
Folding-Free ZNE: A Comprehensive Quantum
Zero-Noise Extrapolation Approach for Mitigating

Depolarizing and Decoherence Noise
Hrushikesh Pramod Patil

NC State University
Raleigh, NC, USA
hpatil2@ncsu.edu

Peiyi Li
NC State University
Raleigh, NC, USA

pli11@ncsu.edu

Ji Liu
Argonne National Laboratory

Lemont, IL, USA
ji.liu@anl.gov

Huiyang Zhou
NC State University
Raleigh, NC, USA

hzhou@ncsu.edu

Abstract—Quantum computers in the NISQ era are prone to
noise. A range of quantum error mitigation techniques has been
proposed to address this issue. Zero-noise extrapolation (ZNE)
stands out as a promising one. ZNE involves increasing the noise
levels in a circuit and then using extrapolation to infer the zero
noise case from the noisy results obtained. This paper presents
a novel ZNE approach that does not require circuit folding or
noise scaling to mitigate depolarizing and/or decoherence noise.

To mitigate depolarizing noise, we propose leveraging the
extreme/infinite noisy case, which allows us to avoid circuit
folding. Specifically, the circuit output with extreme noise be-
comes the maximally mixed state. We show that using circuit-
reliability metrics, simple linear extrapolation can effectively
mitigate depolarizing noise. With decoherence noise, different
states decay into the all-zero state at a rate that depends on
the number of excited states and time. Therefore, we propose
a state- and latency-aware exponential extrapolation that does
not involve folding or scaling. When dealing with a quantum
system affected by both decoherence and depolarizing noise, we
propose to use our two mitigation techniques in sequence: first
applying decoherence error mitigation, followed by depolarizing
error mitigation.

A common limitation of ZNE schemes is that if the circuit of
interest suffers from high noise, scaling-up noise levels could not
provide useful data for extrapolation. We propose using circuit-
cut techniques to break a large quantum circuit into smaller sub-
circuits to overcome this limitation. This way, the noise levels of
the sub-circuits are lower than the original circuit, and ZNE can
become more effective in mitigating their noises.

I. INTRODUCTION

Recent years have seen exciting advances in the develop-
ment of quantum computers. However, current NISQ (Noisy
Intermediate Scale Quantum) devices are highly susceptible
to noise and have limited numbers of qubits with constrained
connectivity. Imperfections in hardware and the interaction
with the environment inevitably lead to computations riddled
with errors and noise. Noise in quantum computers is the
fundamental challenge facing the reliable execution of quan-
tum algorithms. To deal with this problem, quantum error
correction (QEC) methods along with fault-tolerant quantum
computation have been proposed. Although the physical error
rates of quantum devices are approaching the critical thresh-
olds, where QEC can achieve lower logical error rates than the

physical one, the required number of qubits is overwhelming
and beyond the capacity of current devices.

Quantum error mitigation (QEM) can be viewed as an al-
ternative or complementary to QEC. Generally, QEM methods
involve multiple runs of a circuit with a few parameters, such
as the circuit depth, pulse length, etc., being varied. The
results of these multiple runs are post-processed to obtain
a noise-mitigated result. Popular error mitigation methods
include Zero Noise Extrapolation (ZNE) [10], [12], [22],
Probabilistic Error Cancellation (PEC) [22], Clifford Data
Regression (CDR) [7], etc. Machine learning-based quantum
error mitigation approaches like QRAFT (Quantum circuit Re-
versal for Attaining Full Truth) [19] have also been proposed
recently.

ZNE was first introduced in [12] and [22]. The basic idea
is to deliberately run the circuit with different noise levels and
use the measured results to extrapolate the noise-free result.

This paper improves the efficacy of ZNE with the following
novel designs. First, we propose to change the way how
the extrapolation is performed such that we can leverage the
extreme noise case. The quantum states under extreme noise
are independent of the circuit structure but dependent on
the noise source. With depolarizing noise, the quantum state
under extreme noise becomes the maximally mixed state. In
existing ZNE schemes, the extrapolation is based on noise
levels or circuit folding factors. As a result, it is impractical
to incorporate extreme noise cases, whose noise levels/folding
factors are infinite.

Second, we choose to use different extrapolation algorithms
to mitigate different noises. We show that using circuit-
reliability metrics, simple linear extrapolation is sufficient to
mitigate depolarizing noise, while exponential extrapolation is
needed for mitigating decoherence noise. For systems suffering
from both depolarizing and decoherence noise, we propose a
serial approach, which first mitigates the decoherence noise
followed by depolarization error mitigation. In all these cases,
there is no need for circuit folding for extrapolation.

Third, rather than scaling up the noise levels for extrapola-
tion, we propose to scale down the noise levels using circuit
cutting techniques, which break a large circuit into smaller
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sub-circuits and rely on classical processing to combine the
execution results from the sub-circuits. This way, our scheme
can tackle the long-standing problem of all existing ZNE
schemes, which become ineffective for circuits with high
noise levels as further scaling up the noise fails to produce
meaningful data for extrapolation.

The remainder of the paper is organized as follows. Section
II presents the background on quantum noises and discusses
the related work. Section III motivates our approach. Section
IV details our proposed schemes. Sections V and VI discuss
the experimental methodology and the results, respectively.
Section VII concludes.

II. BACKGROUND

A. Noise in Quantum Computers

Noise in quantum computers can lead to errors during
computation. Depolarizing, decoherence or thermal relaxation,
state preparation, measurement, and cross-talk errors are the
most common errors in a quantum computer. Among them,
state preparation and measure (SPAM) errors can be sup-
pressed with careful calibration and post-processing based on
the calibration data (e.g., an inverse of the measurement error
matrix). Cross-talk errors depend on the device topology and
can be mitigated by scheduling two-qubit gates judiciously
in a circuit [15]. In this work, we focus on depolarizing and
decoherence noise.

