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ABSTRACT 

 

Recent advances in robotics and artificial intelligence have influenced the broader adoption of 

human-robot collaboration (HRC) in industries such as manufacturing and healthcare, but the same 

cannot be said about construction due to the dynamic nature of the work environment. To facilitate 

informed decision-making in HRC adoption, there is a need to evaluate the potential benefits of 

incorporating robots in construction activities. This study evaluates the impact of HRC on 

construction workers' workload. Experiments involving human-robot collaborative wood 

assembly tasks were conducted and workload levels of humans in different scenarios were 

evaluated using physiological data collected with a wearable sensing device. Thereafter, a survey 

was administered to participants to assess their mental workload. Findings show that HRC posed 

less workload on workers compared to human-human collaboration, which demonstrates the 

potential benefits of HRC in the aspect of workload or fatigue reduction among construction 

workers, and thus could help enhance productivity.  

 

INTRODUCTION 

 

The construction industry falls short in productivity when compared to other sectors like the 

manufacturing sector (Liu et al. 2021; Abioye et al. 2021). This could be attributed to the slow 

adoption rate of new technologies in the construction industry as well as the shortage of labor (Liu 

et al. 2021). Due to the dynamic, hazardous, and stressful nature of construction sites and activities, 

it is no surprise that workers would shy away from such activities that could lead to 

musculoskeletal disorders and other work-related sicknesses (Liang et al. 2021). Robots have been 

viewed in present times as a viable method of augmenting productivity in the construction industry 

(Abioye et al. 2021; Firth et al. 2022). Human-robot collaboration (HRC) is presently an important 

process used to facilitate the execution of tasks in extreme environments (Prewett et al. 2010) like 

outer space, cold regions, and radioactive environments. It provides a complementary environment 
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for more efficient work execution by combining the capabilities of humans and robots in different 

tasks  (Vásconez and Auat Cheein 2022).  

Like working with humans, working with robots also imposes a certain level of workload 

on humans (Prewett et al. 2010). Workload refers to the cost experienced by a worker, given their 

capacities, while reaching a particular level of performance on a task with specific requirements 

(Hart and Staveland 1988; Hart 2006). These requirements generally include both physical and 

mental tasks of which the impacts are dependent on the capacities of the workers carrying out the 

tasks (DiDomenico and Nussbaum 2008). For optimum performance of workers and to ensure a 

healthful environment for workers, it is important to measure and understand the workload of 

workers in order to identify areas of possible improvements (Aktas Potur et al. 2022). To quantify 

the amount of effort required by a worker in completing a task, physiological monitoring alone 

does not provide a worker’s perception of the physical and mental work associated with a task 

(DiDomenico and Nussbaum 2008), therefore, augmenting the physiological responses of workers 

with their subjective perception, provides a more holistic representation of the workload on a 

worker in terms of physical and mental resources required (Annett 2002). 

Workload assessment is necessary to ensure that workers are allocated the most suitable 

task as wrong task allocation will not only lead to higher error rates but also more workplace 

injuries (Chen et al., 2017). Therefore, this study aims to assess construction workers’ workload 

in HRC through a combination of physiological monitoring and subjective perception of humans 

working with a robot. This is expected to provide information on the difference in physical and 

mental workloads on workers when working with a robot and when working with other humans.  

 

BACKGROUND 

 

The development and advancements in robotics have promulgated the use of robots for mundane 

tasks as well as some intelligent tasks (Scholtz 2003). HRC has found a lot of applications in 

different industries like the medical, manufacturing, and transportation industries (Lin et al. 2020; 

Matheson et al. 2019). The construction industry is not left out in this aspect. Although not yet 

advanced in the construction industry compared to the earlier listed industries (Zhang et al. 2023), 

HRC is beginning to gain traction in construction. Construction sites are in most cases unstructured 

and continually changing as work progresses which makes it difficult for non-intelligent robots to 

operate. This has resulted in the use of mostly industrial robotic arms placed on moving objects in 

order to complete a task (Brosque et al. 2020). Despite these limitations, a few intelligent robots 

have been developed for different activities in the construction industry like bricklaying (James 

2020), painting (Asadi et al. 2018), and finishing (Bock 2007) which are all at their early stages of 

usage. These robots, however, still require human assistance for effective operation in construction 

environments, especially in activities that require a higher level of rational thinking. This 

interaction between humans and robots in a shared work environment raises the question of safety 

as well as the mental and physical workload on the worker for efficient work execution (Liu et al. 

2021).  

 Workload assessment can generally be classified into three categories—physiological, 

subjective, and performance-based assessment (Yagoda 2010). Physiological assessment monitors 

the biological impact of a task on a worker, subjective assessment provides information on the 

perceived level of workload according to the worker, while performance-based assessment 

measures the actual performance of the worker on the task rather than its impact on the worker 

(Yagoda 2010). The NASA-TLX is one of the most commonly used scales for measuring the 
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subjective workload of workers in different fields (Chen et al. 2017). It consists of six dimensions 

that measure various aspects of mental workload which include mental demand, physical demand, 

temporal demands, performance, effort, and level of frustration (Hart and Staveland 1988). Some 

studies have relied on its scale for assessing the workload on humans in human-robot collaboration. 

