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ABSTRACT
Bottom-up coarse-grained (CG) molecular dynamics models are parameterized using complex effective Hamiltonians. These models are
typically optimized to approximate high dimensional data from atomistic simulations. However, human validation of these models is often
limited to low dimensional statistics that do not necessarily differentiate between the CG model and said atomistic simulations. We propose
that classification can be used to variationally estimate high dimensional error and that explainable machine learning can help convey this
information to scientists. This approach is demonstrated using Shapley additive explanations and two CG protein models. This framework
may also be valuable for ascertaining whether allosteric effects at the atomistic level are accurately propagated to a CG model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146812

I. INTRODUCTION

Atomistic molecular dynamics (MD) has provided scientific
insight intomany problems.1–5 Despite improvements in computing
hardware, however, atomistic MD is still computationally limited
in terms of the time- and space-scales it can access. These limita-
tions have motivated the development of coarse-grained (CG) MD
models that simulate a chemical system at a minimal resolution,
aiming to reduce computational costs while maintaining quanti-
tative accuracy.6–16 The properties of these CG MD models are
typically controlled via an effective Hamiltonian. For example, a CG
MD model could simulate a solvated protein by propagating only
the center of mass of each amino acid; the equilibrium distribution
would then be controlled by a Hamiltonian defined at the resolu-
tion of these centers of mass. The behavior of these models can be
divided into dynamic and thermodynamic properties. Thermody-
namics here refers to long-time behavior related to the equilibrium
distribution of the model and includes both issues related to esti-
mating thermodynamic quantities, such as pressure, and averages
of functions of microstates.16,17 While accurately reproducing the

dynamics of a reference system is an area of current interest,18
the remainder of this article focuses on thermodynamic issues, and
more specifically, the configurational distribution produced by a
CG model. We limit our discussion to systems in the canonical
ensemble and focus on the configurational portion of this effective
Hamiltonian (which we term the CG force-field).

There are many ways to create the force-field that characterizes
a CG model.6–17 These various approaches often result in differ-
ent equilibrium configurational distributions. Top-down force-field
parameterization methods typically aim to reproduce observables
that are coarser than the effective Hamiltonian, such as partition
coefficients or interfacial tension. These low dimensional observ-
ables are obtainable from either experiment or reference all-atom
MD simulation. In contrast, bottom-up methods tend to require
molecular trajectories from a reference atomistic simulation, which
are mapped to the resolution of the CG model and used as a high
dimensional target for parameterization.16,19,20 The variety of pos-
sible parameterization techniques makes it valuable to characterize
how a proposed CG force-field approximates a reference atom-
istic simulation. While comparing the distribution of chosen low
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dimensional observables is straightforward, it is also desirable to
perform this comparison at the resolution of the CG model itself
(i.e., at the resolution of its configurational phase space), as said low
dimensional observables may not fully describe how the CG model
configurationally differs from the given reference data.

However, while a CG model is intrinsically coarser than the
atomistic model it represents, it is still often highly dimensional.
For example, the CG molecules in this paper are relatively small but
easily reach 36 configurational dimensions, which is well beyond
what generic data visualizations (e.g., scatter plots or histograms)
can communicate to humans. These models are often still amenable
to visualization as groups of particles in three dimensional space21
as the systems preferentially occupy a small portion of the possi-
ble phase space (for example, a protein does not dissociate into its
constituent atoms during simulation—its behavior is dictated by its
primary and higher order structures). However, while visual inspec-
tion can detect some differences between two simulations, it can
be difficult to discern local but important discrepancies that may
not be salient (e.g., bond lengths or tetrahedral order parameters).
Alternatively, established dimensional reduction techniques14,15,22

can be used to individually summarize the emergent behavior
present in the model and reference data; unfortunately, these
approaches are not typically optimized to isolate differences between
two datasets and may similarly miss discrepancies present in the
CG model.

Discerning the error present in a CG simulation has clear
connections to the parameterization of a CG force-field, as this pro-
cedure is typically designed to optimize a chosen measure of error.
In the case of top-down parameterization, optimization involves
low dimensional statistics that are readily interpretable by com-
putational scientists; however, these observables are coarser than
the resolution of the effective Hamiltonian. In the case of bottom-
up parameterization, while the considered resolution is ideal, said
optimization uses specific (and often opaque) computational algo-
rithms to optimize the Hamiltonian such that its high dimensional
configurational statistics approximate those of the reference model.
Collectively, these existing approaches do not make it straightfor-
ward to understand how the full high dimensional configurational
behavior produced by a CG force-field deviates from an atomistic
reference, even when appropriate validation data are available.

This article will provide a way to compare two equilibrium
samples from differing high dimensional free energy surfaces. The
analysis presented here does not specify a particular process to be
used to generate these samples. However, the examples we will study
have been created using bottom-up coarse-graining techniques and
we will borrow terminology from the bottom-up coarse-graining
literature to express our ideas: for example, we will refer to the func-
tion that maps each atomistic configuration to its CG counterpart as
the CG map, and we will refer to the ideal effective force-field per-
fectly reproducing the mapped configurational atomistic statistics
as the many-body potential of mean force (many-body-PMF). Fur-
thermore, as the techniques we describe provide a way to compare
two samples from differing high dimensional free energy surfaces,
these approaches are especially pertinent to bottom-up strategies
as a mapped atomistic reference sample is already required for
parameterization.

