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SUMMARY
Aging is a major risk factor for many diseases. Accurate methods for predicting age in specific cell types are
essential to understand the heterogeneity of aging and to assess rejuvenation strategies. However, classi-
fying organismal age at single-cell resolution using transcriptomics is challenging due to sparsity and noise.
Here, we developed CellBiAge, a robust and easy-to-implementmachine learning pipeline, to classify the age
of single cells in themouse brain using single-cell transcriptomics.We show that binarization of gene expres-
sion values for the top highly variable genes significantly improved test performance across different models,
techniques, sexes, and brain regions, with potential age-related genes identified for model prediction. Addi-
tionally, we demonstrate CellBiAge’s ability to capture exercise-induced rejuvenation in neural stem cells.
This study provides a broadly applicable approach for robust classification of organismal age of single cells
in the mouse brain, which may aid in understanding the aging process and evaluating rejuvenation methods.
INTRODUCTION

Aging is a major risk factor for many diseases including cancer

and neurodegeneration.1,2 Thus, methods that characterize

and quantify aging may have the power to predict age-associ-

ated diseases and evaluate rejuvenation methods. To this end,

biomarkers have been developed to measure a variety of aging

features, frommolecular and cellular markers to organismal phe-

notypes.3 For example, a number of hallmarks of aging, such as

changes in transcriptional4–8 and epigenetic networks,9–12 loss

of proteostasis,13–15 stem cell dysfunction,16–18 and frailty,19

have all been used as metrics of aging.

Advances in high-throughput sequencing and ‘omics tech-

niques have enabled the development of aging biomarkers at

large scales. To identify aging biomarkers with high-dimensional

data, machine learning (ML) models that integrate a large num-

ber of features have been applied to learn to discriminate be-

tween ages. Aging clocks using biomarkers have been built on

high-dimensional data from various modalities. For example,

epigenetic biomarkers (clocks) built on DNA methylation pro-
C
This is an open access article under the CC BY-N
files,20–24 and incorporating prior biological knowledge or dis-

ease-associated markers,25–27 predict age with high accuracy.

These methods perform well despite a lack of understanding of

the mechanisms involved. In contrast, transcriptome-based

methods, which are more intuitive, have compromised perfor-

mance due to increased noise of gene expression with age.28

Methods to minimize noise, such as data binarization and rela-

tive age scaling, have been implemented in Caenorhabditis ele-

gans and human fibroblasts, known as BiT age.29 This approach

improved performance in bulk RNA-seq datasets, but it has not

been tested in the context of single-cell RNA-seq (scRNA-seq).

Biomarkers identified using proteomics30,31 and metabolo-

mics32,33 datasets, which harbor multi-tissue information across

organs, reveal important biological pathways but suffer from

scale and interpretability, respectively.

Most high-dimensional biomarkers and clocks identified to

date have used bulk-tissue profiles, which average out tissue-

specific or cell-type-specific aging signatures within an

individual.8,23,34–36 Recent developments in single-cell ‘omics

technologies enable the age prediction or classification of single
ell Reports 42, 113500, December 26, 2023 ª 2023 The Authors. 1
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cells using transcriptomics8,37–39 and methylation profiles.23 For

example, a cell-type-specific transcriptomic clock generated

from the mouse subventricular zone (SVZ), a neurogenic region

in the adult mammalian brain, revealed that each cell-type-spe-

cific clock selects unique gene sets for age prediction, revealing

distinct aging trajectories in different cell types.39

Further identification of biomarkers to classify age in brain tis-

sue has the potential to advance our understanding of themech-

anisms of brain aging and how they impact vulnerability and re-

silience to neurodegeneration. The hypothalamus is a brain

region that has been implicated in healthy aging as a top-down

regulator of a variety of functions, including nutrient sensing,

circadian rhythms, energy expenditure, and other homeostatic

processes.8,40 Longevity interventions such as caloric restriction

target hypothalamic circuits involved in food intake41 and circa-

dian rhythms.42 Transcriptomic profiles of cell types in the hypo-

thalamus have revealed cell-type-specific aging signatures. For

example, enrichment of inflammatory signatures in microglia,

under-enrichment of cholesterol homeostasis gene sets in

astrocytes, and under-enrichment of MYC targets gene sets in

neurons.8 In previous work, our laboratory demonstrated that

single-nucleus transcriptomic (snRNA-seq) profiles of X chromo-

some genes could predict neurons as young or aged,8 suggest-

ing that this tissue could be leveraged to develop a cell-type-

specific brain aging clock. However, predicting the age group

of single cells across all cell types in the hypothalamus without

prior knowledge is challenging, mostly due to the inherent spar-

sity and noise of single-cell RNA-seq datasets.

Here, we developed CellBiAge, a robust and easy-to-imple-

ment ML pipeline, to predict the age group (young or aged) of

single cells in the mouse hypothalamus using snRNA-seq data.