Novak (2015) estimated the human workload in HRC in a virtual environment using physiological 

measurements and the NASA-TLX for subjective task performance assessment. The study 

revealed that task performance showed a better result compared to physiological monitoring. 

Memar and Esfahami (2019) also assessed human workload in HRC in a simulated environment 

using brain monitoring and the NASA-TLX for subjective workload monitoring. The result 

demonstrated an agreement between brain monitoring and subjective workload monitoring. Bustos 

et al. (2021) found wearable sensors to be a valid tool for physiological monitoring with heart rate 

as one of the most used parameters in workload assessment. 

 These studies either considered one of the aspects of workload assessment categories or 

explored the factors in a virtual environment with activities not directly related to construction 

activities. The construction environment is mostly unstructured with lots of activities required to 

be performed in awkward positions and the results from the above studies may not accurately 

represent a realistic outcome from an actual construction work environment. The present study 

presents a comparison of the workloads of workers in both HRC and human-human collaboration 

(HHC) by completing different wood assembly tasks in a real environment.  

 

METHODOLOGY 

 

To achieve the aim of the study, two sets of wood assembly experiments were carried out, one 

involving HRC and a control experiment of HHC. The experiments consist of nine groups with 

each group comprising two members—the primary person and the helper. The primary person is 

responsible for connecting the lumber, while the helper assists with placing and measuring the 

lumber. The participants in this experiment are college students with basic knowledge of wood 

assembly tasks. In the HRC experiment, the primary person worked with the robot as the helper 

while a human helper was used in the HHC experiments. Since subjective workload is generally 

affected by a number of factors like individual capabilities, age, level of experience, and level of 

education (Wihardja et al. 2018), helpers used in this experiment were selected based on these 

factors. All the helpers in this experiment are senior architecture students between the ages of 21 

to 29 with about 3 years of work experience. The same primary persons were used for both the 

HRC and the corresponding HHC. The robot used in this experiment was the four-wheeled 

Clearpath Husky A200 with Universal Robot 5 e-Series and a 2-finger Robotiq gripper. To assess 

the workload of the participants, physiological data were collected from the participants as well as 

their perceived workload by administering a questionnaire at the end of each experiment. 

 

Experiment Task 

Two sets of wood assembly tasks were set up for this experiment, one, a 2-dimensional (2D) 

structure and the other, a 3-dimensional (3D) structure. Of the nine groups of participants, four 

groups performed the 2D structure experiment while the remaining five performed the 3D structure 

experiment. The 2D structure is made up of six joints while the 3D structure has extra five joints 

that connect the 2D structure to another similar 2D structure. These two wood assembly setups 

were completed using both HHC and HRC for comparison.  
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Physiological Monitoring 

Different metrics have been proposed by different studies for biological monitoring in workload 

assessment such as heart rate variability, respiratory rate, body temperature, body posture, blink 

frequency, blood pressure, etc. which are suitable for different activities (Awolusi et al. 2018; 

Vásconez and Cheein 2022). In this study, heart rate was considered as the metric for physiological 

monitoring. Heart rate has been extensively used by researchers for the physiological health 

monitoring of workers (Aryal et al. 2017; Chen and Tserng 2022; Umer et al. 2022). According to 

a state-of-the-art review by Anwer et al. (2021), the heart pumps more blood to increase blood 

flow around the body during physical activities for more muscle contraction which leads to 

increased heartbeat as the heart stroke volume cannot be raised suddenly. Therefore, mean heart 

rate is a good indicator of stress and workload. Heart rate data were obtained from the primary 

persons in both the HHC and HRC experiments for comparison with the Fitbit sensor as the 

wearable device used for the data collection as shown in Figure 1. 

 

 
Figure 1. Primary participant working with a robot in HRC setup. 

 

Workload Perception 

The NASA-TLX questionnaire, one of the most widely used tools to measure a worker’s subjective 

workload (Potur et al. 2022) was used to evaluate the participant's subjective workload in 

completing the different tasks. It is a multi-dimensional rating scale used in human workload 

assessment, comprising six workload-related factors combined to develop a dependable workload 

approximation (Hart and Staveland 1988; Novak et al. 2015). The six factors consider the 

perception of the participants on how much physical activity was required to complete the task, 

the mental activity required, the pace of the tasks, the sense of accomplishment felt, the effort 

required to complete each task, and the level of frustration and insecurity felt in the process. There 

are two main parts of the NASA-TLX with the first consisting of raw rating scales for workers to 

rate the level of perceived demand of each of the six factors, and the second part involving 15 

pairwise comparisons of all the factors to determine the number of times each factor comes out 

more important than the other. The adjusted ratings of the scales are then obtained by multiplying 

the number of counts from the pairwise comparison with the raw scale rating (Potur et al. 2022). 