As noted previously, the high dimensional nature of the data
produced by CG models makes it difficult to directly analyze and

validate their full configurational behavior. However, when parame-
terizing atomistic force-fields using quantum mechanical reference
data, computational scientists can often compare the individual
energies or forces produced by the reference method to those
produced by the proposed atomistic force-field and use this per-
configuration error (or per-atom decompositions of this error) to
identify problematic areas of phase space (e.g., Bartok et al.23). This
is difficult to do with CG force-fields as the corresponding reference
data typically do not have energies or forces: a point-wise evaluation
of the many-body-PMF is often not available, and only a noisy esti-
matemay be present24 for its gradient.25 An attractive workaround is
to train two CG force-fields, one of which has more complex many-
body interactions. Treating the higher-order potential as if it were
the true many-body-PMF allows one to estimate the conditional free
energy and force errors present in the less complex force-field. How-
ever, this approach requires multiple CG force-fields to be created
and exceedingly high-order interactions to be considered.

In lieu of training multiple CG force-fields, the error analysis
proposed in this article uses classification to determine which por-
tions of a CG model trajectory and reference atomistic trajectory
differ from each other. The algorithm is trained to predict whether
an arbitrary CG configuration is more typical of the model or refer-
ence configurational distribution. As shown in the supplementary
material, classification performed in this manner can be mathe-
matically understood as a two-ensemble variational statement that
estimates the offset arithmetic difference between the studied CG
force-field and the many-body PMF. This information allows anal-
yses that would typically be reserved for atomistic force-fields to
be performed on their CG counterparts. The proposed approach
requires both a reference trajectory and a trajectory generated using
the CG force-field. No secondary higher-order CG force-field is
trained to obtain this estimate of error. For the systems considered in
this article, incorporating high-order interactions is straightforward
in the proposed classification-based approach.

While this classification-based analysis alone allows a com-
putational scientist to systematically and variationally characterize
problematic configurations based on force-field error, the second
contribution of this work is the realization that this classifier-based
approach, when combined with methods from explainable machine
learning/artificial intelligence (ML/AI) (collectively referred to as
XAI in this article), allows one to convey force-field errors in an
alternative manner. XAI is a subfield of AI under active devel-
opment (for an overview of the corresponding definitions, see
Refs. 26–31). The issue of algorithmic transparency is not new (see,
e.g., Refs. 32 and 33); however, as computational decisions become
more common in everyday life, an increasing amount of scrutiny has
been placed on providing justifications for the output of automated
systems.34,35 This is required for a variety of reasons, including
regulatory compliance, ethical analysis, debugging, or further com-
prehension of the data used to train the algorithm. For the purposes
of this article, we divide the algorithms in this field into two cate-
gories: transparent (or interpretable) models and those with post hoc
explanations. Transparent models are algorithms that, once trained,
can be intrinsically understood by a particular audience; examples
include shallow decision trees or rule lists. Methods of this type are
generally simpler than more opaque algorithms such as deep neu-
ral networks. Post hoc explanations, on the other hand, are methods
that digest and summarize information from an already optimized
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FIG. 1. The proposed analysis process. Configurations are generated for the
model and reference systems and compared via classification. This produces an
estimate of the microscopic error (∆U) and interpretations of the features causing
said error [Shapley additive explanations (SHAP) values].

external algorithm. While transparent models are intrinsically inter-
pretable, explainable models are those which have additional post
hoc explanation methods to provide reduced representations of the
knowledge present in the trained model.

Using XAI to extract knowledge present in a classifier trained
to estimate force-field error provides an explanation of the errors
present in the original force-field. The nature of the insight provided
depends on the particular methods from XAI we adopt. To illus-
trate this concept, we take a particular modern post hoc explanation
technique, Shapley additive explanations (SHAP values),36–38 and
demonstrate how they can isolate which physical aspects of two CG
peptides or proteins (dodecaalanine and actin monomer) are prob-
lematic for specific CG force-fields. The goal of this paper is not to
model these two proteins accurately; instead, it is to show that non-
ideal force-fields can be detected and characterized. The behavior of
the produced SHAP values is analyzed as a function of pairwise dis-
tances and collective variables derived using nonlinear dimensional
reduction. These insights are shown to be useful when considering
the behavior of CG force-fields and provide a conceptual basis for
future bottom-up error analysis through classification. A diagram
outlining this analysis is shown in Fig. 1: Configurations are gener-
ated for a model and compared to those from a reference dataset via
classification to obtain an estimate of the microscopic error (referred
to as ∆U) and a characterization of observed differences.

The remainder of this article proceeds as follows: Sec. II dis-
cusses the theory behind the classification-based approach, includ-
ing the method selected for producing explanations; Sec. III dis-
cusses the concrete methodological details of the classification and
related CG models; Sec. IV summarizes the results of applying the
proposed method; and Sec. V discusses the future applications and
consequences.

II. THEORY
The techniques presented in this article compare two high

dimensional free energy surfaces, which we refer to as UPMF(x) and
UFF(x), where x represents a sample on the free energy surface. Via
the canonical ensemble, these free energy surfaces define probability
densities as

pPMF(x) = Z−1PMFe
−βUPMF(x) (1)

and

pFF(x) = Z−1FF e−βUFF(x) (2)

with ZPMF and ZFF defined as the integral of e−βUPMF and e−βUFF over
all possible x, and β defined as the inverse temperature scaled by
the Boltzmann constant. These free energy surfaces could be defined
by any collective variables. However, in the analysis that follows, we
will assume that x is the configurational variable that comprises the
domain of the CG force-field (typically the CG Cartesian coordi-
nates); in this case, UFF refers to the configurational CG force-field
and UPMF refers to the many-body-PMF. The remainder of this
section provides an intuitive explanation of how classification relates
to estimating the difference in conditional free energies; a pre-
cise mathematical connection may be found in the supplementary
material.

Classification is the machine learning task of predicting the
most probable class, or label, associated with a data point.33 For
example, one might want to predict the particular number present in
a picture of a handwritten digit. Algorithms in supervised classifica-
tion are trained to complete this task by studying an already labeled
dataset: in this example, said data would be a set of pictures that have
had the correct number already associated with each picture. In cer-
tain learning contexts, various samples may not have a clear correct
class. For example, certain handwritten digits may be so messy that
only the original writer knows the digit truly intended. In order to
naturally adapt to ambiguous samples, classifiers can be designed to
output a guess of the probability of each possible class.39–45 Focusing
on the case where we only have two possible classes to predict (for
example, if we were only considering pictures of 4 or 5), this prob-
abilistic estimate can be quantified by a single real number for each
sample between 0 and 1.

