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Generalized torical band inequalities give precise upper bounds for thewidth of compact

manifolds with boundary in terms of positive pointwise lower bounds for scalar

curvature, assuming certain topological conditions. We extend several incarnations

of these results in which pointwise scalar curvature bounds are replaced with spectral

scalar curvature bounds. More precisely, we prove upper bounds for the width in terms

of the principal eigenvalue of the operator −� + cR, where R denotes scalar curvature

and c > 0 is a constant. Three separate strategies are employed to obtain distinct

results holding in different dimensions and under varying hypotheses, namely we utilize

spacetime harmonic functions,μ-bubbles, and spinorial Callias operators. In dimension

3, where the strongest result is produced, we are also able to treat open and incomplete

manifolds, and establish the appropriate rigidity statements. Additionally, a version of

such spectral torus band inequalities is givenwhere tori are replacedwith cubes. Finally,

as a corollary, we generalize the classical work of Schoen and Yau, on the existence of

black holes due to concentration of matter, to higher dimensions and with alternate

measurements of size.
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1 Introduction

In [17], Gromov–Lawson introduced a homotopy theoretic obstruction to positive scalar

curvature on closed spin manifolds, referred to as enlargeability. Informally, this notion

contends that since the Ricci endomorphism must have at least one positive eigenvalue

at each point when scalar curvature is positive, themanifold cannot expand dramatically

in all directions simultaneously. The n-torus Tn, therefore, cannot admit a metric of

positive scalar curvature because it may be viewed as expanding in all directions by

passing to covers. This heuristic is exemplioed in the so called torus band inequality.

More precisely, if the product Tn−1 × [−1, 1] admits a Riemannian metric having scalar

curvature bounded below by λ > 0, then the manifold’s width or rather distance between

the two boundary components is bounded above by

width ≤ 2π

√
n− 1

nλ
. (1.1)

This sharp inequality was orst proved by Gromov in [15] for n ≤ 7 using minimal

hypersurface techniques, and was extended to all dimensions by Cecchini [5] and Zeidler

[44] using spinorial methods involving Callias operators. A variety of related band-width

inequalities were established by Cecchini–Zeidler [6] again using spinors, and by Räde

[31] with the μ-bubble approach. Furthermore, in [19], spacetime harmonic functions

are applied to obtain a version of the 3-dimensional torus band inequality with rigidity

statement, and Chai–Wan [7] have established results of this type in the setting of initial

data sets for the Einstein equations.

In the current paper, we present spectral versions of torical band inequalities,

as well as Gromov’s cube inequality [16, Section 3.8], and show how these can be used to

obtain generalizations of the Schoen–Yau [35] black hole existence result. Inwhat follows,

all manifolds are assumed to be connected, oriented, Hausdorff, second-countable, and

smooth. Given an n-dimensional Riemannian manifold (Mn,g) and a number c ∈ R, we

deone the c-spectral constant by

�c = inf

{∫

Mn

(
|∇u|2 + cRu2

)
dV

∣∣∣u ∈ H1
0 (Mn),

∫

Mn
u2dV=1

}
, (1.2)

where R denotes scalar curvature and H1
0 (Mn) is the Sobolev space of L2 functions

with square integrable derivatives arising as the completion of C∞
0 (Mn), the space of

smooth functions with compact support, in the Sobolev H1-norm.WhenMn is a compact

manifold with boundary, �c is deoned as the c-spectral constant of the interior
◦

Mn,

which coincides with the principal Dirichlet eigenvalue of the Schrödinger operator

−� + cR, and the condition �c > 0 may be interpreted as a weak notion of positive
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scalar curvature if c > 0. This particular type of Schrödinger operator appears in various

geometric contexts for different values of c. The particular choice c = 1
2 plays a special

role in the search for black holes,while other values of c are used for the Yamabe problem,

minimal surfaces, and Ricci now with surgery; we refer to the article by Li–Mantoulidis

[24] for an extended discussion.

The orst spectral band-width result presented below is restricted to dimension 3,

but provides the strongest statement and conclusions. In particular, we are able to treat

open (possibly incomplete) manifolds and obtain rigidity in the case of equality, for an

inonite range of c values.This theorem is obtained using the level set technique involving

spacetime harmonic functions. If E is a non-empty collection of ends associated with a

manifoldMn, and �n−1 ⊂ Mn is a closed hypersurface, then the distance between E and

�n−1 will be labelled by d(E,�n−1) and is deoned as the inomum of lengths of paths

traveling from points in �n−1 to E. For further details concerning the notion of ends

and properties of open Riemannian manifolds, we refer to [19, Appendix C]. Recall that

a homology class is called spherical if it can be represented as the image of a sphere’s

fundamental class.

Theorem 1.1. Let (M3,g) be an open 3-dimensional Riemannian manifold with a

smooth closed hypersurface �2 separating the ends of M3 into two disjoint nonempty

classes E− and E+. Assume that there are no spherical classes in H2(M
3;Z), and that the

scalar curvature of (M3,g) is bounded from below infM3 R > −∞. If c > 1
6 and �c(g) > 0,

then

d(E−,�
2) + d(E+,�

2) ≤
π

α
, where α =

√
�c(6 − c−1)

2c(8 − c−1)
. (1.3)

Moreover, equality is achieved in (1.3) if and only if (M3,g) is isometric to the warped

product
((

0,
π

α

)
× �2, dρ2 + [sin(αρ)]

8c−2
6c−1 g0

)
, (1.4)

where (�2,g0) is a nat torus.

It should be noted that the model geometries exhibit different asymptotic

behavior at the ends depending on whether 1
6 < c < 1

4 , c > 1
4 , or c = 1

4 , namely

the cross-sectional tori either expand, contract, or remain unchanged respectively, see

Figure 1. Moreover, if we assume the pointwise bound R ≥ λ > 0 and note that �c ≥

cλ, then applying Theorem 1.1 while letting c → ∞ recovers the original torus band

inequality (1.1).
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Fig. 1. Case of equality model geometries from left to right: c > 1
4 , c = 1

4 , c < 1
4 .

In order to treat higher dimensional spectral band-width inequalities, we will

employ the use of spinorial Callias operators [6]. These techniques, which involve

modioed Dirac equations, have similarities with Witten’s proof of the spacetime version

of the positive mass theorem [40]. The statement of the next result requires certain

terminology. A compact Riemannian manifold (Mn,g) whose boundary components are

separated into two disjoint and non-empty collections ∂Mn = ∂−M
n � ∂+M

n will be

referred to as a Riemannian band, and its width is deoned to be the distance between

the two classes of boundary components d(∂−M
n, ∂+M

n). A Riemannian band is called

overtorical if there exists a smooth map F : Mn → Tn−1 × [−1, 1] of nonzero degree,

with F(∂±M
n) ⊂ Tn−1 × {±1}. Furthermore, a Riemannian band that is spin is said

to be Â-overtorical [43, Section 5] if there is an integer k ≥ 1 and a smooth map

F : Mn → Tk−1 × [−1, 1] such that F(∂±M
n) ⊂ Tk−1 ×{±1}, and the Â-genus Â(F−1(p)) �= 0

for regular values p of F; this latter condition is equivalent to requiring that the Â-degree

of F does not vanish. Notice that in order for the Â-genus of the ober to be nonzero, the

number k must be less than or equal to n and satisfy n− k = 0 mod 4. For instance, the

product of a K3 surface with an interval is an Â-overtorical band, where the map F may

be taken to be projection to the interval. If k = n, then the Â-degree agrees with the usual

degree of a map between oriented manifolds, and in this situation an Â-overtorical band

is an overtorical band.

Theorem 1.2. Let (Mn, ∂±M
n,g) be an odd dimensional spin band, which is Â-

overtorical with n ≥ 1. If c > n−1
4n and �c > 0, then

d(∂−M
n, ∂+M

n) ≤ 2π

√
c

�c

(
(4c − 1)n+ 2 − 4c

(4c − 1)n+ 1

)
. (1.5)

Recall that for n ≥ 3 the conformal Laplacian is given by −� + cnR, where cn =

n−2
4(n−1)

. Thus, the lower bound for c given by n−1
4n coincides with the conformal Laplacian
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constant of one dimension higher cn+1. The pointwise version of this result was obtained

by Zeidler in [43, Theorem 3.1, Proposition 5.5], and states that if R ≥ λ > 0, then the

Â-overtorical band width satisoes the upper bound of (1.1). As with Theorem 1.1, the

pointwise analogue may be obtained from the spectral result by observing that �c ≥ cλ

and then sending c → ∞.

We may remove the spin assumption up to dimension 7 by utilizing (warped)

μ-bubbles. These hypersurfaces, introduced by Gromov [16, Section 5], satisfy a type

of prescribed mean curvature equation and come with a stability property that can

be exploited in a similar manner to the classical Schoen–Yau usage of stable mini-

mal surfaces. Alternatively, from a mathematical general relativity perspective, the μ-

bubbles may be viewed as a stable apparent horizon within an auxiliary initial data

set for the Einstein equations. In the next theorem, we establish a spectral band width

inequality restricted to the case c = 1
2 . The pointwise version of this result, that is

under the assumption R ≥ λ > 0, again yields the same upper bound as in (1.1) and

is given by Gromov [15, page 8] with a proof via torical symmetrization. Moreover, the

pointwise rendition may also be obtained from the work of Radë [31] who also exploited

μ-bubbles to obtain a variety of band-width estimates, or separately by modiocations of

the arguments presented below in Section 4.

Theorem 1.3. Let (Mn, ∂±M
n,g) be an overtorical band with n ≤ 7. If � 1

2
> 0, then

d(∂−M
n, ∂+M

n) ≤ π

√
2n

(n+ 1)� 1
2

. (1.6)

Another type of width inequality has been obtained for cubes by Gromov

[16, Section 3.8] for dimensions n ≤ 8, by minimal surface techniques, and this was

extended to all higher dimensions by Wang–Xie–Yu [39, Theorem 1.1] (see also [41]) with

Dirac operatormethods.The result states that if a Riemannianmetric on the cube [−1, 1]n

has scalar curvature bounded below by R ≥ λ > 0, then

n∑

i=1

1


2
i

≥
nλ

4π2(n− 1)
, (1.7)

where 
i is the distance between the ith pair of opposite faces of the cube; the constant
1

4π2 is optimal [39, Remark 2.1]. The inverse square root of the quantity on the left-hand

side of (1.7) is referred to as the cubical-width. Here we establish a spectral version of

the cube-width inequality for the case when c = 1
2 .
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Theorem 1.4. Let ([−1, 1]n,g) be a Riemannian cube. If � 1
2

> 0, then

n∑

i=1

1


2
i

≥
(n+ 1)� 1

2

2π2n
, (1.8)

where 
i is the distance between the ith pair of opposite faces of the cube.