We showed that binarization of expression values for the top

highly variable genes (HVGs) significantly improved the test per-

formance across different ML models and brain regions. The

interpretation of the all-cell model reveals potential age-related

genes for model prediction. Cell-type-specific models for the

most abundant cell types performed consistently well, with

only a small subset of genes being shared as important features

across cell types, indicating the cell-type-specific transcriptional

signatures in age group prediction. In addition, the model cap-

tures the rejuvenating effect of exercise in proliferating neural

stem cells (NSCs) in the mouse SVZ, which may aid in under-

standing the aging process and evaluating rejuvenation

methods.

RESULTS

A robust ML pipeline to classify organismal age at
single-cell resolution in the mouse hypothalamus
To test whether snRNA-seq profiles can predict organismal age

group (young or aged), we used a publicly available dataset for

the aging female mouse hypothalamus, previously generated

by our laboratory (Figure 1A).8 The data were generated in two

independent batches using different library preparation kit ver-

sions and sequencing platforms. Each batch has four animals,

two young (3 months old) and two aged (24 months old) (Fig-

ure 1B). After quality control, the dataset includes 40,064 nuclei

in total. The nuclei number for each sample is shown in Figure 1B.
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Using these snRNA-seq data, we developed an age classifica-

tion task to predict the organismal age group. In this task, the

input gene expression matrix was the transcriptomic profiles of

young and aged female hypothalamic nuclei (Figure 1C). Ulti-

mately, the output was the probability of a nucleus belonging

to the aged category.

To optimize task performance, we implemented a series of

preprocessing and feature selection methods and used the

area under the precision-recall curve (AUPRC) score as the eval-

uation metric. AUPRC score was preferred over other metrics

due to imbalance of the two classes in the test set.43 Specifically,

for data preprocessing, three commonly usedmethods were im-

plemented: log normalization, batch integration (batch correc-

tion using canonical correlation analysis, CCA), and scaling

(standardization), all in Seurat.44,45 Log normalization removes

biases in sequencing coverage between nuclei, batch integra-

tion reduces the impact of potential confounding batch variables

on the task, and scaling standardizes the range of features by

adjusting the mean expression value to 0 and standard deviation

to 1. For feature selection, we tested performance in classifying

age using the top 2,000 (2k) HVGs, which have been shown to

highlight biological signals in single-cell datasets,45,46 or highly

expressed genes (HEGs), ranked by gene expression (Figure S1).

The benefit of these feature selectionmethods is that they do not

require prior knowledge and are widely used in single-cell data

analysis.45,47 Furthermore, transcriptomic profiles of the HVGs

could represent most nuclei in the dataset, and HEGs were the

most abundant genes, whichmay harbor rich information. Lastly,

we performed data binarization after preprocessing, which con-

verted scaled values larger than 0 as 1 and remaining values as 0.

To some extent, this binarization method resembles single-cell

DNAmethylation profiling. In methylation profiling, binarized sin-

gle-cell methylomes, when coupledwith bulkmethylomes as ref-

erences, have demonstrated the ability to predict cellular age

with high accuracy.23 Furthermore, binarization can preserve

biological heterogeneity while alleviating noise embedded in

RNA-seq data at the bulk48,49 and single-cell resolutions,50,51

yet its potential for age group prediction has not been explored.

In our workflow, binarization significantly enhanced performance

in the classification task when combinedwith HVG feature selec-

tion. The AUPRC score in this case was highly improved relative

to the other preprocessing methods (Figure 1D). Thus, we lever-

aged the binarized matrix of HVGs for further ML modeling for

organismal age classification and model interpretation (Figures

1E, S2, and S3).

Data binarization significantly improves performance
across different ML models
We next wanted to determine if the data binarization approach

could be useful across classification models. We applied linear

models, tree-based models, support vector machines, as well

as a fully connected neural network model before and after bi-

narization (Figures 2A and 2B). After selecting the optimal hyper-

parameters, we retrained the model with the nuclei from animals

1–4 in the training data and tested on the previously held-out

nuclei from animals 5–8 in the test data (Figure S4A). This test da-

taset was generated and preprocessed independently, and we

report the performance of the final model over 10 random seeds



Figure 1. A robust ML pipeline to classify organismal age at single-cell resolution in the mouse hypothalamus

(A) Dataset description: single nuclei were isolated from the whole hypothalamus of young and aged mice (n = 4 per group), processed with the 10x Genomics

snRNA-seq workflow.

(B) Nuclei counts for each sample in the training and test batches. The training batch was generated with 10x Chromium kit version 3 and Illumina NovaSeq, while

the test batch was generated with 10x Chromium kit version 2 and Illumina HiSeq.

(C) The gene expression matrices of the training and test batches were preprocessed separately using the Seurat package in R. The target variable for this

classification task is whether the nucleus is from the young or aged category.

(D) Bar plot showing ELN test performance with different feature selection and preprocessing methods. Orange: HEGs test performance; blue: HVGs test

performance. All the preprocessing methods were cumulative (i.e., the binarized data was preprocessed with log normalization, batch integration, and scaling).

Hyperparameters were chosen using the GridSearchCV on the training set. Data are represented as mean ± SD.

(E) The binarized gene expression matrix (rule: if entry value > 0, assign 1; else, assign 0) as input for models (logistic regressions with regularization, tree-based

models, support vector machines, XGBoost classifier, and neural network). The model outputs the probability of a nucleus originating from the aged category.

