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ABSTRACT: Copper(I) halides are often added to olefin metathesis reactions to inhibit catalyst degradation, control product
isomerization, enhance catalyst activation, or facilitate catalyst dimerization. In each of these examples, the copper salt is
presumed to operate as an independent species, separate from the ruthenium center. We have discovered, however, that
certain copper salts can form complexes with the ruthenium catalyst itself, forming hetero-bimetallic copper-ruthenium ole-
fin metathesis catalysts. We confirmed the formation of two complexes through single-crystal X-ray crystallography and NMR
spectroscopy. The crystal structure revealed the presence of a four-member ring containing ruthenium, carbon, copper, and
chlorine or bromine. The hetero-bimetallic catalyst displayed higher latency and lower activity in the ring-opening metathesis
polymerization (ROMP) of norbornene compared to analogous monometallic catalysts. For example, norbornene polymeri-
zation catalyzed by the monometallic complex reached 80 % conversion after 4 h, but only 12% conversion when catalyzed
by the hetero-bimetallic copper-ruthenium complex under the same conditions. Conversion increased to 63 % when the tem-
perature increased to 50 °C for 1 h, indicating that the bimetallic complex retains activity but requires a higher temperature
to activate. The formation of these copper-ruthenium bimetallic complexes suggests the possibility of multi-metallic olefin
metathesis catalysts, potentially with different activity and properties than their traditional monometallic counterparts.
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high stability and low reactivity in ring-opening metathesis
polymerization (ROMP), even at 80 °C, but becomes highly
active at 30 °C with the addition of copper(I) chloride
(CuCl). The copper salt traps the NHC ligand to release the
active ruthenium species through a trans-metalation pro-
cess (Figure 1b).10 CuCl has also been shown to promote di-
merization of a ruthenium-indenylidene complex, forming
two bridging chloride donors (Figure 1c).1¢ The dimerized
complex initiates 250 times faster than the parent cata-
lyst.16 Finally, Thuo and co-workers studied the effects of
copper(I) halide addition on olefin metathesis reactions in
polar protic solvents with phosphine-based Grubbs cata-
lysts.? In cross-metathesis reactions with copper halides
present, product isomerization is reduced or eliminated,
and the reaction selectively produces the cross-metathesis
product (Figure 1d).°

While synthesizing a series of latent olefin metathesis cata-
lysts with a chelating imine on the benzylidene ligand, we
observed the formation of a ruthenium-copper complex
during these ligand exchange reactions. Surprised by this
finding, we investigated the effect of treating imine-che-
lated ruthenium olefin metathesis catalysts with different
copper(I) salts (Figure 1e). The catalyst we investigated
has a five-member chelating imine ring and was originally
synthesized without the addition of copper halide.’” It
showed high stability in the presence of olefins at room tem-
perature but was activated upon heating.'” Here, we synthe-
sized this complex with the addition of copper(I) chloride,
bromide, and iodide.
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Figure 2. Conditions used to synthesize bimetallic cata-

The imine benzylidene ligand 3 was synthesized following
a literature procedure (Figure 2),'7 and underwent an al-
kylidene exchange reaction with first- or second-generation
Grubbs catalysts (G1 and G2) with the addition of copper(I)
halide. Formation of the catalyst was indicated by a color
change of the solution from red to green, and the product
was precipitated in pentane.

X-ray crystal structures of the catalysts revealed the for-
mation of different complexes based on the crystallization
conditions and copper halides used. Reaction of the benzyl-
idene ligand 3 with G2 and copper chloride or bromide fol-
lowed by crystallization from  dichloromethane
(DCM)/pentane at -18 °C yielded hetero-bimetallic copper-
ruthenium complexes 4a and 4b (Figure 2). The crystal
structures of the catalysts grown at room temperature
showed only formation of monometallic catalyst 5 (Figure
2). Attempts to grow crystals with the addition of Cul at
room temperature and -18 °C were unsuccessful, possibly
due to the large size of the iodine atoms.