This result implies the spectral torus-band inequality in all dimensions, namely

if (Tn−1 × [−1, 1],g) satisoes � 1
2

> 0 then the width satisoes the upper bound (1.6).

Indeed, the torus-band naturally gives rise to a Riemannann-cube, and since the spectral

constant of the cube is no less than that of the parent torus-band, it is positive. We

may then apply Theorem 1.4, and utilize the fact that the torus-band width is less than

or equal to the distance between the corresponding pair of opposite faces in the cube,

to obtain the desired estimate. Unlike the other results presented so far, the proof of

Theorem 1.4 consists of showing how the spectral inequality follows from the pointwise

inequality by passing to a warped product constructed with the principal eigenfunction,

in similarity to part of the torical symmetrization process. This method of proof also

extends to the spectral inequality for Tn−1 × [−1, 1], giving an alternative proof to that

mentioned above.Although this approach is quite simple, it only applies to the casewhen

c = 1
2 , and is not well-suited for rigidity statements such as in Theorem 1.1.

While the spectral torical-band type inequalities are of independent interest, it

is our intention to apply them here to obtain black hole existence results, particularly in

higher dimensions. In [35, Theorem 2] (see also [42]), Schoen–Yau obtained such a result

for 3-dimensional initial data sets,which depends on a particular notion of radius.Given

a region �, consider a simple closed curve � ⊂ �, which bounds a disk. Let r denote

the supremum of values r with the property that the r-distance neighborhood from �

does not intersect ∂�, and � does not bound a disk in this neighborhood. The Schoen–

Yau radius Radsy(�) is then deoned to be the supremum of r among all curves � as

above. An initial data set for the Einstein equations consists of a triple (Mn,g,k), where

(Mn,g) is a Riemannian n-manifold and k is a symmetric 2-tensor on Mn representing

the extrinsic curvature of the embedding into spacetime. By taking traces of the Gauss–

Codazzi relations, these quantities satisfy the constraint equations

2μ = R+
(
Trgk

)2
− |k|2, J = divg

(
k− (Trgk)g

)
, (1.9)

where μ, J represent the matter energy and momentum densities, respectively. Suppose

that M3 is compact, with boundary satisfying the untrapped condition H > |Tr∂M3k|
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where H denotes the (outward) boundary mean curvature, and μ − |J| ≥ � > 0 on a

bounded domain � ⊂⊂
◦

M3. The Schoen–Yau black hole existence theorem states that if

Radsy(�) ≥ π

√
3

2�
, (1.10)

then M3 contains an apparent horizon �2. These surfaces, which are alternatively

known as marginally outer or inner trapped surfaces, satisfy one of the equations

H�2 ± Tr�2k = 0; we refer to [23] for further properties of apparent horizons and their

physical signiocance. Thus, for a region of oxed size measured by the radius, sufocient

concentration of matter induces gravitational collapse. This yields a manifestation of

Thorne’s hoop conjecture [37]. An advantageous feature of this result, also shared by

Theorem 1.5 below, is that it applies under quite general conditions. This separates

it from most other results on this topic, which require special hypotheses such as

symmetry or maximality (Trgk = 0) of the initial data, for instance [2, 3, 20, 21, 26, 38].

The proof in [35] proceeds in two steps. The orst is to establish a spectral-

radius inequality, and the second consists of employing this estimate to show that

(1.10) forces blow-up in the solution of Jang’s equation on M3. Here, Jang’s equation

refers to the quasi-linear elliptic equation of prescribed mean curvature type, used

heavily in their proof of the spacetime version of the positive mass theorem [34].We will

follow a similar prescription, with alternate notions of radii motivated by the spectral

torical-band width inequalities described above. A Riemannian band (Nn, ∂±N
n,h) will

be referred to as a non-PSC-band if ∂−N
n and ∂+N

n are not separable by a smooth

embedded hypersurface �n−1 ⊂ Nn, which admits a metric of positive scalar curvature.

As is discussed at the end of Section 4, overtorical bands are examples of non-PSC-bands

for n ≤ 8. The torical-radius Radt(�) is deoned to be the supremum of widths of all non-

PSC-bands (Nn, ∂±N
n,h) that are isometrically immersed into �, and the cubical-radius

Radc(�) is deoned to be the supremum of cubical-widths of all cubes ([−1, 1]n,h) that

are isometrically immersed into �.

Theorem 1.5. Let 3 ≤ n ≤ 7, and suppose that (Mn,g,k) is a compact n-dimensional

initial data set with untrapped boundary. Assume that there is a constant � > 0 and a

compact submanifold � ⊂
◦

Mn with Lipschitz boundary, such that μ − |J| ≥ � on �. If

Rad(�) ≥ π

√
2n

(n+ 1)�
, (1.11)
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where Rad is either the torical-radius Radt or the cubical-radius Radc, then there exists

a closed properly embedded smooth apparent horizon Sn−1 within Mn. Moreover, if μ −

|J| ≥ λ > 0 on the apparent horizon then it is of positive Yamabe type with Rad(Sn−1) ≤

π

√
2(n−1)
nλ

. In particular, if the apparent horizon lies within �, then its radius satisoes

the estimate with λ = �.

In Section 6, a class of initial data will be constructed, which satisfy the

hypotheses of this theorem. It should be noted that, analogously to the Schoen–Yau result

[35], there are no examples to be found among those that are maximal. To see this, note

that if the data were maximal, then the constraint equations (1.9) and the inequality

μ − |J| ≥ � imply that R ≥ 2� on �. Thus, any overtorical band isometrically immersed

in � must have width no greater than π

√
2(n−1)
n�

by the pointwise overtorical band-width

inequality, but this precludes Rad(�) from achieving (1.11). See Shi–Tam [36] (and the

related [1]) as well as [22] for black hole existence statements in the time symmetric

case, when k = 0. A comparison between the torical-radius and the Schoen–Yau radius

will also be given in the last section. In particular, it is shown that Radt(�) ≥ Radsy(�)

for any region �, and therefore Theorem 1.5 in dimension 3 recovers [35, Theorem 2]. We

would also like to point out contemporaneous work by Chow and Wan [9] that involves

similar results.

We close the introduction with an immediate consequence of Theorem 1.5,which

has the advantage that each side of the black hole existence criteria is straightforward

and, in principle, relatively easy to compute.Moreover, it utilizes cubes that are topologi-

cally balls, and thus emulates the essence of Thorne’s hoop conjecture [37], which posits

that gravitational collapse occurs when enough mass is compressed inside a perfect

sphere.

Corollary 1.6. Let 3 ≤ n ≤ 7, and suppose that (Mn,g,k) is an asymptotically nat

n-dimensional initial data set. Assume that there is an n-cube within Mn on which

μ − |J| ≥
2nπ2

n+ 1

n∑

i=1

1


2
i

, (1.12)

where 
i is the distance between the ith pair of opposite faces of the cube. Then the data

contains a closed properly embedded smooth apparent horizon.

This paper is organized as follows. The proofs of the spectral torical band-

width inequalities, namely Theorems 1.1, 1.2, and 1.3,will be given in Sections 2, 3, and 4
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respectively. The spectral cube inequality, Theorem 1.4, will be presented in Section 5.

Moreover, as mentioned above, Section 6 is dedicated to the black hole existence result

Theorem 1.5. Additionally, an appendix is provided that addresses certain existence and

regularity issues concerning warped μ-bubbles.

2 The Spacetime Harmonic Function Approach

In this section,wewill utilize the technique of spacetime harmonic functions to establish

the spectral torical band-width inequality of Theorem 1.1. Such functions arise as

solutions to a semi-linear elliptic equation associated with initial data sets, and were

introduced in [18] within the context of the spacetime version of the positive mass

theorem. Applications to comparison geometry were recently studied in [19].

2.1 Background

In this paper, we will only use a special case of spacetime harmonic functions in

which the associated auxiliary initial data set is umbilic. Thus, the spacetime harmonic

equation itself will take as input a single function f deoned on a band, which shall be

chosen later to extract advantageous coercive behavior of the solution. The following

proposition provides the basic existence result for this special class of spacetime

harmonic functions, and is an immediate consequence of the more general existence

result discussed in [18, Section 4].

Proposition 2.1. Let (Mn, ∂±M
n,g) be an n-dimensional Riemannian band, and consider

a function f ∈ Lip(Mn), as well as constants c− < c+. Then for any ς ∈ (0, 1), there exists

a unique solution u ∈ C2,ς (Mn) of the spacetime harmonic Dirichlet problem

§
¨
©

�u+ nf |∇u| = 0 in Mn,

u = c± on ∂±M
n.

(2.1)

We note a basic technical fact concerning spacetime harmonic functions, which

is shared by solutions to other elliptic equations, namely their set of critical points is

small. This becomes useful when expressing certain integral inequalities below, which

involve dividing by |∇u|.

Proposition 2.2. Let u be a nontrivial spacetime harmonic function, with Lipschitz f ,

on a Riemannian manifold (Mn,g), n ≥ 2. Then the critical set {x ∈ Mn | ∇u(x) = 0} is of

Hausdorff codimension at least 2.
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Proof. The spacetime Laplace equation may be viewed as a linear equation �u =

〈X,∇u〉, where X = −nf ∇u
|∇u| whenever ∇u �= 0 and X = 0 when ∇u = 0. Since X is

L∞, the result follows immediately from [28, Theorem 1.1]. �

The importance of spacetime harmonic functions rests to a large extent on a

fundamental integral inequality that they satisfy, which here will be specialized to

dimension 3. The next result follows directly from [18, Proposition 3.2], by setting k = fg

so that μ = 1
2R+ 3f 2 and J = −2∇f . In this setting, the spacetime Hessian is given by

∇̄2u := ∇2u+ |∇u|fg. (2.2)

Note that the spacetime Laplacian arises as the trace of this spacetime Hessian.

