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A lack of population structure characterizes the invasive Lonicera
Jjaponica in West Virginia and across eastern North America'?

Craig F. Barrett,>* Cameron W. Corbett,’ and Hana L. Thixton-Nolan*
3 Department of Biology, West Virginia University, 5209 Life Sciences Building, 53 Campus Drive,
Morgantown, WV 26506

Abstract. Invasive plant species cause massive ecosystem damage globally yet represent powerful case studies in
population genetics and rapid adaptation to new habitats. The availability of digitized herbarium collections data, and
the ubiquity of invasive species across the landscape make them highly accessible for studies of invasion history and
population dynamics associated with their introduction, establishment, spread, and ecological interactions. Here we
focus on Lonicera japonica, one of the most damaging invasive vine species in North America. We leveraged
digitized collections data and contemporary field collections to reconstruct the invasion history and characterize
patterns of genomic variation in the eastern USA, using a straightforward method for generating nucleotide
polymorphism data and a recently published, chromosome-level genome for the species. We found an overall lack of
population structure among sites in northern West Virginia, USA, as well as across sites in the central and eastern
USA. Heterozygosity and population differentiation were both low based on FST analysis of molecular variance,
principal components analysis, and cluster-based analyses. We also found evidence of high inbreeding coefficients
and significant linkage disequilibrium, in line with the ability of this otherwise outcrossing, perennial species to
propagate vegetatively. Our findings corroborate earlier studies based on allozyme data, and suggest that intentional,
human-assisted spread explains the lack of population structure, as this species was planted for erosion control and as

an ornamental, escaping cultivation repeatedly across the USA.
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Invasive species cause billions of dollars in
damage to habitats in the USA and around the
globe (Simberloff 2013). Yet, they provide impor-
tant case studies in ecosystem dynamics and rapid

evolution to new environments (Lawson-Handley
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et al. 2011). Traditional understanding of genetic
diversity within invasive species focused on single
introductions, subsequent genetic bottlenecks, and
hypothesized low genetic diversity in the invasive
range compared to that in the native range (see
Tsutsui et al. 2000, Lee 2002, Frankham 2005,
Estoup et al. 2016). While this was the case for
many invasive species, the application of molec-
ular markers has consistently identified similar or
even higher levels of genetic variation in invasive
populations compared to those in the native range
(e.g., Frankham 1997, Kolbe et al. 2004). More
recently, many studies have identified multiple
introductions over space and time in invasive
species, including admixture among originally
isolated allele pools, and “bridgehead” introduc-
tions, whereby invasions occur in successive
stages across regions or continents (Dlugosch and
Parker 2008, Keller and Taylor 2010, van Bohee-
men et al. 2017, Vallejo-Marin et al. 2021). Thus,
the picture emerging from molecular genetic
studies of invasive species is often more complex
than “traditional” hypotheses of invasion, and
represents the interplay between history, dispersal,
breeding system, source and recipient habitats, and
several other factors (Sakai et al. 2001; Sutherland
et al. 2021).

Information from digitized collections databases
provides a useful tool for reconstructing invasion
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routes and history, and trait variation over space
and time, while physical collections provide
genomic resources for spatiotemporal analysis of
variation (e.g., Gallinat et al. 2018, Barrett et al.
2022, Bicker et al. 2022, Heberling 2022). In
parallel, advances in genomic sequencing (RAD-
seq, GBS, low-coverage whole genome sequenc-
ing, sequence capture, multiplexed amplicon
sequencing) provide increased power over previ-
ous methods (allozyme variation, organellar gene/
spacer sequencing, microsatellites) for studies of
genetic variation and population structure, with
broader representation of the genome for detecting
both neutral and adaptive variation (Chown et al.
2015, Hamelin and Roe 2020, North et al. 2021).
In plant biology, many of these technological
advances have focused on crops or threatened/
endangered species; relatively fewer have focused
on invasive species (Barrett 2015, Hohenlohe ef al.
2020, North et al. 2021).

