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Generalized torical band inequalities give precise upper bounds for the width of compact
manifolds with boundary in terms of positive pointwise lower bounds for scalar
curvature, assuming certain topological conditions. We extend several incarnations
of these results in which pointwise scalar curvature bounds are replaced with spectral
scalar curvature bounds. More precisely, we prove upper bounds for the width in terms
of the principal eigenvalue of the operator —A + cR, where R denotes scalar curvature
and ¢ > 0 is a constant. Three separate strategies are employed to obtain distinct
results holding in different dimensions and under varying hypotheses, namely we utilize
spacetime harmonic functions, u-bubbles, and spinorial Callias operators. In dimension
3, where the strongest result is produced, we are also able to treat open and incomplete
manifolds, and establish the appropriate rigidity statements. Additionally, a version of
such spectral torus band inequalities is given where tori are replaced with cubes. Finally,
as a corollary, we generalize the classical work of Schoen and Yau, on the existence of
black holes due to concentration of matter, to higher dimensions and with alternate

measurements of size.
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3140 S.Hirsch et al.
1 Introduction

In [17], Gromov-Lawson introduced a homotopy theoretic obstruction to positive scalar
curvature on closed spin manifolds, referred to as enlargeability. Informally, this notion
contends that since the Ricci endomorphism must have at least one positive eigenvalue
at each point when scalar curvature is positive, the manifold cannot expand dramatically
in all directions simultaneously. The n-torus T", therefore, cannot admit a metric of
positive scalar curvature because it may be viewed as expanding in all directions by
passing to covers. This heuristic is exemplified in the so called torus band inequality.
More precisely, if the product T"~! x [—1, 1] admits a Riemannian metric having scalar
curvature bounded below by A > 0, then the manifold’'s width or rather distance between
the two boundary components is bounded above by
n-—1

width < 27
ni

(1.1)

This sharp inequality was first proved by Gromov in [15] for n < 7 using minimal
hypersurface techniques, and was extended to all dimensions by Cecchini [5] and Zeidler
[44] using spinorial methods involving Callias operators. A variety of related band-width
inequalities were established by Cecchini-Zeidler [6] again using spinors, and by Réade
[31] with the p-bubble approach. Furthermore, in [19], spacetime harmonic functions
are applied to obtain a version of the 3-dimensional torus band inequality with rigidity
statement, and Chai-Wan [7] have established results of this type in the setting of initial
data sets for the Einstein equations.

In the current paper, we present spectral versions of torical band inequalities,
as well as Gromov's cube inequality [16, Section 3.8], and show how these can be used to
obtain generalizations of the Schoen—Yau [35] black hole existence result. In what follows,
all manifolds are assumed to be connected, oriented, Hausdorff, second-countable, and
smooth. Given an n-dimensional Riemannian manifold (M", g) and a number ¢ € R, we
define the c-spectral constant by

A, =inf [/ (qu|2 + CRuZ) dV‘u € Hé(M”),/
M M

u?dv=1 ] (1.2)
where R denotes scalar curvature and Hé (M") is the Sobolev space of L? functions
with square integrable derivatives arising as the completion of C3°(M™), the space of
smooth functions with compact support, in the Sobolev H! -norm. When M" is a compact

manifold with boundary, A, is defined as the c-spectral constant of the interior M”,

c
which coincides with the principal Dirichlet eigenvalue of the Schrédinger operator

—A + cR, and the condition A, > 0 may be interpreted as a weak notion of positive
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Band Inequalities and Black Hole Existence 3141

scalar curvature if ¢ > 0. This particular type of Schrédinger operator appears in various
geometric contexts for different values of c. The particular choice ¢ = % plays a special
role in the search for black holes, while other values of ¢ are used for the Yamabe problem,
minimal surfaces, and Ricci flow with surgery; we refer to the article by Li-Mantoulidis
[24] for an extended discussion.

The first spectral band-width result presented below is restricted to dimension 3,
but provides the strongest statement and conclusions. In particular, we are able to treat
open (possibly incomplete) manifolds and obtain rigidity in the case of equality, for an
infinite range of ¢ values. This theorem is obtained using the level set technique involving
spacetime harmonic functions. If E is a non-empty collection of ends associated with a
manifold M", and £"*~! c M" is a closed hypersurface, then the distance between E and
¥~ 1 will be labelled by d(E, =*~!) and is defined as the infimum of lengths of paths
traveling from points in £"~! to E. For further details concerning the notion of ends
and properties of open Riemannian manifolds, we refer to [19, Appendix C]. Recall that
a homology class is called spherical if it can be represented as the image of a sphere’s

fundamental class.

Theorem 1.1. Let (M3,g) be an open 3-dimensional Riemannian manifold with a
smooth closed hypersurface £? separating the ends of M® into two disjoint nonempty
classes E_ and E,.Assume that there are no spherical classes in H, (M3; Z), and that the

scalar curvature of (M3, g) is bounded from below infy;s R > —o00. If ¢ > % and A.(g) > 0,

then
, , [A,6—c1)
d(E_, ) + d(E+, X9 < E, where a = m (1.3)

Moreover, equality is achieved in (1.3) if and only if (M3, g) is isometric to the warped

product
((0.2) x £2, dp? + [sin(@p) & g, (1.4)
o

where (22, g,) is a flat torus.

It should be noted that the model geometries exhibit different asymptotic

}L, }L, or c = %, namely

the cross-sectional tori either expand, contract, or remain unchanged respectively, see

behavior at the ends depending on whether é < cCc < c >
Figure 1. Moreover, if we assume the pointwise bound R > A > 0 and note that A, >
c), then applying Theorem 1.1 while letting ¢ — oo recovers the original torus band

inequality (1.1).
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s = =

Fig. 1. Case of equality model geometries from left to right: ¢ > i, c= i, c< é.

In order to treat higher dimensional spectral band-width inequalities, we will
employ the use of spinorial Callias operators [6]. These techniques, which involve
modified Dirac equations, have similarities with Witten's proof of the spacetime version
of the positive mass theorem [40]. The statement of the next result requires certain
terminology. A compact Riemannian manifold (M", g) whose boundary components are
separated into two disjoint and non-empty collections oM™ = 9_M" u 3, M"™ will be
referred to as a Riemannian band, and its width is defined to be the distance between
the two classes of boundary components d(3_M",d, M"). A Riemannian band is called
overtorical if there exists a smooth map F : M" — 771 % [—1, 1] of nonzero degree,
with F(3,M™) C T" ! x {£1}. Furthermore, a Riemannian band that is spin is said
to be A-overtorical [43, Section 5] if there is an integer k > 1 and a smooth map
F:M"™ — Tk=1 x [-1, 1] such that F(3,. M™) C T¥"! x {#1}, and the A-genus A(F~!(p)) # 0
for regular values p of F; this latter condition is equivalent to requiring that the A-degree
of F does not vanish. Notice that in order for the A—genus of the fiber to be nonzero, the
number k must be less than or equal to n and satisfy n — k = 0 mod 4. For instance, the
product of a K3 surface with an interval is an A-overtorical band, where the map F may
be taken to be projection to the interval. If k = n, then the A-degree agrees with the usual
degree of a map between oriented manifolds, and in this situation an A-overtorical band

is an overtorical band.

Theorem 1.2. Let (M",0,M",g) be an odd dimensional spin band, which is A-

overtorical withn > 1.If ¢ > '2—;11 and A, > 0, then

(1.5)

c ((40— 1)n+2—4c)

d(8_M”,8+M”) <2m [—
A, (4c—1n+1

Recall that for n > 3 the conformal Laplacian is given by —A + ¢, R, where c¢,, =

4(’;—__21). Thus, the lower bound for ¢ given by ’ﬂ}—_nl coincides with the conformal Laplacian
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constant of one dimension higher ¢, , ;. The pointwise version of this result was obtained
by Zeidler in [43, Theorem 3.1, Proposition 5.5], and states that if R > A > 0, then the
A-overtorical band width satisfies the upper bound of (1.1). As with Theorem 1.1, the
pointwise analogue may be obtained from the spectral result by observing that A, > cA
and then sending ¢ — oc.

We may remove the spin assumption up to dimension 7 by utilizing (warped)
u-bubbles. These hypersurfaces, introduced by Gromov [16, Section 5], satisfy a type
of prescribed mean curvature equation and come with a stability property that can
be exploited in a similar manner to the classical Schoen-Yau usage of stable mini-
mal surfaces. Alternatively, from a mathematical general relativity perspective, the u-
bubbles may be viewed as a stable apparent horizon within an auxiliary initial data
set for the Einstein equations. In the next theorem, we establish a spectral band width
inequality restricted to the case ¢ = % The pointwise version of this result, that is
under the assumption R > A > 0, again yields the same upper bound as in (1.1) and
is given by Gromov [15, page 8] with a proof via torical symmetrization. Moreover, the
pointwise rendition may also be obtained from the work of Radé [31] who also exploited
wu-bubbles to obtain a variety of band-width estimates, or separately by modifications of

the arguments presented below in Section 4.