This probabilistic approach can be used to describe the dis-
tributions typical to such a classification task. Again, focusing on
classifying a picture as containing a 4 or 5, we first define the dis-
tribution of all possible pictures we could consider (i.e., containing
4 or 5); this characterizes the fact that certain images (such as one
comprised of random pixels) are not typical of pictures of 4 nor 5.
We refer to this overall probability density as M(x). Then, for each
possible picture, we refer to the conditional probability that a spe-
cific picture contains a 4 as η(x); the probability of 5 is then 1−η(x).
Together, M(x) and η(x) define a joint probability density over pic-
tures and possible classes. A classifier that is directed to produce
probabilities attempts to estimate η on samples produced fromM.

This probabilistic description can be reframed by considering
the pictures that are characteristic of each class individually. This
would involve first considering the probability distribution of pic-
tures that have a ground truth of containing 4 and then those with
a ground truth of 5. The ambiguous pictures above will be then
described as areas in which these two distributions (termed the class
conditional distributions) overlap. When combined with the overall
balance between the classes, the class conditional description in this
paragraph and the example-conditional viewpoint in the previous
paragraph are equivalent specifications of a classification problem.
The classification problems constructed in this paper have equal
overall populations of each label by design, and our expressions
make this assumption throughout the article.
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Classification is used in this work by setting these class con-
ditional distributions to pFF and pPMF (see the supplementary
material). Using the connections between the two views of classi-
fication, η then takes the following form:

η(x) = pPMF(x)
pPMF(x) + pFF(x)

. (3)

A calibrated classifier can be used to approximate η using only
samples from each free energy surface. Critically, this formulation
implies that it is not necessary to know the values of UFF or UPMF
evaluated on samples in order to estimate η on each sample. This
approach is implemented by the following algorithm:

1. Generate N samples from UPMF
2. Generate N samples from UFF
3. Label all samples from UPMF with “A”
4. Label all samples from UFF with “B”
5. Train a calibrated classifier to predict “A” or “B” for each

sample via η

η, when combined with β, can be transformed into an offset point-
wise difference between UFF and UPMF, which we refer to as
∆U,

∆U(x) := kbT log
η(x)

1 − η(x) = UFF(x) −UPMF(x) + kbT log
ZFF

ZPMF
.

(4)
When UFF corresponds to the configurational distribution of

a CG simulation and UPMF corresponds to the many-body-PMF,
we typically can evaluate UFF on an arbitrary configuration but are
unable to evaluate UPMF. Additively combining ∆U and UFF pro-
vides an estimate ofUPMF that would be exact with a perfect classifier
and learning procedure. In practice, limited data and imperfect clas-
sification algorithms make this estimate only approximately correct.
Using ∆U to form an additive update to UFF has been performed in
the past.46,47 This estimation duality, combined with the realization
that classification is a variational process with respect to the pro-
posed hypothesis, establishes that classification can here be viewed as
a variational technique to estimate the many-body-PMF using UFF
as a reference (see supplementary material). Note that∆U is defined
here such that there is no unknown global offset.

As∆U precisely characterizes the pointwise difference between
two free energy surfaces, evaluating it at a particular configuration
quantifies the difference in the conditional free energies at that point.
This property makes ∆U a useful descriptor of the “microscopic”
error present in a model. Areas of high∆U imply that one ensemble
has considerably more population in said area than the other ensem-
ble, while a largely negative ∆U implies the opposite. Equivalently,
when used as a structural collective variable (CV), ∆U describes
which configurations occupy areas of high distributional overlap and
which are specific to either free energy surface. In the context of UFF
approximating UPMF, linking ∆U to other intuitive structural vari-
ables can characterize what errors a CG model is committing. For
example, if ∆U is negative whenever a particular bond distance is
small, this implies that the CG model (UFF) is over-stabilizing small
bond distances. The advantage relative to direct visualization of con-
figurational statistics from either ensemble is that configurations
occupying areas of high distributional overlap may be discarded

prior to analysis. This approach, however, is still relatively tedious: it
again requires human analysis of the resulting configurations, incur-
ring all of the difficulties discussed in the introduction. Furthermore,
as demonstrated in later sections, ∆U may not correlate with any
intuitive physical feature of the system under study. An appealing
alternative is to understand the algorithmic form of ∆U itself: for
example, if it is a linear function, its learned coefficients may offer
insight. However, if UFF is composed of low order n-body terms
while UPMF contains higher-order terms, ∆U will contain higher-
order terms as well, and it may be difficult for interpretable models
to provide a good estimate of ∆U. In this article, we use techniques
from XAI to overcome this difficulty and extract configurational
information from a complex estimate of ∆U.

It is important to note that the classification performed pro-
vides a variational estimate to ∆U and not ∆U itself. The quality
of this approximation is a function of the algorithm used and the
amount of data available; if the approximation is poor, the provided
estimate of ∆U may be heavily biased. We note that the classi-
fiers used in the current context regularly achieve test accuracies of
80%–95%, suggesting they are able to discern clear patterns in the
provided data. Nevertheless, it is currently difficult to assess this pos-
sible discrepancy. We hope the preliminary success shown in this
manuscript motivates studies targeted at quantifying this source of
error.