Lonicera japonica Thunb. is one of the most
aggressive, invasive vines in North America, yet is
surprisingly not well studied from a genetic
perspective across its globally invasive range,
including North America (Schierenbeck 2004).
This species forms dense mats, climbs trees and
shrubs, outcompetes native vines and understory
species, and causes tree mortality (Leatherman
1955, Evans 1984, Hardt 1986, Dillenberg et al.
1993). Traditionally, this species has been planted
as a means of erosion control and as an
ornamental, from which it is hypothesized to have
escaped cultivation repeatedly. Lonicera japonica
is highly attractive to diverse pollinators, with
large nectar rewards, and the seeds are dispersed
locally by birds and mammals, and by humans
over greater distances (Luken 1996). Lonicera
Jjaponica is an obligate outcrosser but also
propagates vegetatively by rerooting from stems,
forming clonal ramets in many places (Leatherman
1955). At least 12 cultivars are known, but “Hall’s
honeysuckle” is believed to be the most common
and prolific, and further hypothesized to be the
major player in invasion across the USA (Schier-
enbeck 2004).

Studies based on allozyme electrophoresis
revealed low levels of genetic diversity in the
southeastern USA (Schierenbeck et al. 1995,
Schierenbeck 2004), yet genome-scale data and
analysis are yet to be applied to quantify patterns
of diversity in this species. A chromosome-level
genome was recently published (Pu et al. 2020),
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providing a powerful resource for population
genomics. The genome assembly consisted of nine
chromosome-level scaffolds, and was 843.2 Mega-
bases in length, of which ~60% was composed of
repetitive elements, including over 180,000 micro-
satellite regions. In addition, economical, techno-
logically straightforward methods have recently
been published based on sequencing of inter-
simple sequence repeat amplicons (ISSR) for the
generation of single nucleotide polymorphisms
(SNPs), which use microsatellite DNA as priming
sites (e.g., MIG-seq, Suyama and Matsuki 2015;
and ISSR-seq, Sinn et al. 2021). These methods
allow technically straightforward, PCR-based ge-
nome-scale assessments of population-level varia-
tion that were not possible previously. Thus, the
tools and resources for the study of invasion
genomics are now at hand for numerous species,
including L. japonica.

Our objectives were two-fold: 1) Mapping the
invasion history of L. japonica in the USA using
digitized herbarium specimen information, and 2)
quantifying contemporary patterns of genetic
diversity and population structure across the
eastern USA using genomic data. We sampled
166 individuals across 16 localities in eastern
North America (with a focus on northern West
Virginia), and employed a straightforward, ampli-
con-based protocol (MIG-seq, or multiplexed
inter-simple sequence repeat genotyping) to quan-
tify genomic variation in L. japonica. Our analysis
yielded >1,500 SNPs and revealed an overall lack
of population structure for this invasive species in
the eastern USA, suggesting a highly admixed
gene pool.

Materials and Methods. RECONSTRUCTING INVA-
sIoN HisTory wiTH HERBARIUM RECORDS. We created
an animation using database records from herbar-
ium specimens collected over the past two
centuries. Specimen information was accessed
through the Global Biodiversity Information
Center (GBIF 2023) with the R package rgbif
v.3.7.5 (Chamberlain et al. 2023), and the
animation was created in R following Barrett et
al. (2022). A static representation was also created
across six time slices of 30 years each, from 1880—
2020 (except for the latter slice, which was 20
years from 2000-2020). Code for the animation
and static maps (and the figures themselves) can be
accessed via GitHub (Supplemental Material, File
S1).
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Sampling locality and basic diversity information. N = sample size, Fis = inbreeding coefficient,

la and r-barD = metrics of linkage disequilibrium with associated P-values based on 999 permutations (P-

values < 0.05 are in boldface).

