Cell Reports

CellBiAge: Improved single-cell age classification
using data binarization

Graphical abstract

Single-nuclei RNA-seq of
young and aged hypothalamus

Genes

A

Genes
]

Machine learning models trained
on binarized highly variable genes

Genes

Q7 s

I

H;/pothalamus

—

F

1 un_u

Nuclei

Nuclei

Nuclei

Il

M:':]D

&35

T

T

Young (3 month) and
and aged (24 month) mice

Single-nuclei RNA-seq
cell by gene matrix

Subset of highly
variable genes

Binarization of
expression

CellBiAge

J

i

Classifies young versus aged cells

)
¥

Young
©

)

|

Aged

Improved performance

1.0

Precision

o

0.0 Recall 1.0

-

CellBiAge

)

Identifies cell-type-specific

signatures

|
Yl

Aged

.

Identifies exercise-related
rejuvenation

J

Highlights
[
through binarization

aging signatures

sexes, and mouse brain regions

proliferating neural stem cells

uuuuuu

CellBiAge classifies organismal age groups of single cells

CellBiAge model interpretation reveals cell-type-specific

Generalizable to ML models, sc/snRNA-seq techniques,

The model captures exercise-induced rejuvenation in

Yu et al., 2023, Cell Reports 42, 113500
December 26, 2023 © 2023 The Authors.

https://doi.org/10.1016/j.celrep.2023.113500

Authors

Doudou Yu, Manlin Li, Guanijie Linghu, ...,
An Wang, Ritambhara Singh,
Ashley E. Webb

Correspondence

ritambhara_singh@brown.edu (R.S.),
awebb@buckinstitute.org (A.E.W.)

In brief

Incorporating data binarization, Yu et al.
develop the CellBiAge pipeline for
accurate organismal age classification at
the single-cell level in the mouse brain.
CellBiAge demonstrates generalizability
across techniques, sexes, and brain
regions. Additionally, cell-type-specific
models reveal distinct signatures and
capture exercise-induced rejuvenation in
proliferating neural stem cells.
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SUMMARY

Aging is a major risk factor for many diseases. Accurate methods for predicting age in specific cell types are
essential to understand the heterogeneity of aging and to assess rejuvenation strategies. However, classi-
fying organismal age at single-cell resolution using transcriptomics is challenging due to sparsity and noise.
Here, we developed CellBiAge, a robust and easy-to-implement machine learning pipeline, to classify the age
of single cells in the mouse brain using single-cell transcriptomics. We show that binarization of gene expres-
sion values for the top highly variable genes significantly improved test performance across different models,
techniques, sexes, and brain regions, with potential age-related genes identified for model prediction. Addi-
tionally, we demonstrate CellBiAge’s ability to capture exercise-induced rejuvenation in neural stem cells.
This study provides a broadly applicable approach for robust classification of organismal age of single cells
in the mouse brain, which may aid in understanding the aging process and evaluating rejuvenation methods.

INTRODUCTION

Aging is a major risk factor for many diseases including cancer
and neurodegeneration.’? Thus, methods that characterize
and quantify aging may have the power to predict age-associ-
ated diseases and evaluate rejuvenation methods. To this end,
biomarkers have been developed to measure a variety of aging
features, from molecular and cellular markers to organismal phe-
notypes.® For example, a number of hallmarks of aging, such as
changes in transcriptional*® and epigenetic networks,’ ' loss
of proteostasis,’® "> stem cell dysfunction,'®'® and frailty,"®
have all been used as metrics of aging.

Advances in high-throughput sequencing and ‘omics tech-
niques have enabled the development of aging biomarkers at
large scales. To identify aging biomarkers with high-dimensional
data, machine learning (ML) models that integrate a large num-
ber of features have been applied to learn to discriminate be-
tween ages. Aging clocks using biomarkers have been built on
high-dimensional data from various modalities. For example,
epigenetic biomarkers (clocks) built on DNA methylation pro-
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files,°>* and incorporating prior biological knowledge or dis-

ease-associated markers,?> ' predict age with high accuracy.
These methods perform well despite a lack of understanding of
the mechanisms involved. In contrast, transcriptome-based
methods, which are more intuitive, have compromised perfor-
mance due to increased noise of gene expression with age.?®
Methods to minimize noise, such as data binarization and rela-
tive age scaling, have been implemented in Caenorhabditis ele-
gans and human fibroblasts, known as BiT age.?° This approach
improved performance in bulk RNA-seq datasets, but it has not
been tested in the context of single-cell RNA-seq (scRNA-seq).
Biomarkers identified using proteomics®®®' and metabolo-
mics®*°® datasets, which harbor multi-tissue information across
organs, reveal important biological pathways but suffer from
scale and interpretability, respectively.

Most high-dimensional biomarkers and clocks identified to
date have used bulk-tissue profiles, which average out tissue-
specific or cell-type-specific aging signatures within an
individual.®?*%4%% Recent developments in single-cell ‘omics
technologies enable the age prediction or classification of single
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cells using transcriptomics®>"~* and methylation profiles.” For

example, a cell-type-specific transcriptomic clock generated
from the mouse subventricular zone (SVZ), a neurogenic region
in the adult mammalian brain, revealed that each cell-type-spe-
cific clock selects unique gene sets for age prediction, revealing
distinct aging trajectories in different cell types.*®