Models were evaluated using the AUPRC scores and interpreted for all cells and in a cell-type-specific manner. See also Figures S1–S3.
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(Figure 2B). Models implemented before data binarization per-

formed well in training but not testing. Interestingly, the gene

expression matrix after binarization outperformed the non-binar-

ized matrix across all models, with similar performance (AUPRC

around 0.96) (Figures 2B and 2C). In parallel, we checked our

experimental setup to ensure that the read depth of training

data did not boost the performance on the test data. To do so,

we swapped the training and test data, using the lower read-

depth data to train the model, followed by testing on the higher

read-depth data. Without finer hyperparameter tuning, the

ElasticNet (ELN) model improved test performance from 0.60

(before binarization) to 0.94 (after binarization). Additionally, the

binarization threshold implemented in CellBiAge (mean) outper-

formed the threshold in BiT age (median) on the test data, indi-

cating the importance of threshold selection (Figure S4B). One

concern with batch integration using Seurat CCA is that it may

remove true biological age-related variation.52 To confirm that

our method is robust to batch correction, we selected animals
from the two batches in the training and test (Figures S4C–

S4G). The performance remained around 0.96 in the presence

of batch effects within the training or test set, suggesting that

data integration does not impair the model from detecting bio-

logical differences. Taken together, the data binarization method

drastically improved the preprocessed HVGmatrix performance

regardless of the data or model applied.

ELN model interpretation reveals potential age-related
genes for model prediction
We then focused on the ELN model for model interpretation

because of its overall comparable performance, interpretability,

and short run time (Figure S5A). We first ranked the 1,413 genes,

the intersection of the top 2k genes in the training and test

batches, in model training and testing by the absolute values

of coefficients in the ELNmodel (Figure 3A, Table S1). The abso-

lute values of the coefficients indicate the magnitude of their

impact on the model prediction.
Cell Reports 42, 113500, December 26, 2023 3



A

B C

Figure 2. Data binarization significantly improves performance across different ML models
(A) Table reporting optimized hyperparameters for eachmodel trained using the HVGs expressionmatrix before and after binarization. The hyperparameters were

selected using GridSearchCV and KerasTuner in the group-based cross-validation method.

(B) Bar plot comparing test performance across models before (orange) and after (blue) binarization using 10 different random seeds. Data are represented as

mean ± SD.

(C) The representative precision-recall (PR) curves for the models built with gene expression matrices before (orange lines) and after (blue lines) binarization for a

single seed. The dashed line represents the baseline AUPRC score when the model predicts all cells to be in the same major category in the test set. See also

Figure S4.
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To better understand how many genes were essential for the

model prediction, we shuffled the expression values for all

ranked genes one by one in the binarized gene expression ma-

trix and plotted the cumulative AUPRC scores. We chose shuf-

fling as our perturbation strategy to preserve the original distri-

bution. Interestingly, the performance dropped sharply upon

perturbation of the last 200 genes (Figures 3B and S5B). For

example, starting from gene #1,250, the derivatives changed

from approximately 0 to negative values, indicating a rapid

drop in model performance. Given that the top 200 genes

were required for model performance, we then asked whether

they were sufficient to restore the test performance. The top

80 genes with the highest absolute coefficients were recovered

from a fully shuffled binarized gene expression matrix by re-

placing the shuffled values with the original ones sequentially.

Interestingly, the top 40 genes restored the model performance

to 0.90, and the top 80 restored the model performance to near

the original 0.95 (Figure 3C). We also performed the perturba-

tion in the opposite direction, from the most important genes
4 Cell Reports 42, 113500, December 26, 2023
to the least ones, which showed an earlier and gentler drop

in performance (Figures S5C and S5D). Together, these results

suggest that a relatively small number of genes are critical for

model prediction.

Out of the top 80 geneswe restored, we focused on the biolog-

ical meaning of the top 20 genes for simplicity (Figure 3D). The

binarized expressions of Slc5a4b and Slc13a4, which have the

largest coefficients and encode predicted glucose and sulfate

transporters, respectively, are important in the model prediction.

Although the functional implications of these two genes in the

context of aging remain unexplored, a recent study showed

that knockout of genes encoding glucose import, such as

Slc2a4 (encodes the GLUT4 glucose transporter), rejuvenated

old NSCs.53 Another top gene,Cd34, which encodes endothelial

cell glycoprotein, has been implicated in degeneration.54 Thus,

interpretation of the ELNmodel identifies potential genes related

to the aging process.

In addition to the ELN coefficient-based perturbation, we

performed permutations for individual genes without prior
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Figure 3. ELN model interpretation reveals potential age-related genes for model prediction

(A) Waterfall plot showing the absolute values of coefficients of all 1,413 genes (ranked). Data are represented as mean ± SD for training and test results over 10

random seeds.

(B) Cumulative test performance after feature perturbation (shuffling from the least important genes to themost important genes). Data are represented asmean ±

SD over 10 random seeds. The white dashed line indicates a place with a sharp drop.

