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ABSTRACT
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in
fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part
of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address
both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from
effective CG interactions. We then introduce Gaussian basis functions corresponding to the system’s characteristic length by linking these
Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be
treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying
this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions
in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to
determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across
the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid
mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural
correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG
models of liquids with enhanced extensibility.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160567

I. INTRODUCTION

With advances in computer architecture, coarse-grained (CG)
models1–11 have gained in popularity since they can signifi-
cantly extend the spatiotemporal scales of computer simulations,
enabling one to explore the long length and time-scale behavior
in systems that are difficult or infeasible for conventional atom-
istic simulations.12–18 With many other available CG approaches,
bottom-up CG methodologies, in which CG models and interac-
tions are determined based on fine-grained (FG) information, are
often employed to reproduce the essential structural correlations at
the atomistic level.8,10,19,20

Despite its efficiency and ability to reproduce accurate descrip-
tions of structural correlations, CGmodeling faces several significant
bottlenecks that limit its applicability to a wider range of systems.
One such obstacle has been the transferability problem,7,10,11,21–23

where the bottom-up CG interactions cannot be determined as a sin-
gle kind of interaction term because they are parametrized directly
from the reference trajectories and vary over different conditions,
e.g., temperature,24–26 pressure,27,28 phase,29 and composition.30
This issue can be further explained from a statistical mechanical
point of view that the thermodynamically-consistent bottom-up CG
interactions approximate the many-body CG potentials of mean
force (PMFs) in terms of CG variables.31–33 Since the many-body
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CG PMF is a free energy quantity, not purely an energetic quan-
tity as with the FG potential,25,26,34 the effective CG interactions are
expected to vary with different thermodynamic conditions. There-
fore, CG interactions obtained via a bottom-up approach at a given
state point often differ from those at other state points. Further-
more, the many-body nature of the CG interactions limits the
design principles for cross-interactions between other CG systems.
Even though there has been increasing interest in and attempts to
resolve the transferability problem, we note that there has only been
limited success and applicability over a wide range of systems to
date.26,35–50

In this paper, we provide theoretical and practical approaches
that can serve as an alternative framework to resolve the trans-
ferability issue. From CG interactions determined by bottom-up
methodologies such as multiscale coarse-graining (MS-CG)31,33,51–53

and relative entropy minimization (REM),54–56 we develop a new
parametrization strategy that allows Gaussian basis sets to represent
the given CG interaction. In particular, we focus on CG liquids here
to derive a stronger connection between our proposed theory and
the classical theories of liquids. Namely, we build our theory and
parametrization strategy based on the classical perturbation theory
of liquids,57–62 in which the hard sphere-like repulsive interactions
primarily determine the liquid structure. In contrast, the long-range
interactions can be treated as smaller attractions, i.e., perturbations.
Recent systematic studies have demonstrated that the hard sphere
description of molecular CG models can describe the dynamic
properties, e.g., self-diffusion coefficients, indicating the fidelity of
classical perturbation theory in CG models.63–65 Then, we treat the
effective perturbative sub-interactions as Gaussians inspired by the
classical density functional theoretical approaches.66–69 Since pair
interactions at a certain distance correspond to the specific local
density in that region, it is conceivable that the effective Gaussian
interaction can modulate the changes in the local density. In the
mesoscale regime, this can be further formulated into the many-
body dissipative particle dynamics70,71 or the Gaussian equivalent
representation72–76 governed by classical field theory. A microscopic
interpretation of this mesoscale physics was first suggested by Still-
inger, who proposed that the soft nature of the pair interactions
can be represented by a Gaussian core under the canonical par-
tition function.77 While this Gaussian core model introduces a
physical link to the Helmholtz free energy functional of the system
via the mean-field ansatz, a key assumption in Stillinger’s model
is that the system has soft interactions, which allow for modeling
“soft” polymer systems.78,79 To date, numerous polymer simula-
tions have been performed using the Gaussian core model.80–84

At the microscopic level, particularly notable contribution is the
Gaussian model potential developed by Berne and Pechukas in the
early 1970s to account for the orientational dependence of pair
interactions.85

Among these microscopic and mesoscopic regimes where CG
modeling takes place, it has been shown that the Gaussian models
or processes can effectively represent the reduced system.86–88 As
discussed by Milano et al.,86 a key assumption in these approaches
is that the probability distribution of the coarsened (or renor-
malized) variables can be written as a sum of Gaussian distribu-
tions. In this light, the combination of hard-core repulsive and
Gaussian-like interactions has been widely applied to liquids, e.g.,

water.89 Chaimovich and Shell parametrized the CG interaction of
water to assess its anomalous behaviors across a range of densi-
ties and temperatures.90 In pursuit of capturing two characteristic
length scales, the CG interaction was represented as a combina-
tion of Lennard-Jones (LJ) and Gaussian interaction forms. By
employing the REM, Chaimovich and Shell observed linear changes
in interactions with changes in temperature and density, thereby
extending the range of temperatures and density conditions from
the earlier study conducted by Johnson et al.91 Recently, Shen
et al. demonstrated the utility of the Gaussian repulsion in con-
junction with the REM framework,30 which was then extended
to polymer field theory.92 In more complex biomolecules, top-
down CG approaches have adopted these relatively simple Gaussian
interactions to emulate the complicated protein behaviors93,94 and
protein–protein interactions.13,14,16 Despite the success of the afore-
mentioned Gaussian-based models for CG modeling, it remains
unclear why these Gaussian representations are needed and how
to interpret them from the bottom-up perspective. Based on these
theoretical foundations, in this paper, we present a physical link
for understanding molecular interactions in terms of Gaussian basis
sets.

Our primary focus is to determine an effective reduction of
this many-body CG PMF using a combination of hard sphere repul-
sion and Gaussian perturbative terms in order to further reduce the
representation of the CG interactions. In particular, the ultimate
goal of this study would be to go beyond what has been reported
in the literature by utilizing the Gaussian representation to solve
the transferability problem. Once we can relate the intensity, mean,
and variance of each Gaussian with the molecular densities at the
local region, then the essential variables that determine the Gaussian
basis can be written as functions of the given thermodynamic state
points, commonly referred to as “equations of state.” The physical
principles for determining the equations of state for molecular CG
interactions should be consistent with those at other spatiotempo-
ral scales. At a microscopic level, a much simpler analogy is given
by hard spheres, where the system properties can be expressed as a
function of the packing density.95–98 At the larger mesoscopic level,
the complex equations of state can be generalized to understand
the many-body dissipative interactions in terms of the local free
energy.70,71 Therefore, by interpreting the perturbative interactions,
especially with Gaussian basis sets, as a function of system variables,
we will examine if the present strategy can provide a new method
for transferring bottom-up CG interactions to different state points
and even across different composition state points. Thus, the end
goal of this work will be to infer the equations of state underly-
ing the sub-interactions of the many-body CG PMF as a function
of the system variables. Finally, we will illustrate how the specific
sub-interaction strength is system density-dependent and leads to
equations of state that scale linearly with the interaction strength
parameter.

The remainder of this paper is organized as follows. In Sec. II,
we provide a detailed sketch of the underpinning theory. In Sec. III,
we first apply the developed framework for liquid CG models
(methanol and acetonitrile) to validate our theory. Then, later in the
section, we extrapolate these simplified interactions to different ther-
modynamic state points and compositions while maintaining their
simple Gaussian descriptions.
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II. THEORY
A. Pair decomposition of the CG interaction

We consider a CG system consisting of N particles with a
configuration denoted as RN

= {R1, ⋅ ⋅ ⋅ ,RN}. In this context, the
effective many-body CG PMF, U, should be a function of RN , i.e.,
U(RN

). However, practically determining this high-dimensional
U(RN

) for molecular systems is immensely challenging. As a result,
it is often approximated in a pairwise additive manner10

U(RN
) ≈∑

I>J
UCG(RIJ), (1)

where the pairwise CG interaction UCG solely depends on the pair-
wise distance RIJ . Thus, UCG(R) here can be understood as the
pair potential resulting from a pair-additive approximation to the
many-body CG PMF, U(RN

), for CG models involving more than
two sites. For the sake of convenience, we will refer to the CG pair
potentialUCG(R) as the (approximated) many-body CG PMF in CG
variables, as is commonly used in the literature.7–11 While various
atomistic interactions lead to diverse forms of CG interactions for
molecular systems, classical perturbation theory suggests that the
effective interactions acting on homogeneous systems (in this case
liquids) can be decomposed into a hard sphere-like (or “hard-core”)
reference interaction and long-range perturbative interactions.57–62

To note, pioneering work from Weeks, Chandler, and Andersen
showed that the short-ranged hard sphere interaction primarily gov-
erns the structure of liquids, and the long-range interaction acts as
a perturbation to the short-range interaction.60–62 Namely, for the
given CG interactions, UCG(R), this suggests

UCG(R) = UHS(R) +U′(R), (2)

where UHS(R) is the reference repulsion, and U′(R) is the long-
range perturbative interaction. For non-hard sphere systems, the ref-
erence hard-core repulsion is often approximated by the following
inverse power law (IPL) form99–101

UHS(R) = (
αHS

R
)
βHS

, (3)

where αHS and βHS determine the hardness of the hard-core region
of the interaction. The choice of IPL functional in Eq. (3) is reason-
able in many molecular CG systems53 due to the strongly repulsive
nature of the underlying atomistic nuclei when they overlap, which
is not the case for smoothly decaying Gaussians.61 With the repulsive
term in place, the remaining long-range interactions can be accu-
rately described using Gaussian basis functions, since determining
these functions can be convexly optimized. However, it is unclear
how this decomposition can be understood in terms of local densi-
ties, an issue we will explore in the remainder of this subsection and
Sec. II B.