Locality Latitude Longitude N Fis la P-value  r-barD  P-value

Allegheny, PA 40.53315 —79.781593 6 0.663 1.015  0.76 0.010 0.67
Arboretum, Monongalia, WV 39.644729 —79.976635 54 0.772  3.333  0.01 0.009  0.01
Cheat Lake, Monongalia, WV 39.6715 —79.847774 14 0.71 1.192 091 0.006 0.84
Deckers Creek, Monongalia, WV 39.628758 —79.949796 10 0.716  0.982  0.69 0.007 0.61
Durham, NC 36.024027 —78.924629 6 0.712  2.003 0.26 0.017 0.22
Fayette, PA 39.797474 —79.794005 3 0.637  2.031 0.17 0.023 0.17
Jackson, WV 38.82314  —81.719958 3 0.589  7.534  0.02 0.076  0.02
Lawrence, PA 41.02137 —80.446194 6 0.687 1.597  0.04 0.012  0.03
LittleFalls, Monongalia, WV 39.553667 —80.015538 8 0.693  0.855 0.62 0.006  0.55
Life Sciences Bldg., Monongalia, WV 39.63786  —79.95392 5 0.611 0.798 0.1 0.007  0.08
Morgantown, Monongalia, WV 39.645545 —79.980235 20 0.736  5.659 0.01 0.018  0.01
Oktibbeha, MS 33.450835 —88.918471 3 0.644 —-0.964 097 —0.012 0.96
Preston, WV 39.65972 —79.791026 7 0.663  3.832  0.02 0.019  0.01
Shelby, TN 35.143333 —89.986183 5 0.662 1.056  0.05 0.011  0.04
Star City, Monongalia, WV 39.683194 —79.961472 8 0.689 1.618  0.04 0.012  0.04
Uffington, Monongalia, WV 39.587624 —80.002644 6 0.668  0.678 0.25 0.007 0.2

SAMPLING, DNA EXTRACTION, AND MIG-SEQ.
Whole green leaves were collected from 166
individuals at 16 localities in the eastern and
midwestern USA (Table 1). At each sampling site,
leaf samples were collected at least 10 m apart to
avoid collecting tissue from the same ramet. One
individual from each locality was pressed as a
voucher specimen and deposited at the West
Virginia University Herbarium. A large number
of individuals were collected at the West Virginia
University Earl Core Arboretum and in the City of
Morgantown, WV; smaller samples were collected
at other localities locally in WV and more broadly
across the eastern USA (Table 1). An ethanol-
sterilized marker cap was used to punch an equal
area of tissue (I cm diameter) from each leaf,
avoiding the midvein. The CTAB DNA extraction
procedure (Doyle and Doyle 1987) was used to
isolate genomic DNAs, using a modified 96-well
extraction protocol. Briefly, samples were stored in
2 ml screw-cap tubes, frozen in liquid nitrogen,
and pulverized with 3 mm steel bearings. DNA
concentrations were measured with a plate reader
(broad-range assay; Tecan Group, Ltd., Zurich,
Switzerland) and diluted to 20 ng/ul in TE buffer
(pH 8.0). MIG-seq amplicons were produced
following the procedure in Suyama and Matsuki
(2015) but modified for dual indexing. PCR
conditions were as follows: 98 °C 5 min, followed
by 30 cycles of 98 °C (30 sec), 48 °C (30 sec), and
72 °C (90 sec), with a final extension at 72 °C for 5
min. PCR products were then diluted 1:50 in
sterile PCR water, and used in a second round of

PCR to add dual-indexed barcodes (Supplemental
Material, File S2). Cycle conditions were as
follows: 15 cycles of: 98 °C (10 sec), 54 °C (15
sec), and 72 °C (1 min). PCR products were then
quantified via NanoDrop spectrophotometry (Ther-
mo Fisher, Waltham, Massachusetts, USA) and
pooled at equimolar ratios. A single, two-sided
PCR cleanup/size selection was conducted with
Quantabio SparQ beads (Beverly, Massachusetts,
USA) at bead to sample ratios of 0.8X and 0.56X.
The resulted size-selected library pool was quan-
tified with an Agilent Bioanalyzer (Santa Clara,
California, USA) and with quantitative PCR, and
sequenced at the West Virginia University Ge-
nomics Core Facility on two runs of an Illumina
MiSeq using v.3 chemistry for 2 X 300 bp reads.