Further identification of biomarkers to classify age in brain tis-
sue has the potential to advance our understanding of the mech-
anisms of brain aging and how they impact vulnerability and re-
silience to neurodegeneration. The hypothalamus is a brain
region that has been implicated in healthy aging as a top-down
regulator of a variety of functions, including nutrient sensing,
circadian rhythms, energy expenditure, and other homeostatic
processes.®“? Longevity interventions such as caloric restriction
target hypothalamic circuits involved in food intake*' and circa-
dian rhythms.*? Transcriptomic profiles of cell types in the hypo-
thalamus have revealed cell-type-specific aging signatures. For
example, enrichment of inflammatory signatures in microglia,
under-enrichment of cholesterol homeostasis gene sets in
astrocytes, and under-enrichment of MYC targets gene sets in
neurons.® In previous work, our laboratory demonstrated that
single-nucleus transcriptomic (snRNA-seq) profiles of X chromo-
some genes could predict neurons as young or aged,® suggest-
ing that this tissue could be leveraged to develop a cell-type-
specific brain aging clock. However, predicting the age group
of single cells across all cell types in the hypothalamus without
prior knowledge is challenging, mostly due to the inherent spar-
sity and noise of single-cell RNA-seq datasets.

Here, we developed CellBiAge, a robust and easy-to-imple-
ment ML pipeline, to predict the age group (young or aged) of
single cells in the mouse hypothalamus using snRNA-seq data.
We showed that binarization of expression values for the top
highly variable genes (HVGs) significantly improved the test per-
formance across different ML models and brain regions. The
interpretation of the all-cell model reveals potential age-related
genes for model prediction. Cell-type-specific models for the
most abundant cell types performed consistently well, with
only a small subset of genes being shared as important features
across cell types, indicating the cell-type-specific transcriptional
signatures in age group prediction. In addition, the model cap-
tures the rejuvenating effect of exercise in proliferating neural
stem cells (NSCs) in the mouse SVZ, which may aid in under-
standing the aging process and evaluating rejuvenation
methods.

RESULTS

A robust ML pipeline to classify organismal age at

single-cell resolution in the mouse hypothalamus

To test whether snRNA-seq profiles can predict organismal age
group (young or aged), we used a publicly available dataset for
the aging female mouse hypothalamus, previously generated
by our laboratory (Figure 1A).% The data were generated in two
independent batches using different library preparation kit ver-
sions and sequencing platforms. Each batch has four animals,
two young (3 months old) and two aged (24 months old) (Fig-
ure 1B). After quality control, the dataset includes 40,064 nuclei
in total. The nuclei number for each sample is shownin Figure 1B.
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Using these snRNA-seq data, we developed an age classifica-
tion task to predict the organismal age group. In this task, the
input gene expression matrix was the transcriptomic profiles of
young and aged female hypothalamic nuclei (Figure 1C). Ulti-
mately, the output was the probability of a nucleus belonging
to the aged category.

To optimize task performance, we implemented a series of
preprocessing and feature selection methods and used the
area under the precision-recall curve (AUPRC) score as the eval-
uation metric. AUPRC score was preferred over other metrics
due to imbalance of the two classes in the test set.*® Specifically,
for data preprocessing, three commonly used methods were im-
plemented: log normalization, batch integration (batch correc-
tion using canonical correlation analysis, CCA), and scaling
(standardization), all in Seurat.***> Log normalization removes
biases in sequencing coverage between nuclei, batch integra-
tion reduces the impact of potential confounding batch variables
on the task, and scaling standardizes the range of features by
adjusting the mean expression value to 0 and standard deviation
to 1. For feature selection, we tested performance in classifying
age using the top 2,000 (2k) HVGs, which have been shown to
highlight biological signals in single-cell datasets,*>*® or highly
expressed genes (HEGs), ranked by gene expression (Figure S1).
The benefit of these feature selection methods is that they do not
require prior knowledge and are widely used in single-cell data
analysis.*>*” Furthermore, transcriptomic profiles of the HVGs
could represent most nuclei in the dataset, and HEGs were the
most abundant genes, which may harbor rich information. Lastly,
we performed data binarization after preprocessing, which con-
verted scaled values larger than 0 as 1 and remaining values as O.
To some extent, this binarization method resembles single-cell
DNA methylation profiling. In methylation profiling, binarized sin-
gle-cell methylomes, when coupled with bulk methylomes as ref-
erences, have demonstrated the ability to predict cellular age
with high accuracy.?® Furthermore, binarization can preserve
biological heterogeneity while alleviating noise embedded in
RNA-seq data at the bulk*®*° and single-cell resolutions,*°"
yet its potential for age group prediction has not been explored.
In our workflow, binarization significantly enhanced performance
in the classification task when combined with HVG feature selec-
tion. The AUPRC score in this case was highly improved relative
to the other preprocessing methods (Figure 1D). Thus, we lever-
aged the binarized matrix of HVGs for further ML modeling for
organismal age classification and model interpretation (Figures
1E, S2, and S3).

Data binarization significantly improves performance
across different ML models

We next wanted to determine if the data binarization approach
could be useful across classification models. We applied linear
models, tree-based models, support vector machines, as well
as a fully connected neural network model before and after bi-
narization (Figures 2A and 2B). After selecting the optimal hyper-
parameters, we retrained the model with the nuclei from animals
1-4 in the training data and tested on the previously held-out
nuclei from animals 5-8 in the test data (Figure S4A). This test da-
taset was generated and preprocessed independently, and we
report the performance of the final model over 10 random seeds
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Figure 1. A robust ML pipeline to classify organismal age at single-cell resolution in the mouse hypothalamus

(A) Dataset description: single nuclei were isolated from the whole hypothalamus of young and aged mice (n = 4 per group), processed with the 10x Genomics
snRNA-seq workflow.

