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Partial differential equations (PDE) learning is an emerging field that combines
physics and machine learning to recover unknown physical systems from experimental
data. While deep learning models traditionally require copious amounts of training
data, recent PDE learning techniques achieve spectacular results with limited data
availability. Still, these results are empirical. Our work provides theoretical guarantees
on the number of input–output training pairs required in PDE learning. Specifically, we
exploit randomized numerical linear algebra and PDE theory to derive a provably data-
efficient algorithm that recovers solution operators of three-dimensional uniformly
elliptic PDEs from input–output data and achieves an exponential convergence rate
of the error with respect to the size of the training dataset with an exceptionally high
probability of success.
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Many scientific breakthroughs have come from deriving new partial differential equations
(PDEs) from first principles to model real-world phenomena and simulating them on
a computer to make predictions. However, many crucial problems currently lack an
adequate mathematical formulation. It is not clear how to derive PDEs to describe how
turbulence sheds off the wing of a hypersonic aircraft, how Escherichia coli bacteria
swim in unison to form an active fluid, or how atomic particles behave with long-range
interactions. Rather than working from first principles, scientists are now looking to
derive PDEs from real-world data using deep learning techniques (1).

The success of deep learning in language models, visual object recognition, and drug
discovery is well known (2). The emerging field of PDE learning hopes to extend this
to discovering new physical laws by supplying deep learning models with experimental
or observational data (1, 3). PDE learning commonly seeks to recover features such
as symmetries, conservation laws, solution operators, and the parameters of a family of
hypothesized PDEs. In most deep-learning applications, a large amount of data is needed,
which is often unrealistic in engineering and biology. However, PDE learning can be
shockingly data-efficient in practice (4). In particular, surprisingly few data are used to
learn the solution operator, which maps the forcing term to the solution of the PDE.

In this paper, we provide a theoretical explanation of this behavior by showing that, for
� > 0 sufficiently small, one can recover an �-approximation to the solution operator of a
three-dimensional (3D) elliptic PDE with a training dataset of size aboutO(log5(1/�)).
Elliptic PDEs, such as the steady-state heat equation, are ubiquitous in physics and
model diffusion phenomena. Solution operators can produce surrogate data for data-
intensive machine-learning approaches such as learning reduced order models for design
optimization in engineering, uncovering physics in climate models, and PDE recovery (1).

To illustrate the observed data-efficiency of PDE learning, we compare the perfor-
mance of three techniques (4–6) for recovering the solution operator associated with
the two-dimensional (2D) Poisson equation in Fig. 1. We vary the size of the training
dataset, consisting of random forcing terms and corresponding solutions obtained by a
numerical solver. We then evaluate the accuracy of the predicted solutions on a testing
dataset with new forcing terms. The three methods are based on deep learning and differ
in their neural network architectures. While the Fourier Neural Operator (5) exploits
the fast Fourier transform for computationally efficient training, DeepONet (4) and
GreenLearning (6) achieve a faster convergence rate on small training datasets. Here,
DeepONet employs a complex network architecture with many parameters. In contrast,
GreenLearning leverages prior knowledge that the solution operator is an integral operator
and the approximation power of rational neural networks (7). Green’s function learning
is observed to be the most data-efficient in Fig. 1, as for a fixed training dataset size,
it achieves the smallest testing error. All methods plateau due to discretization errors,
and the training procedure gets stuck in a local minimum of the loss landscape rather
than finding the global minimum. The rapid decay of testing errors prior to the plateau
motivates our main result.
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Fig. 1. Elliptic PDE learning methods can be data-efficient. (A) Performance
of three deep learning techniques in approximating the solution operator
of the 2D Poisson equation with zero Dirichlet boundary condition on the
domain [0,1]2. On small datasets, DeepONet and GreenLearning attain
exponential decay of the testing error, while Fourier Neural Operator (FNO)
attains algebraic decay. (B) A forcing term (Top) and corresponding predicted
solution (Bottom) to the 2D Poisson equation by a FNO.

There is a lack of understanding of the efficiency of PDE
learning methods with limited training data (4). This work
provides theoretical insights by constructing a provably data-
efficient algorithm that can achieve exponential convergence for
learning solution operators of elliptic PDEs.