Lemma 2.3. Let (M3, ∂±M
3,g) be a 3-dimensional Riemannian band,and let f ∈ Lip(M3).

If u ∈ C2,ς (M3), ς ∈ (0, 1) solves boundary value problem (2.1), then

∫

∂−M3
2|∇u|(2f − H)dA−

∫

∂+M3
2|∇u|(2f + H)dA

≥

∫

M3

(
|∇̄2u|2

|∇u|
+ (R+ 6f 2)|∇u| − 4〈∇f ,∇u〉

)
dV −

∫ c+

c−

4πχ(�t)dt,

(2.3)

where H is the outward mean curvature of ∂M3, and χ(�t) is the Euler characteristic of

regular level sets �t := u−1(t).

Even though the function f is only Lipschitz, the appearance of ∇f in (2.3) is

justioed by Rademacher’s Theorem, which ensures that the derivative exists almost

everywhere. Furthermore, the Euler characteristic integrand is in fact a measurable

function, which may be seen as follows. Observe that as explained in [18, Remark 3.3],

the conclusion of Sard’s theorem still holds for u even though it may not be C3-smooth.

Moreover, u is a proper map and so its regular values form an open set of full measure.

Hence, if t0 is a regular value of u, then the function t �→ χ(�t) is constant for all levels

t near t0. We then have that χ(�t) is continuous almost everywhere, and is therefore

measurable. For more information concerning spacetime harmonic functions, we refer

to the survey article [4].

2.2 Proof of Theorem 1.1: the inequality

Let�2 be the closed surface that separatesM3 into two connected componentsM3
±,where

E± is contained in M3
±. Set w± = min{d(E±,�

2), π
α
}, and suppose that w− + w+ ≥ π

α
.
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Consider the signed distance function r(x) = ±d(x,�2) for x ∈ M3
±. For ε > 0 small,

deone the band (M̃3
ε , ∂±M̃

3
ε ,g) by

M̃3
ε = {x ∈ M3 | r(x) ∈ [−w− + ε,w+ − ε]}, (2.4)

where the assignment ∂±M̃
3
ε respects E±. According to [19, Lemma C.2], M̃3

ε is compact.

Next, append the compact components of M3 \ M̃3
ε to M̃3

ε , and denote the resulting

manifold by M̂3
ε . Notice that each component of M3 \ M̂3

ε contains at least one end. By

appealing to the long exact sequence of the pair (M3, M̂3
ε ), and using the fact that the top

homology group of an open manifold is trivial, we ond that the inclusion H2(M̂
3
ε ;Z) →

H2(M
3;Z) is injective. It follows that there are no spherical classes inH2(M̂

3
ε ;Z), since this

property is assumed for M3. Moreover, because �2 separates the nonempty collections

E±, we have that at least one component of each ∂±M̃
3
ε remains in ∂M̂3

ε , and that the

distance within M̂3
ε from �2 to these components is unchanged. As in the proof of [19,

Main Theorem A], there is a small perturbation of M̂3
ε to a band (M3

ε , ∂±M
3
ε ,g) with

smooth boundary, no spherical homology, and width at least w− + w+ − 3ε. We will

proceed to work with the bands M3
ε , eventually taking a limit as ε → 0 to obtain an

integral inequality for a nontrivial spacetime harmonic function, which will lead to a

contradiction if w− +w+ > π
α
.

Let uε,i be the spacetime harmonic function guaranteed by Proposition 2.1

satisfying

§
¨
©

�uε,i + 3fε,i|∇uε,i| = 0 in M3
ε ,

uε,i = ±1 on ∂±M
3
ε ,

(2.5)

where fε,i is deoned in (2.6) below. Denote w±
ε = d(∂±M

3
ε ,�

2), and observe that w±
ε ≥

w± − 2ε along with w+
ε +w−

ε ≥ π
α

− 3ε. Let h(t) be a Lipschitz cut-off function such that

h(t) = 0 if t ≤ 0, h(t) = t if t ∈ [0, π
α
], and h(t) = π

α
if t ≥ π

α
. For all large positive integers

i, we deone

fε,i(x) =

§
⎪⎪⎪̈

⎪⎪⎪©

(1 + 1
i
)2α
3 tan

(
αh(r(x) +w− − 2ε) − π

2 + 1
i

)
if r(x) ≤ min{−

w−
ε

2 ,−w−
ε + π

6α
}

(1 + 1
i
)2α
3 tan

(
π
2 − αh(w+ − 2ε − r(x)) − 1

i

)
if r(x) ≥ max{

w+
ε

2 ,w+
ε − π

6α
}

(1 + 1
i
)2α
3 tan

(
lε,i(r(x))

)
otherwise

(2.6)



3150 S. Hirsch et al.

where lε,i(r) are linear functions chosen to ensure that fε,i is Lipschitz. Sincew+
ε +w−

ε ≥

π
α

− 3ε, an elementary but tedious calculation shows that the slope of lε,i is positive and

less than α(1 + C̃ε), where the constant C̃ > 0 is independent of ε and i. Let �ε be the

region deoned by the third case in (2.6). Then outside of a set of measure zero we have

4α2

9
+ f 2ε,i −

2

3
|∇fε,i| ≥ 0, on M3

ε \ �ε,

4α2

9
+ f 2ε,i −

2

3
|∇fε,i| ≥ −C0(ε + i−1), on �ε,

(2.7)

where C0 is a constant independent of ε and i. Note that fε,i → ±∞ on ∂±M
3
ε as i → ∞,

so that |fε,i| ≥ |Hε| for all i large enough, where Hε is the mean curvature of ∂M3
ε with

respect to the unit outer normal.

We will now apply the integral inequality of Lemma 2.3. However, in order to

obtain an optimal estimate for w+ + w−, an additional divergence term is added to

produce

∫

∂−M3
ε

|∇uε,i|

(
3(8 − c−1)

6 − c−1
fε,i − 2Hε

)
dA−

∫

∂+M3
ε

|∇uε,i|

(
3(8 − c−1)

6 − c−1
fε,i + 2Hε

)
dA

=

∫

∂−M3
ε

|∇uε,i|
(
4fε,i − 2Hε

)
dA−

∫

∂+M3
ε

|∇uε,i|
(
4fε,i + 2Hε

)
dA

−

∫

M3
ε

c−1

6 − c−1
div(fε,i∇uε,i)dV

≥

∫

M3
ε

[
|∇̄2uε,i|

2

|∇uε,i|
+ |∇uε,i|(R+ 6f 2ε,i) − 4〈∇uε,i,∇fε,i〉

]
dV −

∫ c+

c−

4πχ(�t)dt

−

∫

M3
ε

c−1

6 − c−1
div(fε,i∇uε,i)dV

=

∫

M3
ε

[
|∇̄2uε,i|

2

|∇uε,i|
+ |∇uε,i|

(
R+

3(12 − c−1)

6 − c−1
f 2ε,i

)
−

3(8 − c−1)

6 − c−1
〈∇uε,i,∇fε,i〉

]
dV

−

∫ c+

c−

4πχ(�
ε,i
t )dt,

(2.8)

where {�ε,i
t } are the level sets of uε,i. Notice that in the above inequality the Euler

characteristic term is nonpositive,due to themaximumprinciple for spacetime harmonic

functions and the property that M3
ε has no spherical classes. Moreover, for sufociently
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small ε and large i, we may apply (2.7) while using the scalar curvature lower bound

R ≥ −R0, for some constant R0 > 0, to ond

R+
3(12 − c−1)

6 − c−1
f 2ε,i −

3(8 − c−1)

6 − c−1
|∇fε,i|

≥ − R0 +
3c−1

2(6 − c−1)
f 2ε,i −

4α2

9
·
9(8 − c−1)

2(6 − c−1)
− 1

≥ − R0 − c−1�c − 1.

(2.9)

Next, choose a oxed region � = M̃3
ε0
, with ε0 sufociently small depending only on c, R0,

and�c. Then, onM
3\�, it follows that r(x) ≤ −w−+ε0 or r(x) ≥ w+−ε0,which guarantees

that |fε,i| is large enough to yield

3c−1

2(6 − c−1)
f 2ε,i ≥

c−1f 2
ε,i

6 − c−1
+ R0 + c−1�c + 2 on M3

ε \�, (2.10)

for sufociently large i. While on �, |fε,i| is uniformly bounded.Moreover, since fε,i blows-

up on ∂±M
3
ε , the boundary integrals of (2.8) are nonpositive for large i. Hence, utilizing

the second and third line of (2.9), as well as (2.10), produces

0 ≥

∫

M3
ε

|∇uε,i|

(
R+

3(12 − c−1)

6 − c−1
f 2ε,i −

3(8 − c−1)

6 − c−1
|∇fε,i|

)
dV

≥ −

∫

�

(R0 + c−1�c + 1)|∇uε,i|dV +

∫

M3
ε \�

(
c−1

6 − c−1
f 2ε,i + 1

)
|∇uε,i|dV.

(2.11)

In order to extract a convergent subsequence, we now rescale uε,i similarly to

that which is done in [19, proof of Main Theorem A], and deone

ũε,i(x) =
uε,i(x) − Aε,i

sup� |∇uε,i|
, Aε,i =

1

|�|

∫

�

uε,idV. (2.12)

The normalized function ũε,i satisoes sup� |∇ũε,i| = 1, and has vanishing average value
on �. Therefore, (2.11) yields

∫

M3
ε \�

(
c−1

6 − c−1
f 2
ε,i + 1

)
|∇ũε,i|dV ≤

∫

�
(R0 + c−1�c + 1)|∇ũε,i|dV ≤ (R0 + c−1�c + 1)|�|. (2.13)
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Since |fε,i| is uniformly bounded on �, we have

∫

M3
ε

(
f 2ε,i + 1

)
|∇ũε,i|dV ≤

(
6 − c−1

c−1
+ 1

)
(R0 + c−1�c + 1)|�| + |�| sup

�

(|fε,i|
2 + 1) ≤ C1,

(2.14)

where C1 is independent of ε and i. Since the average of ũε,i vanishes on�,wemay apply a

version of the Poincaré inequality onM3
ε [25, Theorem 1] to conclude that ‖ũε,i‖W1,1(M3

ε ) is

bounded by a constant independent of the index i. Therefore,by passing to a subsequence

(in i), ũε,i converges to a function ũε in L
p(M3

ε ), for p ∈ [1, 32 ), as i → ∞. Because ũε,i solves

the elliptic spacetime Laplace equation, uniform Lp(M3
ε ) bounds for ũε,i imply uniform

control in C
2,ς
loc

(M̃3
2ε), ς ∈ (0, 1); here we have used the fact that fε,i → fε pointwise on the

interior of M̃3
2ε as i → ∞. Thus, ũε,i also converges subsequentially as i → ∞ to ũε in

C
2,ς
loc

(M̃3
2ε) for some ς ∈ (0, 1), and the limit satisoes �ũε + 3fε|∇ũε| = 0 on the interior

of M̃3
2ε.