A. Feature attribution
XAI includes a large variety of methods. This article will

focus on the use of a single method from this field: SHAP values.
SHAP values are a feature attribution method26,32,33 with a strong
mathematical underpinning. Feature attributionmethods, or feature
importance measures, provide a quantification of how informative a
feature, or particular input variable, is to an algorithm. Some feature
attribution methods are global, meaning that stated feature values
are related to the aggregate behavior of the classifier over the entire
dataset. Other feature attribution methods, such as SHAP values, are
local: every prediction made by a classifier can be associated with a
particular set of SHAP values. When estimating∆U, this means that
a prediction of a large positive or negative ∆U can be analyzed to
determine which features lead the classifier to that conclusion.

The classification examples in this article quantify the error
present in various CG models of proteins. The classification algo-
rithm is trained on the ordered distance matrix derived from each
configuration. As a result, applying a feature attribution method to
explain ∆U isolates which pairwise distances are most connected to
the estimated error and in doing so clarifies which configurational
aspects of the protein are not reproduced by the CG model.

B. Shapley and SHAP values
SHAP values are based on Shapley values26,48 from cooperative

game theory. We first explain Shapley values and how they relate to
classification and then provide a description of SHAP values.

1. Shapley values
Shapley values are a method to fairly distribute a reward among

a group of individuals. Suppose a group of five scientists decides to
create a product to bring to market. These five people have joined
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together because their individual knowledge, when combined, pro-
duces a better product than they could individually. However, sup-
pose one of the five people has knowledge that is vital to the product:
if they were not present, the total amount of profit would be greatly
diminished. In contrast, the expertise of the remaining four peo-
ple is largely, but not completely, shared. As a result, losing one of
those four people would reduce the possible profit but would not
do so substantially. In this situation, how should the profit be fairly
divided among the scientists? Allocation in these circumstances can
be addressed by Shapley values.

The central calculation needed to define Shapley values is the
ability to estimate the reward in the absence of some of the indi-
viduals in the group. Suppose the five people present are referred
to as A, B, C, D, and E. We then denote the reward when everyone
is present K({A,B,C,D,E}). In order to calculate Shapley values,
we must be able to calculate, as an example, K({A,B,D,E}): the
reward had individual C not been present. Shapley values then con-
sider growing the number of present individuals incrementally, such
as the (ordered) sequence K({B}), K({B,A}), K({B,A,D})..., and
associating the termwith individualDK({B,A,D})–K({B,A}): the
incremental increase that was seen when D was added in this partic-
ular sequence. The Shapley value averages over all such sequences
of adding people to a group. Mathematically, the Shapley value for
player i is defined as follows:

φi =
1
n!∑R

K(PR
i ∪ {i}) − K(PR

i ), (5)

where n is the number of individuals, R iterates over all possible
orders (not subsets) of players, and PR

i is the subset of individuals
that precedes player i in that particular R. It is important to note here
that this sum is over all possible orderings, as where K only depends
on the members present, not the order in which they were added.
This calculation must be performed for each individual (or player)
for whom we wish to calculate a Shapley value.

Shapley values satisfy a number of intuitive mathematical
properties36,48,49 and in some cases are the only allocation method
that does so. The most important property of the current application
is that summing together the Shapley values for all players provides
the original reward when the entire group is present.

2. SHAP values
The connection between Shapley values and feature attribution

is made by considering every individual prediction made by a clas-
sifier in a game in which each feature is a player. The output of the
game, in analogy with the total profit in Subsection II B 1, is the
numerical prediction of the classifier. However, one important detail
is absent when considering feature attribution: what does it mean for
a feature to bemissing? It is possible in some cases to retrain a model
with only a subset of the original features;50 however, the num-
ber of models required quickly becomes infeasible. Instead, Shapley
Additive Explanation (SHAP) values train a single model and aver-
age the full model’s predictions over missing variables to represent
missing features.36 For example, consider the hypothetical classifier
f (w, x, y, z) with four input variables. Suppose we wished to calcu-
late the SHAP value ofw for configuration (w0, x0, y0, z0): this would
include calculating fwz(x0,y0) where w and z are “missing.” SHAP
values dictate that fwz(x0,y0) := ∫ f (w, x0,y0, z)p(w, z∣x0,y0)dwdz,

where p(w, z∣x0,y0) is the distribution of w and z conditioned on
x = x0 and y = y0. Some implementations of SHAP values, instead,
use the marginal expectation value, some label the choice of the
marginal expectation as an approximation, and some argue that
the marginal value is the correct one to use from an interventional
perspective.36,50,51 The implementation and physical interpretation
presented in this paper use the conditional expectation value. With
this definition of “missing values,” Shapley values are applied as
before to give SHAP values for each feature. The efficient algorith-
mic calculation of these values for arbitrary classification techniques
is far from trivial but is possible for tree ensembles such as those used
in this article.38

Despite the abstract description above, SHAP values can be
physically interpretable in the current study. All the examples in this
paper perform classification using distance matrices as input. The
signal additively explained by the given SHAP values corresponds to
∆U. The individual terms in Eq. (5) can be understood as follows:
C(PR

i ∪ {i}) corresponds to the mean ∆U found when holding the
distances specified by PR

i ∪ {i} constant and letting the remainder of
the protein freely explore the canonical ensemble, and C(PR

i ) is the
same but letting distance i also freely explore (SHAP values include a
single global offset in their additive explanations; however, this dis-
tinction does not matter for applications presented in this article).
In this way, SHAP values isolate which parts of a specific protein
configuration contribute to its specified ∆U. The same idea can be
applied to a feature set of an arbitrary free energy surface: the sys-
tem is allowed to explore conditional to the given features under
investigation.

SHAP values provide a real number for each feature and con-
figuration considered. In this way, they can be considered a new set
of descriptors for each protein configuration. This set of descriptors
has equal dimensionality as the original dataset (the pairwise dis-
tances characterizing the protein configuration) and may seem to
provide little advantage relative to the original distances. However,
three properties of SHAP coordinates are more desirable than the
original distances:

1. SHAP values additively relate to ∆U.
2. SHAP coordinates are of the same scale for each configuration

and feature. As a result, the relative importance of an inter-
domain distance and an intra-domain distance can be directly
compared in SHAP space.