Consider an unknown uniformly elliptic PDE in three dimen-
sions, defined on a bounded domain Ω ⊂ R3 with Lipschitz
smooth boundary, with variable coefficients of the form:

Lu = −∇ · (A(x)∇u) = f, x ∈ Ω, u|∂Ω = 0, [1]

where the coefficient matrix A has bounded coefficient functions
and is symmetric positive definite for all x ∈ Ω. The weak
assumptions on Ω and A(x) allow for corner singularities and low
regularity of the coefficients. The training data consist of pairs
of random forcing terms f1, . . . , fN and corresponding solutions
u1, . . . , uN such that Luj = fj for 1 ≤ j ≤ N . Deep learning
techniques use these data to predict solutions to Eq. 1 at new
forcing terms by recovering the action of the solution operator
F , which is given by

F (f ) =
∫
Ω

G(x, y)f (y) dy, [2]

where G is the associated Green’s function. For example, we
visualize in Fig. 2A the Green’s function associated with the
1D Poisson equation. The random forcing terms in the training

dataset are sampled from a Gaussian process (GP), i.e., they follow
a multivariate Gaussian distribution when sampled on a grid,
and the covariance kernel determines the correlation between the
function’s entries and its smoothness.

Recent work (11) proves that for any � > 0 and 3D elliptic
PDEs, a large number of input–output training pairs of size about
O(�−6) is sufficient to recover an �-approximation F̃ to F such
that

‖F − F̃‖2 ≤ �‖F‖HS,

where ‖ · ‖2 is the solution operator norm and ‖ · ‖HS is
the Hilbert–Schmidt norm, while (12) exploits sparse Gaussian
elimination techniques and piecewise polynomial inputs to
recover F with O(log(1/�)4) pairs. Once the �-approximation
to F has been constructed, F̃ can be used to study the stability
and regularity of solutions of the PDE, for example, to see
whether small perturbations of the input function lead to small
changes in the output solution or whether the solution has certain
smoothness or decay properties for all forcing terms. Moreover,
F̃ can be used in numerical methods for approximating the
solution of the PDE. By discretizing the input function and
applying F̃ as a surrogate for F , one can obtain a numerical
solution of the PDE that approximates the true solution. The
integral kernel associated with the Hilbert–Schmidt operator
F̃ is also of interest, as it is an approximation to the Green’s
function, which can be exploited to recover linear conservation
laws, symmetries, boundary effects, and dominant modes (6).

It is an open problem whether one can achieve exponential
convergence while recovering the hierarchical structure of the
solution operator (8, 13), as then the technique could potentially
extend beyond elliptic solution operators. Our main result solves
this open problem by exploiting the hierarchical structure of G
(9) and randomized linear algebra techniques (10, 13). We derive
a randomized algorithm that provably succeeds with exception-
ally high probability and needs a training dataset size of only
O(log(1/�)5[log(log(1/�)) + log(1/Γ�)]4) input–output pairs.

Theorem 1. Let � > 0 be sufficiently small and F be the solution
operator associated with a 3D uniformly elliptic PDE of the form
in Eq. 1. There exists a randomized algorithm that constructs an
�-approximation F̃ to F such that

‖F − F̃‖2 ≤ �‖F‖HS,

A B C

FED

Fig. 2. Properties of elliptic PDEs can be
exploited to construct a provably data-
efficient algorithm for recovering solution
operators. (A) The Green’s function associ-
ated with the 1D Poisson equation, which
is the kernel of the solution operator. (B)
We use the multiscale (hierarchical) struc-
ture of a Green’s function (8). (C) On well-
separated domains, the Green’s function
has rapidly decaying singular values (9), so
it is efficiently recovered by the randomized
singular value decomposition (SVD) (10). (D)
Forcing terms for the training dataset are
randomly sampled from a Gaussian pro-
cess. (E) The accuracy of the randomized
SVD is carefully adapted on each hierar-
chical level to counterbalance the potential
accumulation of errors in the reconstruc-
tion process. (F ) An upper bound on the
probability of failure of the reconstruction
algorithm as a function of �.
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using O(log(1/�)5[log(log(1/�)) + log(1/Γ�)]4) input–output
pairs with probability ≥ 1− e− log(1/�)3

.

