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ABSTRACT 

 

Human-Robot Collaboration (HRC) is a promising approach to relieve workers from repetitive 

and physically demanding tasks and improve safety and productivity in construction. It is critical 

for robots to understand worker intention in order to adapt their motion to facilitate smooth HRC. 

Evidence has shown that visual attention reveals human intention. However, it is still unclear how 

visual attention is distributed in human-robot collaborative construction tasks. In this study, a pilot 

experiment was conducted to examine human visual attention in a wood assembly task with the 

assistance of a collaborative robot. A mobile eye tracker was used to collect participants’ gaze 

movements. Data were validated and processed in terms of various metrics to analyze visual 

attention patterns. It is found that construction workers’ visual attention is related to the detailed 

process of the task – around 30% of the eye gaze is located at the connector areas and the design 

drawing area, which is primarily relevant to their task. Furthermore, workers’ attention could be 

affected by the movement of the robot, with their gaze following the path of robot arm and gripper 

during the collaboration. The findings can stimulate further research into attention-aware HRC for 

intelligent construction. 

 

INTRODUCTION 

 

The construction industry is contending with a skilled labor shortage (Olsen et al. 2012). 

According to a survey report released by the Associated General Contractors of America (AGC), 

80% of contractors have faced obstacles in recruiting skilled workers to fill craft positions (AGC 

2018). The reasons for the skilled labor shortage lie in two ways – an aging workforce and a lack 

of youth involvement (Clarion Energy 2007). The gradual departure of experienced professionals 

creates pressing challenges in terms of recruitment and replacement of a skilled workforce. 

Meanwhile, the construction industry doesn’t appeal to younger generations due to “outdated” 

technology and tools used in construction work (Simic 2023). This industry needs new 

technologies and new approaches to attract more youth and create possibilities for less skilled 

individuals to conduct construction work.  

Advanced robotics and the rapid development of powerful Artificial Intelligence have 

shown the strength and potential as a future solution in construction (Kim et al. 2021). It could 

mitigate the impact of skilled labor shortage by encompassing individuals with varying skill levels 

and underrepresented groups (e.g., disabilities) (Okishiba et al. 2019). Construction robotics and 
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automation could attract the future generation of construction workers as well as meet their 

aspirations of construction work under the background of Industry 4.0 (Geraci 2021). A vital 

requirement of construction robotics adoption has emerged. Human-robot collaboration (HRC) in 

construction tasks is envisioned to be an efficient and productive way on future construction sites 

to relieve human workers from hazardous and physically demanding tasks (Liang et al. 2020).  

In HRC, human workers can maximize their knowledge and judgment to perform high-

level planning and decision-making while leaving the repetitive tasks to the collaborative robot 

(e.g., the collaborative robot can fetch parts and tools timely while the human worker focuses on 

installation) (Liu and Jebelli 2022). Considering the dynamic and unstructured construction 

environments (i.e., vehicles, workers, and materials on the same site), such intuitive collaboration 

requires collaborative robot reacts to human movements timely and adaptively for a successful 

HRC implementation. Initially, in a human-human collaboration, humans use verbal and visual 

cues to understand each other, establish communications and react correspondingly, resulting in 

safe and efficient collaboration. Accordingly, human visual attention can provide collaborative 

robots with valuable insights into the worker’s intentions, priorities, and future motions. This could 

enable collaborative robots to complete minor steps (e.g., parts fetching) in a construction task 

efficiently by incorporating the worker’s intentions. Additionally, collaborative robots could plan 

their actions (e.g., trajectory planning) safely and adaptively by accurately predicting human future 

movements with human visual attention. 

It has been proved that eye movements have a relationship with visual attention decades 

ago (Bridgeman et al. 1975; Pashler 2016). Eye movements can represent an individual’s cognitive 

process, which makes it a perfect approach to identifying and analyzing visual attention (Rayner 

1977). Many researchers have explored the application of eye movements in the construction field. 