3. SHAP values individually reflect many-body correlations in
the original data. As a result, quickly inspecting the individ-
ual distributions of SHAP values can produce insight into
problematic aspects of UFF in the original coordinate system.

In order to summarize the types of error present in our CG molecu-
lar trajectories, we may additionally reduce the dimensionality of the
generated SHAP values to produce a lower dimensional set of CVs.
Collectively, these analyses may suggest the source of microscopic
errors in the CG model’s force-field.

It is important to note that SHAP values using conditional
expectations, such as those in this article, assign feature attributions
using both correlations present in the learning distribution (here,
the combined model and reference ensembles) and information in
∆U.50,51 For example, consider the more generic case of the func-
tion f (x, y) = 2x analyzed over a distribution of x and y where x and
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y are highly correlated. Conditional SHAP values will assign impor-
tance to both x and y. Informally, this is because because knowing
that y is large also implies that x is large due to the high level of cor-
relation: y contains information about x. As a result, it is difficult to
infer the structure of a hypothetical f using said SHAP values. Other
feature attribution methods based on Shapley values circumvent this
limitation at the cost of considering unrepresentative samples;50 we
leave investigating these alternative methods to a future study.

While this article uses tree ensembles for classification and
SHAP values for interpretation, it is important to note that the
concepts presented apply more broadly. Estimation of ∆U is appli-
cable to any classifier that uses a proper loss,40,42 ranging from other
generic classifiers such as neural networks or logistic regression to
variational approaches based on low-body-order expansions to ∆U.
Each of these different approaches in turn may have a different
degree of intrinsic interpretability and explanation methods avail-
able (whichmay not include SHAP values). The performance of each
classification approach, as well as the utility of the related explana-
tion techniques, represents a new direction for research analogous
to the design of force-field bases.

III. METHODS
The methods used in this article are implemented in a

publicly available Python module found at https://github.com/
alekepd/ClassE, including an interactive notebook52 and command
line executable. The classification was performed using the DART
(boosted decision trees with dropout53) algorithm in the Light Gra-
dient BoostingMachine (lightgbm54) library. Hyperparameters used
may be found in the supplementary material. Further analysis and
visualization used the theano,55 numpy,56 scikit-learn,57 umap,58,59

pandas,60 ggplot2,61 data.table,62 and pracma63 libraries. The dimen-
sional reduction was performed on SHAP values using principal
component analysis39 (PCA) combined with the Uniform Manifold
Approximation and Projection (UMAP) method;58,59 details may be
found in the supplementary material. This technique was selected
due to observed computational efficiency and separation of clus-
ters. Classifiers trained to distinguish the difference between model
and reference ensembles at a 12 site resolution regularly achieved
accuracies of above 95% for both actin and dodecaalanine; classifiers
trained at the four site resolution achieved accuracies of ∼80% (see
supplementary material).

Conclusions made through CVs (both∆U and those generated
via dimensional reduction) were stable to choices of hyperparame-
ters. Estimated pointwise free energy differences at the extremes of
∆U were found to be sensitive to choices of hyperparameters. This
is expected: large absolute differences in ∆U imply that a compari-
son is being made at a location with very low configurational density
in one ensemble; the precise level of population is difficult to accu-
rately estimate without using enhanced sampling. As a result, if one
wishes to make a quantitative comparison between models based
on the pointwise free energy differences in regions of poor over-
lap, it is likely that enhanced sampling methods must be used. In
order to avoid the effect of outlying values of∆U on reported aggre-
gate statistics, medians are used instead of means, and box plots
are shown without outliers; for visualization of such outliers, see
supplementary material.

A. Dodecaalanine
Dodecaalanine (DDA) is a short polypeptide that adopts a vari-

ety of conformations in solution: a hairpin like conformation, a
helical conformation, and an extended conformation (see, for exam-
ple, Rudzinski and Noid64). DDA was simulated at the solvated
atomistic resolution using Amber1865 and the Charmm36m66 force-
field. Samples were extracted every 50 ps from a 5.1 μs trajectory
propagated using a 2 fs timestep in the constant NVT ensemble at
303 K using a Langevin67 thermostat with a damping parameter of
0.5 ps. Additional details on atomistic simulations may be found
in the supplementary material. Radius of gyration and Q-helicity
were used to quantify the behavior of DDA; their formulation can
be found in Rudzinski and Noid.64 Q-helicity quantifies the similar-
ity of a given configuration to a helix: 0 corresponds to no helical
character, while 1 corresponds to a completely helical polypeptide.
Similar CVs are present in enhanced sampling studies, see Piana and
Laio68 and Prakash et al.69

DDA was modeled using five different CG force-fields at the
resolution of one CG site per amino acid (Fig. 2). Each force-field
was composed solely of pairwise spline interactions at the bonded
and nonbonded level and parameterized using relative entropy
minimization.20 Sites adjacent along the backbone were connected
via bonds; sites separated by a single site were connected via an
additional bond to emulate an angle potential. Within each type
of interaction (bonded, angle-bonded, and nonbonded), a unique
interaction type was defined for each possible pair of site types. Each
model discussed can be considered as extending the model before
it. The first model was composed of a single site type. The pairwise
nonbonded interactions were set to be constant, i.e., nonbonded
pairwise forces were uniformly zero. This resulted in two unique
pairwise interactions (one bonded and one angle bonded). The sec-
ond model was identical to the first model but included pairwise

FIG. 2. The map used to coarse-grain dodecaalanine in the current study. Each
amino acid was mapped to a single CG site via a center of mass mapping.
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nonbonded interactions. The third model included a single addi-
tional collective site type for the termini, resulting in two site types
total. The fourth extended the model by considering the site types at
each terminus to be distinct, resulting in three site types. The final
model was extended to five CG site types by providing additional
unique site types to each CG bead adjacent to a terminal bead. Addi-
tional details are found in the supplementary material. Only a subset
of these models is analyzed in certain sections for brevity.