Theorem 1.3. Let (M",3,M", g) be an overtorical band with n < 7. If A% > 0, then

2n
M", 9, M" _ 1.
d(o_M",0,M") <m (n—i—l)A% (1.6)

Another type of width inequality has been obtained for cubes by Gromov
[16, Section 3.8] for dimensions n < 8, by minimal surface techniques, and this was
extended to all higher dimensions by Wang—Xie-Yu [39, Theorem 1.1] (see also [41]) with
Dirac operator methods. The result states that if a Riemannian metric on the cube [-1, 1]"

has scalar curvature bounded below by R > A > 0, then

1. ok (1.7)
;E 4712(n—1) '

where ¢; is the distance between the ith pair of opposite faces of the cube; the constant

# is optimal [39, Remark 2.1]. The inverse square root of the quantity on the left-hand

side of (1.7) is referred to as the cubical-width. Here we establish a spectral version of

the cube-width inequality for the case when ¢ = %
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3144 S.Hirsch et al.

Theorem 1.4. Let (-1, 1]?, g) be a Riemannian cube. If A% > 0, then

o1 (n+DAy
27 g 0.8
i=1 1

where ¢, is the distance between the ith pair of opposite faces of the cube.

This result implies the spectral torus-band inequality in all dimensions, namely
if (T™ ! x [-1,1],g) satisfies A% > 0 then the width satisfies the upper bound (1.6).
Indeed, the torus-band naturally gives rise to a Riemannan n-cube, and since the spectral
constant of the cube is no less than that of the parent torus-band, it is positive. We
may then apply Theorem 1.4, and utilize the fact that the torus-band width is less than
or equal to the distance between the corresponding pair of opposite faces in the cube,
to obtain the desired estimate. Unlike the other results presented so far, the proof of
Theorem 1.4 consists of showing how the spectral inequality follows from the pointwise
inequality by passing to a warped product constructed with the principal eigenfunction,
in similarity to part of the torical symmetrization process. This method of proof also
extends to the spectral inequality for T%~! x [—1, 1], giving an alternative proof to that

mentioned above. Although this approach is quite simple, it only applies to the case when

1
2 r

¢ = 5, and is not well-suited for rigidity statements such as in Theorem 1.1.

While the spectral torical-band type inequalities are of independent interest, it
is our intention to apply them here to obtain black hole existence results, particularly in
higher dimensions. In [35, Theorem 2] (see also [42]), Schoen—Yau obtained such a result
for 3-dimensional initial data sets, which depends on a particular notion of radius. Given
a region 2, consider a simple closed curve I' C 2, which bounds a disk. Let r denote
the supremum of values r with the property that the r-distance neighborhood from I"
does not intersect 9€2, and I' does not bound a disk in this neighborhood. The Schoen-
Yau radius Rad,,(€2) is then defined to be the supremum of r among all curves I' as
above. An initial data set for the Einstein equations consists of a triple (M", g, k), where
(M™, g) is a Riemannian n-manifold and k is a symmetric 2-tensor on M" representing
the extrinsic curvature of the embedding into spacetime. By taking traces of the Gauss—

Codazzi relations, these quantities satisfy the constraint equations
2u = R+ (Trgk)” — [kI?, J = div, (k- (Tryh)g), (1.9)

where u, J represent the matter energy and momentum densities, respectively. Suppose

that M3 is compact, with boundary satisfying the untrapped condition H > |Trsk]|
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where H denotes the (outward) boundary mean curvature, and u — |[J| > A > Oon a

bounded domain Q cc M3. The Schoen-Yau black hole existence theorem states that if

3
Rad,, (Q) = 7/ >, (1.10)

then M® contains an apparent horizon ¥2. These surfaces, which are alternatively
known as marginally outer or inner trapped surfaces, satisfy one of the equations
Hy» £ Try2k = 0; we refer to [23] for further properties of apparent horizons and their
physical significance. Thus, for a region of fixed size measured by the radius, sufficient
concentration of matter induces gravitational collapse. This yields a manifestation of
Thorne's hoop conjecture [37]. An advantageous feature of this result, also shared by
Theorem 1.5 below, is that it applies under quite general conditions. This separates
it from most other results on this topic, which require special hypotheses such as
symmetry or maximality (Trgk = 0) of the initial data, for instance [2, 3, 20, 21, 26, 38].
The proof in [35] proceeds in two steps. The first is to establish a spectral-
radius inequality, and the second consists of employing this estimate to show that
(1.10) forces blow-up in the solution of Jang's equation on M3. Here, Jang’s equation
refers to the quasi-linear elliptic equation of prescribed mean curvature type, used
heavily in their proof of the spacetime version of the positive mass theorem [34]. We will
follow a similar prescription, with alternate notions of radii motivated by the spectral
torical-band width inequalities described above. A Riemannian band (N"?, d,N", h) will
be referred to as a non-PSC-band if 9_N" and 9, N" are not separable by a smooth
embedded hypersurface £*~! ¢ N”, which admits a metric of positive scalar curvature.
As is discussed at the end of Section 4, overtorical bands are examples of non-PSC-bands
for n < 8. The torical-radius Rad,(2) is defined to be the supremum of widths of all non-
PSC-bands (N, d,.N", h) that are isometrically immersed into €, and the cubical-radius
Rad () is defined to be the supremum of cubical-widths of all cubes ([-1, 1], k) that

are isometrically immersed into Q.

Theorem 1.5. Let 3 < n < 7, and suppose that (M", g, k) is a compact n-dimensional
initial data set with untrapped boundary. Assume that there is a constant A > 0 and a
compact submanifold Q C M" with Lipschitz boundary, such that u — |J| > A on Q. If

Rad(Q) = 7 | 2" (1.11)
(n+ DA
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3146 S.Hirsch et al.

where Rad is either the torical-radius Rad, or the cubical-radius Rad,, then there exists
a closed properly embedded smooth apparent horizon S®~! within M"™. Moreover, if u —
|J| > A > 0 on the apparent horizon then it is of positive Yamabe type with Rad(S"!) <
7T/ % In particular, if the apparent horizon lies within €, then its radius satisfies
the estimate with A = A.

In Section 6, a class of initial data will be constructed, which satisfy the
hypotheses of this theorem. It should be noted that, analogously to the Schoen—Yau result
[35], there are no examples to be found among those that are maximal. To see this, note
that if the data were maximal, then the constraint equations (1.9) and the inequality

u —|J| > A imply that R > 2A on Q. Thus, any overtorical band isometrically immersed

2(n—1)
nA

inequality, but this precludes Rad(2) from achieving (1.11). See Shi-Tam [36] (and the

in © must have width no greater than = by the pointwise overtorical band-width
related [1]) as well as [22] for black hole existence statements in the time symmetric
case, when k = 0. A comparison between the torical-radius and the Schoen-Yau radius
will also be given in the last section. In particular, it is shown that Rad,(2) > RadSY(Q)
for any region 2, and therefore Theorem 1.5 in dimension 3 recovers [35, Theorem 2]. We
would also like to point out contemporaneous work by Chow and Wan [9] that involves
similar results.

We close the introduction with an immediate consequence of Theorem 1.5, which
has the advantage that each side of the black hole existence criteria is straightforward
and, in principle, relatively easy to compute. Moreover, it utilizes cubes that are topologi-
cally balls, and thus emulates the essence of Thorne's hoop conjecture [37], which posits
that gravitational collapse occurs when enough mass is compressed inside a perfect

sphere.

Corollary 1.6. Let 3 < n < 7, and suppose that (M", g, k) is an asymptotically flat

n-dimensional initial data set. Assume that there is an n-cube within M"™ on which

|~

\J| > 2n* i (1.12)
n—= justl ’ .
n+1 - Vo

=N

where ¢; is the distance between the ith pair of opposite faces of the cube. Then the data

contains a closed properly embedded smooth apparent horizon.

This paper is organized as follows. The proofs of the spectral torical band-

width inequalities, namely Theorems 1.1, 1.2, and 1.3, will be given in Sections 2, 3, and 4
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respectively. The spectral cube inequality, Theorem 1.4, will be presented in Section 5.
Moreover, as mentioned above, Section 6 is dedicated to the black hole existence result
Theorem 1.5. Additionally, an appendix is provided that addresses certain existence and

regularity issues concerning warped p-bubbles.

2 The Spacetime Harmonic Function Approach

In this section, we will utilize the technique of spacetime harmonic functions to establish
the spectral torical band-width inequality of Theorem 1.1. Such functions arise as
solutions to a semi-linear elliptic equation associated with initial data sets, and were
introduced in [18] within the context of the spacetime version of the positive mass

theorem. Applications to comparison geometry were recently studied in [19].