Hasanzadeh et al. (2017) proved that the eye movement metrics of construction workers can be 

used as an indicator of human error in hazard identification tasks. Wang et al. (2023) incorporated 

eye gaze with hand gesture recognition for robot control by giving the area of interest (AOI) via 

gaze information and sending control commands via hand gestures. Those studies mainly 

contributed to methods development for robot control or gaze implementation in construction 

inspection. However, few studies focus on examining visual attention in human-robot 

collaborative tasks. Thus, this paper uses gaze tracking to examine human visual attention in HRC 

implementation in construction tasks. A pilot experiment was conducted to collect gaze data. The 

results provide insights into human workers’ visual attention in HRC implementation in a 

construction task.  

 

BACKGROUND 

 

Visual attention is the ability that an individual focuses on a perceived stimulus which includes 

visual and cognitive processes (Fischer and Breitmeyer 1987). This kind of attention has been 

widely investigated in numerous domains, from behavioral studies and psychology to the robotics 

field (Vijayakumar et al. 2001; Admoni & Scassellati 2017). The wearable sensor, eye tracker, has 

been increasingly applied in construction studies. For instance, researchers utilized gaze 

information to study workers’ visual attention and cognitive processes in construction hazard 

recognition for intelligent construction (Zhang et al. 2023). A study that examined workers’ visual 
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attention in building inspection was conducted by Shi et al. (2020) to find the relationship between 

visual attention and spatial memory. 

In HRC, gaze-related research explored social eye gaze and attention cues for easy and 

intuitive interaction between humans and robots. Eye gaze was utilized as a communication cue to 

trigger robot actions (Palinko et al. 2016). Besides gaze-based control, eye gaze in HRC on a 

handover task was investigated for understanding shared gaze and human intentions (Ivaldi et al. 

2017). Chadalavada et al. (2020) implemented eye gaze to convey information about human 

intentions (i.e., which way the person will take) to a mobile robot for navigation purposes. In the 

context of construction, gaze-included HRC has been explored. A hand gesture recognition system 

involves the human gaze to direct construction machine-of-interest (Wang, Veeramani, and Zhu 

2023). User’s gaze was expanded and integrated into a virtual reality system for the teleoperation 

of robotic arm manipulation (Moniri et al. 2016). 

These studies provide strong evidence that eye gaze can be an efficient and reliable 

communication cue for HRC in construction contexts. However, collaboration in construction 

tasks requires shared knowledge of goals, procedures, and intentions. For example, a robot that 

helps a construction worker assemble a shed wall needs to perceive the worker’s current goals and 

coordinate actions with the worker’s intentions (e.g., fetch toolbox). Few studies focus on 

revealing the gaze patterns of humans in construction assembly tasks to provide insights for safe 

and efficient HRC and benefit workforce training to adapt to the HRC context. This paper seeks 

to answer the following questions: 1) how the construction worker’s gaze is distributed in HRC? 

2) are their gaze trajectories reflect the sequential procedures of the task? Therefore, this study 

aims to examine human eye gaze in construction assembly tasks via a pilot HRC experiment.  

 

METHODOLOGY 

 

This study conducted a pilot experiment to examine human visual attention in an HRC assembly 

task. The participant was tasked to perform a wood assembly task through the collaboration of a 

ground robot equipped with an industrial arm. In this study, two tasks of varying difficulty levels 

were formulated. To collect participants’ gaze movement, an eye tracker from Pupil Lab was used 

in each experiment. Using the data obtained from this device, gaze fixations were extracted and 

mapped onto a reference image. Finally, the processed data was subjected to gaze analysis in order 

to identify potential patterns of gaze that could potentially indicate participants' intentions and 

actions. 

 

Experiment Task and Data Collection. A wood assembly task was designed to be performed in 

a controlled lab environment (see Figure 1 (a)). The design is simplified from real-scale roof 

trusses on construction sites for practical implication. It contains general tasks (e.g., placing and 

nailing) for a typical construction project. Each group of one participant and the collaborative robot 

performed the same task to establish the comparison in HRC. The participant was asked to 

collaborate with a collaborative robot to assemble the wood structure according to a given design 

drawing in the HRC. The robot is Husky A200, a mobile robot from Clearpath, with a six-degree-

of-freedom industrial arm from Universal Robot, mounted on the top plate of the robot. The robot 

arm is equipped with a 2-finger gripper to perform the grasp and pick-up works. Figure 1 (b) 

illustrates the setup for HRC experimental environment. The participant and the robot share the 

same working space. In the experiment, the participant was tasked to do the assembly according 

to the given drawing by nailing two wood pieces with a connector using a nail gun. Instead of 
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participants taking care of all the measurements and wood piece placement, the robot picks up 

each wood piece one at a time and places it on the working bench following the design drawing. 