B. Actin
Actin monomer (G-actin) was simulated at the solvated atom-

istic resolution using GROMACS 5.1.4.70 Equilibration details may
be found in Hocky et al.71 Production simulations were performed
for 1 μs using CHARMM27+CMAP72 in the constant NPT ensemble
at 310 K and 1 bar using the stochastic velocity rescaling thermo-
stat73 with a coupling parameter of 0.1 ps and a Parrinello–Rahman
barostat74 with a coupling parameter of 2 ps. Samples were col-
lected every 100 ps. The protein was observed to maintain its tertiary
structure throughout the simulation. Additional information on
atomistic simulations may be found in the supplementary material.

Actin wasmodeled at a 12 site and four site CG resolution using
the configurational map found in Saunders and Voth.75 Briefly, sites
indexed 1–4 represent actin’s four main subdomains, which are
approximately arranged at the four corners of a square; site 9 rep-
resents the nucleotide adenosine diphosphate (ADP) situated at the
center of these four subdomains, and site 5 represents the D-loop,

FIG. 3. The map used to coarse-grain actin in the current study. Each set of atoms
was mapped to a position via a center of mass mapping. CG models of actin were
simulated and modeled at both the resolution of all 12 sites presented and at the
resolution of sites 1–4.

a semistructured region connected to site 2. The map is character-
ized in Fig. 3 (adapted from Saunders and Voth75 with permission).
All CG models of actin are harmonic networks parameterized using
the heteroENM methodology described by Lyman et al.76 Two dif-
ferent elastic network models were created: one model at the full 12
site resolution and the other using only sites indexed 1 through 4. In
order to better understand themodel error, the samples produced by
the 12 site model were additionally mapped to the four site resolu-
tion for comparison to the four site model for specific analyses. Note
that the utilized elastic framework creates force-fields that preserve
tertiary structure by design.

IV. RESULTS
The ability to estimate microscopic error using classification

creates multiple avenues for the characterization of CG models. In
Subsection IV A, we compare the behavior of DDA and actin mod-
els to reference data using only the transformed output of a classifier
(∆U), demonstrating the general properties of classification-based
analysis. We then continue in Subsection IV B by discussing the
inherent difficulties in ∆U-based analysis and demonstrating how
SHAP values may be used to overcome these challenges.

A. ∆U -based analysis
Classification performed between a force-field and a reference

estimates the microscopic error present via ∆U. In contrast, tradi-
tional configurational validation of CG force-fields focuses on low
dimensional free energy surfaces defined on physically meaningful
collective variables. The overlap observed in these low dimensional
free energy surfaces may also be viewed as a quantification of error;
however, these two measures of error do not necessarily align.

To demonstrate these discrepancies, DDA, a polypeptide that
transiently forms a helix in solution, was modeled using a variety of
CG force-fields using increasingly complex pairwise force-field basis
sets (Sec. III A). Free energy surfaces along Q-helicity and radius of
gyration, two CVs that characterize the transient folding behavior
of the polypeptide, are shown for a variety of models and the refer-
ence data in Fig. 4. While it is clear that no CG force-field achieves
states of high Q-helicity (signifying helix formation), the observed
difference between the various models is minimal.

In contrast, when each of thesemodels is analyzed via classifica-
tion, the increasingly complex force-field bases reduce microscopic
error. Box plots of the microscopic error (∆U) for each comparison
of the DDAmodel to reference data are shown in Fig. 5; the medians
of the distributions, signified by a horizontal line in each box, trend
toward zero. Note that configurations from the CG model trajec-
tory are preferentially associated with negative values of ∆U as said
configurations are over stabilized by the CG force-field, causing the
sum in Eq. (4) to become negative. An analogous relationship asso-
ciates configurations from the reference trajectory to positive values
of ∆U. The discrepancy between our physical CVs and microscopic
error may also be visualized by plotting ∆U as a function of said
CVs (Fig. 6), where is clear that the selected CVs do not effectively
disentangle configurations based on their microscopic error (∆U).
In contrast, using ∆U itself as a collective variable naturally does
distinguish states based on their microscopic error.While themicro-
scopic error is an important error metric in itself, the trends of ∆U
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FIG. 4. Free energy surfaces of the radius of gyration and Q-helicity for various models of DDA and the reference distribution. The gray overlay (and filled regions in the lower
right panel) is given by the reference density and is present as a visual guide. Clear differences exist between the models and the reference distribution, but little difference
can be seen between various CG models.

visualized in Fig. 5 provide little physical insight; however, we defer
extracting conclusions from ∆U until Sec. IV B.

Similar to traditional CV analyses, the classification-based anal-
ysis may be performed after reducing the resolution of the model
or reference data. This procedure allows the resolution of a pro-
posed CG model to be validated in novel ways. To demonstrate
this capability, an actin monomer was modeled using heteroge-
neous harmonic networks at resolutions of 12 sites and four sites,
with the four site model defined to be a subset of the CG beads
present in the 12 site model (Sec. III B). The 12 site model dis-
tinguishes between many parts of the protein, such as nucleotides
and disordered regions, while the four site model only considers the
movement of themain four subdomains.When compared to the ref-
erence data, the 12 site model exhibits larger absolute values of ∆U
than the four site model (Fig. 7). However, when the 12 site model

is mapped to the resolution of the four site model for analysis of its
microscopic error, it exhibits less microscopic error than the four
site model; i.e., the microscopic error present in the 12 site model is
not evident in the motion of sites 1–4. If a hypothetical application
of this model requires only the correlations of the four main sub-
domains, the 12 site model may provide a higher level of accuracy
than the model that only preserves only the four sites of interest. The
physical insight underlying the trends observed in Fig. 7 is discussed
in Sec. IV B.