The local density of particle I, ρI , at a pair distance R is defined
as

ρI(R) =
nI(R)
VR

=
1
VR
∑
J
δ(R − RIJ), (4)

where the function δ represents a discrete indicator function, i.e.,
δ(R − RIJ) is 1 when R = RIJ and 0 otherwise. The normaliza-
tion factor VR in the denominator corresponds to the volume of

a sphere with a radius R. In practical applications, Eq. (4) can
be implemented by introducing a smooth weight function ω(R)
to approximate δ(R − RIJ), consistent with the weighted density
approximation in density functional theory102 or many-body dis-
sipative particle dynamics:70 ρI(R) ≈ ∑Jω(RIJ)/VR. Several options
for ω(RIJ) have been proposed in the CG modeling literature, such
as the Lucy function,103–105 a sigmoid function with a hyperbolic
tangent,45,47,106–108 or a sixth-order polynomial.46,48,109

Equation (4) can alternatively be written as a structural average
using the pair correlation function, or radial distribution function
(RDF), g(R):

ρI(R) =
1
VR

4πρ∫
R

0
r′2g(r′)dr′. (5)

Furthermore, we can relate the (reduced) pair correlation function in
Eq. (5) to an effective Helmholtz free energy by the reversible work
theorem110

g(R) = e−βU2(R), (6)

where U2(R) denotes the pair PMF (PPMF).111
By definition, the PPMF U2(R) essentially reflects a two-

particle free energy, where its force component (known as pair
mean force19), −∇U2(R), determines the average force on two par-
ticles separated by R. However, if the target system is no longer
two particles in vacuum, as in the case for condensed phase liq-
uids as studied in this work, the pair mean force encompasses
environment-mediated forces as well as direct contributions from
pair interactions −∇UCG(R). These additional forces contribute
as averaged correlated forces arising from the environment and
constitute higher-order correlations due to the solvation effect.

A paradigmatic example that underscores the non-trivial con-
tribution of higher-order environment effects is, as introduced in
Ref. 19, the identity coarse-graining (no explicit coarse-graining)
applied to a single-site LJ fluid. In this prime example, the non-trivial
difference between ULJ(R) and −kBT ln g(R) arises from solva-
tion forces and can be extended to even more complex molecular
systems.112,113

A rigorous decomposition of the pair mean force can be
achieved by way of the Yvon–Born–Green (YBG) integral equa-
tion.114 The YBG hierarchy describes the mean force acting on
particle 1 when the distance between particles 1 (R1) and 2 (R2) is
∣R1 − R2∣ = R:

−∇1U2(R1,R2) = −∇1UCG(R1,R2)

+ ∫ dR3(−∇1UCG(R1,R3))ρ3∣2(R3∣R1,R2). (7)

In Eq. (7), ρ3∣2(R3∣R1,R2) represents the conditional triplet distribu-
tion defined as

ρ3∣2(R3∣R1,R2) := ρ
g(3)(R1,R2,R3)

g(R1,R2)
. (8)

Equation (7) elucidates that the pair mean force −∇1U2(R1,R2)

is composed of a direct part involving the effective
CG force −∇1UCG(R1,R2) and an indirect contribution
∫dR3(∇1UCG(R1,R3))ρ3∣2(R3∣R1,R2). When rearranged, this
equation reveals that the effective CG interaction for CG
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simulation should account for the pair mean force and the
negative of the solvation contribution to avoid overcounting
the indirect contribution. Since the YBG equation and the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy
provide a rigorous and transparent interpretation of force balance
stemming from various correlations,115–119 several coarse-graining
methods based on the generalized YBG equation can construct high
fidelity CG model by accurately elucidating the role of many-body
correlations in determining forces and potentials.120–124

In this work, we propose an alternative approach that aims
to decompose the effective CG PMF UCG(R) into the PPMF and
indirect (many-body) contributions:

UCG(R) = U2(R) +UMB(R), (9)

where UMB(R) denotes the higher-order environment-mediated
contributions to the CG PMF in order to correct the solvation effect
for the direct contribution (i.e., PPMF) U2(R). The complex corre-
lations between the indirect particles in the solvation shell can result
in such a many-body solvation term.125 Yet, this indirect solvation
potential is expressed in pairwise basis sets, so hereafter we would
like to denote it as effective collective interaction. Then, it appears
that Eq. (9) may indicate that the effective CG pair interaction can
be presented as a combination of the pairwise interaction and the
effective (many-body) collective interaction, akin to the many-body
expansion. However, we intend to draw a distinction between these
two approaches. This is because the standard expression for the
many-body expansion is formulated for the overall CG energy in RN

space:126

U(RN
) =∑

I>J
U(2)(RIJ) +∑

IJK
U(3)(θJIK ,RIJ ,RIK)

+∑
IJKL

U(4)(θ1, θ2,ψ) + ⋅ ⋅ ⋅ , (10)

where U(n)(⋅ ⋅ ⋅ ) is the n-body non-bonded interactions. While
Eq. (10) provides an improved description in terms of many-body
correlations compared to Eq. (1), it necessitates the inclusion of
higher-order interactions, e.g., Stillinger–Weber interaction, which
are no longer pairwise interactions. Notably, the many-body projec-
tion theory, built upon Eq. (10), effectively addresses this limitation
by implicitly projecting higher-order interactions to lower-order
ones, as outlined in Refs. 127 and 128. For instance, in the case
of three-body interactions, Refs. 127 and 128 demonstrated that
the three-body interaction U(3)(θJIK ,RIJ ,RIK) can be projected onto
pairwise basis sets by integrating over additional configurational
variables θJIK and RIK using a conditional probability at the fixted
distance RIJ , p(θJIK ,RIK ∣RIJ), resulting in the expression

U(RN
) =∑

I>J
U(2)(RIJ) +∑

I>J
C3 ∫ dθJIKdRIK

× p(θJIK ,RIK ∣RIJ)U(3)(θJIK ,RIJ ,RIK). (11)

Hence, for interactions U(n)(⋅ ⋅ ⋅ ) defined based on the many-
body expansion [Eq. (10)], U(2) represents the pairwise interaction
derived from the CG system, and U(n>2) describes the n-body inter-
actions. However, it is important to highlight that the decomposition

betweenU2 andUMB in Eq. (9) is rather notably different, asU2 also
incorporates the higher-order (solvation) effect. The central conclu-
sion of this subsection is that the decomposition scheme presented in
Eq. (9) differs from the many-body expansion or projection theory.
Since these two decompositions are derived differently, a possi-
ble future direction of interest would be to further understand the
correspondence between these distinct decomposition approaches.

According to the YBG equation [Eq. (7)], UMB(R) should be
the negative counterpart of the solvation potential up to a constant,
i.e.,

UMB(R) = ∫ dR1 ∫ dR3(∇1UCG(R1,R3))ρ3∣2(R3∣R1,R2)

+ (const.). (12)

Even though this functional form implies that UMB(R) entails
higher-order correlations beyond pairwise correlation, it involves
complex integration over two configuration variables. As a result, the
subsequent subsection (Sec. II C) will introduce a novel approach to
determine UMB(R) as an alternative method.

However, prior to determining the functional form of UMB(R),
classical perturbation theory can still be applied to the decomposed
interaction form that incorporates both direct and indirect parts.
Employing this approach, Eq. (9), a perturbative treatment of the
CG system leads to

UCG(R) = UHS(R) +U′2(R) +UMB(R), (13)

where the perturbative term is read as U′CG(R) = U
′
2(R) +UMB(R).