(C) Cumulative test performance after restoration of the top 80 genes in the fully shuffled test set.

(D) Bar plot showing the individual genes with top 20 coefficients. Data are represented as mean ± SD over 10 random seeds.

(E) Boxplot showing the top 15 most important genes in the feature permutation test. Data are represented as mean ± SD over 10 random seeds.

(F) Correlation matrix of the test set gene expression matrix before (left) and after (right) binarization. 10 clusters were manually subset from the binarized

correlation matrix for the cluster perturbation test.

(G) Boxplot showing the test performance after perturbation of genes in clusters identified in (F). Data are presented as mean ± SD over 10 random seeds. See

also Figure S5 and Table S1.
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knowledge of the model. However, shuffling individual genes did

not significantly affect the model performance (Figure 3E).

Neither did the shuffling of genes on individual chromosomes

(Figure S5E). Thus, we hypothesized that the correlation be-

tween genes contributed to the stable performance in the per-

mutation test. Indeed, the correlation matrix of the cell-gene

expression matrix showed correlated gene clusters regardless

of binarization, with generally larger clusters after binarization

(Figures 3F and S5F). We then permuted the genes within indi-

vidual clusters manually identified by the pattern in the correla-

tion matrix (Figure S5G). Perturbations on individual clusters

affected the model performance to some extent, implicating

the effect of gene-gene correlations (Figure 3G). Furthermore,

the correlated expression matrix highlights the advantage of us-

ing the ELN model, as it evenly distributes weights across corre-

lated features while retaining important features.55 Together,

these model interpretation analyses revealed an enhancement

of gene-gene correlations within the binarized matrix.

Unique features underlie model prediction in a cell-
type-specific manner
Single-cell ‘omics approaches enable the discovery of cell-type-

specific signatures and changes across different conditions. To

understand the top cell-type-specific genes contributing to the

age group prediction, we used our established cell type annota-

tions8 and retrained the ELN model for the top five most abun-

dant cell types individually (neurons, oligodendrocytes, astro-

cytes, oligodendrocyte progenitor cells [OPCS], and microglia)

(Figures 4A and S6A). Similar to the model using all cells (all-

cell model), we built cell-type-specific models using binarized

expression matrices of 1,413 HVGs, which were individually

tuned, and repeated over ten random seeds. The clustering of

major cell types was preserved after binarization (Figure S6B).

The test performances were consistently improved compared

to baseline AUPRC scores when the model predicted all cells

to be in the same major category in the test set, across five

different cell types, with microglia and oligodendrocytes per-

forming the best (Figures 4B and 4C). Interestingly, microglia

had the most zero coefficients, while neurons had the least

among the five cell types (Figure 4D).

We next compared the cell-type-specific performance of

CellBiAge with a bootstrap-based cell-type-specific aging clock

(bootstrap_clock),39 developed for major cell types in the mouse

SVZ. Specifically, we evaluated test performance in the three

shared major cell types: oligodendrocytes, astrocytes, and mi-
Figure 4. Unique features underlie model prediction in a cell-type-spe

(A) Doughnut chart showing the identity of the major cell types in the test set. The

nuclei.

(B) Bar plot showing the baseline (green) and test (blue) AUPRC scores in the ce

mean ± SD.

(C) The representative PR curves for models built with the binarized gene expres

model predicts all cells to be in the same major category in the test set for each

(D)Waterfall plots showing the absolute values of coefficients of all 1,413 HVGs (ra

results over 10 random seeds.

(E) Cumulative test performance after feature perturbation (shuffling from the le

represented as mean ± SD over 10 random seeds.

(F) Venn diagrams showing the relationships between the top 200 genes in each

(G) Bar plot showing the geneswith the top 20 coefficients in each cell type. Data ar
croglia. The bootstrap_clock generates 100 bootstrapped

pseudo-cells for each cell type and animal combination, with

each pseudo-cell generated from 15 cells in the population.

The output of the bootstrap_clock is an estimated age of the

pseudo-cell. Our results indicated that both CellBiAge and the

bootstrap_clock demonstrated strong test performance in

the three cell types, with CellBiAge slightly outperforming boot-

strap_clock (Figure S6C).

We observed that, as with the all-cell models, the top 200

genes had the most impact on the sequential perturbation (Fig-

ure 4E). To investigate the shared and cell-type-specific signa-

tures with age, we further analyzed the top 200 genes for each

cell type. Interestingly, only four genes (Nes, Ly6a, Slc5a4b,

B230312C02Rik) were shared by the top 200 genes in the five

cell types, underlying the cell-type specificity for the top genes

in the model prediction (Figure 4F). Nes, expressed in NSCs,

neuroepithelial precursor cells, and reactive astrocytes, encodes

the protein Nestin and plays a crucial role in neurogenesis.56

Ly6a is involved in T cell activation and increased inflammation

with age.57 Additionally, out of the top 200 genes, the top 20

genes were mostly cell type specific. For example, Adam2, a

gene that declines with age and is implicated in regulating neuro-

genesis,58 was the top gene in neurons. C4b, involved in inflam-

mation and age-associated neurodegenerative diseases,59 was

the top gene specifically for oligodendrocytes and astrocytes

(Figure 4G).