B. SHAP-based analysis
While ∆U allows one to probe microscopic errors, it does not

necessarily directly translate into scientifically useful information.
In the context of the models studied in Sec. IV A, it is desirable to
understand how the addition of force-field complexity improves the
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FIG. 5. Box plots of ∆U for multiple models of DDA. Each model presents its own
samples, and the reference samples are projected along its ∆U. The median is
marked by the center line in each box. Note that different models have different
forms of ∆U, changing the shape of the projected shared reference distribution.

FIG. 6. ∆U as a function of the radius of gyration and Q-helicity for the two-type
DDA model. No clear pattern is evident, demonstrating that these CVs do not
reflect trends in the microscopic error.

emulation of DDA and how increasing the force-field resolution of
actin improves performance at the four site resolution. As demon-
strated in this subsection, directly correlating ∆U with traditional
structural features is difficult; however, by utilizing SHAP values, the
physical causes underlying the trends observed in Figs. 5 and 7 can
be understood.

The classifiers trained in this work are functions of the pairwise
distances between all CG particles; as a result, SHAP attributions
are associated with pairwise distance values. The interparticle dis-
tances associated with the top six largest median absolute values of

FIG. 7. Box plots of ∆U for multiple models and resolutions of actin divided along
the reference and model ensembles. The “12 at 4 site resolution” and “four site”
models are compared to the reference at the 4 site resolution, while “12 site” is
compared at the 12 site resolution. The median is marked by the center line in
each box. Note that varying models/resolutions change the form of ∆U, which
changes the shape of the projected reference distribution.

SHAP attributions generated from analyzing two-site DDA are pre-
sented in Table I in the supplementary material; the largest value
is associated with the terminal bond between sites 11 and 12 at the
C terminus. As discussed in Sec. II B 2, the size of SHAP attri-
butions is directly related to their importance. Plotting the SHAP
values for distance 11–12 against the distance itself (Fig. 8) shows
a clear dependence, whereas plotting ∆U as a function of distance
11–12 does not, i.e., the many body microscopic error is difficult to
associate with physical features of the system, but its SHAP trend
exhibits a clear relationship. The trend seen in Fig. 8 is represen-
tative of the error present in the 11–12 bond length distribution
seen between the two-type DDA model and the reference data (see
supplementary material). Similar trends are seen for the SHAP val-
ues associated with the 1–2 distance (see supplementary material).
In summary, while the dependence of ∆U is difficult to associate
with physical distances, SHAP values may show clear patterns and
may be used to isolate problematic degrees of freedom: here, we
did so by selecting SHAP values by their maximum median abso-
lute value, investigating how said SHAP value varied, and locating
a problematic marginal distribution. Accounting for this marginal
disagreement by increasing the number of site types present at the
termini of the model results in a drop in median∆U as visualized in
Fig. 5 (see supplementary material).

Classifiers that are trained to estimate microscopic error (and
the SHAP values produced) reflect differences in multibody corre-
lations between the various models analyzed and their associated
reference data. In certain cases, summarized SHAP attributions
may not have clear outlying values, or these values may be depen-
dent on one another, impairing the creation of informative plots
such as Fig. 8. For example, in the case of the four site model
of actin, the leading SHAP values have three features of approx-
imately equal SHAP magnitude, and plots such as Fig. 8 do not
show clear trends (see supplementary material). However, the inter-
dependence of SHAP values may be visualized using CVs derived
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FIG. 8. Scatter plot of ∆U and the appropriate SHAP value as a function of the bond distance associated with the largest median absolute SHAP value for the two-type DDA
model. Panels separate data from the model and reference ensembles. The SHAP values follow a clear trend as a function of bond distance, while ∆U values do not.

FIG. 9. Free energy surface produced along the SHAP variables generated by comparing a four site elastic network model to mapped reference data. The colored regions
represent the individual model and reference densities. The left and middle panels contain the four site data used to generate the CVs; the right panel visualizes the 12 site
model projected onto the CVs derived using the four site model.

from the SHAP values themselves. Using UMAP-based dimensional
reduction (Sec. III and supplementary material), the trajectories of
the four site model and reference can be projected onto variables
that summarize the various SHAP values present in the trajectory
(Fig. 9), and these derived collective variables can be used to visual-
ize the interdependence of leading SHAP values (Fig. 10): relative to
the four site model, the 12 site model reduces density in the top left
corner and increases density in the low left corner, suggesting that

errors related to the distances between site 2–3 and 2–4 are both
altered. Direct visualization of these distances confirms that their
cross correlations are improved in the 12 site model (Fig. 11), likely
leading to the accuracy improvements shown in Fig. 7. Similar analy-
ses may be performed for the DDAmodel discussed above; however,
as the discussed errors are associated with individual bonds along
the backbone and are effectively independent, no additional insight
is gained.
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FIG. 10. The dependence of the SHAP values with the largest median absolute value for the four site actin model plotted as a function of UMAP-PCA-derived CVs. Note that
SHAP 2–3 and SHAP 2–4 both concentrate in the top left corner.

FIG. 11. Free energy surface produced the distance between sites 2 and 4 and the distance between sites 2 and 3. Filled contour panels represent the two model ensembles,
while the red line contour overlay corresponds to statistics from the reference ensemble.

V. DISCUSSION AND CONCLUSIONS

The results presented here demonstrate that classification can
be used to estimate microscopic error and that this error can be
interpreted using SHAP values. The derived microscopic error does
not necessarily correlate with traditional characterizations based on

existing CVs and was compatible with comparing models at dif-
fering resolutions. In the case of DDA, SHAP values attributed the
largest errors to bond disagreements. This is intuitive given the large
conditional free energies found in effective bonded interactions that
may result in areas of phase space that are effectively not traversed
by either the model or reference data, as a lack of overlap in any
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dimension implies a lack of overlap at the full phase space (see
supplementary material).