Here, we only focus on the PPMF that is linked via the reversible
work theorem to assess Eq. (5). Since the hard-core repulsive inter-
action is not directly involved in the CG PMF that gives rise to the
non-zero number density, Eq. (13) implies that the shape of pertur-
bative interactions primarily determines the local density beyond the
hard-core regime.

B. Gaussian representation of CG interaction
We now introduce the Gaussian basis functions Gi(ϵi,μi, σi)

= ϵiN(μi, σ2i ) to decompose U′2(R) into separate Gaussian sub-
interactions. Without loss of generality, we can express U′2(R)
as

U′2(R) =∑
i
Gi(ϵi,μi, σi) =∑

i
ϵiN(μi, σ2i ), (14)

where ϵi, μi, and σi correspond to the magnitude, mean, and
variance of the Gaussian basis functions, respectively. While the
choice of Gaussian parameters might initially appear arbitrary,
examining structural correlations allows us to minimize the num-
ber of Gaussian sub-interactions. Specifically, for liquids, Gaussian
sub-interactions can be chosen to be distributed across each coordi-
nation shell. In other words, first, let us denote the distance of the ith
coordination shell from the origin as Ri. This Ri value can be directly
estimated from the pair distance at the ith minimum on the RDF
curve.110 Consequently, ρI(R) from Eq. (5) can be expressed as

ρI(R) =
4πρ
VR
{∑

i
∫

Ri

Ri−1

r′2e−β∑iGi(ϵi ,μi ,σi)dr′}, (15)
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where we define R0 as 0 for clarity. A detailed derivation of Eq. (15) is
provided in Appendix A. After identifying a set of Gaussians {Gi}i
that minimizes the overlap between the adjacent Gaussians and is
mainly distributed within each coordination shell, i.e., Ri−1 < μi < Ri
and σi ≤ (Ri − Ri−1)/4, covering at least 95%, we can approximate
Eq. (15) as

ρI(R) ≈
4πρ
VR

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑

i(Ri−1<R<Ri)
∫

Ri

Ri−1

r′2e−βGi(ϵi ,μi ,σi)dr′
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= ∑

i(Ri−1<R<Ri)
ρiI(Ri,R), (16)

where the summation indices, i(Ri−1 < R < Ri), indicate that the ith
Gaussian within the range Ri−1 < r′ < Ri effectively contributes to
the local density at the pair distance r′. Equation (16) is the central
result of this paper, showing that the separated Gaussian interactions
result in separable local densities. This finding can be intuitively
understood by considering the relationship between the interac-
tion potential and the distribution of particles. In regions where the
potential is more attractive, more particles tend to be present, while
in regions dominated by repulsive interactions, the particle density
is lower. Therefore, introducing Gaussian basis sets to CG interac-
tions provides a tractable way to understand the complex CG PMF
as a linear combination of density-based metrics. Furthermore, as
the Gaussian basis functions are closely related to the overall system
density, we seek to determine how these Gaussian parameters vary
for different system conditions. From the long-standing efforts to
construct simple equations of state ranging from van der Waals to
the mesoscopic systems,129 we aim to determine an effective equa-
tion that can provide a general rule for predicting the behavior of
each sub-interaction for different conditions.

C. Higher-order interaction in CG PMFs
While Gaussian basis sets introduced in Sec. II B can cap-

ture the average pair interactions over all configurations (equivalent
to the Boltzmann inversion of the RDF), it is important also to
consider higher-order environment-mediated interaction to avoid
double-counting the solvation effect. Stated differently, even though
a relatively simple reduction of the CG PMF by extracting the
PPMF from its RDF could capture the local densities originat-
ing from pairwise ordering, relying solely on U′2 from Eq. (13)
would likely overlook and misrepresent the higher-order contri-
butions to the many-body CG PMF. Therefore, it is essential to
consider the non-trivial contribution of the effective collective inter-
action UMB(R). As discussed earlier, the analytical formulation of
UMB(R) is quite complicated for complex systems as it involves the
three-body distribution function via the YBG equation, resulting
in limited predictability.124 Nevertheless, our primary focus in this
paper is on molecular liquids, and therefore, we provide an alter-
native derivation of UMB(R) from the Ornstein–Zernike integral
equation.130

For isotropic liquids, the Ornstein–Zernike equation describes
the total correlation function h(R) = g(R) − 1 by dividing h(R) into

a direct part, c(R), and an indirect part arising from the propagation
of interactions through the surrounding environments:

h(R) = c(R) + ρ∫ c(∣R − R′∣)h(R′)dR′. (17)

To close the hierarchy presented in Eq. (17), a closure relationship
between h(R), c(R), and UCG(R) is needed. This is achieved by
introducing the bridge function B(R), which can be expressed as an
infinite summation of diagrams that are free of nodal circles.95 The
general form of the closure relationship is:

h(R) + 1 = exp (−βUCG(R) + h(R) − c(R) + B(R)). (18)

Rearranging Eq. (18) in terms of the pair interaction potential
βU(R) yields

βUCG(R) = g(R) − ln g(R) − 1 − c(R) + B(R). (19)

However, directly employing Eqs. (17) and (18) is not practically
feasible for molecular systems due to the absence of a closed-form
solution for B(R).130 Therefore, the commonly adopted approxima-
tion for the bridge function is the hypernetted chain (HNC) closure,
which sets B(R) = 0.131 The HNC approximation works effec-
tively for liquids and condensed matter systems with short-range
interactions.95

Under the HNC approximation with B(R) = 0, we can express
UCG(R) as

UCG(R) = −kBT ln g(R) + kBT(g(R) − 1 − c(R)). (20)

By recognizing that the first term on the right-hand side is the
PPMF, i.e., U2(R) = −kBT ln g(R), the decomposition of Eq. (9)
leads to

UMB(R) = kBT(g(R) − 1 − c(R)) := kBT ln y(R), (21)

where y(R) is the cavity correlation function defined as y(R)
:= g(R)/e−βUCG(R).132 The right-hand side of Eq. (21), ln y(R), is
known as the thermal potential ω(R),133 which encompasses all
indirect interactions of the system, as y(R) describes the correla-
tion between two fictitious cavities within the fluid.134 Notably, our
derivation formally establishes that the thermal potential from the
cavity correlation function is equivalent to the collective solvation
interaction.

Precisely determining y(R) for simple and analytical sys-
tems can be achieved through several theoretical methodologies. A
systematic effort can be undertaken using Henderson’s method135

y(R12) = exp (βμres) exp⟨
⎡
⎢
⎢
⎢
⎣
−β

N+1
∑
J>2

U(R1J)
⎤
⎥
⎥
⎥
⎦
⟩, (22)

where the ensemble average is taken under the constant NVT
ensemble with the residual chemical potential μres that gives the
zero-distance value of y(0). Equation (22) or a direct simulation
method136 can offer numerical ways to compute the cavity corre-
lation function. Yet, it is challenging to calculate the logarithm of
the cavity function for complex molecular liquids and to simplify
ln y(R) into an analytical form due to its convoluted nature. Never-
theless, the computed shape of ln y(R), as reported in Refs. 136–138,
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strongly suggests that we can approximate it as a Gaussian-like inter-
action with a mean of zero. Our hypothesis gains further support
from hard sphere theory, where one could expect to simplify ln y(R)
as a function of pair distance and packing density η. This idea is
substantiated by Meeron and Siegert,139 where they derived y(R)
from the pair correlation of spherical non-interacting cavities.
Subsequently, Grundke and Henderson demonstrated that ln y(R)
can be approximated as a cubic polynomial in terms of R.140

In this section, we present an alternative derivation that further
substantiates the Gaussian hypothesis. As R→∞, g(R)→ 1 and
U(R)→ 0, hence y(R)→ 1. Therefore, we further divide y(R) into
y0(R) + 1, allowing the following asymptotic behavior: y0(R)→ 0 as
R→∞. By expanding UMB(R) using y0(R), we obtain

UMB(R) = kBT ln (y0(R) + 1)

= kBT[y0(R) −
y0(R)2

2
+
y0(R)3

3
− ⋅ ⋅ ⋅]. (23)

Also, since y(R) generally demonstrates a monotonically decreasing
nature with a maximum at R = 0, i.e., y′0(0) = 0 and y

′′
0 (0) < 0,

136–138

expanding y0(R) up to the second order gives

y0(R) ≈ y0(0) +
y′′0(0)
2

R2. (24)

Substituting y0(R) into Eq. (21) yields

UMB(R) ≈ kBT[y0(0)(1 −
y0(0)
2
+
y20(0)
3
) +

y′′0(0)
2

R2
], (25)

where the contribution from higher order terms O(R4
) should be

negligible based on Ref. 140. Then, we notice that Eq. (25) can be
approximated as the following Gaussian function centered at R = 0:

UMB(R) ≈ kBTy0(0)(1 −
y0(0)
2
+
y20(0)
3
)

× exp [−
∣y′′0(0)∣
y0(0)

3
6 − 3y0(0) + 2y20(0)

R2
]. (26)

Given that y′′0 (0) < 0, this exponential function accurately captures
Gaussian curvature up to the second order. While theoretically it
is possible to determine y0(R) from CG simulations and estimate
these values in principle using Henderson’s method,135 doing so
for numerous thermodynamic state points throughout this study
would be computationally demanding. Thus, we simplify Eq. (26)
by employing a single Gaussian basis centered at R = 0:

UMB(R) = AMB exp(−
R2

2δ2MB
), (27)

where the interaction strength AMB can be related to ln y(0) = βμres,
i.e., AMB ≈ kBT(eβμ

res
− 1)(7/6 − eβμ

res
/2 + e2βμ

res
/3). Similarly, δ2MB

can be understood as δ2MB ≈ (e
βμres
− 1)/∣y′′0(0)∣ ⋅ (7/6 − e

βμres
/2

+ e2βμ
res
/3).