The depolarizing error can be modeled by the following
error channel,

E(ρ) = (1− p)ρ+ p
I

2n
(1)

where ρ is the density matrix of a quantum state, p is
the depolarizing probability, E(ρ) is noisy state after the
channel, I is the identity matrix, and n is the number of
qubits [17]. Conceptually, a depolarizing error channel results
in a weighted mixture of the noise-free quantum state and
the maximally mixed state. With infinite noise, p = 1 and
E(ρ) = I

2n , which is the maximally mixed state.
Thermal relaxation to the ground state is parameterized by

T1 and T2 decoherence times [27]. The relaxation time T1
dictates the decay rate of a qubit in state |1⟩ to |0⟩. It is given
by,

P|1⟩(t) = P|1⟩(0)e
−t
T1 (2)

where P|1⟩(t) is the probability of the state |1⟩ at time t.
We can see that at t = ∞, the probability of the excited
state approaches zero. Similarly, T2 relaxation time dictates
the decay rate of the phase information of a quantum state
and has a similar exponential relationship.

Based on Eq. 2, we can further derive the decoherence
impact on a multi-qubit state |q1q2...qn⟩. Assuming that each
qubit decays independently [6], the decay rate would have an
exponential relationship with the number of 1s (i.e., excited
qubits) in the state. For example, for a 2-qubit state |11⟩, the

probability of it staying in |11⟩ at time t can be computed as
follows.

P|11⟩(t) = Prob(q1=|1⟩)(t) ∗ Prob(q2=|1⟩)(t)

= (P|1⟩(0)e
−t
T1 )(P|1⟩(0)e

−t
T1 ) = P|11⟩(0)e

−2t
T1

To illustrate the noise impact, we use a circuit to prepare
a 3-qubit state |ψ⟩ = 1

2 |000⟩ +
1
2 |001⟩ +

1
2 |110⟩ +

1
2 |111⟩

and then vary the noise by appending the circuit with different
numbers of CNOT pairs. With a quantum noise simulator, we
first only enable depolarizing noise, and the probabilities of
the measured final state are shown in Fig 1a. In the figure, the
x-axis shows the noise level, quantified with 1− reliability,
where the reliability is computed as the estimated success
probability (ESP) (Eq. 3). The figure shows that with more
and more depolarizing noise, the 3-qubit state |ψ⟩ decays
to the maximally mixed state, where each 3-qubit state in
|000⟩ , |001⟩ , |010⟩ , ..., |111⟩ has the same probability of 1/8.

We also repeat the experiment with decoherence noise, and
the results are shown in Fig. 1b. The x-axis is the time. We
can see that with higher and higher latency resulting from the
increased circuit depths, there would be stronger decoherence
noise and the 3-qubit state |ψ⟩ gradually decays into the |000⟩
state, i.e., only |000⟩ has a high probability while others have
low probabilities. From Fig. 1, we can see the exponential
decay rate that depends on the number of 1s in a state.

When both depolarizing and decoherence noise are enabled,
the state change patterns with respect to either the noise level
or latency are less obvious, as shown in Fig. 1c. Although
|000⟩ has a higher probability as a result of decoherence noise,
other states have non-trivial probabilities due to depolarizing
noise.

B. Quantum Error Mitigation

There is a plethora of QEM protocols. ZNE is one of
the most popular QEM protocols. It works by scaling the
circuit’s noise and executing the circuits with different noise
scales. Then it infers/extrapolates the zero-noise case from the
measurement results.

Clifford Data Regression (CDR) introduced by Czarnik et
al. [7] is a learning-based QEM. CDR uses a training set of
noisy and ideal results of quantum circuits comprised entirely
of Clifford gates. Simulation of such circuits is efficient on
classical computers. We can hence efficiently obtain the ideal
noise-free results of such quantum circuits. The set of Clifford
circuits is then run on a quantum device to obtain the noisy
results. Both ideal and noisy results form a training set. A
linear ansatz, a1X

noisy
|ψ⟩ + a2, is deduced to correct the noisy

circuit, where a1 and a2 are the parameters trained by machine
learning methods from the training set. A recent proposal
by Lowe et al. [14], variable-noise Clifford data regression
(vnCDR), combines the ideas of both ZNE and CDR and
achieves better mitigation results.

Introduced by Temme et al. [22], Probabilistic Error Can-
cellation uses a linear combination of noisy quantum gates
to represent ideal gates in the circuits. Quasi-probability rep-
resentations are used to represent linear combinations. The
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Fig. 1: Effect of depolarizing (a), thermal relaxation (decoherence) (b), and a combination of depolarizing and thermal
relaxation errors (c) on a 3-qubit circuit. The noise free state is |ψ⟩ = 1

2 |000⟩+
1
2 |001⟩+

1
2 |110⟩+

1
2 |111⟩. The noise in the

circuit is increased by appending pairs of CNOT gates.

representations are determined by sampling using a Monte
Carlo estimation.

A recent work, QRAFT [19], uses machine learning for
quantum error mitigation. The process involves executing
the quantum circuit to be mitigated and preparing a circuit
appended with its inverse. In an ideal noise-free scenario, the
circuit and its inverse should yield the initial state, but in a
noisy scenario, this is not the case. Multiple circuits (circuit
and circuit + inverse runs) and their features constitute the
training set for a machine learning-based prediction model.
This model is then used to predict error-mitigated outputs from
the noisy outputs of new quantum circuits.

While the previously mentioned QEM methods are not
limited by the types of error they try to mitigate, there are
QEM methods that aim to mitigate a particular type of error.
State Preparation and Measurement (SPAM) error mitigation
methods [16] are such an example. In addition, Dynamical
decoupling (DD) [25] [28] is proposed as QEM to mitigate
idling errors [8] as well as cross-talk errors [24]. Unlike
previously mentioned QEM methods, DD does not involve
running an ensemble of circuits or any post-processing step.