In addition to the cell-type-specific model interpretations, we

also broke down the test performance of the all-cell model by

cell type. Across major cell types, the test performances ex-

ceeded 0.88 regardless of baseline or models (Figures S6D

and S6E). In general, non-neuronal cells had greater test im-

provements in performance than neuronal cells (Figures S6F

and S6G). Individual gene perturbations for each cell type re-

vealed cell-type-specific genes. Interestingly, endothelial cells

and ependymocytes were sensitive to perturbations, while neu-

rons were resilient, indicating more gene-gene correlations in

neurons (Figure S7). Together, data binarization significantly

improved the test performance across different cell types.

Incorporating data binarization enhances model
performance in an independent dataset
We then checked the generalizability of the data binarization to

the scRNA-seq method. Specifically, we analyzed a publicly

available scRNA-seq dataset profiling 79,123 cells from the ag-

ing malemouse SVZ, with animals assigned to either 5 weeks of
cific manner

top seven most abundant cell types are labeled. Lighter shades represent aged

ll-type-specific ELN models over 10 random seeds. Data are represented as

sion matrix. The baseline (dashed line) represents the AUPRC score when the

cell type.

nked) in each cell type. Data are represented asmean ± SD for training and test

ast important genes to the most important genes) in each cell type. Data are

cell type.

e represented asmean±SDover 10 randomseeds. See also Figures S6 andS7.
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sedentary (control) or voluntary running (exercise).39,60 This

high-quality dataset comprises 15 animals, including four

young (6-month-old) and three aged (23-month-old) controls

and four animals in each age-matched exercise condition,

collected on two different days (Figure S8A). As single-nucleus

and single-cell techniques capture different cell types, we

selected the 1,617 shared top HVGs between the SVZ training

and test controls and trained a newmodel (Figure S8A). We per-

formed batch integration using the CCA in Seurat (Figure S8A

and S8B, STAR Methods).45 For the control animals, the model

performance improved from 0.67 to 0.90 in both MLP (multi-

layer perceptron) and ELN (Figures 5A and 5B). We then

constructed ELN models for the most abundant cell types to

understand cell-type-specific features (Figures 5C and 5D).

The cell-type-specific ELN models performed well especially

for astrocytes and quiescent NSCs (qNSCs), mural cells,

oligodendrocytes, and neuroblasts, suggesting that the

binarization method is generalizable across brain regions (hy-

pothalamus and SVZ), technique (nuclei and whole cells), and

sexes.

CellBiAge captures exercise-induced rejuvenation in
proliferating cells in the mouse SVZ
We next tested the performance of the model built on control

mice in capturing the rejuvenating effects of exercise on all cells

and the most abundant cell types. For all cells, after 5 weeks of

exercise, we plotted the distributions of predicted probabilities

of being classified as aged and grouped them by age and condi-

tion. Our results revealed decreasing probabilities in both the

young and aged animals after exercise, although this was not

statistically significant with the mixed-effect linear model ac-

counting for the group structure (Figure S9A). We observed

higher variability in the aged exercised animals compared to

the young exercised mice when we separated the results by an-

imals (Figure S9A). We further investigated the effect of exercise

on the most abundant cell types (Figures 5E and S9B) and found

that exercise significantly decreased the predicted probability of

being aged in the neuroblast population (p = 0.027, Figure 5E)

and activated NSCs and neural-progenitor cells (aNSCs_NPCs,

p = 0.031, Figure 5E) in young animals, consistent with the

finding that voluntary exercise increases neural stem cell prolifer-

ation.61,62 This is in line with the finding that regular exercise ben-

efits cognition and slows aging63 measured by DNAmFitAge, a

biological age predictor that incorporates physical fitness.64

Together, these results demonstrate that the model built on con-

trol mice successfully captured the rejuvenating effects of exer-
Figure 5. Data binarization improvesmodel performance in an independ

in proliferating NSCs

(A) Bar plot comparing ELN and MLP test performance before (orange) and after

(B) The representative PR curves for baseline (the AUPRC score when themodel p

models built with a binarized gene expression matrix.

(C) Bar plot showing the baseline (the AUPRC score when the model predicts a

performance in the cell-type-specific ELN models over 10 random seeds. Data a

(D) The representative PR curves for baseline (the AUPRC score when themodel p

models built with a binarized gene expression matrix.

(E) Violin plots showing the predicted probability of being aged (neuroblasts, top;

Thewhite dot represents themedian. The p values above the violin plots are derive

Figures S8 and S9.
cise in the mouse SVZ, particularly in young neuroblasts and

aNSCs_NPCs.

DISCUSSION

In this study, we developed anML pipeline, CellBiAge, to classify

the age of single cells in the mouse brain using sc/snRNA-seq

data. Excitingly, an easy-to-implement denoising method—

data binarization of the top HVGs—significantly improved test

performance across different ML models and brain regions.