In order to gain a deeper microscopic understanding of the
relationship between AMB and the system condition, one can assess
this quantity using the Percus–Yevick equation of state, where the

excess chemical potential is expressed as a function of packing
fraction (η)141

eβμ
res

≈
(1 + 2η)2

(1 − η)4
. (28)

In turn, Eq. (28) suggests that AMB will monotonically increase
when the packing fraction increases, signifying that AMB is related
to the soft (maximum) repulsion between particle pairs and its
dependence on the packing fraction. Since this repulsion can be
understood in terms of a collective behavior, we would like to intro-
duce a mesoscopic perspective to Eq. (27). One viable approach to
understanding this link is with the dissipative particle dynamics,
where the conserved interactions UMB(R) between each mesoscopic
site are represented as a smoothly decaying function.70,71,142–145

A natural interpretation of UMB(R) is the mean-field interaction
between the pairs of CG blobs under the influence of other CG
blobs nearby. The alternative interpretation of Eq. (27) could be the
Yukawa interaction, where UMB(R) aims to capture the long-range
electrostatic interactions between the FG particles embedded in the
CG entity. Thus, the width δ2MB must be chosen carefully based on
the molecular nature to account for such effects.

However, it is still unclear if our decomposition scheme
and functional representation are valid in terms of microscopic
bottom-up methodologies. Hence, we first check if the proposed
decomposition scheme is consistent with conventional bottom-up
CG methodologies by explicitly comparing each contribution
from the given CG system. As a proof-of-concept, the effec-
tive CG interaction of methanol liquid at ambient conditions
is decomposed by extracting the PPMF contribution from its
RDF U2(R) = −kT ln g(R) and UMB(R) = UCG(R) −U2(R), see
Fig. 1. Here, the CG interaction was obtained via the force-matching
algorithm (see Sec. II D for details).

Figure 1 validates our assumption about both Eqs. (14) and
(17). The complex interaction profile in the CG PMF can now
be understood as a combination of the PPMF from the RDF
and the environment-mediated solvation potential. In particular,

FIG. 1. Decomposition of the pair (blue line) and the multi-body solvation (black
dashed) PMFs from the CG PMF (red line) of the CG methanol system. The PPMF
contribution can be obtained by the reversible work theorem in Eq. (6), and the
solvation term can be inferred from the mesoscopic description of liquids.
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UMB(R), corresponding to the difference between UCG(R) and
U2(R), exhibits a slowly decaying repulsion, which can be attributed
to the nature of the solvation force. Due to the highly repul-
sive nature of the CG potential near methanol’s first coordina-
tion shell, the repulsion from the neighboring methanol particles
will drive the pair to draw closer, resulting in an attractive sol-
vation force. However, UMB(R) needs to counteract the effective
solvation effect, hence it must be repulsive and is consistent with
the observation in Fig. 1. While there is a slight fluctuation after
7–8 Å, this contribution can be faithfully described by including
Gaussians up to the second or third coordination shell according
to Eq. (27).

Our understanding of the bottom-up CG PMF is consistent
with the many-body dissipative particle dynamics framework. In
the many-body dissipative particle dynamics, the pairwise interac-
tion U2(R) becomes a local density-dependent interaction, which
bridges the two different methodologies at distinct scales. We, there-
fore, propose an alternative perspective on the bottom-up CG PMF
by combining the reversible work theorem from the microscopic
regime with the many-body interactions from the mesoscopic treat-
ment. However, parametrizing each sub-interaction shown in Fig. 1
is not trivial due to the ambiguously large contributions from the
hard sphere repulsion at short ranges. Thus, we seek to parametrize
the variables that determine the overall CG PMF via

UCG(R) = UHS(R) +U2(R) +UMB(R)

= (
αHS

R
)
βHS

+∑
i
ϵiN(μi, σ2i ) + AMB exp(−

R2

2δ2MB
). (29)

D. Parametrization strategy and multiscale
coarse-graining

The proposed strategy for parametrizing the bottom-up CG
interactions using Eq. (29) consists of three steps: (1) Determine the
many-body CG PMF from the FG simulation (this is often approx-
imated as pairwise CG potentials using force-matching or REM
with spline basis sets), (2) parametrize the CG PMF from step (1)
using the Gaussian representation, and (3) determine the equation
of state for the parametrized sub-interaction variables. It is worth
noting that we do not directly parametrize Eq. (29) using the FG
trajectories because the systematic determination of only a handful
of Gaussian parameters to the vast FG statistics may result in the
overfitting of the high-dimensional CG PMF. Instead, having the
B-spline functions as initial basis sets can amend this problem due
to its expressiveness by matching the spline coefficients over differ-
ent knots. Then, we seek to parametrize the Gaussian coefficients
to the pairwise profile constructed by the B-splines. The advantages
of using B-splines and related discussions on their usefulness for
expressing CG interactions can be found in Refs. 53 and 146.

In practice, we first obtained the effective pairwise CG PMF
using the MS-CG methodology.31,33,51–53 This methodology is based
on the force-matching method that minimizes the force residuals
χ2[F] between the CG particles I and the corresponding FG entities
linked by the mapping operator MN

R : rn → RN (rn and RN denote
the FG and CG configurations, respectively). In this case, χ2[F] can
be reformulated as

χ2[F] =
1
3N
⟨

N

∑
I=1
∣FI(MN

R (r
n
)) − fI(rn)∣

2
⟩. (30)

The minimization target of Eq. (30) is the CG force
FI(MN

R (rn)), or FI(RN
), which is matched to the microscopic

FG force component projected on the CG particle I, fI(rn)
:= ∑i ∈II fi(r

n
). Here, II is defined as a set of FG particles that are

mapped to the CG particle I, and the CG force field FI(MN
R (rn)) is

expressed using the pairwise basis sets {ϕ2(RIJ)} with unit vector
êIJ , i.e.,

FI(MN
R (r

n
)) =∑

J≠I
ϕ2(RIJ)êIJ =∑

J≠I
∑
k
ckuk(RIJ)êIJ. (31)

The rightmost equality of Eq. (31) is satisfied by introducing the
B-spline functions {uk} and their knot coefficient {ck}, and the
force-matching determines the {ck} via a least-square minimiza-
tion. In our numerical parametrization, B-spline sets of the sixth
order were chosen with a resolution of 0.2 Å by employing the
publicly available version of the MSCGFM source code,147 which is
also accessible within the OpenMSCG program suite.148 With the
MS-CG PMFs in place, we can introduce the Gaussian basis sets to
further reduce the CG interaction representation.

E. Simulation details
We have applied our theory to two different molecular liq-

uids, methanol and acetonitrile, because they are anisotropic polar
liquids with more than one characteristic length at the single-
site CG resolution. Therefore, methanol and acetonitrile require
more than one Gaussian basis function to fully recapitulate
their interaction profiles, which provides solid validation of our
methodology.

We first set up the FG trajectories to obtain the effective pair-
wise CG interactions for these liquids. Then, in order to examine
how the Gaussian parameters change with temperature and bulk
density, we used different temperatures and changed the bulk den-
sities by adjusting the system box size from the equilibrium volume
at 300 K and 1 atm. We opted to change the length of the simulation
box as an indirect control of the CG pressure since the naïve estimate
of the CG pressure using the virial expression is not identical to the
FG counterpart due to the missing degrees of freedom, known as
the “pressure representability” problem. For detailed analyses of this
issue, we refer readers to Refs. 21, 29, and 149. Instead of calculat-
ing the CG pressure using a compatible observable expression,21,149

the reference CG pressure at each condition can be, in principle,
deduced from the equilibrium volume of the system at the given
temperature and pressure.