To obtain further properties of |∇ũε| observe that from (2.8), the fact that the

boundary terms are nonpositive, together with (2.11) and (2.14), we obtain

(R0 + c−1�c + 1)|�| ≥

∫

M3
ε

∣∣∇2ũε,i + fε,i|∇ũε,i|g
∣∣2

|∇ũε,i|
dV

=

∫

M3
ε

|∇2ũε,i|
2

|∇ũε,i|
− 3f 2ε,i|∇uε,i|dV

≥

∫

M3
ε

4|∇|∇ũε,i|
1
2 |2dV − 3C1.

(2.15)

Since |∇ũε,i|
1
2 is bounded in H1(M3

ε ) independent of i, it has a weak subsequential

limit in H1(M3
ε ), which also converges strongly in L2(M3

ε ). In light of the fact that

fε,i blows-up uniformly on M3
ε \ M̃3

2ε, the inequality (2.14) implies that the limit

function |∇ũε|
1
2 ≡ 0 a.e. on this domain. Note that even though ũε may not be

deoned M3
ε \ M̃3

2ε, with a slight abuse of notation we still denote the limit of |∇ũε,i|
1
2

(which is deoned globally on M3
ε ) in terms of ũε. Moreover, for a.e. ε the boundary

∂M̃3
2ε is a Lipschitz submanifold [32], and therefore by applying the trace theorem

we ond that |∇ũε|
1
2 vanishes up to a set of measure zero on this set. It follows that

|∇ũε|
1
2 ∈ H1

0 (M̃3
2ε) for all such ε; below, it will always be assumed that ε satisoes this

property.
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We are now ready to return to the integral inequality. Taking the limit as i → ∞
and applying Fatou’s Lemma to (2.8) yields

0 ≥

∫

M̃3
2ε

[
|∇2ũε + fε|∇ũε|g|

2

|∇ũε|
+ |∇ũε|

(
R+

3(12 − c−1)

6 − c−1
f 2ε

)
−

3(8 − c−1)

6 − c−1
〈∇ũε,∇fε〉

]
dV. (2.16)

Consider the orst two terms of (2.16). Using a Kato inequality similar to [19, Remark 4.4],

Proposition 2.2, which shows that the set of critical points for ũε is of measure zero, and

the spectral hypothesis, we obtain

∫

M̃3
2ε

(
|∇2ũε + fε|∇ũε|g|

2

|∇ũε|
+ R|∇ũε|

)
dV

≥

∫

M̃3
2ε

(
3|∇|∇ũε| + fε∇ũε|

2

2|∇ũε|
+ R|∇ũε|

)
dV

=

∫

M̃3
2ε

(
6|∇|∇ũε|

1
2 |2 + 6〈∇|∇ũε|

1
2 , fε|∇ũε|

− 1
2 ∇ũε〉 +

(
R+

3

2
f 2ε

)
|∇ũε|

)
dV

=

∫

M̃3
2ε

(
(6 − c−1)

∣∣∣∣∇|∇ũε|
1
2 +

3

6 − c−1
fε|∇ũε|

− 1
2 ∇ũε

∣∣∣∣
2

+ c−1|∇|∇ũε|
1
2 |2

+R|∇ũε| +

(
3

2
−

9

6 − c−1

)
f 2ε |∇ũε|

)
dV

≥

∫

M̃3
2ε

(
c−1�c|∇ũε| +

(
3

2
−

9

6 − c−1

)
f 2ε |∇ũε|

)
dV.

(2.17)

Combining (2.16) and (2.17) then produces

0 ≥

∫

M̃3
2ε

[(
c−1�c +

9(8 − c−1)

2(6 − c−1)
f 2ε

)
|∇ũε| −

3(8 − c−1)

6 − c−1
〈∇ũε,∇fε〉

]
dV

≥

∫

M̃3
2ε

c−1�c

(
1 +

9

4α2
f 2ε −

3

2α2
|∇fε|

)
|∇ũε|dV,

(2.18)

where α =
√

�c(6−c−1)

2c(8−c−1)
.

To proceed, we shall inspect the limit as ε → 0. First note that applying Fatou’s

lemma to equation (2.14) yields

∫

M̃3
2ε

|∇ũε|dV ≤ lim inf
i→∞

∫

M̃3
2ε

|∇ũε,i|dV ≤ C1. (2.19)
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Moreover, since ũε,i has vanishing average on �, the same is true of ũε, and thus utilizing

again a version of the Poincaré inequality we obtain uniform W1,1(M̃3
2ε) bounds for ũε.

By passing to a subsequence, ũε → u in L
p
loc

(M̄3) for any p ∈ [1, 32 ), where

M̄3 = ∪εM̃
3
2ε = {x ∈ M3 | r(x) ∈ (−w−,w+)}. (2.20)

As before, since ũε satisoes the elliptic spacetime Laplacian, we may boot-strap to ond

subsequential convergence ũε → u in C
2,ς
loc

(M̄3), for some ς ∈ (0, 1). Furthermore, �u +

3f |∇u| = 0 on M̄3 with

f (x) =

§
⎪⎪⎪̈

⎪⎪⎪©

2α
3 tan

(
αh(r(x) +w−) − π

2

)
if r(x) ≤ min{−

w−

2 ,−w− + π
6α

}

2α
3 tan

(
π
2 − αh(w+ − r(x))

)
if r(x) ≥ max{

w+

2 ,w+ − π
6α

}

2α
3 tan (l(r(x))) otherwise

(2.21)

since limε→0w
±
ε = w±, where l(r) is a linear function that ensures that f is Lipschitz.

Finally, if w− +w+ > π
α
, then the slope of l would be strictly less than α in some

region of nonzero measure, which produces

1 +
9

4α2
f 2 −

3

2α2
|∇f | > 1 + tan2(l(r(x))) − sec2(l(r(x))) = 0. (2.22)

Furthermore, taking the limit of (2.18) with Fatou’s lemma implies that

0 ≥

∫

M̄3
c−1�c

(
1 +

9

4α2
f 2 −

3

2α2
|∇f |

)
|∇u|dV. (2.23)

Since u is nontrivial as sup� |∇u| = 1, Proposition 2.2 shows that |∇u| can only vanish

on a set of measure zero, and therefore a contradiction is obtained. We then have that

w− +w+ ≤ π
α
, from which the desired conclusion follows.

2.3 Proof of Theorem 1.1: the case of equality

We now assume that equality holds in (1.3). Since w− + w+ ≤ π
α
, neither one of w± can

be π
α
as both d(E±,�

2) must be positive. It follows that w− + w+ = π
α
. Therefore, since

r(x) ∈ (−w−,w+) on M̄3, in this region (2.21) gives

f (x) =
2α

3
tan

(
αr(x) + αw− −

π

2

)
= −

2α

3
cot(αρ(x)), (2.24)
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where ρ(x) = r(x) + w−. By inspecting (2.16)–(2.18), using Fatou’s lemma, and

Proposition 2.2, we ond that

∇|∇u|
1
2 +

3

6 − c−1
f |∇u|−

1
2 ∇u = 0 (2.25)

holds almost everywhere. Then integrating this equation along curves emanating from

regular points for u shows that in fact |∇u| �= 0 holds globally on M̄3.

Let {e1, e2, e3 = ∇u
|∇u| } be an orthonormal frame. From (2.18),we deduce that∇u is a

multiple of ∇f , and therefore e3 = ∇ρ. This implies that u is a function of ρ. Furthermore,

the orst two lines of (2.17) combined with [19, Remark 4.4] show that

∇iju = 0 if i �= j, ∇11u = ∇22u. (2.26)

Thus, (M̄3,g) is a warped product with g = dρ2 +φ2(ρ)g0, where g0 is a metric on �2 and

φ is a positive continuously differentiable function on (0, π
α
). Next observe that inserting

e3 into (2.25) yields

∇3|∇u| = −
6

6 − c−1
f |∇u|, (2.27)

which implies that up to a scaling constant we have

|∇u|(ρ) = [sin (αρ)]
4c

6c−1 . (2.28)

Moreover, using the spacetime harmonic equation combined with (2.27) produces

2φρ

φ
= H =

�u− ∇33u

|∇u|
=

3c−1 − 12

6 − c−1
f , (2.29)

where H is the mean curvature of level sets with respect to e3. Hence, it follows that up

to scaling φ(ρ) = [sin(αρ)]
4c−1
6c−1 . When c �= 1

4 , due to the behavior of φ at the ends we ond

that M̄3 cannot be strictly contained in a connected open manifold, and thus M̄3 = M3.

If c = 1
4 , then φ = 1 and M̄3 is a cylinder. After taking the limit in (2.17), we conclude

that the function |∇u|
1
2 = sin(αρ) minimizes the Rayleigh quotient (1.2). It follows that

the c-spectral constant of M̄3 must be �c. If M̄
3 was properly contained in M3, then its

c-spectral constant would be strictly larger than that ofM3, which is also �c. Therefore

M̄3 = M3, in this case as well. See Figure 1, for a depiction of the different types of

behavior for the warped product according to the value of c.
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It remains to show that (�2,g0) is a nat torus. According to [30, Corollary 43],

we have

Ric(∂ρ , ∂ρ) = −
2φρρ

φ
. (2.30)

Moreover, taking two traces of the Gauss equations, denoting the Gaussian curvature of

g0 by K0, and noting that the second fundamental form of (�2,g0) ↪→ (M3,g) is given by

II = φφρg0 with mean curvature H = 2φ−1φρ , yields

R =2Ric(∂ρ , ∂ρ) + 2φ−2K0 + |II|2 − H2

= − 2φ−2(φ2
ρ + 2φφρρ

)
+ 2φ−2K0.