III. MOTIVATION

The key idea of ZNE is to scale up the noise levels
of a quantum circuit and then extrapolate to the zero-noise
case based on the measurements of these different noise
levels. One way to scale the noise is to time-scale the same
unitary evolution by controlling the pulses of each gate [22].
Another way is to replace a unitary gate or a subcircuit or
the complete circuit U with U(U †U)n [10], where n is the
circuit scale/folding factor. The underlying assumption is that
the noise level scales in proportion to the circuit scale/folding
factor, which is accurate if the circuit noise is dominated by
depolarising noise [10]. Based on the assumption that errors
in an operation are stochastic [12] [9], Li and Benjamin [12]
introduced Richardson extrapolation, while Endo et al. [9]
introduced exponential extrapolation. Giurgica-Tiron et al. [10]
explored various extrapolation models, such as the polynomial
and the poly-exponential models, and also introduced adaptive
extrapolation models.

The above-mentioned ZNE approaches have the following
limitations. First, the relationship between the expectation
value and the circuit scale/folding factor is nonlinear [10].
As a result, different curve fitting methods have been used
to extrapolate the zero-noise case, and it is difficult to decide
which one should be used in practice. Second, extrapolation
based on the circuit scale factor ignores the circuit complexity.
For two circuits with different complexity, e.g., a single-qubit
circuit with a limited depth vs. a multi-qubit circuit with a high
depth, the same scaling factor may have drastically different
noise impacts. Third, scaling/folding the circuit does not yield
any meaningful changes in the output when the noise is high,
thereby making extrapolation useless. For example, when the
depolarizing noise level is very high, the output is close to
the maximally mixed state. Further scaling up the noise levels
would not have much impact on the output state anyway.

Next, we describe our proposed improvements to overcome
these limitations.

IV. A COMPREHENSIVE APPROACH FOR ZERO NOISE
EXTRAPOLATION

A. Overview

Our proposed ZNE integrates different extrapolation models
to mitigate different types of noise and uses quantum circuit-
cut techniques [20], [21] to lower the noise level when the cir-
cuit suffers from high noise. The overall flow of our approach
is shown in Fig. 2. We start by checking the circuit noise level
or reliability. If the noise level/reliability is higher/lower than
a threshold θ, meaning that further scaling up noise levels
would not lead to meaningful results, we apply circuit cut
techniques to break the original circuit into subcircuits. Then,
for each subcircuit, we check whether depolarizing noise is
dominant. If yes, we can skip the process of decoherence
noise mitigation. Otherwise, we first apply decoherence noise
mitigation and then depolarizing noise mitigation. In the last
step, we combine the mitigated state results of each subcircuit
to produce the result for the original circuit, if the circuit was
cut previously.
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Fig. 2: Flowchart of our proposed ZNE scheme.

Due to the different natures of depolarizing and decoherence
noise, we propose different extrapolation schemes, linear ex-
trapolation for depolarizing noise mitigation, and exponential
extrapolation for decoherence noise mitigation. These two
mitigation schemes are discussed in Section IV.B and IV.C,
respectively. Section IV.D discusses how we scale down the
noise level using the quantum circuit cut techniques.

B. Reliability-based ZNE for Depolarizing Noise Mitigation

We propose a novel reliability-based ZNE (RZNE) for
depolarizing noise mitigation. Existing ZNE schemes such as
digital ZNE [10] perform extrapolation based on the circuit
scale factor. In contrast, we propose to perform extrapolation
based on the reliability, r, of the scaled quantum circuits. The
motivation is to take the circuit complexity into consideration.
Since it is preferred to extrapolate to zero noise, we choose
to perform extrapolation using µ = 1 − r rather than r.
Zero noise means µ being 0 or r being 100%, i.e., perfect
reliability. Fig.3a shows an illustrating example. The y-axis is
the ZZ expectation values, E(λ), of a 2-qubit quantum circuit
with respect to different circuit folding factors λ. The circuits,
including the original U and the folded ones U(U †U)(λ−1),
run on a noise simulator using the noisy model of a 5-qubit
device ibmq quito [3]. The circuit scaling is implemented
using the Mitiq framework [11]. The expectation value of the
noise-free execution of the circuit is 1. E(1) is the expectation

(a) E(λ) with different circuit
folding factor λ

(b) E(µ) with different
reliability-based scaling factor

µ = 1− r

Fig. 3: Expectation values of a 2-qubit circuit with different
scaling factors and the ZNE results

value based on the measurement of the original circuit and
E(0) is the extrapolated expectation value corresponding to
the zero-noise case. In comparison, RZNE changes the X-
axis from the circuit folding factor λ to µ = 1 − r, where
µ = 1− r can be viewed as a metric of the (reliability-based)
noise scaling factor, as shown in Fig.3b. Here, we use the
simple Estimated Success Probability (ESP) [18] as the metric
of the reliability of the quantum circuit and its noise-scaled
variants. It is defined as follows.

ESP =

Ngates∏
i=1

(1− gei ) ∗
Nmeas∏
j=0

(1−me
j) (3)

In the equation, gei is the gate error rate, and me
i is the

measurement error rate that are obtained from device cal-
ibration. Other metrics, such as reliability estimation using
machine learning models [13], [26] or those considering more
comprehensive noise effects [5], can also be used for more
accurate estimation.

A unique advantage of using reliability-based extrapolation
is that it readily enables extrapolation from the extremely
noisy case, which means scaling up the circuit by an infinite
factor, i.e., λ =∞. With an infinite scale factor or noise, the
reliability becomes 0 and the noise scale µ = 1 − r = 1. In
comparison, such an infinite number or even a very large scale
factor would be difficult to handle in curving-fitting based on
λ, especially linear curves. Furthermore, the expectation value
E(λ = ∞) or E(µ = 1) does not require execution of the
circuit. The reason is that in this infinite noise case, the output
state is the maximally mixed state when depolarizing noise is
dominant, and the measured state vector would follow the uni-
form distribution. In our example, the ZZ expectation based
on the maximally mixed state or the uniformly distributed state
is ⟨φ|Z ⊗ Z |φ⟩ = 0, if φ is the maximally mixed state.

Another important advantage of RZNE is that a simple
linear extrapolation would suffice, which we will prove next.