We first trained and tested models using two independently

generated snRNA-seq profiles of aging female mouse hypothal-

amus to ensure robustness. The model interpretation analysis

revealed potential age-associated genes and cell-type-specific

aging signatures. We next successfully implemented our pipe-

line on a scRNA-seq dataset from male mouse SVZ, demon-

strating the generalizability of binarization across different

models, techniques, sexes, and brain regions. The model built

on control animals also captured the rejuvenating effects of ex-

ercise in proliferating NSCs in the SVZ, suggesting potential ap-

plications for assessing cellular rejuvenation.

The binarization of sc/snRNA-seq data was first introduced to

infer gene regulatory networks65 and then implemented in cell

clustering,66 trajectory inference,67 and differential expression

analysis.68 Binary discretization has several advantages: it helps

denoise inherently sparse data while preserving biological het-

erogeneity50; it takes fewer computational resources compared

to the raw data50; and, from a biological perspective, the binar-

ized single-cell gene expression data resemble the intrinsically

sparse and binarized single-cell DNA methylation (DNAm) pro-

files. To date, bulk DNAm-based clocks have been useful estima-

tors of age,22 although the underlyingmechanisms are still largely

unknown. Interestingly, in C. elegans, a species lacking DNA

methylation, binarization of bulk RNA-seq data improved the per-

formance of an aging clock.29 For single-cell DNAm profiles, a

recently developed statistical framework accurately tracks the

aging trajectory of different cell types.23 In the future, single-cell

multi-omics (RNA-seq and DNAm) studies profiling both modal-

ities69–71 in the context of aging will help reveal the relationship

between the binarized RNA-seq and DNAm profiles in the same

cell types. Such advances will inform the mechanisms underlying

single-cell DNAm clocks and guide clock-derived perturbations

at the expression level. For example, if CpG sites in the DNAm

clock correspond to essential genes in the binarized RNA-seq

clock, we can potentially perturb their expression by CRISPR or

shRNA tools to interrogate the aging process.
entmouse SVZ dataset and captures exercise-induced rejuvenation

(blue) binarization over 10 random seeds. Data are represented as mean ± SD.

redicts all cells to be in the samemajor category in the test set; dashed line) and

ll cells to be in the same major category in the test set; green) and test (blue)

re represented as mean ± SD.

redicts all cells to be in the samemajor category in the test set; dashed line) and

aNSC_NPCs, bottom) grouped by condition (left) and animal (right) separately.

d from amixed-effect linearmodel test accounting for group structure. See also
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Feature selection is important in our binarization pipeline. After

binarization, the HVGs outperformed the HEGs expression ma-

trix. In other words, theHVGs aremore responsive to binarization

than HEGs in this classification task. A simulation study has

shown that marker genes (i.e., HVGs between cell types) in the

raw single-cell count matrix are zero inflated. The zeros are

driven by biological differences, which are preserved after binar-

ization.50 In contrast, HEGs are more stably expressed and not

zero inflated, so their change with biological conditions may

not be captured by binarization. Our findings indicate that

many potential aging features are embedded in the top HVGs.

These features are preserved and even enhanced after binariza-

tion and then captured by the ML models. On the other hand,

HEGs are likely to be housekeeping genes whose fluctuation

with age may not be useful in ML models after binarization. In

addition to HEGs and HVGs, other feature sets, including differ-

entially expressed genes and phenotypic features, may benefit

the model’s performance.

One advantage of the all-cell CellBiAge model is that it can

predict the age group of single cells without relying on cell type

annotation. This versatility becomes particularly beneficial for

datasets that lack comprehensive cell type information, espe-

cially in the context of rejuvenating methods like cellular reprog-

ramming, which lead to the emergence of highly heterogeneous

cell populations.72

Our implementation of cell-type-specific models revealed the

unique top features in the CellBiAge prediction (Figures 4E and

4G). For example, top features inmicroglia have genes that regu-

late the inflammatory response, whereas top features in neurons

regulate neurogenesis (Figure 4E). Such unique features in

different cell types highlight the heterogeneity of the aging pro-

cess within individuals, which is in line with the findings in other

aging clocks (models) at single-cell resolution.23,39 Thus, as-

sessing normal aging and age-associated diseases at the sin-

gle-cell level will help elucidate vulnerable and resilient cell types

or tissues with age, which will guide the development of preci-

sionmedicine. For example, in themouse SVZ dataset, we found

a decreased number of proliferating NSCs during normal aging,

consistent with findings demonstrating decreased neurogenesis

with age.16,73–75 Interestingly, our model showed that exercise

led to a significant reduction in the predicted aged probability

of these proliferating NSCs (Figure 5E), indicating the potential

of single-cell level evaluation to improve our understanding of

the mechanisms underlying anti-aging interventions. Moreover,

the in silico perturbation analysis offers insights into important

genes in the model prediction process, unveiling cell-type-spe-

cific signatures that may not be discernible through conventional

bioinformatics analysis. This additional layer of analysis en-

hances the conceptual understanding of the underlying biology

of aging and provides a comprehensive view of the predictive

model’s behavior.