2.1 Background

In this paper, we will only use a special case of spacetime harmonic functions in
which the associated auxiliary initial data set is umbilic. Thus, the spacetime harmonic
equation itself will take as input a single function f defined on a band, which shall be
chosen later to extract advantageous coercive behavior of the solution. The following
proposition provides the basic existence result for this special class of spacetime
harmonic functions, and is an immediate consequence of the more general existence

result discussed in [18, Section 4].

Proposition 2.1. Let (M",d,M", g) be an n-dimensional Riemannian band, and consider
a function f € Lip(M"), as well as constants ¢_ < c, . Then for any ¢ € (0, 1), there exists

a unique solution u € €S (M") of the spacetime harmonic Dirichlet problem

Au+nf|lVu|=0 in M",
(2.1)

u=cy ond, M".

We note a basic technical fact concerning spacetime harmonic functions, which
is shared by solutions to other elliptic equations, namely their set of critical points is
small. This becomes useful when expressing certain integral inequalities below, which

involve dividing by |Vul.

Proposition 2.2. Let u be a nontrivial spacetime harmonic function, with Lipschitz f,
on a Riemannian manifold (M", g), n > 2. Then the critical set {x € M" | Vu(x) = 0} is of

Hausdorff codimension at least 2.
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Proof. The spacetime Laplace equation may be viewed as a linear equation Au =
(X,Vu), where X = —nf% whenever Vu # 0 and X = 0 when Vu = 0. Since X is

L*°, the result follows immediately from [28, Theorem 1.1]. [ |

The importance of spacetime harmonic functions rests to a large extent on a
fundamental integral inequality that they satisfy, which here will be specialized to
dimension 3. The next result follows directly from [18, Proposition 3.2], by setting k = fg
so that u = %R + 3f2 and J = —2Vf. In this setting, the spacetime Hessian is given by

VZu = VZu + |Vulfg. (2.2)
Note that the spacetime Laplacian arises as the trace of this spacetime Hessian.

Lemma2.3. Let (M3, BiM3, g) be a 3-dimensional Riemannian band, and let f € Lip(M?3).
If u € C>S(M°®), ¢ € (0, 1) solves boundary value problem (2.1), then

/ 2|Vu|(2f — H)dA — 2|Vu|2f + H)dA
9_M3 3

I M

(2.3)

|@2u|2 ) ct

> + (R + 6f2)|Vu| — 4(Vf,Vu) ) dv — 47y (,)dt,
m3 \ |Vu| c_

where H is the outward mean curvature of M2, and x(%,) is the Euler characteristic of

regular level sets =, := u1(2).

Even though the function f is only Lipschitz, the appearance of Vf in (2.3) is
justified by Rademacher’'s Theorem, which ensures that the derivative exists almost
everywhere. Furthermore, the Euler characteristic integrand is in fact a measurable
function, which may be seen as follows. Observe that as explained in [18, Remark 3.3],
the conclusion of Sard’s theorem still holds for u even though it may not be C3-smooth.
Moreover, u is a proper map and so its regular values form an open set of full measure.
Hence, if t; is a regular value of u, then the function ¢t — yx(X,) is constant for all levels
t near t,. We then have that x(X;) is continuous almost everywhere, and is therefore
measurable. For more information concerning spacetime harmonic functions, we refer

to the survey article [4].

2.2 Proof of Theorem 1.1: the inequality

Let X2 be the closed surface that separates M* into two connected components M3, where

E, is contained in Mi. Set w, = min{d(E,, 2, %}, and suppose that w_ + w, > Z

- o

20z Ateniged Lz uo 1senb Ad $0080Z./6€ L£/t/20Z/0101E/UIW/LO0D"dNO"0ILISPEOE)/:SARY W) PAPEOIUMOQ



Band Inequalities and Black Hole Existence 3149

Consider the signed distance function r(x) = +d(x, £?) for x € Mi. For ¢ > 0 small,
define the band (M3, 63, g) by

ﬁg ={xeM?|rx) el-w_+e w, —el, (2.4)

where the assignment Biﬁg respects E,. According to [19, Lemma C.2], ﬁ;é is compact.
Next, append the compact components of M3 \ ﬁ? to ﬁ? and denote the resulting
manifold by ZT/[? Notice that each component of M3 \ ZT/E contains at least one end. By
appealing to the long exact sequence of the pair (M2, JT/E), and using the fact that the top
homology group of an open manifold is trivial, we find that the inclusion H, (]TJE; 7) —
H, (M3; Z) is injective. It follows that there are no spherical classes in H, (Il//IE; 7)), since this
property is assumed for M3. Moreover, because ©? separates the nonempty collections
E,, we have that at least one component of each Bi@ remains in 87\/[?, and that the
distance within ]TJ\?’ from X2 to these components is unchanged. As in the proof of [19,
Main Theorem Al, there is a small perturbation of M3 to a band (M2,d,M3,g) with
smooth boundary, no spherical homology, and width at least w_ + w, — 3e. We will
proceed to work with the bands M2, eventually taking a limit as ¢ — 0 to obtain an
integral inequality for a nontrivial spacetime harmonic function, which will lead to a
7

contradiction if w_ +w, > -

Let u,; be the spacetime harmonic function guaranteed by Proposition 2.1

satisfying
Au,; +3f,;|Vu, ;| =0 inM?, 2.5)
u, ;= +1 on 3, M2,

where f, ; is defined in (2.6) below. Denote wi = d(0,.M2, £?), and observe that wy >

T

w, — 2¢ along with w + w, > Z — 3¢. Let h(t) be a Lipschitz cut-off function such that
h(t) =0if t <0, h(t) =tift € [0,2],and h(t) = 7 if t > . For all large positive integers

i, we define

1+ HZtan (eh(r@) + w_ —2¢) - 3 + 1) ifrx) < min{-%, -w; + &

Jo i) =101+ %)%" tan (3 — ah(w, — 2¢ —r(x)) — %) if r(x) > max VZ;, -

& 6o

(1+HZ tan (1, ;(r(x))) otherwise
(2.6)
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3150 S. Hirsch et al.

where 1, ;(r) are linear functions chosen to ensure that f, ; is Lipschitz. Since w} + w, >
» — 3¢, an elementary but tedious calculation shows that the slope of 1, ; is positive and
less than «(1 + Ce), where the constant C > 0 is independent of ¢ and i. Let €2, be the

region defined by the third case in (2.6). Then outside of a set of measure zero we have

40 2
T—i_fgz,l_g'er,leol OnMg\le

(2.7)
402

< 2 - §|Vf8’i| > —Co(e+1i7Y), ong,,
where C is a constant independent of ¢ and i. Note that f, ; — doc on 9. M2 as i — oo,
so that |f, ;| > |H,| for all i large enough, where H, is the mean curvature of dM?> with
respect to the unit outer normal.

We will now apply the integral inequality of Lemma 2.3. However, in order to
obtain an optimal estimate for w, + w_, an additional divergence term is added to

produce

38-ch 38-chH
/BMS |Vu8,i|(ﬁfgli—2Hg)dA—/a M3|Vu8,i|(ﬁf&i+2flg da
+Vie

- €

:/a e IVu, ;| (4f,; — 2H,) dA _/a o \Vu, ;| (4f.; + 2H,) dA
— Ve +Me

-1
(4 .
_ /M s div (L Vu, Hdv

€

|62u5 1|2 2 Ct+
> / DRl VU, (R + 6f2) — (VU VE, ) | dV - / anx (5t 2.8)
e | Vi .

