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ABSTRACT 

Construction robots have great potential to serve as assistants to relieve construction workers from 

repetitive and physically demanding tasks. It is essential for robots to understand and predict 

human intention in order to adapt their motion to ensure smooth human-robot collaboration. This 

study proposes a long short-term memory model-based multi-task learning framework to 

simultaneously predict multi-level human intention in assembly tasks, including high-level actions 

and objects, and low-level body movements, from observed body movements and associated 

assembly components extracted from videos. The proposed models were trained and tested using 

54 videos collected with nine participants performing six assembly tasks, achieving an accuracy 

of 82% and 98% in action and object prediction, respectively, and an average displacement error 

of 8.71 pixels in pose prediction. The incorporation of work context significantly improves the 

accuracy of object prediction by 11.36%, with the performance of other two tasks increasing 

slightly. 

 

INTRODUCTION 

Robotics has attracted broad attention as an emerging technology in construction, with applications 

evolving over the past years from single-task construction robots, such as brick-laying robots 

(Madsen 2019), rebar-tying robot (Cardno 2018), to general-purpose robotic platforms, especially 

collaborative robots, for more flexible human-robot collaboration (HRC) (Kim et al. 2021). 

Collaborative robots have great potential to serve as assistants to relieve human workers from 

repetitive and physically demanding tasks, such as lifting and transporting heavy objects, tools 

handover, assembly, etc. To this end, it is essential for robots to understand and predict human 

intention, such that they can reason about their task and adapt their motion to ensure smooth and 

effective HRC. 

Many studies have developed methods to predict high-level human intention in terms of 

their potential actions and/or desired objects in HRC, mostly in the manufacturing sector. For 

instance, Liu and Wang (2017) developed a Hidden Markov model to predict pre-defined groups 

of human actions. Liu et al. (2019) created a convolutional neural network (CNN)-long short-term 

memory (LSTM) framework to predict intended action and desired tool in manufacturing assembly 

tasks. Wang et al. (2022) proposed a method to predict human intention, represented as a group of 

commands (e.g., stop, continue, slow down, etc.) to robots, via multimodal signal inputs, including 

mailto:jiannan.cai@utsa.edu
mailto:xiaoyun.liang@utsa.edu
mailto:bastian.wibranek@utsa.edu
mailto:yuanxiong.guo@utsa.edu


 – 2 –   

natural language and wearable sensors. Some studies focused on understanding low-level 

movements, but many were limited to hand movement prediction for HRC. For instance, Luo and 

Mai (2019) developed a probabilistic dynamic movement primitive model to predict human hand 

motion in manufacturing task. In construction sector, Zhou et al. (2022) proposed a framework to 

cluster human behavior in terms of gaze-hand relationship and predict hand movement based on 

gaze trajectories in pipe skid maintenance task. From the review of existing studies, most research 

only focuses on a single type of human intention, without a holistic understanding of multi-level 

intention, which is critical to developing an intelligent robot that can adapt to various human 

behavior for smooth collaboration.  

To overcome this limitation, this study proposes an integrated framework to 

simultaneously predict multi-level human intention in an assembly task, including high-level 

actions and objects, and low-level body movements, from observed body movements and 

associated assembly components extracted from videos. The contribution lies in two aspects: 1) a 

LSTM-based multi-task learning (MTL) model is developed to predict multi-level human intention, 

including high-level actions and objects and low-level movements, leveraging the commonality in 

human behavior. The encoder-decoder architecture of the model enables the prediction over 

multiple timesteps. Furthermore, the model is augmented with task context information, i.e., 

current components being assembled, and shows improved performance compared to conventional 

methods that only consider human movements. 2) The proposed integrated framework allows the 

robot to answer three critical questions simultaneously in a HRC assembly task, i.e., “what is 

needed?” – object prediction; “when is needed?” – action prediction; “where to pass the object?” 

– body movement prediction. Knowing this enhances the intelligence of assistant robots and 

enables them to adaptively plan their motion based on human intention. This framework can be 

applied to other sectors, such as manufacturing, healthcare, etc. 