The robot places the two wood pieces on the left side first, followed by the middle piece. It places 

the other two wood pieces on the right-hand side at last. Thus, the participant can start to place and 

nail the connector once two pieces are placed, while the robot continuously brings and places the 

left ones. 

 

 
Figure 1. (a) The assembled wood structure (red circles show the connectors placed and 

nailed onto two wood pieces). (b) The participant connects two wood pieces while the robot 

continuously brings and places more wood pieces on the table. 

 

College students majoring in architecture were recruited, who have basic construction 

skills (e.g., cutting and nailing) and are trained in the woodshop for hands-on tasks (e.g., carpentry). 

Most of them will cultivate their careers in the construction and architecture industry. A total of 

four individuals participated in this experiment, with three females and one male. Training on 

using nail guns and understanding safety rules was given before the experiment. Gaze data was 

collected using an eye tracker from Pupil Lab. It is a pair of glass frames with one scene camera 

with a resolution of 1920 × 1080 and two eye cameras with a resolution of 192 × 192. The scene 

camera captures the world frame, and the eye cameras capture the movements of the wearer’s left 

and right eyeballs. Before each experiment, the participant was required to wear the eye tracker 

and complete the device calibration. The data was collected and stored using a laptop, including 

the fixation data and imagery data. Figure 2 shows the gaze data collected from the eye tracker. 

The world frame presents the working space from the first view. The images of eyeballs are 

overlayed onto the world frame.  

To verify the validity of gaze data, a post-interview was performed after the experiment. 

The gaze-overlaid video was played back and viewed by the participant and the researcher jointly. 

In the interview, the researcher first explained what the world frame is and how the gaze point is 

displayed in the video. After the explanation, the participants were asked to confirm their gaze 

positions according to their recalls at each time the researcher paused the video. The participants 

were primarily asked when they were nailing to connect two wood pieces.  

 

Eye Tracker Calibration. Considering the individual difference, eye tracker calibration was 

required for each participant before the experiment started. A screen-based calibration was used 

due to the limited working space. In this calibration, a marker appears at different positions on the 

screen of a laptop. The participant is asked to focus on the center of the marker each time it appears 

on the screen and only move eyeballs to follow the marker. In our calibration, the participant stood 

at the front of the working bench (i.e., where the participant stood at the beginning of the 
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experiment), and the laptop was placed at the center area of the working bench. The participant 

looked a litter bit down to focus on the markers shown on the screen (4 positions at the corners of 

the display, 1 position at the center of the display), which reflected the same head movement in 

the experiment. The accuracy of the calibration was tested by observing the fixation position 

shown on the screen when asking the participant to focus on the marked blue points on the surface 

of the working bench.   

 

 
Figure 2. Visualization of gaze data collected from the eye tracker. The scene captured by 

scene camera is shown. Frames captured by eye cameras are shown on the top left (blue 

circle presents the 3D model of eyeball). Green dot shows the gaze of the participant.  

 

DATA ANALYSIS 

 

This study uses several gaze metrics to analyze the gaze data, including AOI, fixation, hit any AOI 

rate (HAAR), and scan path (Jacob and Karn 2003). AOI is the area of display that the research is 

interested in and thus defined by the researchers. Fixation refers to a relatively stable eye position 

with a typical threshold of dispersion and a minimum duration. In this study, the Pupil Lab eye 

tracker uses 1.5° of dispersion and 80 milliseconds of minimum duration in a dispersion-based 

method to calculate the fixations (Kassner, Patera, and Bulling 2014). The fixation duration means 

the time duration of one fixation. HAAR is the rate that a gaze hits any AOIs, which reflects the 

importance of the elements (i.e., AOIs were defined by the research team). Scan path presents a 

trajectory of a series of fixations in a spatial display. It is used to show the spatial arrangement of 

a portion of fixations for visualization.  

 

 
Figure 3. The AOIs – four AOIs for the connectors and one for the design drawing. The 

number of AOIs is indicated in the picture.  