As shown in Eq.1, depolarizing error leads to a linear
combination of the state itself and the maximally mixed
state. The factor p is the depolarizing probability. When the
depolarizing noise is dominant, we can replace the term 1− p
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with the circuit reliability, r, and p becomes 1− r. Hence we
will have,

E(ρ) = rρ+ (1− r) I
2n

= rρ+ µ
I

2n
(4)

Thus depolarizing noise is linear with respect to r. At infinite
noise, r∞noise = ESP∞noise = 0, the state is the maximally
mixed state ρ∞noise =

I
2n . For the noiseless case, rzeronoise =

ESPzeronoise = 1, the state ρzeronoise = ρ, which can be
derived as.

ρ =
E(ρ)

r
− µ

r

I

2n
=
E(ρ)

r
− 1− r

r
ρ∞ (5)

where r is the reliability of the original circuit, and E(ρ) is
the noisy result/state from the original circuit.

The implication of Eq. 5 is that one can extrapolate the
zero noise state simply by connecting the infinite noise state
and the noisy state from the original circuit. RZNE can be
performed either on the output state or on the expectation
value. When extrapolating for the entire output state, the cost is
2N extrapolations, where N is the number of qubits. However,
most quantum applications have few dominant states. Thus, we
propose only correcting a quantum system’s Top K states. In
other words, only the K highest probability states/coefficients
are extrapolated.

It is worth noting that the infinite noise case, i.e., the
maximally mixed state, is independent of quantum devices or
different mappings on a device. As a result, we can extend
our RZNE approach to combine measurement results from
different devices/mappings using linear curve fitting with the
condition that the linear curve must pass the point correspond-
ing to the infinite noise case, where multiple points are circuit
executions on different devices or different mappings.

Algorithm 1: Reliability-based ZNE (RZNE)
Data: The circuit C; YC containing the execution

results corresponding to the circuit
Result: An expectation value after noise mitigation
begin

r ← ComputeReliability(C);
µ← 1− r;
YC ← RunCircuit(C);
/* µm+1 is the factor for the

infinite noise case which has
reliability of 0 */

µm+1 ← 1− 0;
/* Compute expectation value based

on maximally mixed state */
ym+1 ← ComputeExpectationV alue(µm+1);
/* E(µ; a, b) = a+ bµ is a linear model

with fixed point(µm+1, ym+1) */
a, b← BestF it(E(µ; a, b), (µ,Y));
return E(0; a, b);

end

In summary, we list our RZNE algorithm in algorithm 1. In
the algorithm, the set C is the original circuit and the same

circuit with different qubit mappings or different devices, if
they are used. Their reliability is computed using ESP due
to its simplicity. The set Y are the execution results of the
circuits, i.e., either noisy states or expectation values. During
curve fitting, the fitted linear curve is required to pass the point
corresponding to the infinite noise case, (µm+1, ym+1). If m =
1, the curve fitting result is simply the line connecting the
infinite noise case and the noisy result of the original circuit.
The algorithm’s output is the extrapolated result corresponding
to zero noise or reliability being 1 (i.e., µ = 0).

C. State- and Latency-Aware ZNE for Decoherence Noise
Mitigation

From eq. 2, at t = 0, the term e
−t
T1 approaches 1, thereby

P|1⟩(t) = P|1⟩(0), indicating no effect of decoherence noise.
In other words, we can obtain the error-free values if we
extrapolate to time t = 0. As the decay rate depends on both
the time and the number of excited 1s in a multi-qubit state, we
propose the following state- and latency-aware ZNE, SLZNE,
to mitigate decoherence noise.

Ps(0) = Ps(t)/e
−t
T1 (6)

In the equation, t is the circuit latency, c is the number of
’ones’ in the quantum state s, and Ps(t) is the probability of
state s, i.e., the measured probability of the state s. However,
the state with all zeros grows with time with probability
Ps(0)← 1−Ps(t)

e−t/T1
.

SLZNE repeats extrapolation on every output state, which
comes at the cost of 2n calculations. To reduce this complexity,
we resort to the same TOP K approach discussed in Section
IV.B. Our SLZNE algorithm for mitigating the decoherence
noise is shown in Algorithm 2.

D. Circuit-Cut based ZNE

A quantum circuit with very low reliability has its output
state close to the infinite noise case. Noise-boosting steps for
such circuits result in minor changes in the circuit’s output,
thereby limiting the effectiveness of ZNE. To handle such
cases, we propose to leverage circuit-cutting techniques to
divide a circuit into less noisy sub-circuits. Each sub-circuit
has higher reliability than the original circuit since the number
of gates and/or qubits in each sub-circuit is reduced. We
can apply ZNE upon each sub-circuit and then combine their
results to obtain the output of the original circuit, i.e., mitgate-
then-combine or CutQC-MC.

In our scheme, we use the CutQC scheme proposed by
Tang et al. [21] to cut the circuit into sub-circuits and then
recombine the sub-circuit results. CutQC has a post-processing
overhead that scales exponentially with the number of cuts.
We adopt the design from [21], which aims to find the cut
locations to minimize this post-processing overhead.

Our Cut-ZNE algorithm is shown in algorithm 3. The input
is a quantum circuit C. The set S contains the circuit-cut
results, i.e., a set of sub-circuits and the boolean variable MC
is set to True. If the number of cuts is lower than a threshold,
max num cuts, we perform ZNE on each sub-circuit, first
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Algorithm 2: State- and Latency-Aware ZNE
(SLZNE)
Data: Circuit C; T1 is the thermal relaxation time of

the device
Result: An expectation value after noise mitigation
begin

t = ComputeLatency(C);
YC ← RunCircuit(C);
/* Extrapolate for each state using

Ps(0) = Ps(t)/e
−ct/T1 */

for s ∈ YC do
/* Get the number of excited

qubits in state s. */
c← CalculateNumberOfOnes(s);
if c == 0 then

Ps(0)← 1−Ps(t)

e−t/T1
;

end
else

Ps(0)← Ps(t)

e−ct/T1
;

end
Append(Ycorrected, Ps)

end
E ← CalculateExpectationV alue(Ycorrected);
return E;

end

SLZNE if the decoherence noise is significant, and then RZNE
for mitigating depolarizing noise. The mitigated results of
each sub-circuit are combined through the CombineResult
function.