 

METHODOLOGY 

The methodology consists of three steps, as shown in Figure 1. First, collaborative assembly tasks 

were designed, which involve different repetitive actions (e.g., pick, carry, assemble, etc.) and 

objects (e.g., main parts, connector). A series of experiments were conducted and recorded, and 

the collected videos were used for training and testing the proposed framework. Second, human 

body movements, represented by time-series skeleton poses, were extracted from videos using a 

deep learning model. Third, a LSTM-MTL model was created to predict high-level actions and 

objects, and low-level body movements using time-series skeleton poses from the second step. 

Furthermore, the objects involved in the current actions were incorporated as contextual 

information to improve prediction performance. 

 

 
Figure 1. Overall framework 

Task Design 

For this study, six column-like structures were designed using unprocessed stones and 3D-printed 

connectors for dry-joined assembly without any adhesives. The stones were 3D scanned using 
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photogrammetry, and for each column, the stones were aligned along the vertical thrust line with 

their center of mass. 3D-printed connectors were designed and fabricated according to the 

arrangement of these stones (see Figure 2). These structures required high accuracy due to the 

perfect fit connections of the dry-stacking of the unprocessed stones and the algorithmically 

generated 3D printed connectors (Wibranek and Tessmann 2019). The tasks were designed with 

different levels of complexity, including three tasks with two stones and one connector and three 

tasks with three stones and two connectors (see Figure 3), requiring participants to adjust relative 

positions and orientations between stones and connectors to precisely align with the design. These 

tasks simulate complex assembly tasks in construction that require human dexterity and experience, 

but robots could serve as assistants to hand over components and tools based on human needs. 

 

 
Figure 2. Digital representations, highlighting the accuracy of the parts (A), an exploded view 

with the three stones and 3D printed parts (B), and top views of the interfaces between stones 

and 3D printed parts (C) 

 

 
Figure 3. Assemble tasks (Tasks 1-3 are more complex than Tasks 4-6) 

 

Nine groups of participants were recruited to perform all tasks. Each group consists of two 

people, with one focusing on assembly task and the other serving as an assistant. The principle is 

that human-robot collaboration could learn from conventions in human-human interactions 

(Krämer et al. 2012). Therefore, the human behavior collected during human-human collaboration 

in the same settings could be valuable to train deep learning models to predict human intention, 

which could be then embedded in robot platform to enable intelligent HRC.  

The entire experiments are videorecorded, and the collected videos serve as input data for 

the integrated framework to predict human intention. Specifically, six types of actions that are 

generalized from all tasks were defined, i.e., pick, carry, assemble, adjust, inspect, and release (see 

Figure 4). Depending on specific task and participant, the length and order of each action may vary 

in each experiment. Some actions may be even absent from certain experiments, for instance, some 

participants may not “inspect” and/or “adjust” when assembling simple structures. Such variability 
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ensures the diversity and uncertainty of training data and highlights the need of deep learning-

based framework to improve generalization capability. 

 

Figure 4. Samples actions involved in assembly tasks 

 

Tracking of Human Body Movement 

Low-level human movement is represented as time-series locations of human key points, such as 

shoulders, elbows, hands, ankles, etc. This study adopts a deep learning-based pose tracking 

algorithm, Pose Flow, developed by (Xiu et al. 2019), to track key point movements considering 

its flexibility in multi-person scenarios and the computational efficiency. Particularly, the original 

pose tracking algorithm tracks the movement of 17 key points for full body. In the task setting of 

this study, lower body is usually occluded by the work bench and the collaborative assembly 

mainly involve upper body movement. Therefore, only 13 key points of upper body (including 

hips) are considered. 

 

LSTM-MTL Model for Intention Prediction 

This study proposes an LSTM encoder-decoder model based MTL framework to predict multi-

level human intention (see Figure 5). High-level action and object prediction are formulated as 

multi-class classification problem, while low-level movement prediction is modeled as regression 

problem. Specifically, the 2D pixel coordinates of 13 human key points obtained from pose 

tracking are normalized and constructed into a 26-dimensional feature vector, which are then 

concatenated with the object information to incorporate the work context, i.e., the current work 

status, represented by the object that is currently handled or targeted by the person. The object 

class contains three groups, i.e., stone, connector, and stone integrated with connector (in Task 3 

only). The resulting 27-dimensional features over multiple time steps are fed into LSTM encoder 

that captures the dynamics of human movements and work context. 