The fixation data of all participants was exported from the eye tracker. During the 

experiment, this study is interested in finding out how the participant’s visual attention was 
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distributed according to the specific wood assembly task using HRC, especially when the 

participant was doing the nailing. Hence, five AOIs – four AOIs for the connectors and one for the 

design drawing – were defined (see Figure. 3). Considering the dynamic aspects of the world 

frames, a mobile gaze mapper was used to map fixations onto the reference image (MacInnes et 

al. 2018). To cover the whole wood structure, a snapshot of assembled end product was extracted 

from the world video for each experiment. The position of AOIs may vary in different participants 

(e.g., some participants like the design drawing placed one the left-hand side, other may like it 

placed on the right-hand side), but the sequence of AOIs stays the same. Once the fixation data 

reference to the reference image is prepared, quantitively analysis was performed to get more 

insights of fixations during the HRC assembly task. HAAR was calculated based on the five AOIs. 

 

RESULTS 

 

The eye gaze data of all participants was analyzed to study how the participant’s visual attention 

was distributed between the AOIs (i.e., the places where connectors were placed and where the 

design drawing was placed) in this wood assembly HRC task. Fixations from all participants were 

extracted, and a table of general description of the fixations is presented (see Table 1). The fixation 

count varies significantly from the smallest number of 2243 to the largest number of 4756. This 

could be because the completion time of each experiment for each participant is different – some 

participants spent more time ensuring the placement of wood pieces was correct according to the 

design drawing. Interestingly, the mean of fixation duration among all participants is relatively 

similar, with a total mean of 145 milliseconds. This shows that the participants’ eyes rest on an 

object in the surroundings for a relatively similar time duration.  

 

Table 1. General description of fixation data. 

Participant ID1 ID2 ID3 ID4 

Fixation count 4004 4756 2243 3288 

Mean of fixation duration (milliseconds) (total mean = 145) 134 137 151 156 

 

To better visualize the gaze data collected from participants, a scan path of a portion of 

gaze points from participant ID2 was drawn (see Figure 4). It shows the spatial arrangement of 

gaze positions on the surface of the reference image. A big portion of the gaze points is located on 

the top left of the reference image because it is the pickup location where the robot moved its arm 

to pick up lumber. It means that when the robot arm moves, the participant moves his or her gaze 

to that position accordingly. In addition, there are certain portions of gaze points shown 

sequentially on the wood pieces, on the design drawing, and then on the connectors. This indicates 

that the participant gazed at the design drawing and lumbers back and forth to verify that the 

placement was correct. After the verification, the participant focused on the connector for nailing.  

To investigate how the visual attention is distributed related to the wood assembly task, 

five AOIs were defined, and gaze points were mapped to the reference image accordingly to 

analyze the HAAR within different AOIs (see Table 2). The AOIs of #0, #3, and #4 account to 

most of HAAR among all participants. That means the visual attention of all the participants is 

mainly located at the connector placed on the top of the middle lumbers, at the design drawings, 

and at the most left connector area. This could be because the robot picks up the lumber from the 

pickup location and, moves to the center of the working bench, then places the lumber in the 
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desired location. Thus, the participants’ gaze followed the movement of the robot. It is also 

reasonable that the design drawing has a high HAAR. The participants need to gaze at the drawing 

and ensure the lumber placement is correct according to the drawing. This indicates that the visual 

attention of construction workers is related to the detailed process of the assembly task. The HAAR 

at AOI #1 of participant ID2 is zero. It may be because the gaze point shown in the video is outside 

of the bounding box. There could be minor displacement between actual attention and captured 

point due to the eye ball’s conditions of the user (e.g., shortsighted). Individually, participant ID4 

has the highest HAAR at AOI #0. There was a minor collision when the robot tried to place the 

lumber in the middle during the experiment, which caused the participant to gaze at AOI #3 more 

prolonged than others.  

 

 
Figure 4. Scan path of a portion of gaze points from one participant.  

 

Table 2. HAAR within five AOIs from all participants. 