-1
c .
— /M3 6 o1 dlv(fgliVuS'i)dV

€

IVZu, ;|2 3(12 — ¢ 38—c)
=/I\W3 [ &, —+ |Vusyl| (R + 6 ——C_l 82,1) - —<Vu8'i, st,1> dV

-1
Vu, ;| 6—c

C+ .
—/ 4y (2ihdt,
Cc—

where {Ef'i} are the level sets of u, ;. Notice that in the above inequality the Euler
characteristic term is nonpositive, due to the maximum principle for spacetime harmonic

functions and the property that M2 has no spherical classes. Moreover, for sufficiently
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small ¢ and large i, we may apply (2.7) while using the scalar curvature lower bound

R > —R,, for some constant R, > 0, to find

312-c¢YH _, 38-cH
6—c 1 “ei g1

R+

3c! 402 98— ¢!
_RO+C—82i_L.w_1 (2.9)
2(6 — c~1)’¢ 9 26-c

>—Ry—c 'A,—1.
Next, choose a fixed region Q = 1\7[50, with ¢, sufficiently small depending only on c, R,
and A,. Then,on MS\Q, it follows that r(x) < —w_+¢y orr(x) > W, —¢&q, which guarantees

that |f, ;| is large enough to yield

- -1p2.
3¢ ! fz
2(6 — iZ 60

"= +Ro+c 'A,+2 onM\Q, (2.10)

for sufficiently large i. While on €, |, ;| is uniformly bounded. Moreover, since f, ; blows-
up on 3, M2, the boundary integrals of (2.8) are nonpositive for large i. Hence, utilizing

the second and third line of (2.9), as well as (2.10), produces

312-c¢YH _, 38-ch
OE/ZME3 |Vu8,i| (R+W ei 6_—|Vf€l| dv

(2.11)
—1

-1 ¢ 2
z—/(RO—i-C AC+1)|Vu8i|dV+/ %+ 1) |Vu, ldV.
Q ' M3\ \6—C '

In order to extract a convergent subsequence, we now rescale u, ; similarly to

€1

that which is done in [19, proof of Main Theorem A], and define

8 U, i (x) — A, ; 1
i, ;(x) = ————=, A, ;= —/ u, dv. (2.12)
' supq [V, il ol e T
The normalized function u, ; satisfies supg, |Vi, ;| = 1, and has vanishing average value

on Q. Therefore, (2.11) y1elds

—1
/3 ( Cc_lf£21+1)|Vu£L|dV</(R0+c_1Ac+1)|Vu“|dV<(R0+c_1Ac+1)|Q| (2.13)
M3\Q \ 6 —
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Since [f, ;| is uniformly bounded on Q, we have

3 6—c! N
/Ms( 2,4 1)|VE, 1AV < (—C_1 +1) (Bo+c™' Ao+ DIRI +121sup(f, 2 +1) < €,

&

(2.14)

where C, is independent of ¢ and i. Since the average of ¢, ; vanishes on 2, we may apply a
version of the Poincaré inequality on M2 [25, Theorem 1] to conclude that g il a2y 18
bounded by a constant independent of the index i. Therefore, by passing to a subsequence
(in 1), &, ; converges to a function @, in LP (M2), forp € [1, %), as i — oo.Because u, ; solves
the elliptic spacetime Laplace equation, uniform LP(M2) bounds for U, ; imply uniform

control in Clzo'g (MSS), ¢ € (0,1); here we have used the fact that f, ; — f, pointwise on the

interior of M3, as i — oo. Thus, @, ; also converges subsequentially as i — oo to @, in
Clzég,ﬂdge) for some ¢ € (0, 1), and the limit satisfies Ati, + 3f,|Vii,| = O on the interior
of M3,.

To obtain further properties of |Vii,| observe that from (2.8), the fact that the

boundary terms are nonpositive, together with (2.11) and (2.14), we obtain

|2
dv

V2i,  +f. Vi, ;
(R0+C_1AC+ 1)|Q| Z/ | &,l f:&“,ll gyl|g
M3 |Vu5,i|

via, |?
:/ % — 3f%|Vu, ;|dv (2.15)

z/ 4|V|Vii, ;|22dV — 3C,.
M3 '

Since |Vﬁs,i|% is bounded in H! (Msa) independent of i, it has a weak subsequential
limit in H!(M2), which also converges strongly in L?(M?). In light of the fact that
fe; blows-up uniformly on M3\ 11’/;2;, the inequality (2.14) implies that the limit
function |Vf¢8|% = 0 a.e. on this domain. Note that even though @, may not be
defined M2 \1\’4\5’:, with a slight abuse of notation we still denote the limit of |V11€'i|%
(which is defined globally on M?) in terms of @,. Moreover, for a.e. ¢ the boundary
81\22: is a Lipschitz submanifold [32], and therefore by applying the trace theorem
we find that |Vﬂ8|% vanishes up to a set of measure zero on this set. It follows that

|Vﬂ8|% € Hé (Mgg) for all such ¢; below, it will always be assumed that ¢ satisfies this

property.
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We are now ready to return to the integral inequality. Taking the limit as i — oo
and applying Fatou's Lemma to (2.8) yields

2~ Vil 1
Oz/ﬁ |:|V e + | Vikelg| +|Vft€|(R+3(12 ¢ )faz) 3(8 — 3 <Vug,Vfg:|dV. 216
2¢

|Vitg| 6—c1 6 —

Consider the first two terms of (2.16). Using a Kato inequality similar to [19, Remark 4.4],
Proposition 2.2, which shows that the set of critical points for @, is of measure zero, and

the spectral hypothesis, we obtain

V2i Vit |g|?
/~(| u8+ff| U 19| +R|VfL8|)dV
M3,

VL, |
3|V|Vit vi, |2
z/w( VIV | + ]| +R|Vﬁ8|)dV
7 2|vVu,|
-1 -1 ol 3 -
=/ﬁ (6|V|Vu€|z|2_|_6(V|Vu£|2,fs|Vu€| 2Vu8)+(R+§f82) |Vus|) dv
2 (2.17)
-1 3 IR -1 ~ L2
= 6—c )V|Vu|2+ ——— Vi, IViL,| +c N VIVi,|?|
M25
N 3 9 N
+R|ViL,| + (E — 5 C_l)f§|Vu8|) dv
3 9
> 1A |V s — ) fAva,|)dv
‘/ME(C VL + (5 - g ) S2Va
Combining (2.16) and (2.17) then produces
0>/ a4 28 71)f2 \Vii, B(S_Cfl)wa VE) | dv
~ ' 26-c 6 —c1 e e
’ 9 (2.18)
> [oetng (14 a2 - g VA1) VIV,
M.

2¢e

_ [Ac(6—c™hH
where a =,/ 208"
To proceed, we shall inspect the limit as ¢ — 0. First note that applying Fatou's

lemma to equation (2.14) yields

/~ IV, |dV < liminf |__ |V, ;|dV < Cy. (2.19)

i—00
M2 2
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Moreover, since u, ; has vanishing average on €, the same is true of @i, and thus utilizing
again a version of the Poincaré inequality we obtain uniform W' (M3,) bounds for @,.

By passing to a subsequence, i, — u in Lf;c(l\_/I?’) foranyp €1, %), where
M3 =UM ={xeM |rx) e (-w_,w,))} (2.20)

As before, since @, satisfies the elliptic spacetime Laplacian, we may boot-strap to find
subsequential convergence @, — u in Clzo'g(ﬂ_/ﬁ), for some ¢ € (0,1). Furthermore, Au +
3f|Vu| = 0 on M2 with

%"‘ tan (eh(rx) + w_) — %) if r(x) <min{-"%, -w_+ &

fx) = %‘)‘tan (7 —ah(w, —rx)) ifr(x) > max{5, w, — &} (2.21)

%‘* tan (1(r(x))) otherwise

since lim, o w¥ = w,, where 1(r) is a linear function that ensures that f is Lipschitz.
Finally, if w_ +w, > 7, then the slope of 1 would be strictly less than « in some
region of nonzero measure, which produces
9

1+ —f%— i|Vf| > 1+ tan®((r(x))) — sec’(1(r(x))) = 0. (2.22)
402 202

Furthermore, taking the limit of (2.18) with Fatou's lemma implies that

9 3
0> AN+ —f% - == |Vfl) IVuldV. 2.23
> [ o (14 ot - VA1) Vu (2.29)

Since u is nontrivial as supg |Vu| = 1, Proposition 2.2 shows that |Vu| can only vanish

on a set of measure zero, and therefore a contradiction is obtained. We then have that

w_+w, < %, from which the desired conclusion follows.

2.3 Proof of Theorem 1.1: the case of equality

We now assume that equality holds in (1.3). Since w_ + w, < g neither one of w, can

be % as both d(E,, »2) must be positive. It follows that w_ + w, = g Therefore, since

r(x) € (—w_, w,) on M3, in this region (2.21) gives

fx) = 2?0( tan (ar(x) +aw_ — %) = —2?05 cot(ap(x)), (2.24)
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where p(x) = r(x) + w_. By inspecting (2.16)—(2.18), using Fatou’'s lemma, and
Proposition 2.2, we find that

VIVu|z + . _BCflfIVul_%Vu —0 (2.25)
holds almost everywhere. Then integrating this equation along curves emanating from
regular points for u shows that in fact |Vu| # 0 holds globally on M3.