In this study, however, only the raw scale rating of the factors was considered. According to Hart 

(2006), the raw NASA-TLX is easier to apply and the review of 29 studies that compared both the 

weighted and raw NASA-TLX showed very little to no difference in the result.  
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RESULT AND DISCUSSION 

 

To compare the workload on the primary person in both HRC and HHC, their heart rate data and 

the perceived workload were analyzed to assess the workload on the participants.  

 

Physiological Monitoring Result 

The primary person in each group was made to wear the Fitbit sensor on the wrist during the HHC 

and HRC experiments, and the heart rate data extracted after the experiment. The average heart 

rate of the primary person (in bpm) throughout the experiment was calculated as shown in Figure 

2. Heart rate has been used by different researchers as a physiological metric for measuring the 

amount of workload on a worker. The result (Figure 2) shows a trend of lower heart rates in HRC 

when compared with HHC with only group 1 as an exception, with an average reduction of 2.9% 

for all participants. This suggests a lower workload for the participants in the HRC setup. Only the 

results from 8 groups were included as the ninth group did not show up for the HRC experiment. 

 

 
Figure 2. Average heart rate of participants in HHC and HRC. 

 

Workload Perception Result 

The Raw NASA-TLX was administered to all the participants (primary persons and helpers) at the 

end of the experiments to measure the participants perceived workload on six factors. The factors 

include mental demand (MD), physical demand (PD), temporal demand (TD), Performance (PE), 

effort (EF), and frustration (FR). Only the results from the primary persons were considered in this 

study for comparison. Figure 3 shows the mean scale rating of the perceived workload by the 

primary persons in HHC and HRC experiments. It can be observed that overall, working with a 

robot posed less workload on the participants compared to working with humans with temporal 

demand and mental demand having the highest ratings in HHC and HRC respectively. 

 

 
Figure 3. Overall mean ratings of both 2D and 3D experiments 
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Figure 4. (a) 2D experiment (b) 3D experiment 

 

Mental Demand (MD): Mental demand generally refers to the level of thinking and decision-

making required to complete a task (Hart and Staveland 1988). It provides insight into the worker’s 

opinion on the complexity of the task. From Figure 4, in HRC, the participants felt less mental 

demand on average—28% less compared to HHC. Results of the MD in the two difficulty levels 

of the experiment (Figures 4a and 4b) indicate that the participants also experienced less MD in 

both experiments with about 45% less MD in HRC compared to HHC in the 2D experiment.  

 

Physical Demand (PD): This refers to the required physical activity for a task. It consists of all the 

maneuvering necessary for task completion. Wood assembly is a physically demanding task 

because of the various sequence of activities it requires ( Lee 2017). The result of the experiment 

showed an overall 39% reduction in physical demand on the primary participants when working 

with robots compared to working with humans. The lower physical demand in the HRC experiment 

could be attributed to the primary person focusing only on the lumber connection compared to 

HHC where the primary person, although assisted by the human helper, had to take part in 

measuring and marking the lumber. This was done by the robot in the HRC experiment. 

 

Temporal Demand (TD): Temporal demand deals with the pace of the task and the time pressure 

felt during task execution (Hart 2006). As expected, the HRC experiment showed an overall 59% 

reduction in temporal demand compared to the HHC with a 70% reduction when only the 3D task 

is considered as the robot reduces the task on the primary person in the HRC experiment. 

 

Performance (PE), Effort (EF), and Frustration (FR): Performance is the degree of success and 

satisfaction felt by a worker in achieving the goals of a task, effort refers to the perceived work 

difficulty by the worker, while frustration refers to the level of insecurity and stress compared to 

gratification and contentment experienced (Potur et al. 2022; Hart and Staveland 1988). Overall, 

these three factors saw a reduction in HRC compared to the HHC with a reduction of 60% in 

performance, 44% in effort, and 50% in frustration.  

 

CONCLUSION 

 

This study presents a workload evaluation of workers in HRC through physiological and subjective 

workload assessment by comparing the workload of workers in HHC and HRC. Wood assembly 

tasks were performed by the participants in a controlled environment to simulate an actual 

construction site activity. The NASA-TLX was used as a tool for subjective assessment of the 

participants while the physiological workload was evaluated by obtaining data on the heart rate of 

the participants with a wearable sensing device. The result showed a significant reduction in 

subjective workloads of the workers with a reduction of 28% in mental demand, 39% in physical 
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demand, 59% in temporal demand, 60% in performance, 44% in effort, and 50% in frustration. 

The physiological monitoring of the participants also showed a general reduction in workload with 

a 2.9% decrease in heart rate of the participants in the HRC setup. Although this study was 

conducted in a controlled real environment, which could affect the result of the experiment when 

compared to outdoor uncontrolled environment, it provides a more practical result compared to 

existing studies which are mostly conducted in virtual environments. The findings of this study 

are expected to provide more scientifically informed decision-making in the adoption of human-

robot collaboration in the construction industry.  
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