AOI 0 1 2 3 4 

ID1 3.14% 1.29% 0.40% 13.10% 13.26% 

ID2 1.76% 0.00% 1.11% 10.22% 10.93% 

ID3 7.22% 1.99% 9.44% 3.93% 3.14% 

ID4 22.57% 4.30% 1.77% 2.18% 5.12% 

 

CONCLUSION 

 

This study examined the visual attention of construction workers through eye gaze analysis in a 

pilot experimental assembly task using HRC. Five AOIs related to the wood assembly task were 

defined. A gaze confirmation interview was conducted after each experiment to get valid gaze data. 

This study analyzed gaze data based on several gaze metrics, including AOIs, fixations, HAAR, 

and scan path. It illustrates the worker’s gaze in an HRC from 1) the eye gaze distribution in this 

assembly task; 2) the gaze movement during task procedures.  

It is found that construction workers’ visual attention is related to the detailed process of 

the task – around 30% of the eye gaze is located at the connector areas and the design drawing 

area. Interestingly, workers’ gaze movement could be affected by the collaborative robot when 

performing an HRC assembly task. The workers also gazed at the pick-up area where the robot 

fetched the lumber from and on the robot gripper sometimes when the robot arm was moving. It 

can be told from the scan path analysis that the worker’s gaze movement followed a certain 

sequence in the task. The gaze moved between lumber and design drawings, then it focused on the 

connector the worker was about to work on. It proves that workers’ visual attention is significantly 

affected by the robot’s movement and task procedures.  
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The findings of this study have significant implications for HRC-related research. The 

demonstrated gaze distribution of workers suggests that the gaze can reflect the workers’ areas-of-

interest in an assembly task. The integration of eye gaze in a HRC could smooth the collaboration 

process by sharing the current status of human workers with the robot simultaneously. Additionally, 

the observed gaze movement of workers hints that the eye gaze could be implemented as gaze 

commands to trigger certain motions of the collaborative robot. For instance, in this assembly task, 

the robot may continuously bring more lumber when the participant gazes between the pick-up 

area and the design drawing back and forth. These findings not only advance the understanding of 

workers’ gaze in an HRC task but also stimulate further research into the HRC in construction 

regarding eye gaze communication.  

Limitations exist in this study. Firstly, the small sample size has limitations in 

understanding the general visual attention among construction workers. More data from a well-

balanced gender distribution will be included in ongoing research. Second, bounding boxes are 

used to define the AOIs, which is not precise. To provide more precise visual attention (e.g., actual 

areas of the object the worker is interested in) between humans and robots, object segmentation 

should be applied in further research. Additionally, the small-scale wood assembly cannot 

represent the construction works on real construction sites. A real-scale wood structure should be 

considered in future research. 

 

ACKNOWLEDGMENTS  

 

This research was funded by the U.S. National Science Foundation (NSF) via Grants 2138514, 

2222670, and 2222730. The authors gratefully acknowledge NSF's support. Any opinions, 

findings, recommendations, and conclusions in this paper are those of the authors and do not 

necessarily reflect the views of NSF and The University of Texas at San Antonio. 

 

REFERENCES 

 

Admoni, Henny, and Brian Scassellati. 2017. “Social Eye Gaze in Human-Robot Interaction: A 

Review.” Journal of Human-Robot Interaction 6 (1): 25. 

https://doi.org/10.5898/JHRI.6.1.Admoni. 

Bridgeman, Bruce, Derek Hendry, and Lawrence Stark. 1975. “Failure to Detect Displacement 

of the Visual World during Saccadic Eye Movements.” Vision Research 15 (6): 719–22. 

https://doi.org/10.1016/0042-6989(75)90290-4. 

Cai, Jiannan, Yuxi Zhang, Liu Yang, Hubo Cai, and Shuai Li. 2020. “A Context-Augmented 

Deep Learning Approach for Worker Trajectory Prediction on Unstructured and Dynamic 

Construction Sites.” Advanced Engineering Informatics 46 (October): 101173. 

https://doi.org/10.1016/j.aei.2020.101173. 

Calvetti, Diego, Pedro Mêda, Miguel Chichorro Gonçalves, and Hipólito Sousa. 2020. “Worker 

4.0: The Future of Sensored Construction Sites.” Buildings 10 (10): 169. 

https://doi.org/10.3390/buildings10100169. 

Chadalavada, Ravi Teja, Henrik Andreasson, Maike Schindler, Rainer Palm, and Achim J. 