In the case of actin, ∆U directly showed that the microscopic
error present in the 12 site model was worse than that of the four
site model when both were considered at their native resolution but
that the 12 site model exhibited higher accuracy when considered
at the four site resolution. SHAP values and derived CVs facilitated
connecting this observation to a concrete cross correlation. This
observation suggests that approaches that select CG mappings with-
out considering the limited force-field basis that is eventually applied
may not produce CG mapping operators that are necessarily useful
in practice: in order to achieve accuracy for a given resolution, it may
be helpful to model the system at a finer resolution. Similarly, if the
proposed approach is combined with a series of maps at varying res-
olutions, the effect of model resolution can be validated in a novel
and rigorous way. The interplay between ∆U and resolution sup-
ports the idea that the correctness of an approximate CGmodel may
be difficult to consider without an implied resolution for its analysis.

A. Invariance and adversarial learning
The relationship between η and ∆U [Eq. (4)] provides impor-

tant insight into classification in the current context. First, if the
force-fields generating both ensembles are known, the information
provided by classification can alternatively be gleaned by calculat-
ing the overall differences in free energies using, for example, the
Bennet Acceptance Ratio.77 Similarly, if performing classification
between a CG model and a mapped reference ensemble, estimat-
ing the ideal classifier is analogous to estimating the true PMF
along with the corresponding free energy difference. Additionally,
Eq. (4) directly implies that any symmetry or locality shared by
UFF and UPMF is shared by η. This has important consequences
when considering applying the proposed XAI approach to novel
molecular systems: the corresponding classification problem will
contain physical symmetries and locality, and approaches that do
not take this into account will likely provide poor estimates of η. A
straightforward example is a homogeneous liquid where an asym-
metric classifier is trained on the Cartesian coordinates: sampling
sufficient to converge various local correlations (e.g., radial distribu-
tion functions) may be insufficient to parameterize such a classifier.
On the other hand, functions that are formulated to obey per-
mutational and rotational–translational symmetries, while already
widely investigated as techniques for atomistic and CG force-field
development,14,16,78–80 will require appropriate explanation methods
to take advantage of the approach described in this article.

Systematic coarse-graining methodologies typically define a
numerical measure of error and then return the force-field that min-
imizes said error. Classification suggests similar ideas of global error
based on the average accuracy achievable when performing classi-
fication between the ensemble implied by the force-field and the
reference ensemble: a lower level of mean accuracy implies better
emulation of the reference statistics (the accuracy is minimized if the
reference and model are indistinguishable; this results in a constant
η of 0.5). A natural question is then to consider force-fields that are
optimized using this particular measure of quality. These force-field
optimization approaches lead to adversarial learning, an approach
firmly established by generative adversarial networks,81 which, when

applied to CG force-field development, is termed Adversarial Resid-
ual Coarse-Graining (ARCG).82 The properties of η described in the
previous paragraph additionally often apply to adversarial learning.
The error estimation present in ARCG82 can resultingly be viewed
as simultaneously providing an estimate of UPMF and the difference
in configurational free energy. Conversely, the variational error in
ARCG can be calculated without performing any classification: if
a higher order force-field is used to approximate UPMF and sup-
plemented with a free energy difference method, the derivatives
updating the parameters are similarly calculable through Eq. (4).
Additionally, as η is central to adversarial residuals,42,82 the expla-
nations proposed in this article are fundamentally related to global
residuals such as the relative entropy and the Hellinger distance.
These various divergences provide a quantification of the overlap of
∆U described in Figs. 5 and 8; however, the numerical values of these
divergences are difficult to interpret without context.

CG models are often created to study specific phenomena,
and it may not be necessary to perfectly produce the microscopic
behavior of the mapped atomistic system. In this case, the proposed
methodology can be adapted to a certain extent by customizing
the resolution at which it is performed, as in the example of actin.
However, more broadly, the concept of microscopic error analy-
sis as presented here may not be appropriate for these models. The
modeler must decide whether to view the model as a way to repro-
duce specific emergent phenomena or whether to view the model
as a drop in quantitative replacement for atomistic simulation. Cer-
tain coarse-graining strategies82,83 can parameterize a force-field
to reproduce the many-body behavior of a subset of the particles
present in the CG system.However, doing so incorporates additional
human influence into the creation of said CG model: as the resolu-
tion becomes coarser, the approach begins to resemble top-down
parameterization strategies. We note that machine-learned atom-
istic force-fields are often quantified using values similar to ∆U;24,84

if CG models are to be eventually considered as accurate as their
fine-grained counterparts, utilizing similar measures of quality is
critical.

B. XAI and future directions
The analysis in this article focuses on using classification and

SHAP values to describe the behavior produced by CG potentials.
The proposed approach trains a classifier to estimate ∆U and then
uses techniques from XAI to explain said estimate. Interpretable
models and explanations intrinsically provide a way to understand
the high dimensional differences characterizing the quality of a pro-
posed CG force-field, and we fully expect that other methods from
the rapidly developing field of XAI will find similar utility. Further-
more, the study of explanations and interpretability is fundamentally
relevant to the creation of CG models: CG force-fields are rarely
created solely to reproduce the many-body-PMF of the training
ensemble. They are, instead, often created either to extract knowl-
edge from the system under study or to investigate new physical
settings, tasks that intrinsically require human understanding of the
limitations and workings of the utilized CG model. Any technique
for bottom-up CG model creation that uses external human valida-
tion is a candidate for using explainable techniques. We hope that
this work will serve as an initial example of a new approach to CG
model validation.
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SUPPLEMENTARY MATERIAL

Computational details, a formal mathematical connection
between binary classification and microscopic error, tables, and
additional figures are found in the supplementary material.
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