For methanol, we considered the following temperature range
to account for temperature transferability: 300, 325, 350, 375, 400,
425, and 450 K. In addition, in order to span different volumes
to account for pressure transferability, we varied the length of the
cubic simulation box from 40.9 to 41.7 Å. These box lengths cor-
respond to the overall densities of 0.7777, 0.7720, 0.7664, 0.7608,
0.7553, 0.7498, 0.7444, 0.7391, and 0.7338 g cm−3, respectively. To
note, at 1 atm and 300 K, the equilibrium box length was 41.163 Å for
methanol.

Similarly, for acetonitrile, we used the temperatures of 250, 275,
300, 325, 350, and 375 K with box lengths ranging from 45.4 to

J. Chem. Phys. 159, 184105 (2023); doi: 10.1063/5.0160567 159, 184105-7

Published under an exclusive license by AIP Publishing

 22 M
ay 2024 14:20:53

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

46.1 Å that correspond to the overall densities of 0.7285, 0.7237,
0.7189, 0.7142, 0.7095, 0.7049, 0.7003, and 0.6958 g cm−3. In this
case, the equilibrium box length at 1 atm and 300 K was 45.798 Å.
OPLS/AA force fields were selected as the atomistic force fields for
simulating both liquid systems.150,151

All FG simulations in this paper were performed with the fol-
lowing protocol using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) MD engine.152–154 First, the initial
configurations at each cubic box were generated by the Packmol pro-
gram,155 and the FG topologies were created from the Visual Molec-
ular Dynamics (VMD) suite.156 Then, at the target temperature,
the FG trajectories needed for the CG parametrization were pro-
duced using the constantNVT dynamics for 5 ns with Nosé–Hoover
thermostat157,158 and coupling constant of 0.1 ps. Finally, CG simu-
lations were performed from the last snapshot of the mapped FG
trajectories using the obtained CG force fields under the constant
NVT condition for 5 ns.

III. RESULTS
A. Methanol: Bottom-up CG interactions

The bottom-up CG interactions ofmethanol were first obtained
by employing the MS-CG force-matching using Eqs. (30) and (31).
Based on the settings for the FG simulation in Sec. II E, Fig. 2
illustrates the changes in the CG interactions over the different
temperature and bulk density conditions, which are expected from
the bottom-up nature. Since the many-body CG PMF under con-
stant volume becomes the Helmholtz free energy, we expect the
interactions to change linearly with the temperature (at the fixed
density).25,26,34 However, as the temperature and volume change, the
CG PMF is no longer reduced to the Helmholtz free energy due to
the additional pressure term,29 and the volume dependence on the
pairwise CG interactions becomes relatively obscure. Nevertheless,
it is apparent that the changes in temperature and volume result in
non-negligible changes in the CG interactions.

Another important observation from the methanol PMFs is
that mainly two sub-interactions vary with temperature and density.
In particular, we observe one repulsive sub-interaction near 3.8 Å
and one attractive sub-interaction at 4.8–5 Å. At other distances, we
note that the hard-core repulsion at R < 3 Å and long-range poten-
tials at R > 7 Å remain unchanged under variations in temperature
and density. This observation further confirms our initial hypothesis
that the Gaussian sub-interactions can effectively modulate changes
in the local coordination shell. These changes provide an initial set
of {Ri}i

and determine the number of basis functions needed for the
reduced representation. We chose the {Ri}i

to be R1 = 4.0, R2 = 6.5,
and R3 = 8.5 Å.

B. Methanol: Parametrization of Gaussian basis
functions and equation of state

Based on the CG PMF analysis, we now build a Gaussian rep-
resentation of the CG methanol model by parametrizing Eq. (29) to
the CG PMFs shown in Fig. 2. As described in Sec. III A, we chose
two Gaussian basis functions to parametrize the methanol interac-
tions, with one Gaussian located from R0 to R1 and the other from
R1 to R2. It is also possible to include a third Gaussian basis func-
tion to capture the long-range region near 8 Å. However, in order

to mitigate any potential numerical instability that could result from
an additional Gaussian basis function and demonstrate the feasibil-
ity of this method, we chose to minimize the number of Gaussian
basis functions used. To the best of our knowledge, this represents
one of the earliest examples of this approach.

With two Gaussian basis functions, Eq. (29) is reduced to

UMeOH(R) = aMeOH exp(−
(R − bMeOH)

2

c2MeOH
) + (

dMeOH

R
)

eMeOH

− fMeOH exp(−
(R − gMeOH)

2

h2MeOH
)

+ kMeOH exp(−
R2

l2MeOH
). (32)

Rather than parametrizing all ten different parameters shown in
Eq. (32), analyzing the PMFs from MS-CG can reduce the com-
plexity of parametrizing these parameters. Interestingly, in Fig. 2,
for all temperature and density conditions, we observe that the
local maximum ascribed to the first attractive Gaussian is located at
R = 3.8 Å, indicating bMeOH ≈ 3.8 Å. However, the widths and inten-
sities of the first Gaussian basis vary with the different system con-
ditions, and as such, values for a and c need to be determined. Addi-
tionally, at higher temperatures above 375 K, the effective potential
values in the second Gaussian region, located near 4.8 Å, become
less attractive as temperature increases and eventually become repul-
sive. The gradual change observed in our results indirectly indicates
the contribution of collective many-body interactions near the sec-
ond coordination shell. To account for the changes in the sign of
the second Gaussian region, we interpret this as the mean-field
exponential interaction not completely decaying at the second coor-
dination shell. This is achieved by choosing a mean-field length of
l2MeOH = 15 Å2. Finally, we determined the Gaussian parameters for
the reduced interaction form (units omitted for clarity):

UMeOH(R) = aMeOH exp(−
(R − 3.8)2

c2MeOH
) + (

dMeOH

R
)

eMeOH

− fMeOH exp(−
(R − gMeOH)

2

h2MeOH
)

+ kMeOH exp(−
R2

15
). (33)

To reiterate, our objective is twofold: to obtain parameters for
Gaussian basis functions at varying temperatures and densities, as
well as to establish the relationship between each parameter and state
points to enable transferability. Since these sub-interactions are the
renormalized representation of many-body quantities, there is no
concise, analytical expression available for these parameters. Never-
theless, we aim to establish a simple correspondence between these
variables, as they should correlate with local densities. This idea is
akin to fitting the equations of state for thermodynamic proper-
ties in hard sphere liquids as a function of packing density.95–98 To
note, previous studies of CG interactions under varying tempera-
tures and densities have demonstrated a linear dependence. In this
context, Izvekov et al. extended the MS-CG framework to describe
density-dependent potentials,159,160 and Ref. 161 conducted a sys-
tematic study of how temperature and density variations impact pair
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FIG. 2. Effective CG interactions of the methanol system for various density conditions at temperatures of (a) 300 K, (b) 325 K, (c) 350 K, (d) 375 K, (e) 400 K, and (f) 425 K.
At each temperature, we considered the different pressure conditions determined by the system box size ranging from 40.9 Å (red line) to 41.7 Å (violet line).

potentials in CG liquids. However, these observations had certain
limitations, making it challenging to extrapolate to different ther-
modynamic state points and phases. Therefore, we anticipate that
deriving such equations of state through atomistic simulations will
impart a systematic and predictable understanding of bottom-upCG
interactions. An illustrative example of such an approach applied to
molecular systems is presented in Ref. 162.

For stable numerical optimization, we enforced the follow-
ing bounds inferred from the PMFs in Fig. 2 during opti-
mization of the parameters in Eq. (33): 0 < aMeOH < 2 kcal/mol,
0 < cMeOH < 0.25 Å (since c should be smaller than the half of the
well width), 3 < dMeOH < 4 Å, 5 < eMeOH (to account for strongly
repulsive nature), 0 < fMeOH < 2 kcal/mol, 4 < gMeOH < 5.5 Å (based
on the second coordination shell), 0 < hMeOH < 1 Å, and 0 < kMeOH
< 2 kcal/mol. All parametrization procedures were performed on
MATLAB R2019b163 using the curve fitting module with the
trust-region-reflective least squares.164

After the initial iteration of parametrization over all possible
temperature-density conditions, we observed that the hard sphere
diameter remained invariant under different densities at fixed tem-
peratures. For example, at 300 K, the optimized dMeOH values range
from 3.167 to 3.170 Å with an average of 3.168 Å. This range is con-
sistent with the conventional studies on the effective hard sphere
diameter reported by Wilhelm that the hard sphere diameter is only

a function of the temperature.165 Remarkably, we obtained a lin-
ear equation of state [Fig. 3(a)] by examining the average dMeOH
values over different temperatures, which allows us to parametrize
dMeOH(ρ,T) as a function of temperature T as

dMeOH(ρ,T) = 2.243 × 10−4 ⋅ T + 3.0790. (34)

Also, under the conditions studied, the hard-core repulsive
slope eMeOH was found to marginally fluctuate around 15. Since the
hard-core repulsive nature should depend on the molecule itself, it is
reasonable to choose eMeOH = 15 for the rest of the parametrization
of the methanol system. Remarkably, this exponent value aligns with
the exponent of the inverse power law potential derived from the
LJ fluids using a different framework based on the virial-potential
correlation.99,100,166–168 Reference 101 demonstrated that an expo-
nent of 15 can faithfully reproduce the structure, dynamics, and
heat capacity of the Kob–Andersen binary LJ liquid.169 This con-
gruence indirectly suggests that our approach can also effectively
capture the inverse power law nature of molecular liquids. Sub-
sequent subsections will explore how this value might vary for
different molecules.