READ PROCESSING, MAPPING, AND SNP CALLING.
Reads were processed using a dedicated pipeline
designed for amplified ISSR fragments (Sinn et al.
2022). Briefly, reads were trimmed using BBDuk
(Bushnell 2023) and mapped to an indexed
reference sequence with BBMap (Bushnell 2023)
(here, the Lonicera japonica genome, NCBI
BioProject accession no. PRINA794868; Pu et
al. 2020). Resulting BAM alignment files were
sorted, and PCR duplicates were removed with
v.1.7-13 and Picard v.3.0.0, respectively (Danecek
et al. 2021, Broad Institute 2023). BAM files were
then analyzed with GATK4 v.4.2, specifically
using GATK’s “Best Practices™ filters, using
HaplotypeCaller to realign around indels (van der
Auwera et al. 2013, Poplin et al. 2017, van der
Auwera and O’Connor 2020). The resulting
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variants, called across all samples, were output as a
.vef file. This file was further filtered on missing
data (for sites and individuals) and minor allele
frequencies (removing minor allele sites with
frequency < 0.05) and thinned to keep only a
single SNP per locus (minimum distance = 1,000
bp) with TASSELS5 v.5.0 (Bradbury et al. 2007)
and PLINK v1.90b6.24 (Purcell et al. 2007).

POPULATION DIVERSITY AND STRUCTURE ANALYSES.
Population genetic analyses were conducted with
SambaR v.1.08 (De Jong et al. 2021), adegenet
v.2.1.0 (Jombart 2008), hierfstat v.0.5.11 (Goudet
2005), Poppr v.2.9.3 (Kamvar et al. 2014), and
SNPRelate v.1.32.2 (Zheng et al. 2012), following
Sinn et al. (2021). Inbreeding coefficients (Fis)
were calculated in SambaR and population differ-
entiation (Fis¢7) metrics were calculated with Poppr.
Analysis of molecular variance was performed
with hierfstat, testing the significance of the
components of variation with 999 permutations.
Principal components analysis (PCA) was con-
ducted with SNPRelate. Heterozygosity values
(observed, Ho, and expected, He) for each locality
were calculated with SambaR and Poppr. Discrim-
inant analysis of principal components (DAPC;
Jombart et al. 2010) was conducted in adegenet,
choosing “k,” or the number of ancestral genomic
population clusters, using the Bayesian Informa-
tion Criterion to select among different k-values.
The cross-validation method in adegenet was used
to choose the optimal number of principal
components in the analysis.

An additional population structure analysis was
conducted with ParallelStructure (Besnier and
Glover 2013) via the CIPRES web portal (Miller
et al. 2010), for k = 1-8, under a correlated allele
frequency model with 100,000 burn-in steps and
100,000 recorded steps for each of 10 replicates
per k-value. Results were evaluated with the
Evanno et al. (2005) “delta-k” method to select
the optimal k-value, or number of ancestral
population clusters. All results were evaluated
with StructureHarvester (Earl and von Holdt
2012), and ancestry plots generated with Clumpak
(Kopelman et al. 2015). A multilocus genotype
network was also constructed with adegenet.
Finally, a dendrogram based on Nei’s genetic
distance was created, grouping by locality, with the
“aboot” function in Poppr, with 1,000 bootstrap
pseudoreplicates. All plots were created with the
ggplot2 v.3.4.1 (Wickham 2016), ggpubR v.0.6.0
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(Kassambara et al. 2020), and pheatmap v.1.0.12
(Kolde 2023) packages for R.