In sum, CellBiAge is an easy-to-implement, generalizable, and

interpretable ML pipeline that enables robust prediction of

organismal age groups in all cells and specific cell types using

sc/snRNA-seq data. Successful capture of the rejuvenating ef-

fects of exercise in proliferating NSCs highlights the potential

of this pipeline to quickly evaluate pro-longevity interventions

at single-cell resolution. In future work, CellBiAge may be further
10 Cell Reports 42, 113500, December 26, 2023
implemented to classify other conditions such as sex, geno-

types, and disease stages. Thus, the interoperable linear models

used in CellBiAge offer a unique perspective for identifying pre-

viously unknown genes related to various conditions, including

aging.

Limitations of the study
One limitation of the study is that the classification model does

not capture the continuous aging trajectory, in part due to the

cost of single-cell experiments across multiple time points at

large scales. A recent study profiled the transcriptome of

21,458 single nuclei for mouse SVZ, a neurogenic niche, across

26 time points ranging from 3-month-old to 29-month-old

mice.39 To overcome the limited number of nuclei, they imple-

mented bootstrapping and ensemble methods in a regularized

linear regression model.39 Encouraged by this, an exciting future

direction will be time-course single-cell profiling of the hypothal-

amus and implementation of data binarization to build a regres-

sion model to quantify the aging trajectory.

While using top HVGs as features in the pipeline is conve-

nient, as domain knowledge is not required for feature selec-

tion, these genes are often cell type specific, potentially

missing ‘‘traditional’’ age-associated genes. Consistent with

this, our model interpretation did not reveal an obvious age-

associated pathway or gene set. Given the complexity of

defining aging and age-related genes,76 further experimental

perturbations based on age-related readouts are necessary to

validate the genes that we identified and their relationship with

aging. Additionally, the region-specific nature of models trained

on top HVGs suggests the need for alternative feature sets to

capture cross-region aging signatures. Incorporating pheno-

typic features such as behavioral and frailty scores could

enhance model generalizability across brain, paving the way

for biomarkers that predict mortality rather than relying solely

on chronological age.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse hypothalamus snRNAseq data Hajdarovic et al.8 GEO: GSE188646

Mouse exercise SVZ scRNAseq data Buckley et al.39 GEO: GSE196364

Software and algorithms

R https://cran.r-project.org/ 4.2.1

Tidyverse https://www.tidyverse.org/ 1.3.2

ggplot2 https://ggplot2.tidyverse.org/ 3.3.6

Seurat https://satijalab.org/seurat/

articles/install.html

4.1.1

Python https://www.python.org/ 3.7.10, 3.9.13

Scikit-learn https://scikit-learn.org/stable/ 0.24.2

TensorFlow https://www.tensorflow.org/ 1.14.0,

Keras https://pypi.org/project/keras/ 2.9.0

keras-tuner https://pypi.org/project/keras-tuner/ 1.1.3

Seaborn https://seaborn.pydata.org/ 0.11.1

Matplotlib https://matplotlib.org/ 3.4.2

CellBiAge code and virtual environments This paper https://github.com/Webb-

Laboratory/CellBiAge
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ashley E.

Webb (awebb@buckinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data have been deposited at GEO and are publicly available. Accession numbers are listed in the key re-

sources table. The processed csv files for model training and test have been deposited at GitHub and are publicly available.

d All original code has been deposited at https://github.com/Webb-Laboratory/CellBiAge and archived on Zenodo https://doi.

org/10.5281/zenodo.10072378and is publicly available.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Datasets used in this study were previously published and are publicly available. See the key resources table for accession numbers.

METHOD DETAILS

The mouse hypothalamus training and test batches
The snRNA-seq dataset from the young and aged mouse hypothalamus was generated and described in Hadjarovic and Yu et al.8

Briefly, Young (3 month) and aged (19–24 month) C57BL/6 female mice were obtained from the NIA. The test batch was generated

using the older 10xChromiumSingle Cell 30 gene expression kit (version 2) and sequenced on the Illumina HiSeq, whereas the training

batch wasmade using the 10x 30 kits version 3 and Illumina NovaSeq). We assigned the latter dataset to the training batch because of

its richer sequencing information compared to the test batch.
14 Cell Reports 42, 113500, December 26, 2023

mailto:awebb@buckinstitute.org
https://github.com/Webb-Laboratory/CellBiAge
https://doi.org/10.5281/zenodo.10072378and
https://doi.org/10.5281/zenodo.10072378and
https://cran.r-project.org/
https://www.tidyverse.org/
https://ggplot2.tidyverse.org/
https://satijalab.org/seurat/articles/install.html
https://satijalab.org/seurat/articles/install.html
https://www.python.org/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://pypi.org/project/keras/
https://pypi.org/project/keras-tuner/
https://seaborn.pydata.org/
https://matplotlib.org/
https://github.com/Webb-Laboratory/CellBiAge
https://github.com/Webb-Laboratory/CellBiAge


Resource
ll

OPEN ACCESS
Preprocessing and feature selection in Seurat
The training and test sets were preprocessed separately to prevent information leakage between the two sets. Data filtration and

quality control were described and published.8 Samples in training (animals #1–4) and test (animals #5–8 in Figures 1B; S4A) batches

were preprocessed and integrated separately (preprocessing.R). Log normalization was applied to the read counts in all nuclei to

remove biases in sequencing coverage between nuclei. Data integration was performed to integrate samples on the top 2k HVGs

in the same batch to reduce the impact of potential confounding batch variables on the task. Data scaling was applied to enable

the mean to equal 0 and standard deviation to equal 1, which standardized the range of features (genes).