(2.31)

Let L = −� + cR − �c, then a tedious but elementary calculation using the explicit

expressions for |∇u|
1
2 and φ along with the relation between α and �c in (1.3),

shows that

L(|∇u|
1
2 ) = − ∂ρρ(|∇u|

1
2 ) − H∂ρ(|∇u|

1
2 ) + (cR− �c)|∇u|

1
2

= − ∂ρρ(|∇u|
1
2 ) −

2φρ

φ
∂ρ(|∇u|

1
2 ) −

(
2c

φ2
(φ2

ρ + 2φφρρ) − 2cφ−2K0 + �c

)
|∇u|

1
2

=2cK0φ
−2|∇u|

1
2 .

(2.32)

Again using the explicit expressions for function and metric, it may be verioed that

|∇u|
1
2 ∈ H1

0 (M3) for c > 1
6 . Furthermore, as observed at the end of the previous paragraph,

the Rayleigh quotient evaluated at |∇u|
1
2 agrees with �c, and thus L(|∇u|

1
2 ) = 0. Hence

K0 = 0, and (�2,g0) is a nat torus. This completes the <only if= direction in the case of

equality statement.

To verify the <if= direction, it must be shown that given α > 0, c > 1
6 , and a

nat torus (T2,g0), the c-spectral constant �c of the warped product (M3,g) = ((0, π
α
) ×

T2,dρ2 + φ2(ρ)g0) agrees with �′
c = 2c(8−c−1)α2

6−c−1 . According to (2.32), the function u0 =

|∇u|
1
2 given by (2.28) satisoes

(−� + cR)u0 = �′
cu0, (2.33)

and u0 > 0 onM3. This implies that �c ≤ �′
c. If �c < �′

c, then there exists a test function

with compact support having Rayleigh quotient strictly less than �′
c. We can therefore

ond a smooth manifold with boundary M̃3
ε containing this support, and conclude that
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the principal eigenvalue λ for this domain with Dirichlet boundary conditions is strictly

less than �′
c. Let û > 0 be the corresponding principal eigenfunction for this domain,

so that

(−� + cR)û = λû in M̃3
ε , û = 0 on ∂M̃3

ε . (2.34)

Observe that

�(ûu−1
0 ) =u−1

0 �û+ 2∇û · ∇u−1
0 + û�u−1

0

=u−1
0 (cR− λ)û− 2∇(ûu−1

0 ) · ∇ logu0 − 2ûu−3
0 |∇u0|

2

− ûu−2
0 �u0 + 2ûu−3

0 |∇u0|
2

=(�′
c − λ)ûu−1

0 − 2∇(ûu−1
0 ) · ∇ logu0.

(2.35)

Thus, by applying the maximal principal to ûu−1
0 on M̃3

ε , we see that this function must

vanish, which is a contradiction. Hence, �c = �′
c.

3 The Spinorial Callias Operator Approach

The purpose of this section is to establish Theorem 1.2. It will be assumed in what

follows that n > 1, as the inequality (1.5) for n = 1 is trivially satisoed. Before beginning

the proof, we will orst introduce the requisite machinery and notation.

3.1 Background

The following fact describes the fundamental property, from the perspective of thiswork,

of bands that admit the Â-overtorical condition. It is well known, see [6, Example 7.5].

Proposition 3.1. Suppose that (Mn, ∂±M
n,g) is an odd dimensional Riemannian spin

band that is Â-overtorical. For any δ > 0, there exists a Hermitian bundle E overMn with

a metric compatible connection ∇E such that

(1) the curvature RE of (E ,∇E ) satisoes |RE | < δ,

(2) the wedge product of the Â form of ∂−M
n with the Chern character of E |∂−Mn

satisoes

∫

∂−Mn
Â(∂−M

n) ∧ ch(E |∂−Mn) �= 0. (3.1)

The next task is to introduce the relevant bundles and structure required to

describe the spinors used to prove Theorem 1.2. We will closely follow the exposition in
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[6, Sections 2 and 3]. Consider an odd dimensional Riemannian band (Mn, ∂±M
n,g) with

a spin structure. Let S′ → Mn denote the associated complex spinor bundle, equipped

with the connection induced by the Levi–Civita connection. Given a Hermitian bundle

E → Mn with a metric connection, consider the bundle S = (S′ ⊗ E) ⊕ (S′ ⊗ E) =: S− ⊕ S+.

This bundle may be equipped with an action of the Clifford algebra, which interchanges

its summands according to the formula

v· =

(
0 v · ⊗IE

v · ⊗IE 0

)
, (3.2)

where v ∈ TMn is a vector and IE denotes the identity on E . Here and throughout, we use

the sign convention v ·w +w · v = −2g(v,w) for vectors v,w. The bundle S also carries

a natural involution σ deoned by

σ =

(
0 −i

i 0

)
, (3.3)

wherewe are implicitlymaking reference to the direct sumdescription of S. In a standard

manner, S inherits a connection from Mn and E , and one may form the corresponding

Dirac operator D. Given a Lipschitz function f on Mn, we may also consider the Callias

operator

Bfϕ = Dϕ + fσϕ. (3.4)

Notice that there is a decomposition Bf = B
+
f

⊕ B
−
f
where B

±
f
maps S± to S∓.

Appropriate boundary conditions are required to set up an elliptic boundary

value problem, namely we will consider

§
¨
©
Bfϕ = 0 in Mn

∓ν · σϕ = ϕ on ∂±M
n,

(3.5)

where ν denotes the unit outward normal to ∂Mn. This yields elliptic boundary value

problems associated to B
±
f
, which are adjoint to each other, and therefore

Index(B±
f

) = dim(ker(B±
f

)) − dim(ker(B∓
f

)). (3.6)

According to [6, Corollary 3.10], the expression in (3.1) is the Fredholm index of the

boundary value problem associated to B
±
f
. Hence, if (Mn, ∂±M

n,g) is Â-overtorical,
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Proposition 3.1 implies that there is a source of Hermitian bundles E such that there

are nontrivial solutions to this boundary value problem.

Proposition 3.2. Suppose that (Mn, ∂±M
n,g) is an odd dimensional Riemannian spin

band that is Â-overtorical. Let E be a Hermitian bundle given by Proposition 3.1. Then

for any Lipschitz function f and ς ∈ (0, 1), there exists a nontrivial C1,ς solution to (3.5).

3.2 Proof of Theorem 1.2

Let f be a Lipschitz function on Mn such that f is positive on ∂+M
n and negative on

∂−M
n, to be determined later. Proposition 3.2 yields a nontrivial spinor ϕ satisfying (3.5).

In order to express the associated Böchner–Lichnerowitz–Weitzenbock formula, let P

denote the Penrose operator acting on spinors according to the formula

PXϕ = ∇Xϕ −
1

n
X · Dϕ, (3.7)

for any vector oeld X. Fix p ∈ Mn and let {el}
n
l=1 be an orthonormal basis at p. Consider

the quantities vl = el · ∇el
ϕ +

f
nσϕ, and note that according to equation (3.5) we have

∑n
l=l vl = 0. Write v = (v1, v̄) and observe that by Cauchy–Schwarz (n − 1)|v̄|2 ≥ |v1|

2.

Thus, |v|2 = v21 + |v̄|2 ≥ n
n−1 |v1|

2, and we arrive at the following Kato-type inequality

|Pϕ|2 =

n∑

l=1

∣∣∣∣∇lϕ −
f

n
el · σϕ

∣∣∣∣
2

≥
n

n− 1

∣∣∣∣∇1ϕ −
f

n
e1 · σϕ

∣∣∣∣
2

. (3.8)

By expanding the right-hand side and denoting ³ = n
n−1 − 1

4c > 0, it follows that

|Pϕ|2 ≥
n

n− 1
|∇1ϕ|2 −

2

n− 1
f 〈∇1ϕ, e1 · σϕ〉 +

1

n(n− 1)
f 2|ϕ|2

=
1

4c
|∇1ϕ|2 + ³

∣∣∣∣∇1ϕ −
1

³(n− 1)
fe1 · σϕ

∣∣∣∣
2

+

(
1

n(n− 1)
−

1

³(n− 1)2

)
f 2|ϕ|2

≥
1

4c
|∇1ϕ|2 +

(
1

n(n− 1)
−

1

³(n− 1)2

)

︸ ︷︷ ︸
³1

f 2|ϕ|2.