(B) Nuclei counts for each sample in the training and test batches. The training batch was generated with 10x Chromium kit version 3 and lllumina NovaSeq, while
the test batch was generated with 10x Chromium kit version 2 and lllumina HiSeq.

(C) The gene expression matrices of the training and test batches were preprocessed separately using the Seurat package in R. The target variable for this
classification task is whether the nucleus is from the young or aged category.

(D) Bar plot showing ELN test performance with different feature selection and preprocessing methods. Orange: HEGs test performance; blue: HVGs test
performance. All the preprocessing methods were cumulative (i.e., the binarized data was preprocessed with log normalization, batch integration, and scaling).
Hyperparameters were chosen using the GridSearchCV on the training set. Data are represented as mean + SD.

(E) The binarized gene expression matrix (rule: if entry value > 0, assign 1; else, assign 0) as input for models (logistic regressions with regularization, tree-based
models, support vector machines, XGBoost classifier, and neural network). The model outputs the probability of a nucleus originating from the aged category.

Models were evaluated using the AUPRC scores and interpreted for all cells and in a cell-type-specific manner. See also Figures S1-S3.

(Figure 2B). Models implemented before data binarization per-
formed well in training but not testing. Interestingly, the gene
expression matrix after binarization outperformed the non-binar-
ized matrix across all models, with similar performance (AUPRC
around 0.96) (Figures 2B and 2C). In parallel, we checked our
experimental setup to ensure that the read depth of training
data did not boost the performance on the test data. To do so,
we swapped the training and test data, using the lower read-
depth data to train the model, followed by testing on the higher
read-depth data. Without finer hyperparameter tuning, the
ElasticNet (ELN) model improved test performance from 0.60
(before binarization) to 0.94 (after binarization). Additionally, the
binarization threshold implemented in CellBiAge (mean) outper-
formed the threshold in BiT age (median) on the test data, indi-
cating the importance of threshold selection (Figure S4B). One
concern with batch integration using Seurat CCA is that it may
remove true biological age-related variation.®” To confirm that
our method is robust to batch correction, we selected animals

from the two batches in the training and test (Figures S4C-
S4G). The performance remained around 0.96 in the presence
of batch effects within the training or test set, suggesting that
data integration does not impair the model from detecting bio-
logical differences. Taken together, the data binarization method
drastically improved the preprocessed HVG matrix performance
regardless of the data or model applied.

ELN model interpretation reveals potential age-related
genes for model prediction

We then focused on the ELN model for model interpretation
because of its overall comparable performance, interpretability,
and short run time (Figure S5A). We first ranked the 1,413 genes,
the intersection of the top 2k genes in the training and test
batches, in model training and testing by the absolute values
of coefficients in the ELN model (Figure 3A, Table S1). The abso-
lute values of the coefficients indicate the magnitude of their
impact on the model prediction.
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Figure 2. Data binarization significantly improves performance across different ML models

(A) Table reporting optimized hyperparameters for each model trained using the HVGs expression matrix before and after binarization. The hyperparameters were
selected using GridSearchCV and KerasTuner in the group-based cross-validation method.

(B) Bar plot comparing test performance across models before (orange) and after (blue) binarization using 10 different random seeds. Data are represented as

mean + SD.

(C) The representative precision-recall (PR) curves for the models built with gene expression matrices before (orange lines) and after (blue lines) binarization for a
single seed. The dashed line represents the baseline AUPRC score when the model predicts all cells to be in the same major category in the test set. See also

Figure S4.

To better understand how many genes were essential for the
model prediction, we shuffled the expression values for all
ranked genes one by one in the binarized gene expression ma-
trix and plotted the cumulative AUPRC scores. We chose shuf-
fling as our perturbation strategy to preserve the original distri-
bution. Interestingly, the performance dropped sharply upon
perturbation of the last 200 genes (Figures 3B and S5B). For
example, starting from gene #1,250, the derivatives changed
from approximately 0 to negative values, indicating a rapid
drop in model performance. Given that the top 200 genes
were required for model performance, we then asked whether
they were sufficient to restore the test performance. The top
80 genes with the highest absolute coefficients were recovered
from a fully shuffled binarized gene expression matrix by re-
placing the shuffled values with the original ones sequentially.
Interestingly, the top 40 genes restored the model performance
to 0.90, and the top 80 restored the model performance to near
the original 0.95 (Figure 3C). We also performed the perturba-
tion in the opposite direction, from the most important genes

4 Cell Reports 42, 113500, December 26, 2023

to the least ones, which showed an earlier and gentler drop
in performance (Figures S5C and S5D). Together, these results
suggest that a relatively small number of genes are critical for
model prediction.

Out of the top 80 genes we restored, we focused on the biolog-
ical meaning of the top 20 genes for simplicity (Figure 3D). The
binarized expressions of Sic5a4b and Sic13a4, which have the
largest coefficients and encode predicted glucose and sulfate
transporters, respectively, are important in the model prediction.
Although the functional implications of these two genes in the
context of aging remain unexplored, a recent study showed
that knockout of genes encoding glucose import, such as
Slc2a4 (encodes the GLUT4 glucose transporter), rejuvenated
old NSCs.>® Another top gene, Cd34, which encodes endothelial
cell glycoprotein, has been implicated in degeneration.®* Thus,
interpretation of the ELN model identifies potential genes related
to the aging process.

In addition to the ELN coefficient-based perturbation, we
performed permutations for individual genes without prior
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Figure 3. ELN model interpretation reveals potential age-related genes for model prediction

(A) Waterfall plot showing the absolute values of coefficients of all 1,413 genes (ranked). Data are represented as mean + SD for training and test results over 10
random seeds.