Let{e;, e5,e5 = %} be an orthonormal frame. From (2.18), we deduce that Vu is a
multiple of Vf, and therefore e; = Vp. This implies that u is a function of p. Furthermore,

the first two lines of (2.17) combined with [19, Remark 4.4] show that
Viiu=0ifi#j, V) U = Va,u. (2.26)

Thus, (M3, g) is a warped product with g = dp? +¢2(p)g,, where g, is a metric on 2 and
¢ is a positive continuously differentiable function on (0, 7). Next observe that inserting
e; into (2.25) yields

6
VilVu| = ———f|Vul, (2.27)
6—c!

which implies that up to a scaling constant we have
. _4c_
[Vul|(p) = [sin (ap)]se-T. (2.28)

Moreover, using the spacetime harmonic equation combined with (2.27) produces

20y _ pp_ Au—Vgu 3¢ 12

; u = et (2.29)

where H is the mean curvature of level sets with respect to e;. Hence, it follows that up
to scaling ¢ (p) = [sin(ap)]%. When ¢ # %, due to the behavior of ¢ at the ends we find
that M2 cannot be strictly contained in a connected open manifold, and thus M3 = M?3.
If c = }L, then ¢ = 1 and M?® is a cylinder. After taking the limit in (2.17), we conclude
that the function |Vu|% = sin(ap) minimizes the Rayleigh quotient (1.2). It follows that
the c-spectral constant of M3 must be A,. If M3 was properly contained in M3, then its
c-spectral constant would be strictly larger than that of M3, which is also A. Therefore
M3 = M?3, in this case as well. See Figure 1, for a depiction of the different types of

behavior for the warped product according to the value of c.
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It remains to show that (Ez,go) is a flat torus. According to [30, Corollary 43],

we have

28,5
s

Ric(d,,d,) = — (2.30)
Moreover, taking two traces of the Gauss equations, denoting the Gaussian curvature of
Jo by K,, and noting that the second fundamental form of (22, g,) — (M3, g) is given by
1T = $¢,9g, with mean curvature H = 2¢~ !¢, yields

R =2Ric(d,,9,) + 20 °K, + |I|* — H?
(2.31)
=—2¢72(p2 + 269,,) + 20" °K,.

Let L = —A + cR — A_, then a tedious but elementary calculation using the explicit
expressions for |Vu|% and ¢ along with the relation between o and A, in (1.3),
shows that

L(Vul?) = - 8,,,(IVu|2) — H3,(IVul2) + (R — A)|Vul?
1 2¢ 1 2 1
== 8,,(Vul®) = =28, Vul?) - (¢—§<¢§ +209,,) — 206 "°Ko + Ac) Vul?

—2 1
=2cKy 9~ “|Vulz.
(2.32)

Again using the explicit expressions for function and metric, it may be verified that
i 1/7/3 1 ;

|Vu|2 € Hy(M?) for ¢ > 5. Furthermore, as observed at the end of the previous paragraph,
the Rayleigh quotient evaluated at |Vu|% agrees with A, and thus L(|Vu|%) = 0. Hence
K, = 0, and (X?,g,) is a flat torus. This completes the “only if” direction in the case of
equality statement.

To verify the “if” direction, it must be shown that given « > 0, ¢ > %, and a
flat torus (Tz,go), the c-spectral constant A, of the warped product M3, 9) = ((0, ) x

T2,dp? + ¢%(p)g,) agrees with A, = %ﬁj)“z. According to (2.32), the function u, =
|Vu|% given by (2.28) satisfies

and ug > 0 on M3. This implies that A, < AL.If A, < A/, then there exists a test function
with compact support having Rayleigh quotient strictly less than A/.. We can therefore

find a smooth manifold with boundary IF\/I\E§ containing this support, and conclude that
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the principal eigenvalue A for this domain with Dirichlet boundary conditions is strictly
less than AL. Let & > 0 be the corresponding principal eigenfunction for this domain,
so that

(—A+CcR) =l in M3, =0 ondM3. (2.34)

Observe that
A(Bugt) =ug ' Al +2Vi - Vug! + GAug!
=ugl(cR — Ml — 2V(Tug') - Vleg ug — 2duy 3| Vugl?
(2.35)
— Qug?Aug + 20ug 3| Vg |
=(A, — Mluy' — 2V (auy") - Viog u,.
Thus, by applying the maximal principal to ﬁual on M~§, we see that this function must

vanish, which is a contradiction. Hence, A, = A/,

3 The Spinorial Callias Operator Approach

The purpose of this section is to establish Theorem 1.2. It will be assumed in what
follows that n > 1, as the inequality (1.5) for n = 1 is trivially satisfied. Before beginning

the proof, we will first introduce the requisite machinery and notation.

3.1 Background

The following fact describes the fundamental property, from the perspective of this work,

of bands that admit the A-overtorical condition. It is well known, see [6, Example 7.5].

Proposition 3.1. Suppose that (M",d,.M", g) is an odd dimensional Riemannian spin
band that is A-overtorical. For any 8 > 0, there exists a Hermitian bundle £ over M™ with
a metric compatible connection V¢ such that

(1) the curvature R® of (£, V) satisfies |RY| < §,

(2) the wedge product of the A form of 3_M" with the Chern character of £ la_

satisfies
/ AD_M"™) Ach(&l, ym) #0. (3.1)
J_Mn

The next task is to introduce the relevant bundles and structure required to

describe the spinors used to prove Theorem 1.2. We will closely follow the exposition in

20z Ateniged Lz uo 1senb Ad $0080Z./6€ L£/t/20Z/0101E/UIW/LO0D"dNO"0ILISPEOE)/:SARY W) PAPEOIUMOQ



3158 S. Hirsch et al.

[6, Sections 2 and 3]. Consider an odd dimensional Riemannian band (M", 3, M", g) with
a spin structure. Let S — M" denote the associated complex spinor bundle, equipped
with the connection induced by the Levi-Civita connection. Given a Hermitian bundle
& — M™ with a metric connection, consider the bundle S= (S E) P (ST ®E) =S~ d St.
This bundle may be equipped with an action of the Clifford algebra, which interchanges

its summands according to the formula

0 -1
. vo®le ) (3.2)

where v € TM" is a vector and Iz denotes the identity on £. Here and throughout, we use

the sign convention v- w + w - v = —2g(v, w) for vectors v, w. The bundle S also carries

OY:( 0 —i ) (3.3)
i 0

where we are implicitly making reference to the direct sum description of S.In a standard

a natural involution o defined by

manner, S inherits a connection from M™ and £, and one may form the corresponding
Dirac operator D. Given a Lipschitz function f on M™, we may also consider the Callias

operator
Bryp = Dy + fop. (3.4)

Notice that there is a decomposition B, = Bj‘f @ BJZ where Bfi maps ST to ST.
Appropriate boundary conditions are required to set up an elliptic boundary

value problem, namely we will consider

Brp =0 in M™
Al (3.5)
Fv-op=¢ ona M"

where v denotes the unit outward normal to dM™. This yields elliptic boundary value

problems associated to BE, which are adjoint to each other, and therefore
Index(Bfi) = dim(ker(B})) — dim(ker(B)). (3.6)

According to [6, Corollary 3.10], the expression in (3.1) is the Fredholm index of the

boundary value problem associated to Bf Hence, if (M",d,.M",g) is A-overtorical,
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Proposition 3.1 implies that there is a source of Hermitian bundles £ such that there

are nontrivial solutions to this boundary value problem.

Proposition 3.2. Suppose that (M",d,M",g) is an odd dimensional Riemannian spin
band that is A-overtorical. Let £ be a Hermitian bundle given by Proposition 3.1. Then

for any Lipschitz function f and ¢ € (0, 1), there exists a nontrivial C''¢ solution to (3.5).

3.2 Proof of Theorem 1.2

Let f be a Lipschitz function on M" such that f is positive on 9, M" and negative on
d_M", to be determined later. Proposition 3.2 yields a nontrivial spinor ¢ satisfying (3.5).
In order to express the associated Béchner-Lichnerowitz—Weitzenbock formula, let P

denote the Penrose operator acting on spinors according to the formula
1
Px¢ =Vxy — —X Do, (3.7)

for any vector field X. Fix p € M™ and let {e;};. , be an orthonormal basis at p. Consider

the quantities v; = ;- V¢ + %(ﬂp, and note that according to equation (3.5) we have

> v; = 0. Write v = (v, 7) and observe that by Cauchy-Schwarz (n — 1)|7|2 > |v;|2.

Thus, |[v|? = vZ + |7]? > 25 |v,|?, and we arrive at the following Kato-type inequality

n 2 2

3 f f
|P<P|2 = - Vl§0 — Eel ol = 1 Vl(p — ;el cOQ (38)
By expanding the right-hand side and denoting g = %7 — ﬁ > 0, it follows that
n 2 1
Py|? > Vipl? — ———f(V,p,e, - E—
[Pel” 27 V10l n—lf( 19 €1 0¢)+n(n_1)f lol
1 1 z 1 1
=— |V, 0]? + ‘v - fe,-0 +( —~ )2 2
a0 V1ol H B V1w = g Tfer v =1 pm-12)7" 39

1 2 _ 1 2, 12
2 1cIV1el +(n(n_1) ,B(n—l)z)f lpl=.