(3.9)

Since |ϕ| is Lipschitz, Radamacher’s Theorem ensures that it is differentiable almost

everywhere. Now if ∇|ϕ| �= 0 at p, then we may choose a basis with e1 given by the unit

gradient so that |∇1|ϕ|| = |∇|ϕ||, whereas if ∇|ϕ| = 0 at p then this equality holds trivially
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for any choice of e1. Thus, (3.9) implies that

|Pϕ|2 ≥
1

4c
|∇|ϕ||2 + ³1f

2|ϕ|2 (3.10)

holds almost everywhere.
According to [6, Proposition 4.2] and the proof of [6, Theorem 4.3], we have as a

consequence of the Böchner–Lichnerowitz–Weitzenbock formula that
∫

∂−Mn
(f −

n

2(n− 1)
H)|ϕ|2dA−

∫

∂+Mn
(f +

n

2(n− 1)
H)|ϕ|2dA

=

∫

Mn

(
n

n− 1

(
|Pϕ|2 + 〈ϕ,

R

4
ϕ + R

Eϕ〉

)
+ 〈ϕ, f 2ϕ + ∇f · σϕ〉

)
dV

≥

∫

Mn

(
n

n− 1

(
1

4c
|∇|ϕ||2 + ³1f

2|ϕ|2 +
R

4
|ϕ|2 − ´n|RE ||ϕ|2

)
+ 〈ϕ, f 2ϕ + ∇f · σϕ〉

)
dV,

(3.11)

where RE is the E-curvature acting on sections of S and ´n is a dimensional constant

encountered when applying Cauchy–Schwarz to 〈ϕ,REϕ〉. To continue, notice that from

an integration by parts the following identity holds

∫

∂Mn
〈ν · ϕ, fσϕ〉dA =

∫

Mn
(〈Dϕ, fσϕ〉 − 〈ϕ,Dfσϕ〉)dV

= −

∫

Mn

(
2f 2|ϕ|2 + 〈ϕ,∇f · σϕ〉

)
dV,

(3.12)

where we have made use of the fact that σX· = −X · σ for vector oelds X. Leveraging

the boundary condition for ϕ, one may multiply (3.12) by n
n−1³1 and sum the result with

(3.11) to obtain

∫

∂−Mn

[(
1 −

n³1

n− 1

)
f −

n

2(n− 1)
H

]
|ϕ|2dA

−

∫

∂+Mn

[(
1 −

n³1

n− 1

)
f +

n

2(n− 1)
H

]
|ϕ|2dA

≥

∫

Mn

n

n− 1

(
1

4c
|∇|ϕ||2 +

R

4
|ϕ|2 − ´n|RE ||ϕ|2

)
dV

+

∫

Mn

〈
ϕ,

(
1 −

n³1

n− 1

)

︸ ︷︷ ︸
³2

f 2ϕ +

(
1 −

n³1

n− 1

)
∇f · σϕ

〉
dV.

(3.13)

Since ³ > 0, we ond that ³1 = 1
n(n−1)

− 1
³(n−1)2

< 1
n(n−1)

, and so

³2 = 1 −
n³1

n− 1
> 1 −

1

(n− 1)2
> 0. (3.14)
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It follows that, provided ±f is sufociently large on ∂±M
n, the boundary terms of (3.13)

are nonpositive.

We now proceed by contradiction and assume that there exists an ε > 0 such

that

d(∂−M
n, ∂+M

n) > w := π

√
4³2c(n− 1)

n�c

+ ε = 2π

√
c

�c

(
(4c − 1)n+ 2 − 4c

(4c − 1)n+ 1

)
+ ε. (3.15)

Next, deone a sequence of bounded Lipschitz functions fj onM
n, which satisfy a certain

differential inequality and have the property that ±fj → ∞ on ∂±M
n as j → ∞, in the

following way. Let r±(x) = d(x, ∂±M
n), and for each j consider

fj(x) =

§
⎪⎪⎪⎪̈

⎪⎪⎪⎪©

− π
w cot

(
π
w r−(x) + 1

j

)
if r−(x) ≤ w

π
(π
2 − 1

j
)

π
w cot

(
π
w r+(x) + 1

j

)
if r+(x) ≤ w

π
(π
2 − 1

j
)

0 otherwise

. (3.16)

For each j, we may apply Proposition 3.2 to obtain a nontrivial solution ϕj to (3.5). Now

ox a compact subset � ⊂
◦

Mn, where
◦

Mn denotes interior, such that for all sufociently

large j we have

3

2
f 2j − |∇fj| ≥ 1 on Mn \ �,

³2f
2
j − ³2|∇fj| +

n�c

4c(n− 1)
≥ Cε on Mn,

(3.17)

where Cε > 0 depends on ε, n, c, and �c. Then equations (3.12) and (3.17), together with

the boundary condition of (3.5) and sign of fj|∂±Mn , imply

∫

Mn\�

(
1

2
f 2j + 1

)
|ϕj|

2dV ≤

∫

Mn\�

(2f 2j − |∇fj|)|ϕj|
2dV ≤

∫

�

(|∇fj| − 2f 2j )|ϕj|
2dV. (3.18)

Note that max� |ϕj| �= 0; otherwise, this estimate implies that ϕj vanishes globally. Thus

by appropriate rescaling, it may be assumedwithout loss of generality thatmax� |ϕj| = 1,

and (3.17) along with (3.18) yield

∫

�

|ϕj|
2 +

∫

Mn\�

(
1

2
f 2j + 1

)
|ϕj|

2dV ≤

(
n�c

4c(n− 1)³2
+ 1

)
|�|. (3.19)
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It then follows from (3.13), (3.17), and (3.19) that

n

4c(n− 1)

∫

Mn
|∇|ϕj||

2dV +

∫

∂Mn
ϒj|ϕj|

2dA

≤

∫

Mn

(
−³2f

2
j + ³2|∇fj|

)
|ϕj|

2dV +
n

n− 1

∫

Mn

(
|R|

4
+ ´n|RE |

)
|ϕj|

2dV

≤C1

(3.20)

for some constant C1 independent of j, where

ϒj = min
∂Mn

(
³2|fj| −

n

2(n− 1)
|H|

)
, (3.21)

which satisoes ϒj → ∞ as j → ∞.

The inequalities (3.19) and (3.20) show that the sequence |ϕj| is uniformly

bounded in H1(Mn), and thus |ϕj| weakly subconverges to a function |ϕ| in H1(Mn)

with strong convergence in Hs(Mn) for any s ∈ [12 , 1), see [14, Theorem 9.22] or [29,

Corollary 7.2]. Moreover, since the trace map τ : Hs(Mn) → Hs− 1
2 (∂Mn) is continuous [29,

Proposition 3.8],we ond that |ϕj| converges subsequentially to τ(|ϕ|) in L2(∂Mn).However,

since ϒj → ∞, we ond that (3.20) yields τ(|ϕ|) = 0 on ∂Mn, and hence |ϕ| ∈ H1
0 (

◦

Mn).

Then taking the limit in (3.13) while utilizingweak lower semi-continuity of theH1-norm,

strong convergence in L2, Fatou’s lemma together with (3.17), and applying the deonition

of the c-spectral constant produces

0 ≥

∫

Mn

(
n

4c(n− 1)

(
|∇|ϕ||2 + cR|ϕ|2

)
+

(
³2f

2 − ³2|∇f | −
n´n

n− 1
|RE |

)
|ϕ|2

)
dV

≥

∫

Mn

(
³2f

2 − ³2|∇f | +
n�c

4c(n− 1)
−

n´n

n− 1
|RE |

)
|ϕ|2dV

≥

∫

Mn

(
Cε −

δn´n

n− 1

)
|ϕ|2dV,

(3.22)

where in the last line we used Proposition 3.1. By choosing δ << Cε, we arrive at a

contradiction since max� |ϕ| = 1. It follows that

d(∂−M
n, ∂+M

n) ≤ 2π

√
c

�c

(
(4c − 1)n+ 2 − 4c

(4c − 1)n+ 1

)
. (3.23)
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4 The μ-Bubble Approach

In this section, we will establish Theorem 1.3, and for convenience will use the notation

� = � 1
2
. The result is trivial if n = 1, and thus it will be assumed that n > 1 below.

Suppose that the conclusion of the theorem is false, then there exists ε > 0 such that

d(∂−M
n, ∂+M

n) ≥ π

√
2n

(n+ 1)�
+ 2ε. (4.1)

Let u be the positive principal eigenfunction associated to �, so that

(
−� +

1

2
R

)
u = �u in Mn, u = 0 on ∂Mn. (4.2)

In order to obtain a band on which u has a uniform positive lower bound, we may push

in by a small amount from the boundary and consider

M̌n =
{
x ∈ Mn | d(x, ∂Mn) ≥

ε

2

}
. (4.3)

Note that it may be assumed without loss of generality that ε is sufociently small to

guarantee that ∂M̌n is smooth and is divided into classes ∂±M̌
n corresponding with

∂±M
n. Next denote r±(x) = d(x, ∂±M̌

n), and for 0 < ε0 << ε deone a potential function

on the interior of M̌n by

f0(x) =

§
⎪⎪⎪⎪⎪⎪̈

⎪⎪⎪⎪⎪⎪©

−
√

2n�
n+1 cot

[(√
(n+1)�

2n − ε0

)
r−(x)

]
0 < r−(x) ≤ π

2

(√
(n+1)�

2n − ε0

)−1

√
2n�
n+1 cot

[(√
(n+1)�

2n − ε0

)
r+(x)

]
0 < r+(x) ≤ π

2

(√
(n+1)�

2n − ε0

)−1

0 elsewhere

. (4.4)

Observe that f0 is Lipschitz and limits to ±∞ on ∂±M̌
n. Let Bσ (x) be the geodesic ball of

radius σ centered at an interior point x ∈ M̌n, and set

Lf0(x) = limsup
σ→0

LipBσ (x)(f0). (4.5)

Then at all such points the following inequality holds

n+ 1

2n
f 20 − Lf0 + � ≥

√
2n�

n+ 1
ε0. (4.6)
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This strictly positive lower bound for the left-hand side of (4.6) is the impetus for

introducing the constant ε0.

We now seek to replace f0 with a smooth approximation that agrees with it near

∂M̌n. Let M̌n
r0

= {x ∈ M̌n | r±(x) ≥ r0}, where r0 > 0 is chosen sufociently small so

that r± are smooth (and hence f0 is smooth) within M̌n \ M̌n
r0
. We may approximate f0 by

fδ ∈ C∞(M̌n
r0/2

), which, for each small δ > 0, satisoes

|f0(x) − fδ(x)| ≤ δ, |∇fδ(x)| ≤ LipBδ(x)(f0) + δ, (4.7)

with x ∈ M̌n
r0/2

. Such an approximation fδ may be constructed as in [10, Theorem 2.2].

Furthermore given δ′ > 0, the property (4.7) implies that Lfδ ≤ Lf0 + δ′ for all δ sufociently

small, and therefore we ond that (4.6) yields

n+ 1

2n
f 2δ − Lfδ + � ≥

√
2n�

n+ 1
ε0 − 2δ′ (4.8)

on M̌n
r0/2

. Now let η be a smooth nonnegative cut-off function on M̌n, which is 1 on M̌n
r0

and zero on M̌n \ M̌n
r0/2

. Deone f = ηfδ + (1−η)f0 and observe that this function is smooth

on M̌n, agrees with f0 on M̌n \ M̌n
r0/2

, and by virtue of (4.6) and (4.8) it satisoes

n+ 1

2n
f 2 − |∇f | + � ≥

√
2n�

n+ 1
ε0 − 3δ′ > 0 (4.9)

on M̌n, if δ is sufociently small and δ′ << ε0.