Results. Invasion History. Plotting of historical
herbarium records over six time slices revealed a
rapid colonization of Lonicera japonica across the
eastern USA (Fig. 1; Supplemental Material, File
S3). By 1880, this species was present around New
York City, in upstate New York, and in northern
Virginia and Maryland. By 1910 it had spread to
Pennsylvania, the Carolinas, Florida, Georgia,
Arkansas, Missouri, Texas, and as far west as
California (a single record, near Lake Tahoe on the
Nevada border). By 1940 the spread continued in
the northeastern USA, southeastern USA, mid-
western USA, and within California. By 1970 it
had spread northward into New England and the
northern Midwest, and into southern California,
Arizona, and New Mexico. By 2000 it had invaded
nearly all of the eastern USA except Maine, most
of California, and it had spread into Colorado,
Oregon, and Idaho by 2020.

Genetic Diversity. After filtering and linkage
disequilibrium thinning, 1,571 codominant SNP
markers remained across 166 individuals, with
43.37% missing data (Supplemental Material, File
S4). Both observed and expected heterozygosity (Ho
and He, respectively) were low across all sampling
localities, with amean Ho=0.0319 and He=0.1204.
Mean inbreeding was relatively high (overall Fis =
0.7347). Ho ranged from 0.1-0.15, while He ranged
from 0.2-0.45, and Ho was lower than He at all
sampling localities (Fig. 2). Ho and He were highest
at the Morgantown, Monongalia, WV and Preston,
WYV localities, and lowest at the Life Sciences
Building and Decker’s Creek sites (Monongalia,
WV) localities; these four localities are all within a
20 km radius. Analysis of linkage disequilibrium
after clone correction revealed significant values of
la and r-barD at six localities (Table 1): Arboretum
(Monongalia, WV), Jackson (WV), Lawrence (PA),
Morgantown (Monongalia, WV), Preston (WV), and
Star City (Monongalia, WV; Table 1).

PopPULATION STRUCTURE. Analysis of molecular
variance revealed a lack of overall population
structure, with percentages of variation between
localities = 0.38%, among individuals within
localities = 0.31%, and within individuals =
99.3%, though none of the components of
variation was significant. Principal components
analysis of SNP data revealed an overall lack of
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Fic. 1. Maps of six time slices showing the invasion history of Lonicera japonica in the USA based on
herbarium records. An animated version can be found at <https://github.com/barrettlab/2021-Genomics-
bootcamp/wiki/2022-Biol-320-Lonicera-japonica-invasion-history-animation>.
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Fic. 2. Estimates of observed (Ho, blue) and expected heterozygosity (He, orange) among sampling
localities.
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Population structure of Lonicera japonica across the eastern USA based on single nucleotide polymorphism (SNP) data. A. Principal components analysis

(PCA) of 1,571 linkage disequilibrium-thinned SNPs, showing PCA axes 1 and 2, and B. Axes 3 and 4. C. Pairwise Fist estimates among sampling localities.

Fic. 3.

[VoL. 150

clustering among sampling localities (Fig. 3A, B).
Mean differentiation across localities was relative-
ly low (overall Fist = 0.0347), and most pairwise
comparisons of Fst between sampling localities
ranged from 0-0.09, suggesting an overall lack of
differentiation among populations (Fig. 3C). Dis-
criminant analysis of principal components re-
vealed an optimal number of five genomic clusters
(k = 5, optimal principal components retained =
80, discriminant functions retained = 3, BIC score
= 624.98; Fig. 4A-C). Discriminant Axis 1
differentiated Cluster 5 from the remaining
Clusters (Fig. 3A, B), and to a lesser extent
differentiated Clusters 2 and 3. Discriminant Axis
2 further differentiated Cluster 2, 3, and 5, while
Discriminant Axis 3 differentiated Clusters 1 and 4
(Fig. 3C). Plotting of ancestry coefficients from the
DAPC revealed an overall pattern of population
admixture, with all localities except for Fayette, PA
composed of > 2 genomic clusters (Fig. 3D).
Samples from the Arboretum locality (Monongalia
County, WV) were represented by all five clusters,
whereas representatives of four clusters were
observed in Morgantown (Monongalia, WV),
Cheat Lake (Monongalia, WV), Shelby (TN),
Little Falls (Monongalia, WV), Star City (Mono-
ngalia, WV), and Uffington (Monongalia, WV); it
should be noted that samples sizes varied widely
from each locality. Genomic Cluster 5 was only
represented by a few individuals from the
Arboretum locality and was not sampled elsewhere
in this study. By contrast, analysis with Parallel-
Structure identified the optimal k-value to be 3
(delta-k = 3.529, log-likelihood = 28442.18,
standard deviation = 40.61), followed by k = 5
(delta-k = 1.155, log-likelihood = 27826.53,
standard deviation = 643.8; Supplemental Materi-
al, File S3). The overall results were similar to
those from the DAPC, with little evidence for
population structure.