B

Since |¢| is Lipschitz, Radamacher’'s Theorem ensures that it is differentiable almost
everywhere. Now if V|g| # 0 at p, then we may choose a basis with e; given by the unit

gradient so that |V, |¢|| = |V]|g||, whereas if V|gp| = 0 at p then this equality holds trivially
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for any choice of e,. Thus, (3.9) implies that

1
[Pyl > Ewwnz + Buf el (3.10)

holds almost everywhere.
According to [6, Proposition 4.2] and the proof of [6, Theorem 4.3], we have as a
consequence of the Béchner-Lichnerowitz—Weitzenbock formula that
f - H)|<p|2dA—/ f +
B+Mn

n
2(n—1)

n
: H)lg|2dA

a_Mm 2(n-1

=/ ( n (|7>¢|2+<<p,5¢+7e%>)+<¢,f2<o+Vf-o~w>)dv (3.11)
mrn \n—1 4

n 1 R
z/ — VIl + 121012 + = 191? — yulRE1101? ) + (9. f20 + Vf - o) ) dV,
mn \n—1 \4c 4

where R¢ is the £-curvature acting on sections of S and y,, is a dimensional constant
encountered when applying Cauchy-Schwarz to (¢, R€¢). To continue, notice that from

an integration by parts the following identity holds

oM™ M
(3.12)
== [ (2P + (0,5F 00) av,
Mn

where we have made use of the fact that 0 X- = —X - o for vector fields X. Leveraging

the boundary condition for ¢, one may multiply (3.12) by -8, and sum the result with

(3.11) to obtain
_ np . n 2
/aMn[(l n—l)f 2(n—1>H} lpl7aa

np, n 2
_/Wn [(1 Tn- 1)f+ 2(n — 1>H] lpl*da

n (1 , R o (3.13)
> —1|V — — R dv
_/Mnn_l(%| 0l + 161 = 7l R g
np, 2 np,
A1 - — 1—-——) Vf. dav.
R e
—_—
B2
Since g > 0, we find that 8, = n(nl_l) — ﬂ(nil)z < n(nl_l), and so
np; 1
=1- 1-— 0. 3.14
P2 n—1_ " m-12 (8.14)
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It follows that, provided +f is sufficiently large on 9, M", the boundary terms of (3.13)
are nonpositive.

We now proceed by contradiction and assume that there exists an ¢ > 0 such
that

d@_M", o, M") >w:=mx ) +¢e. (3.15)

A

4B,c(n — 1) +€:2n\/i ((40—1)n+2—4c
nA (4c—1in+1

c c

Next, define a sequence of bounded Lipschitz functions f} on M", which satisfy a certain
differential inequality and have the property that +f; — oo on 9, M™ as j — oo, in the

following way. Let r (x) = d(x, 3, M"), and for each j consider

~Zeot(Ero+1) ifrm=®E-1
fio=1Zoot(Zr.e+1) ifr.m=¥G-h. (3.16
0

otherwise

For each j, we may apply Proposition 3.2 to obtain a nontrivial solution ¢; to (3.5). Now
fix a compact subset Q C M™, where M™ denotes interior, such that for all sufficiently

large j we have

3
Effz —|Vfij =1 onM"\Q,

(3.17)
>C

n
o on M",

A
Bof = BV + o

n C
n-1) —

where C, > 0 depends on ¢, n, ¢, and A,. Then equations (3.12) and (3.17), together with
the boundary condition of (3.5) and sign of f;[;, ym, imply

1

Note that maxg, |¢;| # O; otherwise, this estimate implies that ¢; vanishes globally. Thus
by appropriate rescaling, it may be assumed without loss of generality that maxg, |¢;| = 1,
and (3.17) along with (3.18) yield

12 le 12 _ nA;
/Qlel Jr/Mn\S2 <2fj +1) lgj1°dV =< (4C(n_1)ﬂ2 +1)|Q|. (3.19)
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It then follows from (3.13), (3.17), and (3.19) that

n 2 2
_ V|p;||?dV Y. |p:|“dA
4c(n—1)/Mn' il +/3Mn i1

—Bof? 2 n IR| ) 1012 (3.20)
<[ (a8 +521951) dV+n_1/Mn< S |) o,V

<,

for some constant C; independent of j, where

. n

which satisfies T; — oo as j — oo.

The inequalities (3.19) and (3.20) show that the sequence |¢;| is uniformly
bounded in H!(M™), and thus lo;l weakly subconverges to a function |e| in H!(M™)
with strong convergence in H5(M™) for any s € [%, 1), see [14, Theorem 9.22] or [29,
Corollary 7.2]. Moreover, since the trace map t : HS(M"™) — HS*%(BM”) is continuous [29,
Proposition 3.8], we find that |¢;| converges subsequentially to 7(J¢|) in L%(dM™). However,
since Y; — oo, we find that (3.20) yields t(J¢|) = 0 on dM", and hence |¢| € Hé(]\?[”).
Then taking the limit in (3.13) while utilizing weak lower semi-continuity of the H'-norm,
strong convergence in L?, Fatou's lemma together with (3.17), and applying the definition

of the c-spectral constant produces

n 2 2 2 MYy e 9
0= [ (oo (7101 + cRig) + (5of? = 191 - 7700 871 tgP ) av

A
"% _ " |gE|) |p)2dv (3.22)
4cn—-—1) n-1

on
z/ (cg = V”) lpl2dV,
W n—l

where in the last line we used Proposition 3.1. By choosing § << C,, we arrive at a

= [ (82~ B+

contradiction since maxg, |@| = 1. It follows that

d(®_M", 9, M") < 2n\/i (

A, (3.23)

(4c — 1)n+2—4c)
(4c—Dn+1 '
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4 The p-Bubble Approach

In this section, we will establish Theorem 1.3, and for convenience will use the notation
A = A%. The result is trivial if n = 1, and thus it will be assumed that n > 1 below.

Suppose that the conclusion of the theorem is false, then there exists ¢ > 0 such that

2n
do_M", o, M") > — + 2s. 4.1
(o_ 4 )>m (n+1)A+8 ( )

Let u be the positive principal eigenfunction associated to A, so that
1 . n n
—A+§R u=Au inM", u=0 ondoM". (4.2)

In order to obtain a band on which u has a uniform positive lower bound, we may push

in by a small amount from the boundary and consider
= {X e M™ | d(x,dM") > %} . 4.3)

Note that it may be assumed without loss of generality that ¢ is sufficiently small to
guarantee that dM" is smooth and is divided into classes Bil\v/[” corresponding with
9,.M™. Next denote r,(x) = d(x,d,M"), and for 0 < g, << ¢ define a potential function

on the interior of M™ by

elsewhere

Observe that f, is Lipschitz and limits to +00 on 8, M™". Let B, (x) be the geodesic ball of

radius o centered at an interior point x € M™, and set
LfO (X) = lim Sup LipBU (X) (fo). (4.5)
o—0

Then at all such points the following inequality holds

n+1 2nA
—L A >
fo fo T A= n+1

&o- (4.6)
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This strictly positive lower bound for the left-hand side of (4.6) is the impetus for
introducing the constant ¢;.

We now seek to replace f; with a smooth approximation that agrees with it near
IM™. Let I\V/I;f) = {x € M" | ry(x) > ry}, where ry > 0 is chosen sufficiently small so
that r, are smooth (and hence f;, is smooth) within M \Z\v/I;g. We may approximate fj, by
fs € C“(Mfo/z), which, for each small § > 0, satisfies

fox) — f3(x)] <8, V£330 < Lipg, oo (o) + 6, .7)

with x € ]lV/I;g/Z. Such an approximation f; may be constructed as in [10, Theorem 2.2].
Furthermore given §’ > 0, the property (4.7) implies that Lg < Ly + 8’ for all § sufficiently
small, and therefore we find that (4.6) yields

2nA
n+1

n+1
2n

fE—Ly+ A=

gg — 28 (4.8)

on ZlV/I;;/Z. Now let  be a smooth nonnegative cut-off function on M", which is 1 on ZlV/I;g
and zero on M" \Ilv/[r’g/z. Define f' = nf; + (1 — n)f, and observe that this function is smooth
on M", agrees with f;, on M \I\V/[;;/z, and by virtue of (4.6) and (4.8) it satisfies

n+1 _, | 2nA p
- |V A > -3 >0 4.9
2nf |f|+ = n+150 > (4.9)

on M", if § is sufficiently small and 8’ << &.