The next step is to introduce the warped μ-bubbles, which serve as the central

geometric tool in this proof.We will closely follow the exposition developed in [8, Section

3] and [46, Proposition 2.1]. Fix a Caccioppoli set �0 having smooth boundary with

∂+M̌
n ⊂ �0, and such that ∂�0\∂+M̌

n lies within the interior of M̌n. For instance, onemay

take �0 to be an appropriate sublevel set of the distance function r+. For any Caccioppoli

set � ⊂ M̌n with symmetric difference ���0 compactly contained within the interior of

M̌n, deone the functional

Au,f (�) =

∫

∂∗�

udHn−1 −

∫

M̌n
(χ� − χ�0

)fudHn, (4.10)

where ∂∗� denotes the reduced boundary, χ� is the characteristic function of �, and

dHn is the n-dimensional Hausdorff measure. Using that f blows-up at ∂±M̌
n, it may be

shown that a minimizer �̌ of Au,f exists within this class of sets, and since n ≤ 7 its

boundary ∂�̌ is smooth. Using the fact that �̌��0 does not intersect ∂M̌n, we ond that
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Fig. 2. The relevant regions in the μ-bubble approach.

∂+M̌
n lies within �̌, and hence the smooth hypersurface�n−1 := ∂�̌\∂+M̌

n must separate

∂−M̌
n from ∂+M̌

n. This surface is referred to as a warped μ-bubble, see Figure 2.

Remark 4.1. Instead of approximating f0 by a smooth function f and citing the

existence theory for μ-bubbles in the smooth setting as done above, one may directly

construct C2,ς -regular μ-bubbles with respect to the Lipschitz potential function f0. This

existence result is carried out in Appendix A, which may be of independent interest.

A direct computation yields the orst variation formula for the μ-bubble

Hu− fu+ 〈∇u, ν〉 = 0, (4.11)

where ν is the unit outer normal to �n−1, and H is the mean curvature of �n−1 with

respect to ν. Moreover, the second variation with test function φ ∈ C∞(�n−1) produces

0 ≤

∫

�n−1

(
−uφ��φ − |A|2φ2u− Ric(ν, ν)φ2u+ H〈∇u, ν〉φ2

)
dA

+

∫

�n−1

(
−fφ2〈∇u, ν〉 − φ2u〈∇f , ν〉 + φ2∇ννu− φ〈∇�u,∇�φ〉

)
dA,

(4.12)

where A denotes the second fundamental form. Utilizing the Gauss equations, the basic

inequality |A|2 ≥ 1
n−1H

2, and the decomposition �u = ∇ννu + H〈∇u, ν〉 + ��u gives

rise to

0 ≤

∫

�n−1

(
−uφ��φ −

n

2(n− 1)
H2φ2u−

1

2
Rφ2u+

1

2
R�φ2u

)
dA

+

∫

�n−1

(
−fφ2〈∇u, ν〉 − φ2u〈∇f , ν〉 + φ2(�u− ��u) − φ〈∇�u,∇�φ〉

)
dA,

(4.13)
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with R� denoting the scalar curvature of �n−1. Equations (4.2) and (4.11), along with the
Cauchy–Schwarz inequality |〈∇f , ν〉| ≤ |∇f |, then imply

0 ≤

∫

�n−1

(
−uφ��φ −

n

2(n− 1)
(f − 〈∇ logu, ν〉)2φ2u− �φ2u+

1

2
R�φ2u

)
dA

+

∫

�n−1

(
−fφ2〈∇u, ν〉 − φ2u〈∇f , ν〉 − φ2��u− φ〈∇�u,∇�φ〉

)
dA

≤

∫

�n−1

(
−uφ��φ −

n

2(n− 1)
f 2φ2u−

n

2(n− 1)
〈∇ logu, ν〉2uφ2 − �φ2u+

1

2
R�φ2u

)
dA

+

∫

�n−1

(
1

n− 1
uφ2f 〈∇ logu, ν〉 + φ2u|∇f | − φ2��u− φ〈∇�u,∇�φ〉

)
dA.

(4.14)

Observe that by Young’s inequality

1

n− 1
uφ2f 〈∇ logu, ν〉 ≤

n

2(n− 1)
uφ2〈∇ logu, ν〉2 +

1

2n(n− 1)
uφ2f 2. (4.15)

Therefore, (4.14) becomes

0 ≤

∫

�n−1

(
−uφ��φ −

n+ 1

2n
f 2φ2u− �φ2u+

1

2
R�φ2u

)
dA

+

∫

�n−1

(
φ2u|∇f | − φ2��u− φ〈∇�u,∇�φ〉

)
dA.

(4.16)

Next, let ψ ∈ C∞(�n−1) and set φ = ψu− 1
2 to ond

0 ≤

∫

�n−1

(
−u

1
2 ψ��(ψu− 1

2 ) − ψ2u−1��u− u− 1
2 ψ〈∇�u,∇�(ψu− 1

2 )〉
)
dA

+

∫

�n−1

(
|∇f | −

n+ 1

2n
f 2 − � +

1

2
R�

)
ψ2dA.

(4.17)
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Finally if n ≥ 3, integrating by parts, using Young’s inequality again, and applying (4.9)

produces

0 ≤

∫

�n−1

(
|∇�ψ |2 −

3

4
ψ2|∇� logu|2 + ψ〈∇�ψ ,∇� logu〉

)
dA

+

∫

�n−1

(
|∇f | −

n+ 1

2n
f 2 − � +

1

2
R�

)
ψ2dA

≤

∫

�n−1

(
4

3
|∇�ψ |2 +

1

2
R�ψ2

)
dA+

∫

�n−1

(
|∇f | −

n+ 1

2n
f 2 − �

)
ψ2dA

≤
2(n− 1)

n− 2

∫

�n−1

(
|∇�ψ |2 +

n− 2

4(n− 1)
R�ψ2

)
dA+

∫

�n−1

(
|∇f | −

n+ 1

2n
f 2 − �

)
ψ2dA

<
2(n− 1)

n− 2

∫

�n−1

(
|∇�ψ |2 +

n− 2

4(n− 1)
R�ψ2

)
dA,

(4.18)

if ψ is not identically zero. Since ψ was arbitrary, it follows that the principle eigenvalue

of the conformal Laplacian of (�n−1,g) is positive. In particular, �n−1 admits a metric

of positive scalar curvature. When n = 2, the third line of (4.18) is still valid, so that

choosing ψ = 1 yields the same conclusion. On the other hand, since �n−1 separates

∂−M̌
n and ∂+M̌

n and hence also ∂−M
n and ∂+M

n, the fact that (Mn, ∂±M
n) is overtorical

implies that �n−1 admits a nonzero degree map to Tn−1, see [31, Lemma 6.2]. Since n ≤ 7,

the classical work of Schoen–Yau [33] shows that �n−1 cannot support positive scalar

curvature metrics. From this contradiction, we conclude that the desired inequality (1.6)

is valid.

Remark 4.2. Note that this last argument shows that overtorical bands are non-PSC-

bands for n ≤ 8, see the discussion before Theorem 1.5. Indeed, [33] continues to apply

for this slightly extended range of dimensions.

5 The Spectral Cube Inequality

In this section, we will establish Theorem 1.4. Let u be the positive principal Dirichlet

eigenfunction for the Riemannian cube, so that
(

−� +
1

2
R

)
u = � 1

2
u in [−1, 1]n, u = 0 on ∂[−1, 1]n. (5.1)

Let l, ε > 0 be parameters, and consider the higher dimensional cube M̃n+1
l,ε = [−l, l] ×

[−1 + ε, 1 − ε]n with warped product metric g̃ = u2dt2 + g. Note that u does not vanish
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on M̃n+1
l,ε . Furthermore, observe that the scalar curvature [30, (13a) page 214] of g̃ satisoes

R̃ = −2u−1
(

�u−
1

2
Ru

)
= 2� 1

2
> 0. (5.2)

By applying the pointwise version of Gromov’s cube inequality [39, Theorem 1.1],

[16, Section 3.8], we then have

n∑

i=0

1


2
i,l,ε

≥
� 1

2
(n+ 1)

2π2n
, (5.3)

where 
i,l,ε is the distance within M̃n+1
l,ε between the ith opposing faces of the cube,

with i = 0 corresponding to the t-direction. Moreover, since 
i,l,ε is independent of l for

i = 1, . . . ,n, and 
0,l,ε → ∞ as l → ∞, it follows that by passing to the limit

n∑

i=1

1


2
i,ε

≥
� 1

2
(n+ 1)

2π2n
, (5.4)

where 
i,ε is the distance within ([−1+ ε, 1− ε]n,g) between the ith opposing faces of the

cube. Finally, since 
i,ε → 
i as ε → 0, the desired inequality is achieved.

Remark 5.1. In a similar fashion, this method also allows one to derive the spectral

toric band inequality directly from the pointwise toric band inequality. Note however,

that this warped product approach cannot deal with c-spectral constants for c �= 1
2 , and

it does not address the case of equality.

6 Black Hole Existence

In this section, Theorem 1.5 will be established, comparison with the Schoen–Yau black

hole existence result [35] will be discussed, and examples will be presented. The main

steps in the proof of the existence of apparent horizons will follow the prescription of

[35], and thus here only an outline will be given with remarks provided to accommodate

the higher dimensions and different radii.