(B) Cumulative test performance after feature perturbation (shuffling from the least important genes to the most important genes). Data are represented as mean +
SD over 10 random seeds. The white dashed line indicates a place with a sharp drop.

(C) Cumulative test performance after restoration of the top 80 genes in the fully shuffled test set.

(D) Bar plot showing the individual genes with top 20 coefficients. Data are represented as mean + SD over 10 random seeds.

(E) Boxplot showing the top 15 most important genes in the feature permutation test. Data are represented as mean + SD over 10 random seeds.

(F) Correlation matrix of the test set gene expression matrix before (left) and after (right) binarization. 10 clusters were manually subset from the binarized
correlation matrix for the cluster perturbation test.

(G) Boxplot showing the test performance after perturbation of genes in clusters identified in (F). Data are presented as mean + SD over 10 random seeds. See
also Figure S5 and Table S1.
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knowledge of the model. However, shuffling individual genes did
not significantly affect the model performance (Figure 3E).
Neither did the shuffling of genes on individual chromosomes
(Figure S5E). Thus, we hypothesized that the correlation be-
tween genes contributed to the stable performance in the per-
mutation test. Indeed, the correlation matrix of the cell-gene
expression matrix showed correlated gene clusters regardless
of binarization, with generally larger clusters after binarization
(Figures 3F and S5F). We then permuted the genes within indi-
vidual clusters manually identified by the pattern in the correla-
tion matrix (Figure S5G). Perturbations on individual clusters
affected the model performance to some extent, implicating
the effect of gene-gene correlations (Figure 3G). Furthermore,
the correlated expression matrix highlights the advantage of us-
ing the ELN model, as it evenly distributes weights across corre-
lated features while retaining important features.”® Together,
these model interpretation analyses revealed an enhancement
of gene-gene correlations within the binarized matrix.

Unique features underlie model prediction in a cell-
type-specific manner

Single-cell ‘omics approaches enable the discovery of cell-type-
specific signatures and changes across different conditions. To
understand the top cell-type-specific genes contributing to the
age group prediction, we used our established cell type annota-
tions® and retrained the ELN model for the top five most abun-
dant cell types individually (neurons, oligodendrocytes, astro-
cytes, oligodendrocyte progenitor cells [OPCS], and microglia)
(Figures 4A and S6A). Similar to the model using all cells (all-
cell model), we built cell-type-specific models using binarized
expression matrices of 1,413 HVGs, which were individually
tuned, and repeated over ten random seeds. The clustering of
major cell types was preserved after binarization (Figure S6B).
The test performances were consistently improved compared
to baseline AUPRC scores when the model predicted all cells
to be in the same major category in the test set, across five
different cell types, with microglia and oligodendrocytes per-
forming the best (Figures 4B and 4C). Interestingly, microglia
had the most zero coefficients, while neurons had the least
among the five cell types (Figure 4D).

We next compared the cell-type-specific performance of
CellBiAge with a bootstrap-based cell-type-specific aging clock
(bootstrap_clock),*® developed for major cell types in the mouse
SVZ. Specifically, we evaluated test performance in the three
shared major cell types: oligodendrocytes, astrocytes, and mi-
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croglia. The bootstrap_clock generates 100 bootstrapped
pseudo-cells for each cell type and animal combination, with
each pseudo-cell generated from 15 cells in the population.
The output of the bootstrap_clock is an estimated age of the
pseudo-cell. Our results indicated that both CellBiAge and the
bootstrap_clock demonstrated strong test performance in
the three cell types, with CellBiAge slightly outperforming boot-
strap_clock (Figure S6C).

We observed that, as with the all-cell models, the top 200
genes had the most impact on the sequential perturbation (Fig-
ure 4E). To investigate the shared and cell-type-specific signa-
tures with age, we further analyzed the top 200 genes for each
cell type. Interestingly, only four genes (Nes, Ly6a, Sic5a4b,
B230312C02Rik) were shared by the top 200 genes in the five
cell types, underlying the cell-type specificity for the top genes
in the model prediction (Figure 4F). Nes, expressed in NSCs,
neuroepithelial precursor cells, and reactive astrocytes, encodes
the protein Nestin and plays a crucial role in neurogenesis.*®
Ly6a is involved in T cell activation and increased inflammation
with age.®” Additionally, out of the top 200 genes, the top 20
genes were mostly cell type specific. For example, Adam2, a
gene that declines with age and is implicated in regulating neuro-
genesis,”® was the top gene in neurons. C4b, involved in inflam-
mation and age-associated neurodegenerative diseases,”® was
the top gene specifically for oligodendrocytes and astrocytes
(Figure 4G).

In addition to the cell-type-specific model interpretations, we
also broke down the test performance of the all-cell model by
cell type. Across major cell types, the test performances ex-
ceeded 0.88 regardless of baseline or models (Figures S6D
and S6E). In general, non-neuronal cells had greater test im-
provements in performance than neuronal cells (Figures S6F
and S6G). Individual gene perturbations for each cell type re-
vealed cell-type-specific genes. Interestingly, endothelial cells
and ependymocytes were sensitive to perturbations, while neu-
rons were resilient, indicating more gene-gene correlations in
neurons (Figure S7). Together, data binarization significantly
improved the test performance across different cell types.

Incorporating data binarization enhances model
performance in an independent dataset

We then checked the generalizability of the data binarization to
the scRNA-seq method. Specifically, we analyzed a publicly
available scRNA-seq dataset profiling 79,123 cells from the ag-
ing male mouse SVZ, with animals assigned to either 5 weeks of

Figure 4. Unique features underlie model prediction in a cell-type-specific manner
(A) Doughnut chart showing the identity of the major cell types in the test set. The top seven most abundant cell types are labeled. Lighter shades represent aged

nuclei.