Network analysis of multilocus genotypes
reveal a similar overall pattern to the DAPC,
showing at least five genotype clusters, with no
clear pattern of geographic structuring among them
(Fig. 3E). Hierarchical clustering of Nei’s genetic
distance among localities further supports an
overall lack of population structure (Fig. 3F). Of
all sampling localities, the Arboretum and Morgan-
town (Monongalia, WV) were most similar,
followed by Preston (WV), Cheat Lake (Mono-
ngalia, WV), Decker’s Creek (Monongalia, WV),
and Jackson (WV). A second cluster comprised
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three localities from Pennsylvania (Allegheny,
Lawrence, and Fayette), Shelby (TN), and two
localities from Monongalia, WV (Uffington and
Life Sciences Building). The most divergent to all
other localities was Oktibbeha (MS).

Discussion. We conducted an analysis of
invasion history, genetic variation, and population
structure for one of the most problematic, weedy
vines in eastern North America, Lonicera japonica.
We reconstructed the invasion history of this
species in the USA using digitized herbarium
records and showed the rapid spread across the
USA in the early 1900s, including both regional
spread and long-distance dispersal to the western
USA. We applied a cost-effective method for SNP
genotyping (MIG-seq), leveraging a recently pub-
lished chromosome-level genome sequence to
quantify patterns of genomic variation. Our anal-
yses revealed an overall lack of population structure
and high inbreeding across the eastern USA,
corroborating earlier studies based on allozymes,
and in line with a species that was deliberately and
ubiquitously introduced for erosion control and as
an ornamental. Lastly, we discuss how we used
plant invasion genomics as an accessible tool for
integrating research and undergraduate education.

InvasioN History of L. Jaronica IN THE USA.
Lonicera japonica is thought to have been first
introduced to the northeastern USA in 1862 (as the
cultivar “Hall’s honeysuckle,” L. japonica var.
halliana), but had likely arrived in the USA
previously, as the earliest herbarium record of this
species is from Kentucky in 1846 (Pelczar 1995,
Schierenbeck 2004). Other records indicate that
the species was present as far south as Virginia,
Georgia, and Florida by 1900 (Leatherman 1955,
Schierenbeck et al. 1995). Our analysis of
digitized herbarium records corroborates these
observations: by 1910, L. japonica was already
widespread across the Northeast and Mid-Atlantic
states, and had been collected in Georgia, Florida,
the Carolinas, Missouri, Arkansas, and Texas, with
a single record in California (Fig. 1). By 1970, it
had become established in nearly all USA states
east of the Mississippi River, and was widespread
throughout the eastern regions of Texas, Oklaho-
ma, and Kansas. By 2000 it was widespread
throughout nearly all of California at lower
elevations, in southern Arizona and New Mexico,
and in northeastern Colorado. Its continued
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expansion is evidenced by more recent collections
in Oregon, Utah, and Idaho as of 2020.