In the crystal structure of 4a, the occupancy of the Cu site
was refined to give the copper-ruthenium complex 93.3%
of the time, while the other 6.7% was the complex without
copper. In the crystal structure of 4b (synthesized with
CuBr), the Cu is modeled as fully occupied. The catalyst un-
derwent halide exchange and Cl/Br disorder was modeled
at all three halogen sites with relative occupancies that re-
fined to 0.717(3)/0.283(3) for Cl1/Br1, 0.626(3)/0.374(3)
for C12/Br2, and 0.420(3)/0.580(3) for CI3/Br3 (Figure 3).

NMR spectroscopy confirmed both the synthesis of the bi-
metallic catalysts and the halide exchange reaction of 4b.
The alkylidene and imine peaks became broader, presuma-
bly as a result of the copper addition. Additionally, 1H NMR
of 4b showed multiple peaks corresponding to the alkyli-
dene proton at 17.02, 16.95, and 16.86 ppm (ratio of
53:39:8), and imine proton at 9.40, 9.37, and 9.33 ppm (ra-
tio of 7:39:54) (Figure S3), which may reflect the presence
of a mixture of halides on these catalysts and/or a mixture
of 4b and 5. To investigate if 5 is present in the sample, we
added 5 to the 4b NMR sample. 'H NMR showed that the al-
kylidene peak of 5 overlapped with the alkylidene peak at
17.02 ppm and the imine peak overlapped with the peak at
9.33 ppm (Figure S4). Consequently, the 'H NMR of 4b
showed a mixture of (53:37) 5:4b. 13C NMR also showed a
mixture of 4b and 5 peaks (Figure S6).

We further characterized crystals of 4b by 'H NMR at -20
°C to assess if the presence of 5 in 4b was a result of a re-
versible reaction leading to CuX release at room tempera-
ture. However, even at -20 °C, 5 is present in the sample
with the same ratio (53:37) (Figure S3). The ratio between
4b and 5 remained constant even after keeping the sample
for two days at room temperature. We also did a variable
temperature (VT) 'H NMR experiment to assess 4b stability.
In this experiment, we raised the temperature to 70 °C and
monitored the alkylidene peaks (Figure S7). We did not ob-
serve a significant difference at elevated temperature, even
after the sample was kept at 70 °C for 30 min. The fact that
the ratio between the alkylidene peaks did not change sug-
gests relatively high stability for both 4b and 5.

To investigate if Cu-Ru complexes would form with other
catalysts, we treated the Hoveyda-Grubbs second-genera-
tion catalyst with copper(I) chloride under identical crystal-
lization conditions; however, no Cu-Ru complex formation
was observed. Hypothesizing that the chelating imine lig-
and might be critical to the formation of these heterobime-
tallic complexes, we synthesized a novel catalyst featuring
both the chelating imine ligand and a PCy3 ligand instead of
the NHC to form a first-generation analogue of this imine-
containing catalyst. We isolated the novel complex 6 with



the phosphine ligand; however, crystals grown at room
temperature and at -18 °C showed only monometallic cata-
lysts without copper halide coordination.

Figure 3 presents the catalyst crystal structures and se-
lected bond lengths and angles for the synthesized com-
plexes. Although these complexes showed similar bond
lengths and angles around the ruthenium center, Ru=C and
Ru—N distances are systematically longer with CuX (4a and b)
than without (5 and 6). The Cu-Ru distances are 2.6049(6) A
(4a) and 2.6110(6) A (4b), indicating significant Cu/Ru or-
bital overlap as these distances are lower than the sum of
the Cu and Ru covalent radii (2.78 A).18 The C12-Ru1-C22 an-
gle in 5 is wider than CI2-Ru1-C19 in 6 by 8°. This wider an-
gle may explain the ability of copper to form a complex with
5 butnot 6. After copper addition, the C12-Ru1-C22 and Br1-
Ru1-C22 angle decreased to 103.04(6) and 103.78(10) in
4a and 4b respectively, but these angles are still wider than
the corresponding angle in 6 (100.90(5) 9). This result sug-
gests that 6 may be sterically prohibited from undergoing
copper coordination, even with crystallization at a lower
temperature.

