement, the incorporation of other 465 

task may not improve the performance. Depending on the importance of each task, the weights in 466 

loss function (Section 3.2) could be further fine-tuned to improve the performance of 467 

corresponding tasks in MTL. 468 

Table 3 Comparison between multi-task learning and single-task learning 469 

Model 
Training 

time (s) 

Test 

time (s) 

Task 1 – Action 

prediction 

Task 2 – Object 

prediction 

Task 3 – Body 

motion prediction 

Accuracy (%) Accuracy (%) 
ADE 

(pixel) 

FDE 

(pixel) 

MTL 9694 0.0016 87.7 97.3 10.2 11.7 

STL 23626 0.0036 86.5 97.9 4.7 6.6 

 470 

Table 4 and Table 5 further lists the F1 score of each class in Task 1 and Task 2, where 𝐹1 =471 

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
, which shows that MTL and traditional STL perform similar on each class. Figure 7 472 

illustrates the confusion matrix for action and object prediction in MTL, which shows the 473 

classification performance of each class. For action prediction, the accuracy of “release” and 474 

“inspect” was relatively low, which could potentially be caused by the smaller sample size. 475 
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Moreover, misclassifications are more likely to occur in similar actions that appear alternatively 476 

during the task, such as “adjust” and “release”, and “adjust” and “assemble”. In this case, 477 

additional cues (e.g., visual attention, scene images) may be needed to better differentiate them. 478 

For object prediction, the accuracy is very high considering the limited number of classes as well 479 

as the inclusion of observed objects as contextual information. Besides, Figure 8 shows a sample 480 

prediction result for body movement prediction. 481 

Table 4 F1 score for Task 1-action prediction 482 

F1 score Pick Carry Assemble Adjust Inspect Release 

MTL 0.86 0.82 0.88 0.94 0.83 0.76 

STL 0.86 0.83 0.87 0.93 0.81 0.74 

 483 

Table 5 F1 score for Task 2-object prediction 484 

F1 score Stone Connector Connector_stone 

MTL 0.98 0.97 0.98 

STL 0.98 0.97 0.99 

 485 

 486 
Figure 7. Confusion matrix for action and object prediction 487 
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 488 

 489 
Figure 8. Demonstration of predicted body movements over six prediction steps (Blue lines 490 

indicate ground truth poses, and red lines indicate predicted poses). 491 

5.2.Comparison of Centralized Learning and FedHIP 492 

Table 6 lists the accuracy of all three tasks for multi-level human intention prediction using both 493 

centralized learning and different settings of FedHIP (i.e., Experiments 1-3 in Table 2). Compared 494 

to centralized learning, FL (especially pre-trained FL) can achieve compatible accuracy, despite a 495 

slight decrease in accuracy of action prediction and body motion prediction. It is reasonable 496 

because centralized model used the entire dataset for training, while the advantage of FL is to use 497 

local dataset to protect data privacy, while still maintaining compatible accuracy. In comparison 498 

of two aggregation algorithms, FedProx achieves better performance than FedAvg, especially 499 

when the global model is randomly initiated, resulting in higher level of heterogeneity of local 500 

training data.  501 

Table 6 Prediction accuracy of centralized learning and FedHIP 502 

Model 
Task 1 – Action 

prediction 

Task 2 – Object 

prediction 

Task 3 – Body motion 

prediction 

 Accuracy (%) Accuracy (%) ADE (pixel) FDE (pixel) 

Centralized model 87.7 97.3 10.2 11.7 
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FedHIP_Avg (w/o pre-

train) 
78.5 97.9 13.7 15.1 

FedHIP_Prox (w/o pre-

train) 
80.1 97.6 12.7 14.0 

FedHIP_Avg (pre-train 

with 5 clients) 
86.0 98.0 11.8 13.1 

FedHIP_Prox (pre-train 

with 5 clients) 
85.7 97.8 11.7 13.0 

 503 

In the case of pre-trained FedHIP, the results using two algorithms are almost the same 504 

expect for a slight improvement of body motion prediction via FedProx. This might be because 505 

that the global model is pre-trained with clients’ data performing the same assembly task, thus the 506 

remaining local training data is less heterogeneous compared to the case without pretrain. 507 

Furthermore, pretrained FedHIP leads to significant improvements in prediction accuracy 508 

compared to its counterparts without pretrain. Figure 9 further shows the training loss and 509 

prediction accuracy of each model across communication rounds. It could be seen that FedHIP 510 

achieves compatible convergence as centralized learning. 511 

 512 

Figure 9 Training loss and accuracy across communication rounds 513 

5.3.Influence of Pretrain Data on FedHIP Prediction Accuracy 514 

In the pretrained FedHIP experiments, the number of clients used for pretrain was varied 515 

(i.e., n = 3, 5, and 7) to evaluate the influence of pretrain data on FedHIP performance (Figure 11). 516 

Specifically, for each scenario, a certain number of clients were randomly selected to pretrain the 517 

global model, and the data from remaining clients were used to train and test FedHIP. Considering 518 
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the various combinations of clients used for pretrain, each scenario was repeated for three trials 519 

and the average accuracy was computed. From Figure 10, in general, the increase in number of 520 

clients used for pre-train can improve the accuracy. It could be considered to combine the 521 

advantages of both centralized learning and FL, which improves the model generalizability 522 

leveraging potential public dataset that does not have privacy concern. It was also noted that the 523 

accuracy for action prediction and object prediction was slightly decreased when 7 clients were 524 

used to pretrain the global model, which could be potentially caused by the large variation in the 525 

testing data of the remaining clients. 526 

 527 

Figure 10. Change of prediction accuracy based on number of clients used in FL pre-train 528 