Since mitigating every sub-circuit may prove costly, we also
propose combine-then-mitigate (CutQC-CM), i.e., combining
the noisy sub-circuit results and then mitigating the final
state/expectation value. As our RZNE requires the circuit
reliability for extrapolation, we use the geometric mean of all
the sub-circuit reliabilities as the reliability of the combined
one. The algorithm for this approach is presented in Alg. 3
with MC = False.

V. EXPERIMENTAL METHODOLOGY

A. Benchmarks

To evaluate our proposed folding-free ZNE schemes, we
run the experiments on the benchmarks shown in Table I.
SupermarQ [23] is used to generate our benchmarks.

In our experiments, for the Top K versions of RZNE and
SLZNE, K is set to a constant 10. The threshold for applying
RZNE is set to ESP > 0.10 (θ = 0.10 in Fig. 2), and the
heuristic threshold for selectively applying SLZNE is set to
0.7× T1.

B. Experimental Setup

Our experiments are performed on the IBM Qiskit QASM
simulator and real quantum devices. The simulator uses a noise

Algorithm 3: Cut-QC based RZNE (CutQC-MC &
CutQC-CM)
Data: the circuit C
Result: An error mitigated result
begin

/* {S} is a set of subcircuits of
the original circuit, {R} is
their ESPs and cuts is the
number of cuts required to
separate circuit into sub
circuits. When variable MC is
set, CutQC-MC is used; when not
set, CutQC-CM is used. */

{S}, cuts← CutCircuit(C);
if cuts < max num cuts then

Y ← ∅;
for sj ∈ S do

Yj ← ∅;
Yj ← RunCircuits(sj);
if MC is True then

yj ← RZNE({sj}, {yj});
end
Append(Y, yj);

end
y ← CombineResults(S, Y );
if MC is False then

r ← GeometricMean({R});
y ← RZNE(y, r)

end
return y;

end
end

Benchmark Parameters
Hamiltonian Simulation (HS) No. of Qubits, No. of time steps
Vanilla QAOA (QA) No. of Qubits
Fermionic Swap QAOA (QS) No. of Qubits
Variational Quantum Eigensolver
(VQE)

No. of Qubits, No. of Layers

GHZ State Preparation (GHZ) No. of Qubits

TABLE I: Application benchmarks.

model from IBM’s 16 qubit quantum device IBM Guadalupe.
The number of shots is set to 32768.

ZNE can be applied in the following two ways when the
desired output is an expectation value. The first is to apply
ZNE upon each individual coefficients of the output state,
normalize the coefficients, and then compute the expectation
value based on the noise-mitigated state. The second is to ap-
ply ZNE directly upon the expectation value, which means to
extrapolate from the expectation values of the scaled circuits.
In our experiments, we report the results using the first way.

We demonstrate Cut-ZNE with only the Hamiltonian Sim-
ulation, VQE and GHZ benchmark. The number of cuts
required by CutQC to separate the circuits for QAOA was
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more than our predetermined threshold of 2. The reasoning
behind our choice to limit cuts is the classical post-processing,
which scales with 4K with K being the number of cuts. Given
the exponential scaling, 2 was chosen as the maximal number
of allowable cuts to demonstrate the effectiveness of Cut-
ZNE. We used methods provided by authors of CutQC [21]
for circuit cutting and sub-circuit result recombination. We
show the effectiveness of approaches proposed in Alg. 3 on
the aforementioned benchmarks.

We also compare our approaches with the state-of-the-art
noise mitigation schemes shown in Table II. For DZNE, CDR,
and vnCDR, we use the software package Mitiq [11]. For
QRAFT, we used the code provided by the authors [2]. For
DZNE, we also explore full state extrapolation, in which case
the parameters are the same as in II, but DZNE is applied for
every element in the quantum state.

We open-sourced our code at
https://github.com/hrushikesh890/FoldFreeZNE

Method Parameters
Digital ZNE
(DZNE)

Scaling Factors = {1, 2, 3, 4, 5}, Extrapolation
method = Linear

Clifford Data Re-
gression (CDR)

Training set = 64 circuits, Fit method = Linear

variable noise CDR
(vnCDR)

Training set = 64 circuits, Fit method = Linear,
Scale Factors = 1, 2, 3, 4

QRAFT Training set = 1000 random circuits

TABLE II: Error mitigation methods used for comparison.

C. Evaluation Criteria

To evaluate the effectiveness of different QEM schemes, we
use the absolute observable error (ABE) [14], which is defined
as follows, to quantify the error impact on the observable.

ABE(⟨O⟩) = |⟨O⟩ideal − ⟨O⟩observed| (7)

To compute the improvement from error mitigation methods
over the existing errors, we propose the following metric
termed as Absolute Error Ratio (ABR),

ABR =

∣∣∣∣ ⟨O⟩ideal − ⟨O⟩mitigated⟨O⟩ideal − ⟨O⟩noisy

∣∣∣∣ (8)

The lower the value of ABR, the better the performance of
the error mitigation method. If for a mitigation scheme, its
ABR is greater than or equal to ’1’, it means that the error
mitigation method in question does not successfully mitigate
the error compared to the unmitigated case. The reason is that
the Absolute Error Ratio for an unmitigated circuit is always
1.

For the GHZ benchmark, we report the Hellinger fidelity
[1] instead of the ABE or ABR as GHZ does not have an
observable.