Environmental constraints on the continued
expansion of this species are believed to largely
consist of soil characteristics (preferring well-
drained, acidic soils), minimum winter tempera-
tures (ice/frost damage), drought, and soil temper-
atures required for seed stratification (Leatherman
1955, Schierenbeck 2004). Interestingly, the earli-
est collections in the northeastern USA appeared
close to the northern edge of the distribution in
North America, although the species is now present
in southern Maine, northern New York State,
southern Ontario (Canada), northern Wisconsin,
Michigan’s Upper Peninsula, and northwestern
Washington state (EDDMapS 2023). Continued
northern and western expansion may be driven in
part by milder winters and changing precipitation
patterns due to climate change, but there is also
evidence of adaptive evolution to withstand more
extreme cold (Evans et al. 2013, Kilkenny and
Galloway 2016). In common garden experiments,
plants from the northern and western invasion
fronts were less susceptible to cold than were plants
from older, more established “core” regions of the
invasive range in the USA, suggesting post-
establishment selection for cold tolerance along
the invasion front (Kilkenny and Galloway 2016).
In the eastern USA, L. japonica is predominantly
found at lower elevations, but a similar adaptive
scenario may be relevant to expansion in higher
elevations (e.g., in Appalachia) as is the case for
northward expansions (Strasbaugh and Core 1977,
Hardt 1986, Pelczar 1995).

GENETIC DIVERSITY AND POPULATION STRUCTURE
of L. yaponica IN THE USA. Analysis of 1,571
filtered SNPs and sampling of 166 individuals
from 16 localities across the eastern USA for L.
Japonica revealed low overall genetic diversity and
a general lack of population structure. Our overall
estimate of population subdivision (Fst = 0.0347)
was similar to that of Schierenbeck et al. (1995),
who estimated Gst = 0.092 for localities sampled
across eastern Georgia and western South Carolina
based on allozyme data. Similarly, we found
relatively high estimates of inbreeding coefficients
(Fis overall =0.7437), whereas Schierenbeck et al.
(1995) calculated Fis = 0.118 based on allozyme
data. While these estimates are notably different,
they both indicate some level of apparent inbreed-
ing within populations, possibly driven in part by
clonal propagation of this vining species, but also
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possibly driven by short dispersal distances for
pollen (i.e., within patches). Possible explanations
for these different Fis estimates may lie in
differences in resolution between SNP and allo-
zyme markers, our expanded sampling of popula-
tions across a broader geographic scale, temporal
factors associated with ongoing neutral or adaptive
evolution in this species (i.e., sampling in the
1990s vs. 2020s), or some form of bias in either
SNP-based or allozyme-based estimates. While we
found no evidence for 100% identical clones at any
of the sampling sites (Fig. 1E), we did find
evidence of significant linkage disequilibrium at
several sites (Table 1, based on significant values
for Ia and r-barD after clone correction).

Our estimates of expected heterozygosity are
also similar to Schierenbeck et al. (1995), with
mean He = 0.1204 for SNP data vs. mean He =
0.189 for allozyme data, suggesting low overall
levels of genetic diversity. Other representations of
population structure further demonstrate a lack of
distinctness among localities across the broader
eastern-USA invasive range for this species (PCA,
DAPC, STRUCTURE, multilocus genotype net-
work analysis, hierarchical cluster analysis; Fig. 4).
There is no discernable pattern of geographic
differentiation evident from our analyses, suggest-
ing a highly admixed gene pool for this species in
North America. It must be noted that our main
sampling focus was in northern West Virginia
(mid-latitude), and thus our interpretation of
overall patterns of variation may have been
influenced by this. However, this does not appear
to be the case, as sampling localities in WV are
virtually indistinguishable from those more broad-
ly sampled in the eastern USA (Fig. 4 D-F).