Lilienthal. 2020. “Bi-Directional Navigation Intent Communication Using Spatial 

Augmented Reality and Eye-Tracking Glasses for Improved Safety in Human–Robot 

Interaction.” Robotics and Computer-Integrated Manufacturing 61 (February): 101830. 

https://doi.org/10.1016/j.rcim.2019.101830. 



   

 

 9 

Clarion Energy Content Directors. 2007. “Five Ways to Help End the Craft Labor Shortage.” 

Power Engineering (blog). 2007. https://www.power-eng.com/news/five-ways-to-help-

end-the-craft-labor-shortage/. 

Fischer, B., and B. Breitmeyer. 1987. “Mechanisms of Visual Attention Revealed by Saccadic 

Eye Movements.” Neuropsychologia 25 (1, Part 1): 73–83. https://doi.org/10.1016/0028-

3932(87)90044-3. 

Geraci, Beth. 2021. “Use Technology to Attract the next Generation of Construction Workers.” 

Motive. 2021. https://gomotive.com/blog/technology-next-generation-construction-

workers/. 

Hasanzadeh, Sogand, Behzad Esmaeili, and Michael D. Dodd. 2017. “Impact of Construction 

Workers’ Hazard Identification Skills on Their Visual Attention.” Journal of 

Construction Engineering and Management 143 (10): 04017070. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001373. 

Ivaldi, Serena, Sebastien Lefort, Jan Peters, Mohamed Chetouani, Joelle Provasi, and Elisabetta 

Zibetti. 2017. “Towards Engagement Models That Consider Individual Factors in HRI: 

On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and 

Speech During a Human–Robot Assembly Task.” International Journal of Social 

Robotics 9 (1): 63–86. https://doi.org/10.1007/s12369-016-0357-8. 

Jacob, Robert J. K., and Keith S. Karn. 2003. “Commentary on Section 4 - Eye Tracking in 

Human-Computer Interaction and Usability Research: Ready to Deliver the Promises.” In 

The Mind’s Eye, edited by J. Hyönä, R. Radach, and H. Deubel, 573–605. Amsterdam: 

North-Holland. https://doi.org/10.1016/B978-044451020-4/50031-1. 

Kassner, Moritz, William Patera, and Andreas Bulling. 2014. “Pupil: An Open Source Platform 

for Pervasive Eye Tracking and Mobile Gaze-Based Interaction.” arXiv. 

https://doi.org/10.48550/arXiv.1405.0006. 

Kim, Sungjin, Matthew Peavy, Pei-Chi Huang, and Kyungki Kim. 2021. “Development of BIM-

Integrated Construction Robot Task Planning and Simulation System.” Automation in 

Construction 127 (July): 103720. https://doi.org/10.1016/j.autcon.2021.103720. 

Liang, Ci-Jyun, Vineet R. Kamat, and Carol C. Menassa. 2020. “Teaching Robots to Perform 

Quasi-Repetitive Construction Tasks through Human Demonstration.” Automation in 

Construction 120 (December): 103370. https://doi.org/10.1016/j.autcon.2020.103370. 

Liu, Yizhi, and Houtan Jebelli. 2022. “Human-Robot Co-Adaptation in Construction: Bio-Signal 

Based Control of Bricklaying Robots,” May, 304–12. 

https://doi.org/10.1061/9780784483893.038. 

Lundeen, Kurt M., Vineet R. Kamat, Carol C. Menassa, and Wes McGee. 2019. “Autonomous 

Motion Planning and Task Execution in Geometrically Adaptive Robotized Construction 

Work.” Automation in Construction 100 (April): 24–45. 

https://doi.org/10.1016/j.autcon.2018.12.020. 

MacInnes, Jeff J., Shariq Iqbal, John Pearson, and Elizabeth N. Johnson. 2018. “Mobile Gaze 

Mapping: A Python Package for Mapping Mobile Gaze Data to a Fixed Target Stimulus.” 

Journal of Open Source Software 3 (31): 984. https://doi.org/10.21105/joss.00984. 

Moniri, Mohammad Mehdi, Fabio Andres Espinosa Valcarcel, Dieter Merkel, and Daniel 

Sonntag. 2016. “Human Gaze and Focus-of-Attention in Dual Reality Human-Robot 

Collaboration.” In 2016 12th International Conference on Intelligent Environments (IE), 

238–41. https://doi.org/10.1109/IE.2016.54. 