The main contribution of Theorem 1 is a theoretical upper
bound on the amount of training data required in elliptic PDE
learning problems, which should deepen our understanding
of existing deep learning techniques. Hence, the exponential
convergence rate in Theorem 1 matches the one observed in
the deep learning experiments of Fig. 1A. We believe that this
learning rate is near-optimal, as it exploits the multiscale structure
of Green’s functions (Fig. 2 B and C ) and depends on the training
dataset. The factor 0 < Γ� ≤ 1 measures the quality of the
training dataset at probing the dominant modes of the PDE, and
a technical definition is available in SI Appendix. We emphasize
that the error bound must include a factor that quantifies the
quality of the training dataset. If the forcing terms are too smooth,
thenΓ� is small. In contrast, choosing the covariance kernel of the
GP such that the sampled functions are oscillatory usually ensures
that Γ� is reasonable for learning G. In short, a small number of
sufficiently diverse forcing terms is required (Fig. 2D).

The algorithm constructed in the proof of Theorem 1 achieves
an approximation error measured in the solution operator norm.
This mimics the typical measurement of accuracy of PDE
learning techniques by comparing true and predicted solutions on
a testing dataset of square-integrable forcing terms. Additionally,
Theorem 1 employs random input–output pairs, where the
forcing terms are sampled from a GP, so there is always some
probability of failure. Fortunately, we show that this probability
is exceptionally small. For � < 10−3, failure is a once-in-a-
cosmic-epoch event (Fig. 2F ).

Theorem 1 is challenging to prove, and the whole argument
is in SI Appendix. The proof relies on the fact that the solution
operator associated with a 3D elliptic PDE is an integral operator
in the form of Eq. 2. First, the Green’s functions related to 3D
elliptic operators are square-integrable and have a bounded decay
rate away from the diagonal of Ω×Ω (14). Second, they possess
a hierarchical structure (9) in the sense that they have rapidly
decaying singular values when restricted to off-diagonal parts of
the domain (green blocks in Fig. 2B). We leverage the hierarchical
structure, which has been historically exploited by fast solvers, in
a data-driven context where the PDE is unknown. Combining
these properties enables a generalization of the randomized
SVD (10) known as the peeling algorithm (8) to simultaneously
learn the off-diagonal blocks at any level of the hierarchy.

While the peeling algorithm is traditionally used to recover
hierarchical matrices efficiently from matrix-vector products,
we generalize it to approximate infinite-dimensional integral
operators. To do so, we leverage insights from recent work that
extends the peeling algorithm to arbitrary hierarchical partitions
and dimensions (15). This gives us a strategy to recover the
Green’s function level by level. However, proving the stability of

peeling is an open question in numerical linear algebra. This is
because the approximation errors from one level can potentially
accumulate exponentially at later levels, thus degrading the
convergence rate (8, 11).

We overcome this theoretical obstacle in the infinite-
dimensional context by requiring an adaptive approximation
accuracy at each level of the hierarchy. The peeling algorithm
ensures that the large-scale features of a Green’s function are
first learned to high accuracy by the randomized SVD. Then, we
progressively decrease the accuracy requirement at subsequent
levels, ensuring an overall �-approximation on each level of the
partition at the end (Fig. 2E). The rapidly decaying singular
values of the Green’s function on off-diagonal parts of the domain
(Fig. 2C ) enable us to maintain a near-optimal exponential
convergence rate with respect to the size of the training dataset.
We then construct a global �-approximant by neglecting G near
the diagonal of the domain.

As one usually employs deep learning techniques to learn
solution operators, our theoretical contributions can also lead to
practical benefits. We believe that future training datasets benefit
from taking into account prior knowledge of the PDE to improve
the quality of the forcing terms at learning the solution operator.
Similar ideas have already been employed in the field of visual
object recognition through data-augmentation techniques. There
is also an opportunity to design neural network architectures with
hierarchical structures to capture the long-range interactions in
PDE models. Finally, enforcing a different accuracy at different
scales might improve the computational efficiency of existing
PDE learning approaches.

In summary, we constructed a randomized algorithm that
provably achieves an exponential convergence rate for approx-
imating the solution operator associated with 3D elliptic PDEs
in terms of the size of the training dataset. This provides a
theoretical explanation for the observed performance of recent
deep learning techniques in PDE learning. The proof techniques
can be adapted to include elliptic PDEs in any dimension
and time-dependent PDEs (16). Recovering solution operators
associated with hyperbolic PDEs, like wave equations, remains
a significant open challenge. Moving forward, we plan to ramp
up PDE learning techniques to handle noisy experimental data,
deal with data from emerging transient dynamics, and enforce
conservation laws onto our solutions.

Data, Materials, and Software Availability. The proof of Theorem 1 and
details of the numerical experiments are available in SI Appendix. Codes and
datasets have been deposited in Zenodo (17). All other data are included in the
manuscript and/or SI Appendix.
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