6.1 Proof of Theorem 1.5

Consider an initial data set (Mn,g,k) as in the statement of the theorem, and assume

by way of contradiction that it does not contain any closed properly embedded smooth

apparent horizons. Then there exists a regular solution to the Dirichlet problem for the
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Jang equation

(
gij −

f if j

1 + |∇f |2

)(
∇ijf√

1 + |∇f |2
− kij

)
= 0 on Mn, f = 0 on ∂Mn, (6.1)

where f i = gij∂jf and ∇ijf denotes the covariant Hessian. The existence is obtained

from a limit of solutions to the capillarity regularized equation, utilized by Schoen–

Yau in the proof of the positive mass theorem [34] in dimension 3. This was extended

to dimensions n ≤ 7 by Eichmair [13, Proposition 7] in the asymptotically nat setting,

using the theory of C-almost minimizing boundaries [12, Appendix A]. The necessary tool

needed to apply Eichmair’s strategy to the Dirichlet problem (6.1) is a 2-sided barrier

construction at the boundary ∂Mn. This is explained for dimension 3 in [42, page 11],

and the same construction holds essentially without change in higher dimensions as

long as the boundary is untrapped. Because the solution of Jang’s equation represents

a MOTS in n+1 dimensions, one might expect its singular set to be at best codimension

7. However, better regularity properties prevail as it is a graph [12, Remark 4.1, pages

568–9], leaving its singular set to be at least codimension 8.

Consider now the Jang metric ḡ = g + df 2 on Mn. Its scalar curvature [13, (10)]

satisoes the identity

R̄ = 2(μ − J(v)) + |A− k|2ḡ + 2|X|2ḡ − 2divḡ(X), (6.2)

where A is the second fundamental form of the graph t = f (x) in the product manifold

(Mn × R,g + dt2), divḡ is the divergence operator with respect to ḡ, and v and X are

1-forms given by

vi =
fi√

1 + |∇f |2
, Xi =

f j√
1 + |∇f |2

(Aij − kij). (6.3)

Let u > 0 be the principal Dirichlet eigenfunction of −�ḡ + 1
2 R̄ on �. Then multiplying

(6.2) by u2 and integrating by parts produces

∫

�

(
(μ − |J|) +

1

2
|A− k|2ḡ + |X + ∇ logu|2ḡ

)
u2dVḡ ≤

∫

�

(
|∇u|2ḡ +

1

2
R̄u2

)
dVḡ. (6.4)

Notice that it is not possible for both |A−k|ḡ and |X+∇ logu|ḡ to vanish on �; otherwise,

this would imply that u is constant. Therefore, the integral involving these two terms

gives a strictly positive contribution to the left-hand side. Using that μ − |J| ≥ � on �,
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we conclude that the corresponding principal eigenvalue satisoes �̄ ≥ (1+ ε)� for some

ε > 0 sufociently small.

If Nn ↪→ (�, ḡ) is an isometrically immersed non-PSC-band or cube, then by

utilizing the pullback of u on Nn in the proofs of Theorems 1.3 and 1.4, we ond that

the band or cubical-width satisoes

ḡ-width ≤ π

√
2n

(n+ 1)�̄
≤ π

√
2n

(n+ 1)(ε + 1)�
. (6.5)

It then follows from the deonition of torical and cubical-radius, that

Rad(�) ≤ π

√
2n

(n+ 1)(ε + 1)�
< π

√
2n

(n+ 1)�
, (6.6)

where Rad denotes the radius with respect to the Jang metric. Furthermore, since ḡ is

larger than g, we have Rad(�) ≤ Rad(�). However, this combined with (6.6) leads to a

contradiction with the assumption (1.11). We conclude that Mn must contain a closed

properly embedded smooth apparent horizon Sn−1.

Lastly, to verify the last claims of Theorem 1.5, note that the apparent horizon

may be identioed via blow-up of the Jang equation. Moreover, the same manipulations

that give rise to (6.4) provide an analogous stability type inequality on the Jang

surface where u is replaced by smooth functions with compact support. With standard

arguments, as in [13, Proposition 9], this stability property is inherited by the apparent

horizon. Thus, if μ−|J| ≥ λ > 0 on Sn−1, then the principal eigenvalue of −�Sn−1 + 1
2RSn−1

is not less than λ. By Theorems 1.3 and 1.4, it follows that

Rad(Sn−1) ≤ π

√
2(n− 1)

nλ
. (6.7)

Moreover, if cn = n−2
4(n−1)

is the dimensional constant from the conformal Laplacian, then

since 2 ≤ c−1
n the same arguments show that the principal eigenvalue of−�Sn−1+cnRSn−1

is positive. Hence Sn−1 is of positive Yamabe type.

6.2 Comparison to Schoen–Yau result

As discussed in the introduction, the 3-dimensional Schoen–Yau black hole existence

result in [35] relies on a different notion of radius than those used in this article. In order

to compare Theorem 1.5 with their result, we will in this subsection compare the torical-
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radius Radt and the Schoen–Yau radius Radsy. A preliminary observation reveals that the

neighborhoods used to build the Schoen–Yau radius are related to non-PSC-bands.

Proposition 6.1. Let (�3,g) be a compact Riemannian 3-manifold with (possibly empty)

boundary ∂�3, and assume that � ⊂
◦

�3 is a smooth simple closed curve that bounds a

disk D ⊂ �3. If � does not bound a disk within the distance neighborhood Nr = {x ∈ �3 |

d(x,�) < r} and Nr ∩ ∂�3 = ∅, then any embedded hypersurface in Nr separating � from

∂Nr must have a component of nonzero genus.

Proof. Suppose that Nr ⊂ �3 is a distance neighborhood of the curve �, such that there

is no disk in Nr bounded by � and Nr ∩ ∂�3 = ∅. Note that ∂Nr �= ∅, otherwise Nr = �3

and D would lie within Nr. Proceeding by contradiction, let us suppose that there is an

embedded hypersurface �2 ↪→ Nr, which separates � from ∂Nr, and has the property

that each of its components is a 2-sphere. Let N′
r denote the component of Nr \ �2 that

contains �, and note that its boundary consists of spheres.We may assume without loss

of generality that D intersects �2 transversely, and will denote by D′ the component of

D∩N′
r,which contains�. Then ∂D′\� consists of a onite number of circleswithin�2. Since

each component of �2 is a sphere, these circles bound disks within �2, which may be

used to cap off D′. Thus, the union of D′ with these caps produces a disk that lies within

Nr and is bounded by �, yielding a contradiction. We conclude that �2 must contain at

least one component of nonzero genus. �

The main observation gives the desired relation between the two notions of

radii. In particular, this comparison implies that Theorem 1.5 recovers [35, Theorem 2]

in dimension 3.

Lemma 6.2. Let (�3,g) be a compact Riemannian 3-manifold. Then Radt(�
3) ≥

Radsy(�
3).

Proof. Let � ⊂
◦

�3 be a smooth simple closed curve. According to a version of Sard’s

theorem [32], the set of critical values for the distance function from � is of measure

zero, and thus when computing the Schoen–Yau radius, it sufoces to restrict attention

to regular values. Consider such a regular value r, then ∂Nr is a Lispchitz hypersurface

[32], and may therefore be approximated with a smooth hypersurface that is homologous

and arbitrarily close to ∂Nr by, for instance, running mean curvature now for a short

time [11]. In particular, we may assume without loss of generality that Nr possesses a

smooth boundary. Let ε > 0 and consider the annular distance neighborhood Nr \ Nε.
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By Proposition 6.1, for all sufociently small ε, this annular distance neighborhood

deones a non-PSC-band of width r − ε. If r is the supremum of values r with the

property that the r-distance neighborhood from � does not intersect ∂�3, and � does

not bound a disk in this neighborhood, then since ε may be taken arbitrarily small we

have r ≤ Radt(�
3). Furthermore, since Radsy(�

3) is the supremum of r among all �, it

follows that Radsy(�
3) ≤ Radt(�

3). �

6.3 Examples

As explained in the introduction, for the class of maximal initial data sets Theorem 1.5 is

vacuous.However,here we showby explicit construction that it is straightforward to ond

examples that satisfy the hypotheses of this result, and in fact that they are ubiquitous.

Let (Mn,g) be an arbitrary complete asymptotically nat Riemannian manifold, and

consider an embedded cube [−1, 1]n ↪→ Mn. Now deone a symmetric 2-tensor k = Fg,

where F is a smooth compactly supported function on Mn, with F ≡ C >> 1 inside

the cube. Then (Mn,g,k) is an asymptotically nat initial data set whose energy and

momentum densities are given by μ = 1
2 (R + (n2 − n)C2) and J = 0, inside the

cube. Therefore if 3 ≤ n ≤ 7, then by choosing the constant C to be sufociently

large we ond that the assumptions of Theorem 1.5 and Corollary 1.6 are satisoed,

which yields a closed properly embedded smooth apparent horizon within (Mn,g,k).

The above construction can also be adapted for the torical-radius version of the

theorem.

Appendix A. Existence and Regularity of Warped μ-Bubbles

In this section, we discuss the existence and regularity of warped μ-bubbles with

Lipschitz potential function f , which does not appear to be in the literature. Previous

results on this topic have assumed a smooth potential function; however, the most

natural choices for f in applications are often merely Lipschitz since they involve

distance functions. The notation here will be consistent with that of Section 4, with M̌n

replaced with Mn.

Proposition A.1. Let (Mn, ∂±M
n,g) be an n-dimensional Riemannian band with n ≤ 7.

Suppose that u ∈ C∞(Mn) is strictly positive, and f ∈ Liploc(M
n) satisoes f → ±∞

on ∂±M
n. Then for any ς ∈ (0, 1) there exists a C2,ς warped μ-bubble �n−1 = ∂� \ ∂+M

n,

where�minimizes the functionalAu,f of (4.10) among Caccioppoli setswhose symmetric

difference with �0 is compactly contained within the interior of Mn.
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Proof. The existence theory for μ-bubbles relies on the compactness theorem for

Caccioppoli sets, and extends without any adjustment to the non-smooth setting. More

precisely, it follows from [8, Section 3] that a minimizing Caccioppoli set � exists,

whose reduced boundary ∂∗� \ ∂+M
n = �n−1 does not intersect ∂Mn. Moreover, it

is straightforward to show that �n−1 satisoes the C-almost minimizing property, and

therefore according to [12, Theorem A.1] this surface is C1,ς smooth. Alternatively, as in

[45, Theorem 2.2], we may follow the arguments contained in [27, Section 3] to obtain the

same conclusion. Writing �n−1 locally as graph, we ond that the graph function weakly

satisoes the second order elliptic equation

H = f − 〈∇ logu, ν〉. (A.1)

Since the potential function f is Lipschitz, the normal ν is C0,ς , and the weight function

u > 0 is smooth, standard Schauder theory yields C2,ς regularity for the μ-bubble. �
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