   

 

 10 

Neisser, Ulric, and Robert Becklen. 1975. “Selective Looking: Attending to Visually Specified 

Events.” Cognitive Psychology 7 (4): 480–94. https://doi.org/10.1016/0010-

0285(75)90019-5. 

Okishiba, Shunsuke, Rui Fukui, Mitsuru Takagi, Hitoshi Azumi, Shin’ichi Warisawa, Ryoichi 

Togashi, Hiroyuki Kitaoka, and Takeshi Ooi. 2019. “Tablet Interface for Direct Vision 

Teleoperation of an Excavator for Urban Construction Work.” Automation in 

Construction 102 (June): 17–26. https://doi.org/10.1016/j.autcon.2019.02.003. 

Olsen, Darren, Mark Tatum, and Christopher Defnall. 2012. “How Industrial Contractors Are 

Handling Skilled Labor Shortages in the United States.” 

Palinko, Oskar, Francesco Rea, Giulio Sandini, and Alessandra Sciutti. 2016. “Robot Reading 

Human Gaze: Why Eye Tracking Is Better than Head Tracking for Human-Robot 

Collaboration.” In 2016 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS), 5048–54. https://doi.org/10.1109/IROS.2016.7759741. 

Pashler, Harold. 2016. Attention. Psychology Press. 

Rayner, Keith. 1977. “Visual Attention in Reading: Eye Movements Reflect Cognitive 

Processes.” Memory & Cognition 5 (4): 443–48. https://doi.org/10.3758/BF03197383. 

Rensink, Ronald A., J. Kevin O’Regan, and James J. Clark. 1997. “To See or Not to See: The 

Need for Attention to Perceive Changes in Scenes.” Psychological Science 8 (5): 368–73. 

https://doi.org/10.1111/j.1467-9280.1997.tb00427.x. 

Shi, Yangming, Jing Du, and Eric Ragan. 2020. “Review Visual Attention and Spatial Memory 

in Building Inspection: Toward a Cognition-Driven Information System.” Advanced 

Engineering Informatics 44 (April): 101061. https://doi.org/10.1016/j.aei.2020.101061. 

Simic, Nemanja. 2023. “Appealing to the next Generation of Construction Workers.” Bridgit. 

2023. https://gobridgit.com/blog/appealing-to-the-next-generation-of-construction-

workers/. 

The Associated General Contractors of America. 2018. “EIGHTY PERCENT OF 

CONTRACTORS REPORT DIFFICULTY FINDING QUALIFIED CRAFT 

WORKERS TO HIRE AS ASSOCIATION CALLS FOR MEASURES TO REBUILD 

WORKFORCE | Associated General Contractors of America.” 2018. 

https://www.agc.org/news/2018/08/29/eighty-percent-contractors-report-difficulty-

finding-qualified-craft-workers-hire-0. 

Treisman, Anne M., and Garry Gelade. 1980. “A Feature-Integration Theory of Attention.” 

Cognitive Psychology 12 (1): 97–136. https://doi.org/10.1016/0010-0285(80)90005-5. 

Vijayakumar, S., J. Conradt, T. Shibata, and S. Schaal. 2001. “Overt Visual Attention for a 

Humanoid Robot.” In Proceedings 2001 IEEE/RSJ International Conference on 

Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next 

Millennium (Cat. No.01CH37180), 4:2332–37 vol.4. 

https://doi.org/10.1109/IROS.2001.976418. 

Wang, Xin, Dharmaraj Veeramani, and Zhenhua Zhu. 2023. “Gaze-Aware Hand Gesture 

Recognition for Intelligent Construction.” Engineering Applications of Artificial 

Intelligence 123 (August): 106179. https://doi.org/10.1016/j.engappai.2023.106179. 

Zhang, Qingwen, Mingxuan Liang, Albert P. C. Chan, and Pin-Chao Liao. 2023. “Visual 

Attention and Cognitive Process in Construction Hazard Recognition: Study of Fixation-

Related Potential.” Automation in Construction 148 (April): 104756. 

https://doi.org/10.1016/j.autcon.2023.104756. 

 