X=Cl/Br

4b

Bond Lengths [A] Bond Angles [°] Bond Lengths [A] Bond Angles [°]
Cu-C22 2.0588(18)  Cl2-Rul-C22 103.04(6) Cu-C22 2.061(3) X2-Rul-C22  103.78(10)
Rul-N3 2.1997(15) CI1-Rul-CI2  154.906(17) Rul-N3 2.202(3) X1-Rul-X2 154.26(2)
Rul-C22 1.8791(18)  C22-Cul-CI2 103.27(5) Rul-C22 1.890(3) C22-Cul-X2 104.86(9)

Bond Angles [°] Bond Lengths [A] Bond Angles [°]
CI2-Rul-C22  108.06(14) Rul-N1 2.1488(15) C19-Rul-CI2  100.90(5)
Cll-Rul-CI2  152.53(4) Rul-C19 1.8365(18) Cl1-Rul-CI2  157.388(15)

Bond Lengths [A]
Rul-N3 2.174(4)
Rul-C22  1.846(5)

Figure 3. Catalyst crystal structures and selected bond
lengths and angles. For 4a and 4b (X=Cl or Br), the alkylidene
H-atom was located from the difference electron density map
and refined independently. In 5 and 6, the diffraction data was
not of sufficient quality to locate the alkylidene H-atom and
idealized positions were used.
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Figure 4. Activation temperatures of a) 4a, b) 5, and c) 6 were
measured by DSC. Norbornene melting was observed at ~44-
48 °C.

We then investigated the activation temperature of these
complexes in ROMP of norbornene using differential scan-
ning calorimetry (DSC), which detects an exothermic peak
associated with polymerization upon catalyst activation. A
mixture of norbornene and 4a, 5, or 6 was added to a high-
volume DSC pan and heated (3 °C/ min). The DSC measure-
ments of 4a and 5 showed the norbornene melting point
(mp) at 44-48 °C and activation temperatures of 52 and 48
°C, respectively (Figure 4). Complex 6 exhibited a signifi-
cantly higher activation temperature of 97 °C, probably due
to the phosphine ligand, which tends to increase catalyst
stability.

To further investigate the effect of forming this copper-ru-
thenium complex on the catalyst activity, we conducted a
solution phase polymerization of norbornene in CDz(l: cat-
alyzed by 4a or 5 (Table 1). 'H NMR spectroscopy showed
no polymer peaks after 30 min at 27 °C but polymer peaks
slowly increased over 240 min to 12% in the polymeriza-
tion of norbornene using 4a as a catalyst. Under the same
conditions, the polymerization went faster using 5 with
80% monomer conversion within 240 min. This result sug-
gests that the copper addition stabilizes the catalyst under
these conditions, enhancing latency. We then increased the
polymerization temperature to 50 °C to increase the cata-
lyst activity. 'TH NMR spectroscopy showed an increase in
monomer conversion from 12% to 63% within one hour for
the polymerization at 50 °C using 4a. The 'H NMR study
confirmed the effect of copper addition in increasing the
catalyst stability. However, the catalyst activity can be in-
creased by increasing the temperature, as is expected.
While we did not observe any peaks in the NMR spectra that
correspond to 5 in these experiments, it is challenging to
rule out the possibility that the observed catalytic activity is
due to the presence of small amounts of 5 rather than to the
copper-coordinated complex.
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Norbornene conversion (%)?

Temperature (°C)  Time (min)

27 30 0 25
27 60 2 33
27 240 12 80
50 60 63

2Determined by H NMR spectroscopy

Table 1. Polymerization of norbornene using 4a and 5 as a
catalyst

In conclusion, we have synthesized novel olefin metathesis
catalysts featuring a copper-ruthenium bimetallic four-
member ring using CuCl and CuBr. X-ray crystallography
analysis confirmed the copper coordination. However, an
analogous catalyst with a PCys ligand did not show any cop-
per addition. We found that the hetero-bimetallic catalyst
showed higher latency compared to the monometallic com-
plex in polymerizing norbornene. The successful synthesis
of these complexes presents an opportunity to explore new
olefin metathesis catalysts with bimetallic structures.
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