(B) Bar plot showing the baseline (green) and test (blue) AUPRC scores in the cell-type-specific ELN models over 10 random seeds. Data are represented as

mean + SD.

(C) The representative PR curves for models built with the binarized gene expression matrix. The baseline (dashed line) represents the AUPRC score when the
model predicts all cells to be in the same major category in the test set for each cell type.
(D) Waterfall plots showing the absolute values of coefficients of all 1,413 HVGs (ranked) in each cell type. Data are represented as mean + SD for training and test

results over 10 random seeds.

(E) Cumulative test performance after feature perturbation (shuffling from the least important genes to the most important genes) in each cell type. Data are

represented as mean + SD over 10 random seeds.

(F) Venn diagrams showing the relationships between the top 200 genes in each cell type.
(G) Bar plot showing the genes with the top 20 coefficients in each cell type. Data are represented as mean + SD over 10 random seeds. See also Figures S6 and S7.

Cell Reports 42, 113500, December 26, 2023 7




¢? CellPress

Cell Reports

OPEN ACCESS Resou rce
A Cc )
Performance (SVZ) Performance (AUPRC) for the most abundant cell types in the SVZ
1.0 Binarization 101 == Baseline
0.902 | ™= before 0.964 0.956 = ELN test
0.9 0.877 = after
0.9
© 08 4]
S I}
) 0.7 0.66 3 0.8
(@] Q
x
£ oo S o
2 2
0.5
0.39 0.6
0.4
0.3 0.5-
ELN MLP
Model
B Representative PR curve (SVZ) D Representative PR curve for the most adundant cell types in the SVZ
Mural Astrocyte gNSC Oligodendro
1.0 1.0
0.9
0.8
0.8 07
0.6
c 06 0.51 — AUC=0.964 — AUC=0.956 1 — Auc=0.917
.g 3 044"~ Baseline=0.767 ~ - Baseline=0.714 | — — Baseline=0.698
S § " "Neuroblast’ " Microglia "aNSC_NPC Endothelial
T o4l 1.0 ]
04 - BASELINE(AUC=0.699) 091 ]
mmm  Before binarization !
—— ELN (AUC=0.398) 0.81 1
021 —— MLP (AUC=0.709) 071 1
mm  After binarization 0.6 1
— ELN(AUC=0.877) 0.51 — AUC=0.914 — AUC=0.872 1 — AUC=0.852 1— AUC=0.832
0.0 —— MLP (AUC=0.903) 0.4 ~ ~ Baseline=0.583 - - Baseline=0.730 | - -~ Baseline=0.560 | - -~ Baseline=0.747
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Recall Precision
E . . . Young Control
Predicted probability of being aged neuroblasts = Young Exercise
Grouped by condition Grouped by animal Aged Control
0 P=0.027 P =0.502 m Aged Exercise
0.8 1 g g
fa
S 06 1 E E
Q
3
< 041 1 g g
(5]
(=)
< 02 : 1 1
L
>
£ 00 A 1 g g
3 T T T T T T T T T T T T T T T
S Predicted probability of being aged aNSC_NPCs
o404 P =0.031 _ P =0.356 1 1
- 1
2o
©
g 0.8 g 1 1
o
0.6 g 1 1
0.4 g 1 1
0.2 g 1 1
0.0 1 1 4 1
o\@\ l\é’\g@ (\\,\o\ &(}@0 Y1 Y2 Y3 Y4 Y6 VY8 02 03 04 06 08
® Q}@ ° ((/_@
) ) L )
N RN & @
© RS e ¥

8 Cell Reports 42, 113500, December 26, 2023

(legend on next page)



Cell Reports

sedentary (control) or voluntary running (exercise).>>*®° This
high-quality dataset comprises 15 animals, including four
young (6-month-old) and three aged (23-month-old) controls
and four animals in each age-matched exercise condition,
collected on two different days (Figure S8A). As single-nucleus
and single-cell techniques capture different cell types, we
selected the 1,617 shared top HVGs between the SVZ training
and test controls and trained a new model (Figure S8A). We per-
formed batch integration using the CCA in Seurat (Figure S8A
and S8B, STAR Methods).*® For the control animals, the model
performance improved from 0.67 to 0.90 in both MLP (multi-
layer perceptron) and ELN (Figures 5A and 5B). We then
constructed ELN models for the most abundant cell types to
understand cell-type-specific features (Figures 5C and 5D).
The cell-type-specific ELN models performed well especially
for astrocytes and quiescent NSCs (gqNSCs), mural cells,
oligodendrocytes, and neuroblasts, suggesting that the
binarization method is generalizable across brain regions (hy-
pothalamus and SVZ), technique (nuclei and whole cells), and
sexes.

CellBiAge captures exercise-induced rejuvenation in
proliferating cells in the mouse SVZ

We next tested the performance of the model built on control
mice in capturing the rejuvenating effects of exercise on all cells
and the most abundant cell types. For all cells, after 5 weeks of
exercise, we plotted the distributions of predicted probabilities
of being classified as aged and grouped them by age and condi-
tion. Our results revealed decreasing probabilities in both the
young and aged animals after exercise, although this was not
statistically significant with the mixed-effect linear model ac-
counting for the group structure (Figure S9A). We observed
higher variability in the aged exercised animals compared to
the young exercised mice when we separated the results by an-
imals (Figure S9A). We further investigated the effect of exercise
on the most abundant cell types (Figures 5E and S9B) and found
that exercise significantly decreased the predicted probability of
being aged in the neuroblast population (p = 0.027, Figure 5E)
and activated NSCs and neural-progenitor cells (aNSCs_NPCs,
p = 0.031, Figure 5E) in young animals, consistent with the
finding that voluntary exercise increases neural stem cell prolifer-
ation.®":%? This is in line with the finding that regular exercise ben-
efits cognition and slows aging®® measured by DNAmFitAge, a
biological age predictor that incorporates physical fitness.®*
Together, these results demonstrate that the model built on con-
trol mice successfully captured the rejuvenating effects of exer-
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cise in the mouse SVZ, particularly in young neuroblasts and
aNSCs_NPCs.