5.4.Comparison of Local Training and FedHIP 529 

Table 7 lists the comparison of prediction accuracy of local training and FedHIP (i.e., 530 

Experiments 2-5 in Table 2). It was found that training and testing using only local data achieves 531 

the highest accuracy. It is expected because in this study, local dataset is relatively large and 532 

sufficient to train the HIP model. Furthermore, local datasets exhibit much less heterogeneity in 533 

contrast to global datasets, which is not sufficient to prove the generalizability of the model. As a 534 

more realistic setting, models trained using local data were tested on global dataset (i.e., unseen 535 

data distribution), which led to much lower accuracy for all three tasks. Regarding the proposed 536 

FedHIP framework, the pre-trained version achieves compatible accuracy as local training (test on 537 

local data) for action and object prediction. Both FedHIP frameworks (with and without pretrain) 538 

achieve much higher accuracy than local training (test on global data) in all three tasks. This proves 539 
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the benefits of FL in human intention prediction – through collaborative training on multiple 540 

individual clients, it can achieve high accuracy while preserving data privacy. 541 

Table 7 Prediction accuracy of local learning and FedHIP 542 

Model 
Task 1 – Action 

prediction 

Task 2 – Object 

prediction 

Task 3 – Body motion 

prediction 

 Accuracy (%) Accuracy (%) ADE (pixel) FDE (pixel) 

Local training (test on 

local data) 
87.0 97.5 7.5 8.7 

Local training (test on 

global data) 
42.6 90.7 20.7 23.7 

FedHIP_Avg (w/o pre-

train) 
78.5 97.9 13.7 15.1 

FedHIP_Prox (w/o pre-

train) 
80.1 97.6 12.7 14.0 

FedHIP_Avg (pre-train 

with 5 clients) 
86.0 98.0 11.8 13.1 

FedHIP_Prox (pre-train 

with 5 clients) 
85.7 97.8 11.7 13.0 

 543 

Conclusion 544 

HRC is a promising solution to relieve construction workers from repetitive and physically 545 

demanding tasks, thus improving construction safety and productivity, and overcoming the 546 

challenges posed by labor shortage and workforce aging. To enable efficient and safe HRC, it is 547 

critical for robots to understand and predict human intention and thus proactively and adaptively 548 

planning their own tasks and motions. This study proposes a vision-based FedHIP framework for 549 

privacy-preserving multi-level human intention prediction in human-robot collaborative assembly 550 

tasks. Specifically, taking body movements and assembly components as inputs, an LSTM based 551 

MTL model was developed to simultaneously predict multi-level human intention, including high-552 

level actions and objects, and low-level body movements. FL was employed to train the model in 553 

a distributed and privacy-preserving way on local clients without transmitting sensitive data.  554 



28 

 

The proposed framework was validated using video data from 6 assembly tasks conducted 555 

by 9 people. First, the efficacy of proposed LSTM-MTL model for multi-level human intention 556 

prediction was demonstrated via conventional centralized training. It achieves an accuracy of 87.7% 557 

and 97.3% for action and object prediction, respectively, and an ADE of 10.2 pixels and an FDE 558 

of 11.7 pixels in movement prediction. Second, the proposed FedHIP was implemented. The 559 

results show that the proposed FedHIP without and with pre-train can achieve an accuracy of 80.1% 560 

and 85.7% in action prediction, 97.6% and 97.8% in object prediction, an ADE of 12.7 and 11.7 561 

pixels and an FDE of 14 and 13 pixels of in motion prediction, respectively. It was found that pre-562 

trained global model in FL could significantly increase the prediction accuracy, which could be 563 

realized using public datasets and/or preliminary experiments of similar tasks. Third, the proposed 564 

framework was compared with conventional centralized training and local training. It was found 565 

that FL leads to compatible prediction accuracy with centralized training and much higher accuracy 566 

than local training while preserving data privacy. 567 

There remain some limitations that deserve future research. First, 2D skeleton positions 568 

were used in this study, which could be expanded to 3D motion obtained from other sources, such 569 

as stereo vision and motion capturing system. Second, types of objects involved in the current 570 

work status were manually annotated, and the process could be automated in future study by 571 

integrating with object detection module. Third, human behavior data were collected in human-572 

human interaction setting, with the premise that HRC could learn from human-human interaction 573 

conventions. In our ongoing study, data was collected in HRC assembly tasks, which will be used 574 

to evaluate the proposed framework. Fourth, small-scale stone assembly tasks in the controlled 575 

environment were designed for data collection and to train and test the proposed FedHIP 576 

framework. It is expected simulate complex assembly tasks in construction that require human 577 
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dexterity and experience, where robots could serve as assistants to hand over components and tools 578 

following human needs. In future study, experiments of different construction tasks in real-world 579 

settings should be conducted to collect more diverse data to test the performance of proposed 580 

method. Finally, considering the heterogeneity of different people performing different tasks, 581 

personalized FL framework will be developed in future research to further improve the 582 

performance. Moreover, other modern models, such as transformer-based models and ST-GCN 583 

based models could be used as backbone in the model to test the usability and performance in 584 

multi-level human intention prediction. 585 
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