We then conducted the next iteration using the d values deter-
mined by Eq. (34). During each step, we prioritized optimizing
the variables that contributed the most toward the overall CG
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FIG. 3. Determination of simple equations of state describing the parametrized d and k variables for the Gaussian CG model. (a) Hard-core repulsive diameter at different
temperatures from 300 K (red) to 425 K (navy). (b) Interaction strength of the collective solvation interaction term at different temperatures with its temperature-dependent
y-intercept in panel (c).

interactions. This was to ensure that the residual contribution could
be effectively captured in the subsequent iteration. In turn, in
the second iteration, we investigated the relationship between the
parametrized kMeOH value and the system variables. As shown in
Fig. 3(b), there exists a linear relationship between kMeOH and system
density, resulting in the equation of state for kMeOH(ρ,T) as

kMeOH(ρ,T) = kMeOH,α ⋅ ρ + kMeOH,β(T), (35)

which is expected from the effects of bulk volume on the macro-
scopic density. We report that this linear dependence shows a nearly
identical slope, and the y-intercept (kMeOH,β) also reveals a lin-
ear relationship with temperature, as demonstrated in Fig. 3(c). As
a result, kMeOH values can be represented by a relatively simple
equation of the form:

kMeOH(ρ,T) = 14.574 ⋅ ρ + kMeOH,β, (36a)

kMeOH,β(T) = 1.0629 × 10
−2
⋅ T − 14.0489. (36b)

While removing the uncertainty underlying the hard-core
region, Fig. 4(a) delineates a consistent trend for the parametrized
aMeOH value, which becomes larger as temperature increases. The
linear trend in the strength of the first repulsive Gaussian at the first
coordination shell can be attributed to the tendency of molecules
to repel each other more as the packing density increases. It should
be noted that the changes with respect to density for aMeOH are
relatively minor across different temperatures. By using the aver-
aged slope from this linear relationship, we further confirmed that
the y-intercept, aMeOH,β, exhibits linear behavior as a function of
temperature [Fig. 4(b)]:

aMeOH(ρ,T) = 0.7593 ⋅ ρ + aMeOH,β, (37a)

aMeOH,β(T) = −1.5828 × 10
−3
⋅ T + 0.4923, (37b)

which is consistent with our expectation that the molecules experi-
ence lower repulsion at higher temperatures. We also investigated
the impact of temperature and density on the mean of the second

attractive Gaussian (gMeOH) by analyzing its parametrized values
in Figs. 4(c) and 4(d). Our results demonstrate that gMeOH follows
a similar linear equation of state as aMeOH, being coupled to both
density and temperature as

gMeOH(ρ,T) = −2.2993 ⋅ ρ + gMeOH,β, (38a)

gMeOH,β(T) = −2.4694 × 10
−4T + 7.5903. (38b)

Note that we did not use the dataset at 300 K in the subsequent
parametrization of the sub-interaction variables and the equations
of state because of numerical instabilities during the parametriza-
tion procedure introduced by the overly negative second attractive
well.

For the next step, using the aMeOH, cMeOH,dMeOH, eMeOH, gMeOH,
and kMeOH values from the parametrized equations of state, we found
the hMeOH values to be less sensitive to temperature, as described by

hMeOH(ρ) = 3.7797 ⋅ ρ − 2.5381, (39)

as shown in Fig. 5.
The last two steps of parametrization were conducted to

determine the equations of state for fMeOH and cMeOH. First, we
noticed that the fMeOH values, derived from the intensity of the
second attractive Gaussians, did not vary under different density
conditions but demonstrated temperature dependence. Figure 6(b)
clearly shows a trend of exponential increase in fMeOH intensity
with temperature, as evidenced by plotting the averaged fMeOH
values for each temperature. This observation is consistent with an
Arrhenius-like behavior, which can be described as

fMeOH(T) = 748.195 ⋅ exp (−7.877 17β) + 1.115 × 10−1, (40)

where β = (kBT)−1, and the Boltzmann constant is kB. In the sub-
sequent step, we obtained the cMeOH values, as shown in Figs. 6(c)
and 6(d). Compared to other variables, cMeOH demonstrates quite a
different trend, and its physical picture is less clear than the other
parameters. Still, the trend shown in Fig. 6(c) can be interpreted as
a linear function with a slope that depends on temperature. As seen
in Fig. 6(d), the parametrized relationship based on the Gaussian
parametrization captures this trend via
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FIG. 4. Determination of the equations of state to parametrize the a and g variables for the Gaussian CG model. (a) and (b) Interaction strength of the short-range Gaussian
repulsion term as a function of temperature and density, with temperatures ranging from 325 K (orange) to 425 K (navy). (c) and (d) Local minima for the long-range second
Gaussian attraction as a function of temperature and density.

FIG. 5. Parametrized h variables (interaction width) for the attractive long-range
Gaussian as a function of density.

cMeOH(ρ,T) = (1.306 × 10−2T − 4.1739) × (ρ − 0.758) + 0.35.
(41)

Finally, by combining Eqs. (34)–(41), the reduced Gaus-
sian representation for bottom-up methanol CG models can be
represented as

UMeOH(R) = aMeOH(ρ,T) exp(−
(R − 3.8)2

c2MeOH(ρ,T)
)

+ (
dMeOH(ρ,T)

R
)

15

− fMeOH(T)

× exp(−
(R − gMeOH(ρ,T))2

h2MeOH(ρ)
)

+ kMeOH(ρ,T) exp(−
R2

15
). (42)

C. Acetonitrile: Bottom-up CG interactions
A similar strategy as utilized for methanol can be implemented

for acetonitrile. As detailed step-by-step instructions have been
provided in Secs. III A and III B, in this section, we summarize
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FIG. 6. Determination of the equations of state for the remaining variables (f, c) of the Gaussian CG model. (a) and (b) Interaction strengths for the long-range attractive
Gaussian interaction as a function of temperature. (c) and (d) Interaction widths for the short-range repulsive Gaussian interaction as a function of temperature and density.

the essential findings obtained from the parametrization of the
acetonitrile system and highlight its difference with respect to
methanol. First, we identified the number of Gaussians and
Gaussian intervals from the CG PMF obtained by multiscale
force-matching, as depicted in Fig. 7.

Even though acetonitrile and methanol share a similar molecu-
lar backbone (CH3-CX), their effective interactions are quite differ-
ent. In CG acetonitrile, there is no repulsive well at short distances.
However, a repulsive interaction is still present in the local region of
3.5–4 Å. The presence of a locally repulsive interaction near 3.5–4 Å
is suggested by the decrease in slope observed after passing 3.8 Å
from the hard-core repulsion at 3 Å. This change in slope is likely
due to the attractive Gaussian at larger distances, which introduces
Gaussian curvature and causes the initially steep slope from the
hard-core repulsion to become relatively flat. Similar to methanol,
we observed the signature of a negative Gaussian near the second
coordination shell at 4.5–6 Å for acetonitrile. Since the changes
in the CG potentials after the second coordination shell are quite
negligible at different densities and temperatures, we also employ
the two Gaussian basis functions discussed for the acetonitrile
system.

D. Acetonitrile: Parametrization details for Gaussian
basis functions

Using Eq. (29), we now parametrize the interaction parameters
for acetonitrile and determine the equation of state for the simpli-
fied representation. From the distinct interaction profiles discussed
in Sec. III C, we noticed that the inflection point near the first
coordination shell is located near 3.8 Å, and hence bMeCN = 3.8 Å.
Moreover, the crossover of the second attractive Gaussian at the sec-
ond coordination shell still exists at 4–6 Å, and we employed the
same mean-field solvation length as l2MeCN = 15 Å2, resulting in the
following interaction form:

UMeCN(R) = aMeCN exp(−
(R − 3.8)2

c2MeCN
) + (

dMeCN

R
)

eMeCN

− fMeCN exp(−
(R − gMeCN)

2

h2MeCN
)

+ kMeCN exp(−
R2

15
). (43)
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FIG. 7. Effective CG interactions of the acetonitrile system for various density conditions at temperatures of (a) 250 K, (b) 275 K, (c) 300 K, (d) 325 K, (e) 350 K, and (f) 375 K.
At each temperature, we considered the different pressure conditions determined by the system box size ranging from 45.4 Å (red line) to 46.1 Å (violet line).