The next step is to introduce the warped p-bubbles, which serve as the central
geometric tool in this proof. We will closely follow the exposition developed in [8, Section
3] and [46, Proposition 2.1]. Fix a Caccioppoli set Q, having smooth boundary with
8+Zl7[" C Qq,and such that 890\8+1|7[” lies within the interior of M™. For instance, one may
take Q4 to be an appropriate sublevel set of the distance function r_. For any Caccioppoli
set Q ¢ M™ with symmetric difference QAQ, compactly contained within the interior of

M", define the functional

A (@) = / udHm — /M (e~ X fudH", (4.10)

0*Q

where 9*Q2 denotes the reduced boundary, x, is the characteristic function of 2, and
dM™ is the n-dimensional Hausdorff measure. Using that f blows-up at 9, M", it may be
shown that a minimizer  of Auyf exists within this class of sets, and since n < 7 its
boundary 92 is smooth. Using the fact that 2AQ, does not intersect IM", we find that
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o_M™

o

o_M"

Fig. 2. The relevant regions in the pu-bubble approach.

3+ZI7I” lies within €2, and hence the smooth hypersurface "1 := BSVZ\BJrMn must separate

3_M" from 3+]|7[”. This surface is referred to as a warped p-bubble, see Figure 2.

Remark 4.1. Instead of approximating f, by a smooth function f and citing the
existence theory for u-bubbles in the smooth setting as done above, one may directly
construct C%¢-regular p-bubbles with respect to the Lipschitz potential function f;,. This

existence result is carried out in Appendix A, which may be of independent interest.

A direct computation yields the first variation formula for the u-bubble
Hu — fu+ (Vu,v) =0, (4.11)

where v is the unit outer normal to "1, and H is the mean curvature of "1 with

respect to v. Moreover, the second variation with test function ¢ € C*°(X"~!) produces

0 5/ 1 (—ud)Aqu — |A2¢%u — Ric(v, v)p2u + H(Vu, v)¢2) da
= (4.12)
+ / (£ (Vu,v) = UV, V) + $7V,,u — §(Vzu, V59)) d4,
En—l

where A denotes the second fundamental form. Utilizing the Gauss equations, the basic
inequality |A|? > ﬁHZ, and the decomposition Au = V,,u + H(Vu,v) + Asu gives

rise to

1 1
0 5/,,_1 (—ud)AZq’) — ﬁszﬁzu - ER¢>2u + Equszu) dA
> (4.13)

* /zn—l (—f¢2(Vu, v) = ¢*w(Vf,v) + 6% (Au— Azu) — $(Vsu, V2¢>) dA,
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with Ry denoting the scalar curvature of £"~!. Equations (4.2) and (4.11), along with the
Cauchy-Schwarz inequality |[(Vf, v)| < |Vf], then imply

1
0 5/)En_1 (—uqu):qf) _ ﬁ(f — (Viogu, v)2¢2u — Apu + Echpzu) aa

* /ZH (~f6%(Vu,v) = $*w(VE, v) — $*Apu - $(Vzu, Vs9)) dA

(4.14)
_ __n 2, M 2 2 .2 Lo 9
§/En71( upAyx o 2(n—1)f o°u z(n_l)(Vlogu,v> ug Ap“u + 2R):¢ u)dA
+ /En_l (ﬁwzﬂv logu,v) + ¢*ulVf| - p*Axu - ¢(Vsu, V>:¢>) da.
Observe that by Young's inequality
L 2F(Viegu,v) < — " ug?(Viogu, v)? + ——ug?f?. (4.15)
n-—1 ~2(n-1) 2n(n — 1)
Therefore, (4.14) becomes
1 1
0 5/ (—u¢AE¢ SRR Fe M Ve —R2¢2u) da
»n—-1 2n 2
(4.16)
+ /E (#2ulVs - ¢*Agu - ¢(V5u, Vze)) dA.
Next, let ¥ € C°(£"!) and set ¢ = Yu~? to find
0 5/ (—u%wAz(wu—%) —y?u T Agu - u—%wvzu,vz(wu—%))) da
En—l
(4.17)

2n

+/ (|vf|_n+1f2—A+%RE)w2dA-
yn—-1
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Finally if n > 3, integrating by parts, using Young's inequality again, and applying (4.9)

produces
3
0 5/ . (|V21ﬂ|2 - ZWZIVE logu|? + ¥ (Vs ¥, Vs log u)) da
n-

n+1 , 1 9
ik — A+ =R
N (e N N P

4 2, 1 2 n+1. 2
<[ (Grveve e grovt)aas [ (1wn- 20 a) vraa

2(n—1) , n—2 2 / n+1., 2
— sn-1 ('VE‘“ +4(n_1)sz )dA+ sn-1 ('Vﬂ 2n 7 A)‘” da
2(n—1) 9 n—2 2

“Th=2 g ('VZW +4(n—1)REI/’ )dA’

(4.18)

if ¥ is not identically zero. Since  was arbitrary, it follows that the principle eigenvalue
of the conformal Laplacian of (£"~!, g) is positive. In particular, ¥"~! admits a metric
of positive scalar curvature. When n = 2, the third line of (4.18) is still valid, so that
choosing ¥ = 1 yields the same conclusion. On the other hand, since X"~! separates
9_M™ and 8+Z\V/I" and hence also 3_M" and 9, M", the fact that (M", 9, M™) is overtorical
implies that ©~! admits a nonzero degree map to T"!, see [31, Lemma 6.2]. Since n < 7,
the classical work of Schoen—Yau [33] shows that £~ cannot support positive scalar
curvature metrics. From this contradiction, we conclude that the desired inequality (1.6)

is valid.

Remark 4.2. Note that this last argument shows that overtorical bands are non-PSC-
bands for n < 8, see the discussion before Theorem 1.5. Indeed, [33] continues to apply

for this slightly extended range of dimensions.

5 The Spectral Cube Inequality

In this section, we will establish Theorem 1.4. Let u be the positive principal Dirichlet

eigenfunction for the Riemannian cube, so that

1
(—A—i—ER)u:Aéu in [-1, 117, u=0 on 9[—1, 11 (5.1)

Let [,e > 0 be parameters, and consider the higher dimensional cube 1\7[[":1 =[] x

[—1 +¢,1 — ¢]® with warped product metric § = u®dt? + g. Note that u does not vanish
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on 1\711":1 . Furthermore, observe that the scalar curvature [30, (13a) page 214] of g satisfies
- _1 1
R=-2u Au — ERu = ZA% > 0. (5.2)

By applying the pointwise version of Gromov's cube inequality [39, Theorem 1.1],
[16, Section 3.8], we then have

n
D D A 5.3
2. = 2 '
= bile 2m4n
where ¢;;. is the distance within ]\7[1’1:1 between the ith opposing faces of the cube,

with i = 0 corresponding to the t-direction. Moreover, since ¢;;, is independent of [ for

ile

i=1,...,n,and Ly, —> 00 as l — o0, it follows that by passing to the limit

n 1 A%(Tl+ 1)
DI 5.4
i=1

i,e

where ¢; . is the distance within ([-1 +¢,1 —¢]", g) between the ith opposing faces of the

cube. Finally, since ¢; . — ¢; as ¢ — 0, the desired inequality is achieved.

Remark 5.1. In a similar fashion, this method also allows one to derive the spectral
toric band inequality directly from the pointwise toric band inequality. Note however,
that this warped product approach cannot deal with c-spectral constants for ¢ # % and

it does not address the case of equality.

6 Black Hole Existence

In this section, Theorem 1.5 will be established, comparison with the Schoen-Yau black
hole existence result [35] will be discussed, and examples will be presented. The main
steps in the proof of the existence of apparent horizons will follow the prescription of
[35], and thus here only an outline will be given with remarks provided to accommodate

the higher dimensions and different radii.

6.1 Proof of Theorem 1.5

Consider an initial data set (M", g, k) as in the statement of the theorem, and assume
by way of contradiction that it does not contain any closed properly embedded smooth

apparent horizons. Then there exists a regular solution to the Dirichlet problem for the
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Jang equation

B i£] V.:
g7 — Iid 5 if —k;)=0 onM", f=0 onoM", (6.1)
1+ |VSf] V14 |Vf|2

where f! = gifajf and V;f denotes the covariant Hessian. The existence is obtained
from a limit of solutions to the capillarity regularized equation, utilized by Schoen-
Yau in the proof of the positive mass theorem [34] in dimension 3. This was extended
to dimensions n < 7 by Eichmair [13, Proposition 7] in the asymptotically flat setting,
using the theory of C-almost minimizing boundaries [12, Appendix Al. The necessary tool
needed to apply Eichmair’'s strategy to the Dirichlet problem (6.1) is a 2-sided barrier
construction at the boundary dM". This is explained for dimension 3 in [42, page 11],
and the same construction holds essentially without change in higher dimensions as
long as the boundary is untrapped. Because the solution of Jang's equation represents
a MOTS in n + 1 dimensions, one might expect its singular set to be at best codimension
7. However, better regularity properties prevail as it is a graph [12, Remark 4.1, pages
568-9], leaving its singular set to be at least codimension 8.