VI. EXPERIMENTAL RESULTS

A. Mitigating Depolarizing Noise

We first examine the effectiveness of RZNE in miti-
gating errors arising from depolarizing noise. Depolarizing
noise is simulated using Qiskit [4] noise model. The noise

Fig. 4: The fidelity of the GHZ state with depolarizing noise
mitigated by RZNE and RZNE-Top 10 (Higher the better).

model is constructed from the backend information of the
ibmq_guadalupe machine. Within the noise model, we
disable the thermal relaxation error and readout error while
keeping only the depolarizing error. We evaluate our method
on Hamiltonian Simulation (HS), VQE, QAOA (QA), and
Swap-QAOA (QS) benchmarks. Each benchmark has 4 circuits
with different ESP values. For each run, we calculate the
expectation value from the ideal noise-free simulation, noisy
simulation, RZNE-mitigated noisy simulation, and Top 10
RZNE-mitigated simulation. As discussed in Section V.C.,
the absolute error ratio (ABR) is used to quantify the error
impact. Our experimental results are shown in Fig. 5 and
4. It is evident from the results that both variants of RZNE
effectively reduce the error caused by noise for all benchmarks.
On average, RZNE demonstrates an 88% reduction in error
when compared to unmitigated results, while RZNE Top 10
demonstrates a 72% reduction. As shown in Fig. 5, RZNE
outperforms RZNE Top 10, but requires more post-processing.
The advantage of RZNE is that it corrects all the states,
reducing the impact of states with higher probabilities due
to noise. On the other hand, RZNE Top K only operates on a
portion of the states, leaving some states uncorrected, resulting
in worse performance than RZNE. In Fig. 4, we observe that
for the GHZ benchmarks with a higher number of qubits,
RZNE Top K begins to perform significantly better than RZNE
when the number of qubits increases. This is because the GHZ
benchmark has two dominant states, and extrapolating only a
few states prevents unintentional boosting of incorrect states.
We can thus conclude that if there is prior information on the
number of dominant states, the RZNE Top K method is the
preferred one.

B. Mitigating Decoherence Noise

In this experiment, we examine the effectiveness of SLZNE
on mitigating decoherence errors. We use Qiskit [4] noise
model with only thermal relaxation noise enabled. The median
T1 is 91.99µs. Fig. 7 and Fig. 6 report our results of SLZNE
and its variant SLZNE Top-10. We also include the results
using RZNE as a reference to compare the effectiveness of
SLZNE.

The results in Figure 7 show that while all methods were
successful in mitigating decoherence noise, SLZNE Top 10 is
the most effective one on average. SLZNE is less optimal
because it extrapolates all states, which causes some non-
dominant states to be extrapolated incorrectly. When states
with high number of ‘ones’ (excited states) decay into ‘in-
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Fig. 5: Absolute error ratios for RZNE and RZNE-Top 10 on various benchmarks under depolarizing noise. (Lower the better).
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Fig. 6: The fidelity of the GHZ state with decoherence noise
mitigated by SLZNE and RZNE.

termediate states’, which are generally close in Hamming
distance, due to decoherence. Some of these ‘intermediate
states’ may not be present in the ideal noiseless output.
However, when SLZNE corrects all the states, it causes these
intermediate states to incorrectly have higher probabilities.
This problem is avoided by only correcting a few of the states
with the highest probabilities. Then, when we re-normalize
the coefficients, the intermediate states have their probabilities
reduced. Another important observation is that VQE, which
has higher latency, had the best performance using SLZNE,
while QAOA and GHZ benchmarks with low-latency circuits
resulted in poor performance of SLZNE. This can be attributed
to the fact that with higher latency, the ‘intermediate states’ are
more likely to decay into the all zeros state, thereby reducing
the chance that intermediate states get incorrectly mitigated.

C. Mitigating both Depolarizing and Decoherence Noise

In this experiment, both the depolarizing error and thermal
relaxation error were enabled within the noise model. The
results are presented in Figures 9 and 8, which include the
outcomes of both RZNE and SLZNE+RZNE, as well as
their respective Top K versions. The results we obtained are
consistent with previous experiments in mitigating depolariz-
ing and decoherence noises. Specifically, we have observed
that SLZNE-based methods work best for circuits with high
latency such as VQE benchmark circuits, while RZNE is
effective for short-depth circuits like QAOA. Based on these
observations, we apply SLZNE only when the circuit latency
exceeds 0.7× T1 in the remaining experiments.

D. Comparison with the State-of-the-art QEM Approaches

In this experiment, we test our methods against the state-of-
the-art QEM methods including Digital Zero Noise Extrapola-
tion (DZNE), Clifford Data Regression (CDR), variable noise
Clifford Data Regression (vnCDR), and QRAFT. We enable
all but readout error noise sources of the Qiskit noise simulator

and the noise model is constructed from the backend informa-
tion of the ibmq_guadalupe machine. The experimental
results are reported in Fig. 10 for the Hamiltonian Simulation,
VQE, QAOA and Fermionic Swap QAOA and Fig. 11 for the
GHZ benchmark.

We observe that RZNE consistently results in lower median
error than all other state-of-the-art (SOA) methods. Our heuris-
tic of using 0.7×T1 for Selective SLZNE + RZNE can only be
applied to Hamiltonian Simulation and VQE benchmarks, as
only these benchmarks have circuit latencies above the heuris-
tic threshold. In particular, RZNE performs exceptionally well
for the Hamiltonian simulation benchmark compared to other
error mitigation methods. The performance gain of RZNE
over Digital ZNE (DZNE) is due to two reasons: 1) DZNE
extrapolates over the expectation value of the observable, while
RZNE extrapolates over the state; and 2) by utilizing reliability
as a metric, RZNE determines how aggressively to apply the
correction. It is difficult to predict the effect of noise on the
expectation value of an observable. This is primarily why we
need folding. We also need to choose, or find, the extrapolation
model that best fits the data. However, the model that best
fits the data runs a risk of overfitting leading to incorrect
correction. As we cannot always guarantee prior knowledge
of the correct observable, the efficacy of chosen extrapolated
method cannot be guaranteed. RZNE avoids all these issues by
correcting states, as we can reasonably determine the evolution
of a state in the presence of specific noise factors. Thus, we
can fix the choice of extrapolation method for RZNE. Another
downside of utilizing DZNE is that folding a circuit that
has been significantly affected by noise does not yield any
meaningful change in the value of the observable, resulting
in a near-flat line for extrapolation that does not provide any
scope for significant error mitigation. RZNE rectifies this by
not having fixed scale factors, and for low reliability values,
RZNE extrapolation is aggressive, resulting in better error
mitigation. Our method also performs well against the learning
based approaches like QRAFT and CDR.