Following the initial parametrization using the fixed variables,
we were able to capture the linear dependence of the hard sphere
diameter on temperature for acetonitrile [Fig. 8(a)] as

dMeCN(ρ,T) = 8.697 × 10−4 ⋅ T + 3.2611. (44)

It should be mentioned that the hard-core repulsion coefficient
eMeCN was determined to be nearly 10, confirming our understand-
ing that eMeCN is a molecular-dependent coefficient, but it does not
vary strictly with temperature or density for the same molecular
system. Notably, this exponent value is smaller compared to that of
methanol (15) or the LJ liquid (15).101 This lower eMeCN value can
be attributed to the single-site representation of the CG acetonitrile
model, which significantly deviates from a spherical description due
to the presence of a strong C≡N triple bond. This deviation results
in a less repulsive exponent. As a potential avenue for further explo-
ration, it would be valuable to establish a connection between the
hard-core repulsive characteristics and molecular nature, e.g., the
shape and topology of the molecule.

Next, we seek to determine the equation of state governing the
strength of the collective solvation interactions, kMeCN, as a function
of temperature: kMeCN(ρ,T) = kMeCN,α ⋅ ρ + kMeCN,β(T). Figure 8(b)
shows that the linearly varying behavior is exhibited in acetonitrile
as

kMeCN(ρ,T) = 28.245 ⋅ ρ + kMeCN,β, (45a)

kMeCN,β = 8.5692 × 10
−3
⋅ T − 22.56. (45b)

Based on the parametrized dMeCN and kMeCN functionals, aMeCN is
described as

aMeCN(ρ,T) = −4.078 × 10−1 ⋅ ρ + aMeCN,β, (46a)

aMeCN,β = 3.6155 × 10
−3
⋅ T − 2.5537 × 10−2. (46b)

Figure 9 illustrates the parametrization details for the remain-
ing variables. In Fig. 9(a), gMeCN still exhibits a linear dependence on
density as

gMeCN(ρ,T) = 9.4940 ⋅ ρ + gMeCN,β, (47a)

gMeCN,β = 1.9600 × 10
−3T − 1.5830, (47b)

but we noticed that fMeCN, hMeCN, and cMeCN demonstrate
temperature-independent behavior unlike gMeCN. While we see
some minor deviations from the linear trend, it is worth noting that
the fluctuations of fMeCN,hMeCN, and cMeCN are relatively smaller
than those of the other variables: typically the variances are on the
scale of 0.1 kcal/mol and 0.2 Å. These deviations may be due to
statistical errors resulting from force-matching or the pairwise
approximation. Thus, it is reasonable to fit the averaged data
obtained from 275 to 375 K as a function of the bulk density,
resulting in
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FIG. 8. Determination of the equations of state describing the parametrized d, k, and a variables for the Gaussian CG model. (a) Hard-core repulsive diameter at different
temperatures from 250 K (red) to 375 K (navy). Interaction strengths at different temperatures and densities for (b) the collective solvation term and (c) the short-range
repulsive Gaussian.

FIG. 9. Determination of the equations of state for the remaining variables (g, f , h, c) of the Gaussian CG acetone. (a) and (b) Local minima of the attractive long-range
Gaussians as a function of temperature and density. (b) Interaction magnitudes for the long-range attractive Gaussian interaction as a function of density. (c) and (d) Average
behavior of interaction widths of the short-range and long-range Gaussians for different state points. Coloring schemes are the same as for the previous figures.

fMeCN(ρ) = 4.8701 × 10−1 ⋅ ρ − 3.0179 × 10−1, (48a)

hMeCN = 0.6131, (48b)

cMeCN = 0.6697. (48c)

Altogether, we arrive at the Gaussian parametrized model for
the acetonitrile system:

UMeCN(R) = aMeCN(ρ,T) exp(−
(R − 3.8)2

0.66972
) + (

dMeCN(ρ,T)
R

)

10

− fMeCN(ρ) exp(−
(R − gMeCN(ρ,T))2

0.61312
)

+ kMeCN(ρ,T) exp(−
R2

15
). (49)
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E. Transferability: Thermodynamic state points
1. Methanol

Using Eq. (42), Fig. 10 compares the MS-CG interactions with
the simplified CG equations of state based on the parametrized data
for bulk methanol at different temperature and density conditions.
Figure 10 shows one specific bulk density per temperature for clar-
ity, illustrating themost drastic changes along the system conditions,
i.e., 41.7 Å at 300 K, 41.5 Å at 325 K, 41.3 Å at 350 K, 41.1 Å at 375 K,
41.0 Å at 400 K, and 40.9 Å at 425 K. As mentioned earlier, bottom-
up CG interactions undergo a continuous yet ambiguous change
when varying the system conditions. The simplified Gaussian rep-
resentation can faithfully modulate the PMF in response to these
system variables. The double-well shape at 300 K and 41.7 Å trans-
forms into a shouldered well at 375 K and 41.1 Å and finally becomes
a double-shouldered shape at 425 K and 40.9 Å. We note that our
models ignore interactions at long ranges (R > 8 Å) by design, yet the
deviations among interactions within this region remain relatively
minor. In turn, our parametrized model shows the capability of cap-
turing the local interactions up to the second coordination shell. We
acknowledge that these differences beyond the third coordination
shell could potentially affect pressures and compressibilities at the
CG level. However, it is worth noting that this issue could be ame-
liorated by introducing additional Gaussian basis functions beyond
the third coordination shell. To comprehensively address this issue,
we plan to conduct a systematic investigation into the optimal num-

ber of basis sets and their impact on the thermodynamic properties
of CG models in a forthcoming study.

To assess the performance of the simplified equations of state,
we performed additional CG simulations using the simplified inter-
actions depicted in Fig. 10 and computed the RDFs obtained from
the Gaussian representation, as shown in Fig. 11 (complete RDF val-
ues are provided in the supplementary material). As expected, the
Gaussian representation accurately captures the structural changes
in the liquid phase with high transferability, consistent with the
agreement observed in the CG PMFs. While some deviations in
the RDFs exhibit numerical instability during the parametrization,
e.g., the second attractive Gaussian at higher temperatures, these
deviations become relatively smaller as temperature increases. To
summarize, our generalized description of the CG interaction in
terms of system variables can correctly capture the locations and
magnitudes of structural correlations.

2. Acetonitrile
Similarly, we generated the Gaussian representation for CG

acetonitrile models using the parametrized equations of state,
Eqs. (44)–(48), spanning from 250 to 375 K (see Fig. 12). In this case,
we chose the following sets of the system conditions: 45.9 Å at 250 K,
45.8 Å at 275 K, 45.7 Å at 300 K, 45.6 Å at 325 K, 45.5 Å at 350 K,
and 45.4 Å at 375 K. The Gaussian model reproduces these trends
up to the second coordination shell with great precision.

FIG. 10. Transferability analysis of the Gaussian representation by comparing the effective CG methanol potentials (dashed lines) with the reference MS-CG potentials (solid
lines) over various thermodynamic state points: (a) 300 K and 41.7 Å, (b) 325 K and 41.5 Å, (c) 350 K and 41.3 Å, (d) 375 K and 41.1 Å, (e) 400 K and 41.0 Å, and (f) 425 K
and 40.9 Å.

J. Chem. Phys. 159, 184105 (2023); doi: 10.1063/5.0160567 159, 184105-15

Published under an exclusive license by AIP Publishing

 22 M
ay 2024 14:20:53

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 11. Radial distribution function g(R) of methanol pairs obtained from the CG simulations using the interactions plotted in Fig. 10. Each panel corresponds to the same
models and conditions as in Fig. 10: (a) 300 K and 41.7 Å, (b) 325 K and 41.5 Å, (c) 350 K and 41.3 Å, (d) 375 K and 41.1 Å, (e) 400 K and 41.0 Å, and (f) 425 K and 40.9 Å.

Given that interactions at the third coordination shell near 7–10
Å could potentially lead to non-negligible errors, we verified the
accuracy of the Gaussian model by computing the RDF at these con-
ditions. Figure 13 indicates that a third Gaussian is not necessary.
Nevertheless, one possible approach to improve this description
for future study would be to include an additional attractive Gaus-
sian to construct a more accurate Gaussian CG model. Considering
the numerical instability of parametrizing such weak interactions,
another direction would be to employ our two-Gaussian model as
an initial parameter set and then infer the third Gaussian parameter.