DISCUSSION

In this study, we developed an ML pipeline, CellBiAge, to classify
the age of single cells in the mouse brain using sc/snRNA-seq
data. Excitingly, an easy-to-implement denoising method—
data binarization of the top HVGs—significantly improved test
performance across different ML models and brain regions.
We first trained and tested models using two independently
generated snRNA-seq profiles of aging female mouse hypothal-
amus to ensure robustness. The model interpretation analysis
revealed potential age-associated genes and cell-type-specific
aging signatures. We next successfully implemented our pipe-
line on a scRNA-seq dataset from male mouse SVZ, demon-
strating the generalizability of binarization across different
models, techniques, sexes, and brain regions. The model built
on control animals also captured the rejuvenating effects of ex-
ercise in proliferating NSCs in the SVZ, suggesting potential ap-
plications for assessing cellular rejuvenation.

The binarization of sc/snRNA-seq data was first introduced to
infer gene regulatory networks®® and then implemented in cell
clustering,®® trajectory inference,®” and differential expression
analysis.®® Binary discretization has several advantages: it helps
denoise inherently sparse data while preserving biological het-
erogeneity®’; it takes fewer computational resources compared
to the raw data®’; and, from a biological perspective, the binar-
ized single-cell gene expression data resemble the intrinsically
sparse and binarized single-cell DNA methylation (DNAm) pro-
files. To date, bulk DNAm-based clocks have been useful estima-
tors of age, although the underlying mechanisms are still largely
unknown. Interestingly, in C. elegans, a species lacking DNA
methylation, binarization of bulk RNA-seq data improved the per-
formance of an aging clock.?® For single-cell DNAm profiles, a
recently developed statistical framework accurately tracks the
aging trajectory of different cell types.? In the future, single-cell
multi-omics (RNA-seq and DNAm) studies profiling both modal-
ities®®"" in the context of aging will help reveal the relationship
between the binarized RNA-seq and DNAm profiles in the same
cell types. Such advances will inform the mechanisms underlying
single-cell DNAm clocks and guide clock-derived perturbations
at the expression level. For example, if CpG sites in the DNAm
clock correspond to essential genes in the binarized RNA-seq
clock, we can potentially perturb their expression by CRISPR or
shRNA tools to interrogate the aging process.

Figure 5. Data binarization improves model performance in an independent mouse SVZ dataset and captures exercise-induced rejuvenation
in proliferating NSCs

(A) Bar plot comparing ELN and MLP test performance before (orange) and after (blue) binarization over 10 random seeds. Data are represented as mean + SD.
(B) The representative PR curves for baseline (the AUPRC score when the model predicts all cells to be in the same major category in the test set; dashed line) and
models built with a binarized gene expression matrix.

(C) Bar plot showing the baseline (the AUPRC score when the model predicts all cells to be in the same major category in the test set; green) and test (blue)
performance in the cell-type-specific ELN models over 10 random seeds. Data are represented as mean + SD.

(D) The representative PR curves for baseline (the AUPRC score when the model predicts all cells to be in the same major category in the test set; dashed line) and
models built with a binarized gene expression matrix.

(E) Violin plots showing the predicted probability of being aged (neuroblasts, top; aNSC_NPCs, bottom) grouped by condition (left) and animal (right) separately.
The white dot represents the median. The p values above the violin plots are derived from a mixed-effect linear model test accounting for group structure. See also
Figures S8 and S9.
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Feature selection is important in our binarization pipeline. After
binarization, the HVGs outperformed the HEGs expression ma-
trix. In other words, the HVGs are more responsive to binarization
than HEGs in this classification task. A simulation study has
shown that marker genes (i.e., HVGs between cell types) in the
raw single-cell count matrix are zero inflated. The zeros are
driven by biological differences, which are preserved after binar-
ization.® In contrast, HEGs are more stably expressed and not
zero inflated, so their change with biological conditions may
not be captured by binarization. Our findings indicate that
many potential aging features are embedded in the top HVGs.
These features are preserved and even enhanced after binariza-
tion and then captured by the ML models. On the other hand,
HEGs are likely to be housekeeping genes whose fluctuation
with age may not be useful in ML models after binarization. In
addition to HEGs and HVGs, other feature sets, including differ-
entially expressed genes and phenotypic features, may benefit
the model’s performance.

One advantage of the all-cell CellBiAge model is that it can
predict the age group of single cells without relying on cell type
annotation. This versatility becomes particularly beneficial for
datasets that lack comprehensive cell type information, espe-
cially in the context of rejuvenating methods like cellular reprog-
ramming, which lead to the emergence of highly heterogeneous
cell populations.”