E. Mitigating Noise on Real Superconducting Device

In this experiment, we perform tests on various IBM ma-
chines. On the real device, we reduced the number of shots
to 8192. We report the observed absolute error ratios in Table
III. We compare our method with DZNE (Scale factors = 1, 3,
5), CDR and vnCDR (training set = 32 circuits). We observe
that the results on real machine agree with the simulator results
presented in Section VI-D. Important to note is that only VQE
7 qubit experiment passed our heuristic threshold for 0.7×T1.
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Fig. 7: Absolute error ratios for SLZNE and RZNE on various benchmarks under decoherence noise.

Benchmark Machine Qubits ESP RZNE RZNE Top 10 SLZNE SLNE Top 10 DZNE DZNE full state CDR vnCDR

Hamiltonian Simulation ibm kolkata

4 0.860 0.217 0.571 0.217 0.571 0.656 0.439 0.758 0.682
4 0.740 0.424 0.192 0.424 0.192 0.223 0.051 2.099 1.055
7 0.654 0.924 0.933 0.924 0.933 1.075 0.764 1.106 1.105
7 0.332 0.849 0.901 0.849 0.901 0.975 0.927 0.433 1.124

VQE ibm guadalupe

4 0.797 0.507 0.766 0.507 0.766 0.637 0.672 0.506 0.630
4 0.687 0.606 0.712 0.606 0.712 0.742 0.862 0.417 0.772
7 0.081 1.072 1.189 1.072 1.189 0.999 1.001 0.947 0.995
7 0.009 1.170 1.229 0.314 0.387 0.998 0.990 1.251 1.106

Swap QAOA ibm mumbai
4 0.878 0.274 0.721 0.274 0.721 0.771 0.370 3.533 3.319
4 0.878 0.727 0.842 0.727 0.842 0.855 0.643 1.882 1.836
7 0.625 1.006 1.022 1.006 1.022 1.002 1.013 1.011 1.027

QAOA ibm hanoi
4 0.578 0.387 0.689 0.387 0.689 0.556 0.659 2.173 2.239
4 0.747 0.831 0.889 0.831 0.889 0.760 0.766 1.608 1.579
7 0.454 0.784 0.649 0.784 0.649 1.012 1.074 0.735 1.108

TABLE III: Absolute error ratios of state of the art error mitigation methods and our method on real quantum devices.
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Fig. 8: The fidelity of the GHZ state with deploarizing and
decoherence noise mitigated by SLZNE and RZNE.

Benchmark Machine Qubits Reliability Fidelity

ESP Noisy RZNE RZNE Top
10

GHZ ibm cairo 4 0.805 0.583 0.648 0.635
16 0.683 0.457 0.458 0.585

TABLE IV: The fidelity of the GHZ state with our error
mitigation schemes on a real quantum device.

Finally, having accurate estimate of gate error is important
for RZNE. At times, the IBM backend may have CNOT errors
equal to 1 which gives ESP to be 0. This leads to RZNE
failing to extrapolate. From Table III, we observe that our
methods consistently mitigate the noises on real devices. For
GHZ benchmark, the state fidelities are reported in Table IV
but we do not include the comparison with DZNE, CDR and
vnCDR as they operate on observables instead of quantum
states.

F. Results of Cut-ZNE

Circuits with low ESP can be cut into smaller sub-circuits.
The sub-circuits can be executed separately and the results can
be recombined using classical processing to form the output
state of the original circuit. This way, their noise levels/ESPs
can be reduced/increased as demonstrated in Tables V and
VI. In these experiments, circuits were cut into 2 sub-circuits

using up to 2 cuts. We apply Cut-ZNE on the Hamiltonian
Simulation, VQE and GHZ benchmarks running on the Qiskit
noise simulator with all noise sources but readout error enabled
and the results are shown in Tables. V and VI along with the
real device, IBM Kolkata, results for Hamiltonian Simulation,
VQE benchmarks and IBM Hanoi, for GHZ benchmarks. We
also include the RZNE as a reference point for performance
of Cut-ZNE methods. We also show the effect of simply
cutting the circuit and recombining the execution results of
the sub-circuits (labeled ’CutQC Unmitigated’) leads to error
mitigation by itself. Subsequently applying RZNE in one of
two ways reduces error even further.

In the tables, CutQC-CM (combine-then-mitigate) refers
to the method in Alg. 3 with MC = False and CutQC-
MC (mitigate-then-combine) is with MC = True. As seen
in tables all methods successfully mitigate errors as their
Absolute Error Ratio is less than 1. For VQE and GHZ the
best approach observed was CutQC-MC while for Hamiltonian
simulation it was the CutQC-CM. RZNE proved to be better
than applying CutQC for the Hamiltonian Simulation at least.
Most importantly, we can see from both tables that the
mitigation of errors is not just due to CutQC, and by applying
our ZNE approaches, the errors are further mitigated, i.e.,
CutQC-CM or CutQC-MC vs. CutQC Unmitigated.

VII. CONCLUSIONS

In this paper, we propose a comprehensive scheme for miti-
gating both decoherence and depolarizing noise. The key nov-
elty includes (a) we propose reliability-based ZNE (RZNE),
which performs extrapolation upon the circuit reliability such
that we can easily utilize the extreme noise case and avoid
folding the circuits; (b) we also show that with extrapolation
upon circuit reliability, simple linear extrapolation suffices for
mitigating depolarizing noise; (c) we propose SLZNE, which
is an exponential extrapolation model based on circuit latency
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Fig. 9: Absolute error ratios for RZNE and SLZNE on various benchmarks under decoherence and depolarizing noise.

Fig. 10: Comparison of absolute error ratios of RZNE and SLZNE with various state of art error mitigation methods.