Consider now the Jang metric § = g + df? on M™. Its scalar curvature [13, (10)]

satisfies the identity
R=2(n —J(v)) + 14 — klg + 21X|3 — 2divy(X0), (6.2)

where A is the second fundamental form of the graph t = f(x) in the product manifold
(M"™ x R,g + dt?), divy is the divergence operator with respect to g, and v and X are
1-forms given by

fi f

vi=—2L _ X =—> (A
V1T VF Yoz

— k). 6.3)

Let u > 0 be the principal Dirichlet eigenfunction of —A; + %R on Q. Then multiplying
(6.2) by u? and integrating by parts produces

1 1._
/Q ((u —JD + E|A - k|§ +1X 4 Vlog u|§) u?dv; < /Q (|Vu|§ + 5Ruz) dv,.  (6.4)
Notice that it is not possible for both |A — k|g and | X+ V log ulg to vanish on Q; otherwise,

this would imply that u is constant. Therefore, the integral involving these two terms

gives a strictly positive contribution to the left-hand side. Using that 4 — |J| > A on €,
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we conclude that the corresponding principal eigenvalue satisfies A > (1 +¢)A for some
¢ > 0 sufficiently small.

If N — (R,9) is an isometrically immersed non-PSC-band or cube, then by
utilizing the pullback of u on N" in the proofs of Theorems 1.3 and 1.4, we find that

the band or cubical-width satisfies

. 2n 2n
gwidth<n [ —— <7 | ——— (6.5)
mn+ 1A \/(n~|—1)(£+ DA

It then follows from the definition of torical and cubical-radius, that

Rad@)<n |— 2" _n (6.6)
A =T i De+ DA~ m+ DA’ '

where Rad denotes the radius with respect to the Jang metric. Furthermore, since g is
larger than g, we have Rad(2) < Rad($2). However, this combined with (6.6) leads to a
contradiction with the assumption (1.11). We conclude that M™ must contain a closed
properly embedded smooth apparent horizon S*~!.

Lastly, to verify the last claims of Theorem 1.5, note that the apparent horizon
may be identified via blow-up of the Jang equation. Moreover, the same manipulations
that give rise to (6.4) provide an analogous stability type inequality on the Jang
surface where u is replaced by smooth functions with compact support. With standard
arguments, as in [13, Proposition 9], this stability property is inherited by the apparent
horizon. Thus, if ©—|J| > A > 0 on S*~!, then the principal eigenvalue of —Agn-1+ %RSVH
is not less than A. By Theorems 1.3 and 1.4, it follows that

Rad(s" 1) < 7 /20D 6.7)
ni

Moreover, if ¢,, = 4(’:1—__21) is the dimensional constant from the conformal Laplacian, then
since 2 < ¢;,! the same arguments show that the principal eigenvalue of —A gn-1+c¢, R gn-1

is positive. Hence S™! is of positive Yamabe type.

6.2 Comparison to Schoen-Yau result

As discussed in the introduction, the 3-dimensional Schoen—-Yau black hole existence
result in [35] relies on a different notion of radius than those used in this article. In order

to compare Theorem 1.5 with their result, we will in this subsection compare the torical-
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radius Rad, and the Schoen-Yau radius Rad,. A preliminary observation reveals that the

neighborhoods used to build the Schoen-Yau radius are related to non-PSC-bands.

Proposition 6.1. Let (23, g) be a compact Riemannian 3-manifold with (possibly empty)
boundary 3923, and assume that I' C £ is a smooth simple closed curve that bounds a
disk D ¢ Q3. If I" does not bound a disk within the distance neighborhood IV, = {x € Q2 |
d(x,T) < r}and N, N 3Q3 = ¢, then any embedded hypersurface in N, separating I from

9N, must have a component of nonzero genus.

Proof. Suppose that IV, C Q2 is a distance neighborhood of the curve I, such that there
is no disk in N, bounded by I' and N, N Q% = ¢. Note that dN, # ¢, otherwise N, = Q3
and D would lie within N,.. Proceeding by contradiction, let us suppose that there is an
embedded hypersurface £? < N,, which separates I' from dN,, and has the property
that each of its components is a 2-sphere. Let V.. denote the component of N, \ 2 that
contains I', and note that its boundary consists of spheres. We may assume without loss
of generality that D intersects ©2 transversely, and will denote by D’ the component of
DNN,., which contains I'. Then dD'\TI" consists of a finite number of circles within X2. Since
each component of ¥? is a sphere, these circles bound disks within %2, which may be
used to cap off D'. Thus, the union of D’ with these caps produces a disk that lies within
N, and is bounded by T, yielding a contradiction. We conclude that 2 must contain at

least one component of nonzero genus. |

The main observation gives the desired relation between the two notions of
radii. In particular, this comparison implies that Theorem 1.5 recovers [35, Theorem 2]

in dimension 3.

Lemma 6.2. Let (Q%,g) be a compact Riemannian 3-manifold. Then Radt(QS) >
Rad,, (2%).

Proof. Let I' C Q3 be a smooth simple closed curve. According to a version of Sard’s
theorem [32], the set of critical values for the distance function from I' is of measure
zero, and thus when computing the Schoen-Yau radius, it suffices to restrict attention
to regular values. Consider such a regular value r, then 9N, is a Lispchitz hypersurface
[32], and may therefore be approximated with a smooth hypersurface that is homologous
and arbitrarily close to 9N, by, for instance, running mean curvature flow for a short
time [11]. In particular, we may assume without loss of generality that N, possesses a

smooth boundary. Let ¢ > 0 and consider the annular distance neighborhood N, \ N,.
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By Proposition 6.1, for all sufficiently small ¢, this annular distance neighborhood
defines a non-PSC-band of width r — ¢. If r is the supremum of values r with the
property that the r-distance neighborhood from I' does not intersect 9223, and I' does
not bound a disk in this neighborhood, then since ¢ may be taken arbitrarily small we

haver < Radt(Qs). Furthermore, since Rad,,(Q°%) is the supremum of r among all T, it

(
sy
follows that Radsy(S23) < Rad,(Q3). [ ]

6.3 Examples

As explained in the introduction, for the class of maximal initial data sets Theorem 1.5 is
vacuous. However, here we show by explicit construction that it is straightforward to find
examples that satisfy the hypotheses of this result, and in fact that they are ubiquitous.
Let (M",g) be an arbitrary complete asymptotically flat Riemannian manifold, and
consider an embedded cube [-1,1]" < M"™. Now define a symmetric 2-tensor k = Fg,
where F is a smooth compactly supported function on M", with F = C >> 1 inside
the cube. Then (M",g,k) is an asymptotically flat initial data set whose energy and
momentum densities are given by u = %(R + (n? — n)C? and J = 0, inside the
cube. Therefore if 3 < n < 7, then by choosing the constant C to be sufficiently
large we find that the assumptions of Theorem 1.5 and Corollary 1.6 are satisfied,
which yields a closed properly embedded smooth apparent horizon within (M",g, k).
The above construction can also be adapted for the torical-radius version of the

theorem.

Appendix A. Existence and Regularity of Warped n-Bubbles

In this section, we discuss the existence and regularity of warped w-bubbles with
Lipschitz potential function f, which does not appear to be in the literature. Previous
results on this topic have assumed a smooth potential function; however, the most
natural choices for f in applications are often merely Lipschitz since they involve
distance functions. The notation here will be consistent with that of Section 4, with M"
replaced with M™.

Proposition A.1. Let (M™,d,M", g) be an n-dimensional Riemannian band with n < 7.
Suppose that u € C*(M") is strictly positive, and f € Lip;,.(M") satisfies f — oo
on 3, M". Then for any ¢ € (0, 1) there exists a C%< warped u-bubble =771 =9\ o, M",
where Q@ minimizes the functional A, s 0f(4.10) among Caccioppoli sets whose symmetric

difference with 2 is compactly contained within the interior of M™.
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Proof. The existence theory for u-bubbles relies on the compactness theorem for
Caccioppoli sets, and extends without any adjustment to the non-smooth setting. More
precisely, it follows from [8, Section 3] that a minimizing Caccioppoli set Q exists,
whose reduced boundary 9*Q \ 9, M" = %! does not intersect dM™. Moreover, it
is straightforward to show that ©"! satisfies the C-almost minimizing property, and
therefore according to [12, Theorem A.1] this surface is ¢l's smooth. Alternatively, as in
[45, Theorem 2.2], we may follow the arguments contained in [27, Section 3] to obtain the
same conclusion. Writing ™! locally as graph, we find that the graph function weakly

satisfies the second order elliptic equation

H=f—-(Vlogu,v). (A.1)

Since the potential function f is Lipschitz, the normal v is C%¢, and the weight function

u > 0 is smooth, standard Schauder theory yields C%< regularity for the u-bubble. H
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