Our implementation of cell-type-specific models revealed the
unique top features in the CellBiAge prediction (Figures 4E and
4G). For example, top features in microglia have genes that regu-
late the inflammatory response, whereas top features in neurons
regulate neurogenesis (Figure 4E). Such unique features in
different cell types highlight the heterogeneity of the aging pro-
cess within individuals, which is in line with the findings in other
aging clocks (models) at single-cell resolution.”®* Thus, as-
sessing normal aging and age-associated diseases at the sin-
gle-cell level will help elucidate vulnerable and resilient cell types
or tissues with age, which will guide the development of preci-
sion medicine. For example, in the mouse SVZ dataset, we found
a decreased number of proliferating NSCs during normal aging,
consistent with findings demonstrating decreased neurogenesis
with age.'®"*>""° Interestingly, our model showed that exercise
led to a significant reduction in the predicted aged probability
of these proliferating NSCs (Figure 5E), indicating the potential
of single-cell level evaluation to improve our understanding of
the mechanisms underlying anti-aging interventions. Moreover,
the in silico perturbation analysis offers insights into important
genes in the model prediction process, unveiling cell-type-spe-
cific signatures that may not be discernible through conventional
bioinformatics analysis. This additional layer of analysis en-
hances the conceptual understanding of the underlying biology
of aging and provides a comprehensive view of the predictive
model’s behavior.

In sum, CellBiAge is an easy-to-implement, generalizable, and
interpretable ML pipeline that enables robust prediction of
organismal age groups in all cells and specific cell types using
sc/snRNA-seq data. Successful capture of the rejuvenating ef-
fects of exercise in proliferating NSCs highlights the potential
of this pipeline to quickly evaluate pro-longevity interventions
at single-cell resolution. In future work, CellBiAge may be further
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implemented to classify other conditions such as sex, geno-
types, and disease stages. Thus, the interoperable linear models
used in CellBiAge offer a unique perspective for identifying pre-
viously unknown genes related to various conditions, including
aging.

Limitations of the study

One limitation of the study is that the classification model does
not capture the continuous aging trajectory, in part due to the
cost of single-cell experiments across multiple time points at
large scales. A recent study profiled the transcriptome of
21,458 single nuclei for mouse SVZ, a neurogenic niche, across
26 time points ranging from 3-month-old to 29-month-old
mice.*® To overcome the limited number of nuclei, they imple-
mented bootstrapping and ensemble methods in a regularized
linear regression model.*® Encouraged by this, an exciting future
direction will be time-course single-cell profiling of the hypothal-
amus and implementation of data binarization to build a regres-
sion model to quantify the aging trajectory.

While using top HVGs as features in the pipeline is conve-
nient, as domain knowledge is not required for feature selec-
tion, these genes are often cell type specific, potentially
missing “traditional” age-associated genes. Consistent with
this, our model interpretation did not reveal an obvious age-
associated pathway or gene set. Given the complexity of
defining aging and age-related genes,’® further experimental
perturbations based on age-related readouts are necessary to
validate the genes that we identified and their relationship with
aging. Additionally, the region-specific nature of models trained
on top HVGs suggests the need for alternative feature sets to
capture cross-region aging signatures. Incorporating pheno-
typic features such as behavioral and frailty scores could
enhance model generalizability across brain, paving the way
for biomarkers that predict mortality rather than relying solely
on chronological age.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

Mouse hypothalamus snRNAseq data
Mouse exercise SVZ scRNAseq data

Hajdarovic et al.®

Buckley et al.*°

GEO: GSE188646
GEO: GSE196364

Software and algorithms

R
Tidyverse

ggplot2
Seurat

Python
Scikit-learn
TensorFlow
Keras
keras-tuner
Seaborn
Matplotlib

CellBiAge code and virtual environments

https://cran.r-project.org/
https://www.tidyverse.org/
https://ggplot2.tidyverse.org/

https://satijalab.org/seurat/
articles/install.html

https://www.python.org/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://pypi.org/project/keras/
https://pypi.org/project/keras-tuner/
https://seaborn.pydata.org/
https://matplotlib.org/

This paper

4.2.1
1.3.2
3.3.6
4.1.1

3.7.10, 3.9.13
0.24.2

1.14.0,

2.9.0

1.1.3

0.11.1

3.4.2

https://github.com/Webb-
Laboratory/CellBiAge

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ashley E.

Webb (awebb@buckinstitute.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

® Single-cell RNA-seq data have been deposited at GEO and are publicly available. Accession numbers are listed in the key re-
sources table. The processed csv files for model training and test have been deposited at GitHub and are publicly available.
o All original code has been deposited at https://github.com/Webb-Laboratory/CellBiAge and archived on Zenodo https://doi.
org/10.5281/zenodo.10072378and is publicly available.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Datasets used in this study were previously published and are publicly available. See the key resources table for accession numbers.

METHOD DETAILS

The mouse hypothalamus training and test batches

The snRNA-seq dataset from the young and aged mouse hypothalamus was generated and described in Hadjarovic and Yu et al.®
Briefly, Young (3 month) and aged (19-24 month) C57BL/6 female mice were obtained from the NIA. The test batch was generated
using the older 10x Chromium Single Cell 3’ gene expression kit (version 2) and sequenced on the lllumina HiSeq, whereas the training
batch was made using the 10x 3’ kits version 3 and lllumina NovaSeq). We assigned the latter dataset to the training batch because of
its richer sequencing information compared to the test batch.
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Preprocessing and feature selection in Seurat

The training and test sets were preprocessed separately to prevent information leakage between the two sets. Data filtration and
quality control were described and published.® Samples in training (animals #1-4) and test (animals #5-8 in Figures 1B; S4A) batches
were preprocessed and integrated separately (preprocessing.R). Log normalization was applied to the read counts in all nuclei to
remove biases in sequencing coverage between nuclei. Data integration was performed to integrate samples on the top 2k HVGs
in the same batch to reduce the impact of potential confounding batch variables on the task. Data scaling was applied to enable
the mean to equal 0 and standard deviation to equal 1, which standardized the range of features (genes).