Benchmark Qubits Machine Reliability Absolute Error Ratio
ESP ESPsubcircuit1 ESPsubcircuit2 RZNE CutQC (Unmitigated) CutQC-CM CutQC-MC

Hamiltonian Simulation

5
IBM qasm simulator

0.376 0.632 0.579 0.371 0.886 0.029 0.971
6 0.287 0.632 0.359 0.086 0.806 0.136 0.592
7 0.212 0.585 0.359 0.1 0.926 0.25 0.535
7 ibmq kolkata 0.649 0.980 0.894 0.923 0.341 0.307 1.024
8 0.577 0.964 0.894 0.916 0.997 0.978 0.909

VQE

8
IBM qasm simulator

0.117 0.796 0.344 0.666 0.956 0.831 0.342
9 0.087 0.494 0.344 0.589 0.663 0.596 0.399

10 0.07 0.136 0.477 0.559 0.983 0.763 0.569
7 ibmq kolkata 0.644 0.988 0.918 0.913 0.687 0.754 0.635
8 0.550 0.919 0.979 0.817 0.669 1.005 0.488

TABLE V: Absolute error ratios for Cut-ZNE error mitigation schemes.

Benchmark Qubits Machine Reliability Fidelity
ESP ESPsubcircuit1 ESPsubcircuit2 Noisy RZNE CutQC Unmitigated CutQC-CM CutQC-MC

GHZ

4
IBM qasm
simulator

0.929 0.958 0.944 0.936 0.980 0.918 0.943 0.996
8 0.604 0.815 0.930 0.580 0.662 0.732 0.764 0.931
12 0.380 0.604 0.815 0.270 0.321 0.521 0.544 0.676
16 0.286 0.737 0.420 0.213 0.227 0.363 0.377 0.432
8

ibm hanoi
0.944 0.976 0.983 0.665 0.695 0.813 0.820 0.818

12 0.906 0.944 0.976 0.537 0.550 0.630 0.633 0.662
16 0.826 0.967 0.919 0.405 0.406 0.530 0.533 0.552

TABLE VI: The fidelity of GHZ benchmark using Cut-ZNE error mitigation schemes.
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Fig. 11: The fidelity of the GHZ benchmarks with different
error mitigation methods.

and the number of 1s in the state to mitigate decoherence
noise; (d) we propose a heuristics to integrate RZNE and
SLZNE: if the circuit latency is lower than 0.7 × T1, we
use RZNE; otherwise, we first apply SLZNE then RZNE; and

(e) we propose to leverage quantum circuit cut techniques to
scale down the noise level so as to make ZNE approaches
more effective for circuits suffering from very high noises. Our
experiments on both noise simulators and real quantum devices
demonstrate the effectiveness of our methods against the state-
of-the-art quantum error mitigation schemes on commonly
used benchmarks.
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Gonzales, N. D, S. Dague, T. E. Dandachi, A. N. Dangwal, J. Daniel,
M. Daniels, M. Dartiailh, A. R. Davila, F. Debouni, A. Dekusar,
A. Deshmukh, M. Deshpande, D. Ding, J. Doi, E. M. Dow, P. Down-
ing, E. Drechsler, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty,
E. Eastman, G. Eberle, A. Ebrahimi, P. Eendebak, D. Egger, ElePT,
Emilio, A. Espiricueta, M. Everitt, D. Facoetti, Farida, P. M. Fernández,
S. Ferracin, D. Ferrari, A. H. Ferrera, R. Fouilland, A. Frisch, A. Fuhrer,
B. Fuller, M. GEORGE, J. Gacon, B. G. Gago, C. Gambella, J. M.
Gambetta, A. Gammanpila, L. Garcia, T. Garg, S. Garion, J. R. Garrison,
J. Garrison, T. Gates, H. Georgiev, L. Gil, A. Gilliam, A. Giridharan,
J. Gomez-Mosquera, Gonzalo, S. de la Puente González, J. Gorzinski,
I. Gould, D. Greenberg, D. Grinko, W. Guan, D. Guijo, J. A. Gunnels,
H. Gupta, N. Gupta, J. M. Günther, M. Haglund, I. Haide, I. Hama-
mura, O. C. Hamido, F. Harkins, K. Hartman, A. Hasan, V. Havlicek,
J. Hellmers, Ł. Herok, S. Hillmich, H. Horii, C. Howington, S. Hu,
W. Hu, J. Huang, R. Huisman, H. Imai, T. Imamichi, K. Ishizaki,
Ishwor, R. Iten, T. Itoko, A. Ivrii, A. Javadi, A. Javadi-Abhari, W. Javed,
Q. Jianhua, M. Jivrajani, K. Johns, S. Johnstun, Jonathan-Shoemaker,
JosDenmark, JoshDumo, J. Judge, T. Kachmann, A. Kale, N. Kanazawa,
J. Kane, Kang-Bae, A. Kapila, A. Karazeev, P. Kassebaum, T. Kehrer,
J. Kelso, S. Kelso, V. Khanderao, S. King, Y. Kobayashi, Kovi11Day,
A. Kovyrshin, R. Krishnakumar, V. Krishnan, K. Krsulich, P. Kumkar,
G. Kus, R. LaRose, E. Lacal, R. Lambert, H. Landa, J. Lapeyre,
J. Latone, S. Lawrence, C. Lee, G. Li, J. Lishman, D. Liu, P. Liu,
Lolcroc, A. K. M, L. Madden, Y. Maeng, S. Maheshkar, K. Majmudar,
A. Malyshev, M. E. Mandouh, J. Manela, Manjula, J. Marecek, M. Mar-
ques, K. Marwaha, D. Maslov, P. Maszota, D. Mathews, A. Matsuo,
F. Mazhandu, D. McClure, M. McElaney, C. McGarry, D. McKay,
D. McPherson, S. Meesala, D. Meirom, C. Mendell, T. Metcalfe,
M. Mevissen, A. Meyer, A. Mezzacapo, R. Midha, D. Miller, Z. Minev,
A. Mitchell, N. Moll, A. Montanez, G. Monteiro, M. D. Mooring,
R. Morales, N. Moran, D. Morcuende, S. Mostafa, M. Motta, R. Moyard,
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