Many factors may have contributed to the
patterns observed in this and earlier studies of
genetic variation in L. japonica. First, this is an
obligately outcrossing, perennial species, pollinat-
ed by a variety of animals including birds and both
diurnal and nocturnal insects (Leatherman 1955,
Miyake and Yahara 1998). Further, seeds are
dispersed locally or perhaps more broadly by
mammals and birds (e.g., White and Styles 1992).
Both the pollination and seed dispersal syndromes
of this species would be expected to lead to
frequent local or regional dispersal, effectively
facilitating admixture (e.g., Barriball et al. 2015).
More importantly, however, is the way in which L.
Jjaponica was likely spread across the USA, both
historically and contemporarily. Repeated anthro-
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pogenic dispersal by deliberate planting for erosion
control and ornamental purposes, followed by
local escapes from cultivation and subsequent
spread may be a stronger factor in determining
the current distribution of genetic variation in this
species than wildlife-mediated dispersal (e.g.,
Brusa and Holzapfel 2018, Alvarado-Serrano et
al. 2019). Thus, it is not surprising that L. japonica
would exhibit low levels of population structure in
the eastern USA, especially given its long history
as an invasive species in the USA and the fact that
it is still sold in garden stores (Schierenbeck 2004;
C. Barrett personal observation). By comparison,
the few studies on population genetics of L.
japonica in the native range suggest relatively
higher levels of population structure (e.g., Fu et al.
2013, He, Zhang et al. 2017, He, Qian et al. 2017),
but these studies likely included multiple, possibly
divergent varieties that may not be represented in
the USA. Certainly, future research on population
genomics of L. japonica should seek to sample
representatives across the entire spectrum of
variation in the native and invasive ranges (the
former including representatives of all known
varieties, and the latter on multiple continents),
to compare patterns of genetic variability and trace
the origins of invasive populations.

Traditional theory of invasion genetics centered
around the expectation of single introductions,
drastic genetic bottlenecks upon establishment
representing a fraction of the diversity from the
native range, and subsequent spread (e.g., see
Barrett and Husband 1990, Novak and Mack 2005,
Dlugosch and Parker 2008, Barrett 2015). Yet, as
genomic methods enable a rapid increase in
invasion studies, the patterns emerging are not so
simple, and the aforementioned scenario seems to
be the exception rather than the rule (e.g., Sakai et
al. 2001, Lee 2002, Frankham 2005, Dlugosch and
Parker 2008, Sutherland et al. 2021). For example,
several studies have concluded that invasions are
often repeated events, with multiple introductions,
subsequent establishments, spread from points of
introduction, secondary contact, and possibly
hybridization with native or other invasive species
(Ellstrand and Schierenbeck 2000, Blair and
Hufbauer 2010). Admixture after multiple inva-
sions may provide genetic variation for rapid
adaptation to conditions in the invasive range,
bringing together novel allelic combinations that
otherwise would have remained geographically
isolated in the native range (Dlugosch et al. 2015).
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Because we were unable to include sampling from
the native range, it is currently not possible to
assess whether multiple introductions from differ-
ent source populations have occurred for L.
Jjaponica in North America. The overall pattern
of admixture and lack of population structure
observed, which was likely facilitated and exacer-
bated by deliberate, human-aided dispersal over
two centuries (Figs. 3, 4), may be compatible with
one or multiple introductions. The low overall
genetic diversity of L. japonica in the current study
(USA only) may indicate an initial introduction
from a single source (possibly “Hall’s honeysuck-
le”) and subsequent, rapid dispersal. Or, if
dispersal and gene flow were and continue to be
frequent enough, it is possible that the signal of
distinct introductions from genetically distinct
source populations has essentially been homoge-
nized. Regardless, sampling from across the native
range will be critical in future investigations.
Lonicera japonica represents an apt case study
in global patterns of rapid evolution, as it is
invasive on all continents aside from Antarctica
(Schierenbeck 2004). Spatiotemporal comparisons
of patterns of invasion history and genomic
variation (e.g., using material sampled from
herbarium specimens) will be extremely powerful
in elucidating the environmental and genomic
factors associated with rapid, post-invasion evolu-
tion (e.g., Kreiner et al. 2022). Future studies
should emphasize collecting densely sampled SNP
data from populations in the native and invasive
ranges (on a global scale) to identify: 1) funda-
mental differences in population structure and
genetic diversity in the native vs. invasive ranges,
2) spatiotemporal patterns of variation linked to
invasion routes and invasion history, and 3)
evidence for adaptive variation linked to climate,
soils, pathogens (or a lack thereof), and other
environmental factors post-invasion.
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