 

 
Figure 5. Proposed LSTM-MTL model for multi-level human intention prediction 
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MTL mechanism is adopted to simultaneously learn models to predict multi-level human 

intentions, as it can effectively increase computation efficiency and mitigate the challenges when 

specific classes have limited training data (Cai et al. 2021, 2022). Specifically, the encoded vector 

is fed into LSTM decoder for multi-step prediction, which is followed by a general dense layer to 

capture the common representation across all tasks. Then, task-specific dense layers are used to 

model the uniqueness of individual tasks, resulting in separate outputs for each task. Besides, 

dropout layers are applied for both LSTM encoder and decoder to mitigate overfitting issue. The 

loss function of this LSTM-MTL model is the weighted combination of categorical cross-entropy 

losses for action and object prediction, and mean squared error (MSE) loss for movement 

prediction. The weights could be determined based on the relatively importance of each task. 

 

IMPLEMENTATION  

The proposed framework was evaluated using videos collected from the experiments – a total of 

54 videos were collected with 9 participants assembling 6 different structures, as detailed in “Task 

Design” section. All videos were taken at 15fps. The Pose Flow algorithm (Xiu et al. 2019) was 

first applied to the videos to extract the continuous body movements (with 13 key points) of each 

person. Then the extracted key point locations were constructed into time-series inputs for the 

proposed LSTM-MTL framework for human intention prediction. Following relevant studies in 

motion prediction, e.g., (Mao et al. 2019), the observation duration was set to 400ms (i.e., 6 frames) 

and the prediction duration was set to 400ms (i.e., 6 frames) for short-term prediction. The actions 

and involved objects were manually annotated on a frame-by-frame basis. The dataset includes a 

total of 27,314 images (i.e., total video length is around 30 min). Table 1 lists the distribution of 

different actions and objects in the dataset.  

Table 1 Sample size for each class of actions and objects 

Action Class Sample Size Object Class Sample Size 

Pick 3,935 Stone 15,309 

Carry 2,621 Connector 8,913 

Assemble 7,309 Stone+connector 3,092 

Adjust 8,809 Note: “Stone+connector” is a special object 

type only in task 3, where connectors are 

integrated with stones. 
Inspect 2,123 

Release 2,517 

 

The dataset was split into 80% for training and 20% for testing. In the training process, 5-

fold cross-validation was adopted to select the best configuration of parameters, including batch 

size, hidden unit, number of epochs, dropout rate, and learning rate. The average performance of 

the 5 sub-models was treated as the performance under a specific configuration and used to select 

the best configuration. Once the configuration was selected, the corresponding model was 

retrained using the entire training set and tested on the testing set to evaluate the performance of 

the proposed framework. As a result, the LSTM-MTL network was trained on mini-batches, with 

a batch size of 60, the hidden unit set to 50, and numbers of epochs at 2500. The dropout rate was 

selected as 0.2. Adam was used as the optimization algorithm with an initial learning rate of 0.0001. 

The weights of loss functions for the three tasks were set as 1:1:5.  

 

RESULTS 

The performance of classification tasks, i.e., action and object prediction, was primarily evaluated 

using overall accuracy, which measures the percentage of images being correctly classified for all 



 – 6 –   

classes of actions and objects, respectively. The accuracy was computed as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 +𝐹𝑁 + 𝐹𝑃
× 100% , where TP represents true positive, TN represents true negative, FP 

represents false positive, and FN represents false negative. The performance of the regression task, 

i.e., motion prediction, was evaluated using two metrics (Yuan and Kitani 2020): 1) average 

displacement error (ADE), measuring average L2 distance between the predicted and ground-truth 

joint positions over all predicted time steps, computed as 
1

𝑁×𝑇
∑ ∑ ‖𝒚̂𝑡

𝑖 − 𝒚𝑡
𝑖 ‖𝑡=𝑇

𝑡=0
𝑁
𝑖=1 . 2) Final 

displacement error (FDE), measuring L2 distance between final ground-truth joint positions and 

predicted joint positions, computed as 
1

𝑁
∑ ‖𝒚̂𝑇

𝑖 − 𝒚𝑇
𝑖 ‖𝑁

𝑖=1 , where N is sample size, 𝒚̂𝑡
𝑖  is predicted 

pose of ith data at time t, 𝒚𝑡
𝑖  is ground truth pose of ith data at time t, and T is prediction duration. 

