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ABSTRACT

Construction robots have great potential to serve as assistants to relieve construction workers from
repetitive and physically demanding tasks. It is essential for robots to understand and predict
human intention in order to adapt their motion to ensure smooth human-robot collaboration. This
study proposes a long short-term memory model-based multi-task learning framework to
simultaneously predict multi-level human intention in assembly tasks, including high-level actions
and objects, and low-level body movements, from observed body movements and associated
assembly components extracted from videos. The proposed models were trained and tested using
54 videos collected with nine participants performing six assembly tasks, achieving an accuracy
of 82% and 98% in action and object prediction, respectively, and an average displacement error
of 8.71 pixels in pose prediction. The incorporation of work context significantly improves the
accuracy of object prediction by 11.36%, with the performance of other two tasks increasing
slightly.

INTRODUCTION

Robotics has attracted broad attention as an emerging technology in construction, with applications
evolving over the past years from single-task construction robots, such as brick-laying robots
(Madsen 2019), rebar-tying robot (Cardno 2018), to general-purpose robotic platforms, especially
collaborative robots, for more flexible human-robot collaboration (HRC) (Kim et al. 2021).
Collaborative robots have great potential to serve as assistants to relieve human workers from
repetitive and physically demanding tasks, such as lifting and transporting heavy objects, tools
handover, assembly, etc. To this end, it is essential for robots to understand and predict human
intention, such that they can reason about their task and adapt their motion to ensure smooth and
effective HRC.

Many studies have developed methods to predict high-level human intention in terms of
their potential actions and/or desired objects in HRC, mostly in the manufacturing sector. For
instance, Liu and Wang (2017) developed a Hidden Markov model to predict pre-defined groups
of human actions. Liu et al. (2019) created a convolutional neural network (CNN)-long short-term
memory (LSTM) framework to predict intended action and desired tool in manufacturing assembly
tasks. Wang et al. (2022) proposed a method to predict human intention, represented as a group of
commands (e.g., stop, continue, slow down, etc.) to robots, via multimodal signal inputs, including
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natural language and wearable sensors. Some studies focused on understanding low-level
movements, but many were limited to hand movement prediction for HRC. For instance, Luo and
Mai (2019) developed a probabilistic dynamic movement primitive model to predict human hand
motion in manufacturing task. In construction sector, Zhou et al. (2022) proposed a framework to
cluster human behavior in terms of gaze-hand relationship and predict hand movement based on
gaze trajectories in pipe skid maintenance task. From the review of existing studies, most research
only focuses on a single type of human intention, without a holistic understanding of multi-level
intention, which is critical to developing an intelligent robot that can adapt to various human
behavior for smooth collaboration.

To overcome this limitation, this study proposes an integrated framework to
simultaneously predict multi-level human intention in an assembly task, including high-level
actions and objects, and low-level body movements, from observed body movements and
associated assembly components extracted from videos. The contribution lies in two aspects: 1) a
LSTM-based multi-task learning (MTL) model is developed to predict multi-level human intention,
including high-level actions and objects and low-level movements, leveraging the commonality in
human behavior. The encoder-decoder architecture of the model enables the prediction over
multiple timesteps. Furthermore, the model is augmented with task context information, i.e.,
current components being assembled, and shows improved performance compared to conventional
methods that only consider human movements. 2) The proposed integrated framework allows the
robot to answer three critical questions simultaneously in a HRC assembly task, i.e., “what is
needed?” — object prediction; “when is needed?” — action prediction; “where to pass the object?”
— body movement prediction. Knowing this enhances the intelligence of assistant robots and
enables them to adaptively plan their motion based on human intention. This framework can be
applied to other sectors, such as manufacturing, healthcare, etc.

METHODOLOGY

The methodology consists of three steps, as shown in Figure 1. First, collaborative assembly tasks
were designed, which involve different repetitive actions (e.g., pick, carry, assemble, etc.) and
objects (e.g., main parts, connector). A series of experiments were conducted and recorded, and
the collected videos were used for training and testing the proposed framework. Second, human
body movements, represented by time-series skeleton poses, were extracted from videos using a
deep learning model. Third, a LSTM-MTL model was created to predict high-level actions and
objects, and low-level body movements using time-series skeleton poses from the second step.
Furthermore, the objects involved in the current actions were incorporated as contextual
information to improve prediction performance.
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Figure 1. Overall framework
Task Design
For this study, six column-like structures were designed using unprocessed stones and 3D-printed
connectors for dry-joined assembly without any adhesives. The stones were 3D scanned using
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photogrammetry, and for each column, the stones were aligned along the vertical thrust line with
their center of mass. 3D-printed connectors were designed and fabricated according to the
arrangement of these stones (see Figure 2). These structures required high accuracy due to the
perfect fit connections of the dry-stacking of the unprocessed stones and the algorithmically
generated 3D printed connectors (Wibranek and Tessmann 2019). The tasks were designed with
different levels of complexity, including three tasks with two stones and one connector and three
tasks with three stones and two connectors (see Figure 3), requiring participants to adjust relative
positions and orientations between stones and connectors to precisely align with the design. These
tasks simulate complex assembly tasks in construction that require human dexterity and experience,
but robots could serve as assistants to hand over components and tools based on human needs.