For each batch, the top 2k HEGs were selected after ranking the log-normalized gene expression values. The top 2k HVGs were
selected in the integration step and served as anchor features. The log-normalized matrix and the scaled log-normalized matrix were
stored in the RNA data and scale.data slots of the Seurat object. The scaled log-normalized and integrated gene expression matrix
was stored in the integrated scale.data slot. For the gene expression matrix derived from the “integrated” data, the preprocessed
matrix was log-normalized, integrated, and then scaled, which is the matrix that was binarized. Data binarization updates the entry
values larger than 0 (the mean value after standardization) as 1 and else as 0. This was implemented in the user-defined binarize_
data() function in Python.

The intersection of the top 2k genes between the training and test batches were selected in the final pipeline. In total, 1,413 HVGs
were shared between the training and test batches.

Group-based cross-validation strategy and model testing

Scikit-learn GridSearchCV was implemented to select the best hyperparameter combinations in ML models, and TensorFlow Ker-
asTuner was used for the MLP model in the customized group-based cross-validation. The target variable is whether the nucleus
is from the young or aged category, and the output is the probability of the nucleus originating from the aged category. AUPRC scores
were used as the evaluation metrics because of the imbalance of the two classes in the test set.

The range of hyperparameter combinations was fine-tuned and evaluated by the mean AUPRC scores of the four validation sets in
the cross-validation step. The combinations that yielded the highest mean AUPRC scores were selected for the final model training
and testing. Models were then trained using all four samples in the training set, and tested with the previously unseen held out test
batch over 10 trials using different random seeds. Hyperparameters were tuned individually for each preprocessing method
combination.

In silico perturbation

The 1,413 HVGs were first ranked by the mean absolute values of their ELN coefficients over 10 trials. Starting from the gene with the
lowest absolute coefficient, the entry values of the perturbed gene were shuffled over all nuclei, and AUPRC score of the shuffled
matrix was calculated, repeated for 10 runs. The perturbation was repeatedly applied to all genes until the last one with the highest
absolute coefficient was perturbed. The perturbation was performed in a cumulative way, such that after 1,413 perturbations, all
genes were shuffled. The perturbation pipeline was repeated in a reverse manner where the gene with highest coefficient was shuf-
fled first. To characterize the change of the AUPRC score in the perturbation, a fitted curve was interpolated from the AUPRC curve
and its derivatives were calculated.

Permutation importance
The 1,413 HVGs were shuffled individually in a non-cumulative manner. For each shuffled gene, the entry values were shuffled over all
nuclei, and AUPRC scores of the shuffled matrix were calculated, repeated for 10 runs.

Cell-type-specific interpretation
Annotations of major cell types were described and published in Hajdarovic and Yu, et al.® Cell-type-specific ELN models were
trained and tuned using the same group-based cross-validation scheme, by cell types. The type-specific interpretation was per-
formed with the same scripts for the all-cell models. For the Venn diagram, inputs are lists of top 200 genes with the highest absolute
values for each cell type, and the result was plotted using https://bioinformatics.psb.ugent.be/webtools/Venn/.

In addition to the cell-type-specific models, for the all-cell trained model, the test performance was broken down by cell types in the
ELN and MLP models separately. Briefly, in the held-out test set, specific cell types were subset to test the all-cell trained model and
calculate the AUPRC scores.

Pipeline application to the mouse SVZ control and exercise datasets

Fastq files were aligned and preprocessed using Cell Ranger Count and Seurat. Batch integration was performed for training-con-
trols (animals 05, O7, Y5, Y7), training-controls and test-controls (animals O5, O7, Y5, Y7; 02, Y1, Y2), training-controls and test-
exercise-Day1 (animals O5, 07, Y5, Y7; O6, O8, Y6, Y8), and training-controls and test-exercise-Day2 (animals O5, O7, Y5, Y7;
08, 04, Y3, Y4) (Figure S8A). The top 2k HVGs from each integrated dataset were selected. The shared 1,617 genes were used
for model training and testing. Annotations of major cell types were described and published in Buckley and Sun et al.*® Only cells
that were annotated previously were kept. The training-controls dataset was used for training, and group-based cross validation was
performed to select hyperparameters. Testing sets were subset from the integrated data.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Pearson correlation coefficients were calculated to determine the correlation between the 1,413 genes in Python. Plots were gener-
ated by Matplotlib and Seaborn in Python, and ggplot2 in R. Mixed-effect linear model accounting for group structure (group = an-
imal) was applied to determine if exercise had a significant effect on predicted age probability. This method models both within-group
and between-group variations and accounts for the non-independency of cells from the same animals.”” The assumption of normality
of residues was checked before performing the test.

16 Cell Reports 42, 113500, December 26, 2023



	CellBiAge: Improved single-cell age classification using data binarization
	Introduction
	Results
	A robust ML pipeline to classify organismal age at single-cell resolution in the mouse hypothalamus
	Data binarization significantly improves performance across different ML models
	ELN model interpretation reveals potential age-related genes for model prediction
	Unique features underlie model prediction in a cell-type-specific manner
	Incorporating data binarization enhances model performance in an independent dataset
	CellBiAge captures exercise-induced rejuvenation in proliferating cells in the mouse SVZ

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	The mouse hypothalamus training and test batches
	Preprocessing and feature selection in Seurat
	Group-based cross-validation strategy and model testing
	In silico perturbation
	Permutation importance
	Cell-type-specific interpretation
	Pipeline application to the mouse SVZ control and exercise datasets

	Quantification and statistical analysis