For each batch, the top 2k HEGs were selected after ranking the log-normalized gene expression values. The top 2k HVGs were

selected in the integration step and served as anchor features. The log-normalized matrix and the scaled log-normalized matrix were

stored in the RNA data and scale.data slots of the Seurat object. The scaled log-normalized and integrated gene expression matrix

was stored in the integrated scale.data slot. For the gene expression matrix derived from the ‘‘integrated’’ data, the preprocessed

matrix was log-normalized, integrated, and then scaled, which is the matrix that was binarized. Data binarization updates the entry

values larger than 0 (the mean value after standardization) as 1 and else as 0. This was implemented in the user-defined binarize_

data() function in Python.

The intersection of the top 2k genes between the training and test batches were selected in the final pipeline. In total, 1,413 HVGs

were shared between the training and test batches.

Group-based cross-validation strategy and model testing
Scikit-learn GridSearchCV was implemented to select the best hyperparameter combinations in ML models, and TensorFlow Ker-

asTuner was used for the MLP model in the customized group-based cross-validation. The target variable is whether the nucleus

is from the young or aged category, and the output is the probability of the nucleus originating from the aged category. AUPRC scores

were used as the evaluation metrics because of the imbalance of the two classes in the test set.

The range of hyperparameter combinations was fine-tuned and evaluated by the mean AUPRC scores of the four validation sets in

the cross-validation step. The combinations that yielded the highest mean AUPRC scores were selected for the final model training

and testing. Models were then trained using all four samples in the training set, and tested with the previously unseen held out test

batch over 10 trials using different random seeds. Hyperparameters were tuned individually for each preprocessing method

combination.

In silico perturbation
The 1,413 HVGs were first ranked by the mean absolute values of their ELN coefficients over 10 trials. Starting from the gene with the

lowest absolute coefficient, the entry values of the perturbed gene were shuffled over all nuclei, and AUPRC score of the shuffled

matrix was calculated, repeated for 10 runs. The perturbation was repeatedly applied to all genes until the last one with the highest

absolute coefficient was perturbed. The perturbation was performed in a cumulative way, such that after 1,413 perturbations, all

genes were shuffled. The perturbation pipeline was repeated in a reverse manner where the gene with highest coefficient was shuf-

fled first. To characterize the change of the AUPRC score in the perturbation, a fitted curve was interpolated from the AUPRC curve

and its derivatives were calculated.

Permutation importance
The 1,413 HVGswere shuffled individually in a non-cumulativemanner. For each shuffled gene, the entry valueswere shuffled over all

nuclei, and AUPRC scores of the shuffled matrix were calculated, repeated for 10 runs.

Cell-type-specific interpretation
Annotations of major cell types were described and published in Hajdarovic and Yu, et al.8 Cell-type-specific ELN models were

trained and tuned using the same group-based cross-validation scheme, by cell types. The type-specific interpretation was per-

formed with the same scripts for the all-cell models. For the Venn diagram, inputs are lists of top 200 genes with the highest absolute

values for each cell type, and the result was plotted using https://bioinformatics.psb.ugent.be/webtools/Venn/.

In addition to the cell-type-specificmodels, for the all-cell trainedmodel, the test performancewas broken down by cell types in the

ELN and MLPmodels separately. Briefly, in the held-out test set, specific cell types were subset to test the all-cell trained model and

calculate the AUPRC scores.

Pipeline application to the mouse SVZ control and exercise datasets
Fastq files were aligned and preprocessed using Cell Ranger Count and Seurat. Batch integration was performed for training-con-

trols (animals O5, O7, Y5, Y7), training-controls and test-controls (animals O5, O7, Y5, Y7; O2, Y1, Y2), training-controls and test-

exercise-Day1 (animals O5, O7, Y5, Y7; O6, O8, Y6, Y8), and training-controls and test-exercise-Day2 (animals O5, O7, Y5, Y7;

O3, O4, Y3, Y4) (Figure S8A). The top 2k HVGs from each integrated dataset were selected. The shared 1,617 genes were used

for model training and testing. Annotations of major cell types were described and published in Buckley and Sun et al.39 Only cells

that were annotated previously were kept. The training-controls dataset was used for training, and group-based cross validation was

performed to select hyperparameters. Testing sets were subset from the integrated data.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Pearson correlation coefficients were calculated to determine the correlation between the 1,413 genes in Python. Plots were gener-

ated by Matplotlib and Seaborn in Python, and ggplot2 in R. Mixed-effect linear model accounting for group structure (group = an-

imal) was applied to determine if exercise had a significant effect on predicted age probability. Thismethodmodels bothwithin-group

and between-group variations and accounts for the non-independency of cells from the same animals.77 The assumption of normality

of residues was checked before performing the test.
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