Figure 2. Digital representations, highlighting the accuracy of the parts (A), an exploded view
with the three stones and 3D printed parts (B), and top views of the interfaces between stones
and 3D printed parts (C)

Figure 3. Assemble tasks (Tasks 1-3 are more complex than Tasks 4-6)

Nine groups of participants were recruited to perform all tasks. Each group consists of two
people, with one focusing on assembly task and the other serving as an assistant. The principle is
that human-robot collaboration could learn from conventions in human-human interactions
(Kramer et al. 2012). Therefore, the human behavior collected during human-human collaboration
in the same settings could be valuable to train deep learning models to predict human intention,
which could be then embedded in robot platform to enable intelligent HRC.

The entire experiments are videorecorded, and the collected videos serve as input data for
the integrated framework to predict human intention. Specifically, six types of actions that are
generalized from all tasks were defined, i.e., pick, carry, assemble, adjust, inspect, and release (see
Figure 4). Depending on specific task and participant, the length and order of each action may vary
in each experiment. Some actions may be even absent from certain experiments, for instance, some
participants may not “inspect” and/or “adjust” when assembling simple structures. Such variability



ensures the diversity and uncertainty of training data and highlights the need of deep learning-
based framework to improve generalization capability.

- - - - - -
(a) Pick (b) Carry (c) Assemble (d) Adjust (e) Release (e) Inspect
Figure 4. Samples actions involved in assembly tasks

Tracking of Human Body Movement

Low-level human movement is represented as time-series locations of human key points, such as
shoulders, elbows, hands, ankles, etc. This study adopts a deep learning-based pose tracking
algorithm, Pose Flow, developed by (Xiu et al. 2019), to track key point movements considering
its flexibility in multi-person scenarios and the computational efficiency. Particularly, the original
pose tracking algorithm tracks the movement of 17 key points for full body. In the task setting of
this study, lower body is usually occluded by the work bench and the collaborative assembly
mainly involve upper body movement. Therefore, only 13 key points of upper body (including
hips) are considered.

LSTM-MTL Model for Intention Prediction

This study proposes an LSTM encoder-decoder model based MTL framework to predict multi-
level human intention (see Figure 5). High-level action and object prediction are formulated as
multi-class classification problem, while low-level movement prediction is modeled as regression
problem. Specifically, the 2D pixel coordinates of 13 human key points obtained from pose
tracking are normalized and constructed into a 26-dimensional feature vector, which are then
concatenated with the object information to incorporate the work context, i.e., the current work
status, represented by the object that is currently handled or targeted by the person. The object
class contains three groups, i.e., stone, connector, and stone integrated with connector (in Task 3
only). The resulting 27-dimensional features over multiple time steps are fed into LSTM encoder
that captures the dynamics of human movements and work context.
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Figure 5. Proposed LSTM-MTL model for multi-level human intention prediction



MTL mechanism is adopted to simultaneously learn models to predict multi-level human
intentions, as it can effectively increase computation efficiency and mitigate the challenges when
specific classes have limited training data (Cai et al. 2021, 2022). Specifically, the encoded vector
is fed into LSTM decoder for multi-step prediction, which is followed by a general dense layer to
capture the common representation across all tasks. Then, task-specific dense layers are used to
model the uniqueness of individual tasks, resulting in separate outputs for each task. Besides,
dropout layers are applied for both LSTM encoder and decoder to mitigate overfitting issue. The
loss function of this LSTM-MTL model is the weighted combination of categorical cross-entropy
losses for action and object prediction, and mean squared error (MSE) loss for movement
prediction. The weights could be determined based on the relatively importance of each task.

IMPLEMENTATION

The proposed framework was evaluated using videos collected from the experiments — a total of
54 videos were collected with 9 participants assembling 6 different structures, as detailed in “Task
Design” section. All videos were taken at 15fps. The Pose Flow algorithm (Xiu et al. 2019) was
first applied to the videos to extract the continuous body movements (with 13 key points) of each
person. Then the extracted key point locations were constructed into time-series inputs for the
proposed LSTM-MTL framework for human intention prediction. Following relevant studies in
motion prediction, e.g., (Mao et al. 2019), the observation duration was set to 400ms (i.e., 6 frames)
and the prediction duration was set to 400ms (i.e., 6 frames) for short-term prediction. The actions
and involved objects were manually annotated on a frame-by-frame basis. The dataset includes a
total of 27,314 images (i.e., total video length is around 30 min). Table 1 lists the distribution of
different actions and objects in the dataset.

Table 1 Sample size for each class of actions and objects

Action Class Sample Size Object Class Sample Size

Pick 3,935 Stone 15,309

Carry 2,621 Connector 8,913

Assemble 7,309 Stone+connector 3,092

Adjust 8,809 Note: “Stone+connector” is a special object
Inspect 2,123 type only in task 3, where connectors are
Release 2,517 integrated with stones.