To demonstrate the advantage of incorporating contextual information, two models were 

compared, where Model 1 indicates the baseline model that does not consider contextual 

information, and Model 2 incorporates types of involved objects in the observation period in the 

input features as contextual information. Table 2 lists the results. It can be shown that both models 

can predict actions and objects at a satisfactory accuracy (over 80%). Specifically, incorporating 

contextual information leads to a 11.36% improvement in object prediction because the tasks 

involve pre-defined assembly order, and the objects needed are heavily depending on the current 

work status. In contrast, the accuracy of action prediction does not differ significantly between two 

models since it is primarily inferred from human body poses.  

 

Table. 2 Quantitative results of multi-level intention prediction 

Model 
Task 1 – Action 

prediction 

Task 2 – Object 

prediction 

Task 3 – Body motion 

prediction 

 Accuracy Accuracy ADE (pixel) FDE (pixel) 

Model 1 (baseline) 0.81 0.88 8.78 10.61 

Model 2 (context-aware) 0.82 0.98 8.71 10.56 

 

 
Figure 6. Confusion matrix for action and object prediction 

 

The classification performance of individual classes in these two tasks is further illustrated 

using confusion matrix (see Figure 6). In action prediction, “inspect” and “release” exhibit 

relatively low accuracy, which is potentially due to the smaller sample size. However, 

incorporating contextual information significantly increases the performance in these two classes. 

Furthermore, most misclassifications occurred in similar actions that may happen alternatively 

during a short period, such as “assemble” and “adjust”, “release” and “adjust”, which may require 

additional cues to better differentiate them. In terms of body motion prediction, Model 2 shows a 

slight improvement compared to Model 1. As body pose may be affected by the involved objects 
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(e.g., different weights and shapes), prior knowledge of such context could lead to a better 

inference of future motion. A sample prediction result is visualized in Figure 7. 

 

 
Figure 7. Demonstration of predicted body movements over six prediction steps (top row shows 

Model 1 result, bottom row shows Model 2 result; blue lines indicate ground truth poses, and red 

lines indicate predicted poses). 

 

CONCLUSION 

This study proposes an integrated LSTM-based MTL framework to predict multi-level human 

intention in assembly tasks, including high-level actions and objects, and low-level body 

movements, from observed body movements and associated assembly components extracted from 

videos. The proposed method is validated using video data from 6 assembly tasks conducted by 9 

people. The results show that the proposed method achieves an accuracy of 82% and 98% for 

action and object prediction, respectively, and an ADE of 8.71 pixels and an FDE of 10.56 pixels 

in pose prediction. Specifically, the incorporation of work context, represented as the type of 

objects involved in current progress, significantly improves the accuracy of object prediction by 

11.36%, with the performance of other two tasks increasing slightly. The proposed method is 

expected to enhance the intelligence of collaborative robots by enabling robots to predict “what is 

needed”, “when is needed”, and “where to pass the objects” in HRC assembly tasks, and thus 

planning adaptively to enhance smooth HRC.  

There remain some limitations. First, in the proposed framework, 2D pose was estimated 

from monocular camera. Our ongoing study uses RGB-D camera to capture body motion, and 

depth information will be recovered for 3D pose prediction. Second, current object information 

was manually annotated. In future studies, the proposed framework will be integrated with an 

object detection module to automatically estimate current object information and achieve fully 

automatic prediction. Third, in this study, human-human interaction was used to collect human 

intention during assembly tasks, with the premise that HRC could learn from conventions in 

human-human interactions. In our ongoing study, further experiments were conducted for both 

HRC and human-human collaboration, and the proposed framework will be trained and tested 

using data from both scenarios to better understand human behavior in HRC. 
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