The dataset was split into 80% for training and 20% for testing. In the training process, 5-
fold cross-validation was adopted to select the best configuration of parameters, including batch
size, hidden unit, number of epochs, dropout rate, and learning rate. The average performance of
the 5 sub-models was treated as the performance under a specific configuration and used to select
the best configuration. Once the configuration was selected, the corresponding model was
retrained using the entire training set and tested on the testing set to evaluate the performance of
the proposed framework. As a result, the LSTM-MTL network was trained on mini-batches, with
a batch size of 60, the hidden unit set to 50, and numbers of epochs at 2500. The dropout rate was
selected as 0.2. Adam was used as the optimization algorithm with an initial learning rate of 0.0001.
The weights of loss functions for the three tasks were set as 1:1:5.

RESULTS
The performance of classification tasks, i.e., action and object prediction, was primarily evaluated
using overall accuracy, which measures the percentage of images being correctly classified for all



classes of actions and objects, respectively. The accuracy was computed as Accuracy =

— N % 100%, where TP represents true positive, 7N represents true negative, FP
TN + TP +FN + FP

represents false positive, and FN represents false negative. The performance of the regression task,
i.e., motion prediction, was evaluated using two metrics (Yuan and Kitani 2020): 1) average
displacement error (ADE), measuring average L distance between the predicted and ground-truth

» . . . 1 —T =i i ,
joint positions over all predicted time steps, computed as — ?’zlzggg”yé - y%” 2) Final
displacement error (FDE), measuring L> distance between final ground-truth joint positions and
predicted joint positions, computed as% §V=1||?iT - yiT”, where N is sample size, y: is predicted

pose of i data at time ¢, y: is ground truth pose of i data at time ¢, and T is prediction duration.

To demonstrate the advantage of incorporating contextual information, two models were
compared, where Model 1 indicates the baseline model that does not consider contextual
information, and Model 2 incorporates types of involved objects in the observation period in the
input features as contextual information. Table 2 lists the results. It can be shown that both models
can predict actions and objects at a satisfactory accuracy (over 80%). Specifically, incorporating
contextual information leads to a 11.36% improvement in object prediction because the tasks
involve pre-defined assembly order, and the objects needed are heavily depending on the current
work status. In contrast, the accuracy of action prediction does not differ significantly between two
models since it is primarily inferred from human body poses.

Table. 2 Quantitative results of multi-level intention prediction

Task 1 — Action | Task 2 — Object Task 3 — Body motion
Model . _ o
prediction prediction prediction
Accuracy Accuracy ADE (pixel) | FDE (pixel)
Model 1 (baseline) 0.81 0.88 8.78 10.61
Model 2 (context-aware) 0.82 0.98 8.71 10.56
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Figure 6. Confusion matrix for action and object prediction

The classification performance of individual classes in these two tasks is further illustrated
using confusion matrix (see Figure 6). In action prediction, “inspect” and “release” exhibit
relatively low accuracy, which is potentially due to the smaller sample size. However,
incorporating contextual information significantly increases the performance in these two classes.
Furthermore, most misclassifications occurred in similar actions that may happen alternatively
during a short period, such as “assemble” and “adjust”, “release” and “adjust”, which may require
additional cues to better differentiate them. In terms of body motion prediction, Model 2 shows a

slight improvement compared to Model 1. As body pose may be affected by the involved objects



(e.g., different weights and shapes), prior knowledge of such context could lead to a better
inference of future motion. A sample prediction result is visualized in Figure 7.
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Figure 7. Demonstration of predicted body movements over six prediction steps (top row shows
Model 1 result, bottom row shows Model 2 result; blue lines indicate ground truth poses, and red
lines indicate predicted poses).

CONCLUSION

This study proposes an integrated LSTM-based MTL framework to predict multi-level human
intention in assembly tasks, including high-level actions and objects, and low-level body
movements, from observed body movements and associated assembly components extracted from
videos. The proposed method is validated using video data from 6 assembly tasks conducted by 9
people. The results show that the proposed method achieves an accuracy of 82% and 98% for
action and object prediction, respectively, and an ADE of 8.71 pixels and an FDE of 10.56 pixels
in pose prediction. Specifically, the incorporation of work context, represented as the type of
objects involved in current progress, significantly improves the accuracy of object prediction by
11.36%, with the performance of other two tasks increasing slightly. The proposed method is
expected to enhance the intelligence of collaborative robots by enabling robots to predict “what is
needed”, “when is needed”, and “where to pass the objects” in HRC assembly tasks, and thus
planning adaptively to enhance smooth HRC.

There remain some limitations. First, in the proposed framework, 2D pose was estimated
from monocular camera. Our ongoing study uses RGB-D camera to capture body motion, and
depth information will be recovered for 3D pose prediction. Second, current object information
was manually annotated. In future studies, the proposed framework will be integrated with an
object detection module to automatically estimate current object information and achieve fully
automatic prediction. Third, in this study, human-human interaction was used to collect human
intention during assembly tasks, with the premise that HRC could learn from conventions in
human-human interactions. In our ongoing study, further experiments were conducted for both
HRC and human-human collaboration, and the proposed framework will be trained and tested
using data from both scenarios to better understand human behavior in HRC.
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