To quantitatively evaluate the accuracy of the Gaussian mod-
els, we computed the following error metric L that has been widely
applied in the previous CG modeling works29,170

Δ(g{L}) := ∫
rcut
0 ∣g L

(r) − gtarget(r)∣dr

∫
rcut
0 gtarget(r)dr

. (50)

By definition, Eq. (50) provides a measure of how close the model L
is to the target in terms of the RDFs. Since we only introduced the
Gaussians up to the second coordination shell, we chose g + 1.96 ⋅
h as the rcut value to obtain a 95% confidence interval. Table I(a)
lists the complete error metrics computed among the 60 state points
studied in Figs. 1 and 12.

Table I confirms the transferability of our simplified models,
with an average error of around 4% formethanol and 7% for acetoni-
trile. However, upon comparing the performance of the Gaussian

representation to the reference MS-CG, more pronounced differ-
ences in RDFs (Figs. 11 and 13) are observed compared to those
in the pair interaction profiles (Figs. 10 and 12). Even though it is
known that the RDF is often relatively insensitive to the pair poten-
tial in practice,171,172 in our case, this deviation might be attributed
to the approximative nature of our Gaussian representation with
the pair forces. Specifically, the truncated interaction profile beyond
the third coordination shell and numerical issues in parametrization
lead to distinct pair profiles when compared to the force-matched
reference. Furthermore, the relatively significant errors observed for
certain system conditions suggest a numerical challenge in accu-
rately partitioning the CG interaction into its sub-interactions. To
address this, a more robust numerical parametrization scheme can
be designed with this condition as an initial target.173 Progress in this
work is currently underway.

3. Transferability to non-parametrized state points
Having established the accuracy of the Gaussian representa-

tion, we now investigate the transferability beyond the parametrized
dataset. Even though we have observed gradual changes in the
parameters during the optimization process, it remained unclear
whether the parametrized models could accurately describe sys-
tems at unknown thermodynamic conditions. In order to provide a
comprehensive analysis, we report the transferability outside of the
dataset by extrapolating the previously parametrized Gaussian mod-
els for methanol. We performed two different extrapolations: (1) to
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FIG. 12. Transferability analysis of the Gaussian representation by comparing the effective CG acetonitrile potentials (dashed lines) with the reference MS-CG potentials
(solid lines) over various thermodynamic state points: (a) 250 K and 45.9 Å, (b) 275 K and 45.8 Å, (c) 300 K and 45.7 Å, (d) 325 K and 45.6 Å, (e) 350 K and 45.5 Å, and (f)
375 K and 45.4 Å.

lower temperatures ranging from 225 to 275 K, and (2) to lower
densities (larger box lengths) ranging from 41.8 to 42.4 Å.

Notably, Fig. 14 shows an excellent recapitulation of the pair-
wise CG PMF at the non-parametrized state points. Previously,
temperature transferability has been achieved mainly under fixed
volume26,161,174 with limited pressure transferability,29,43,175 since the
CG PMFs become the Helmholtz free energy ΔA(R), and then the
entropic contributions −TΔS(R) can be adjusted accordingly. Our
framework greatly enhances the extensibility of the CG model to
different temperatures and pressures without such strict limitations.
Hence, we believe that this approach paves the way for the design of
transferable CG models under any system conditions. Yet, further
studies should aim to investigate the variation of the parameters
and equations of state across different molecular systems as well as
to develop a generalized design principle for any CG system. Such
an effort can facilitate the construction of a database of bottom-up
CG interactions with improved transferability.

F. System transferability: Combining rules
for Gaussian representation
1. Remarks on system transferability

In the previous sections, we have demonstrated the trans-
ferability of the Gaussian-based CG model and its corresponding
equations of state to different state points. Yet, another direction

of transferability is extending the applicability of the given model
to different system compositions. We refer to this type of transfer-
ability as “system transferability.” Unlike state point transferability,
achieving system transferability is much more challenging due to
the need for a careful design of the combined interactions between
more than two different CG sites, also known as “cross-interactions.”
Because effective CG interactions are expressed as the many-body
PMF, it is likely impossible to precisely determine the combined
interaction via a bottom-up combining rule. However, in recent
years, certain methodologies have been partially successful in this
regard.26,30,46,47,176 In recent work, we aimed to derive the combined
interactions between methanol and chloroform in mixed solution
based on the interaction profiles from the liquids in their bulk
phases.26 We were able to approximate the combined CG interac-
tions by capturing necessary structural correlations, but this attempt
was only made possible by projecting the effective CG energy func-
tional into the Gay–Berne potential form177,178 and then combining
them using rod-sphere energetics.179,180 This approach, thus, is not
extensible to any systems with different interaction forms other than
the Gay–Berne interaction, resulting in limited applicability. The
alternative theory that we recently developed107 was to introduce the
appropriate collective variables to decompose CG interactions into
a combination of different conformational basins, e.g., using ultra-
coarse-graining theory29,45,47,106,108 or multi-configurational coarse-
graining,181 and predicted the cross-interaction akin to quantum
mechanical approaches treating coupled states.182 However, imple-
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FIG. 13. Radial distribution function g(R) of acetonitrile pairs obtained from the CG simulations using the interactions plotted in Fig. 12. Each panel corresponds to the same
models and conditions as in Fig. 12: (a) 250 K and 45.9 Å, (b) 275 K and 45.8 Å, (c) 300 K and 45.7 Å, (d) 325 K and 45.6 Å, (e) 350 K and 45.5 Å, and (f) 375 K and 45.4 Å.

menting this approach in complex systems can be challenging since
it requires an additional collective variable to distinguish between
different configurations.10

On the other hand, by decomposing the CG interactions of the
bulk phases in terms of the Gaussian basis functions, it is conceiv-
able that one could combine each sub-interaction consisting of the
overall CG interactions. Since the Gaussian function is described
by its mean and variance, combining the Gaussian interactions can
be more intuitive than devising a complex combining rule for the
high-dimensional PMFs fromfirst principles. Once wemix the inter-
actions between two different Gaussian sub-interactions, we can
construct the overall cross-interaction by combining these mixed
sub-interactions.

With this in mind, we propose here a novel combining rule
based on the Gaussian sub-interactions in this section. We first val-
idate our approach by applying it to the LJ system, for which the
combining rules are well-known by Lorentz and Berthelot.183,184

After comparing our approach to the mixed interaction from the
Lorentz–Berthelot rule, we extend it to the mixed CG liquid system:
methanol-acetonitrile mixture.

2. LJ system
In order to test the fidelity of the proposed combining rule, we

consider the following two LJ systems, where the particles interact
via 6–12 LJ interactions with the interaction parameter of σ1 = 4.0 Å,
ϵ1 = 0.20 kcal/mol for the first system (“weaker” LJ system) and
σ2 = 4.0 Å, ϵ2 = 0.36 kcal/mol for the second system (“stronger” LJ

system). From the standard Lorentz–Berthelot combining rule,183,184

their mixed interaction parameter is readily obtained as

σ1−2 = (
σ1 + σ2

2
) = 4.0 Å, (51a)

ϵ1−2 =
√
ϵ1ϵ2 = 0.2683 kcal/mol. (51b)

We now demonstrate that the Gaussian parametrization strat-
egy can be utilized to derive the conventional mixed interaction of
simple LJ systems [Eq. (51)] in a similar way. Since the single LJ
interaction has one attractive well, we only consider the attractive
Gaussian with the hard sphere-like repulsion term:

ULJ(R) = (
dLJ
R
)

eLJ
− fLJ exp(−

(R − gLJ)2

h2LJ
). (52)

While, in principle, it is possible to determine the dLJ, eLJ, fLJ, gLJ,
and hLJ parameters directly using the same procedures as for the
CG liquid systems, in order to ensure numerical stability of the
parametrization process, we first estimate the effective hard sphere
diameter term dLJ using classical perturbation theory. This addi-
tional step helps eliminate any extra degeneracies in the parameter
space. Following our recent work on mapping CG systems to effec-
tive hard spheres,63–65 we estimate the Barker–Henderson diameter
σBH directly from the interaction profile58,59 using

σBH = ∫
R0

0
[1 − exp (−βU(R))]dR. (53)
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TABLE I. Error metric percentage 100 × Δ(g{L}) from Eq. (50) using the RDF at various temperatures for the CG liquid models: (a) Methanol and (b) Acetonitrile.

(a) Methanol

Temp

Box length

40.9 Å 41.0 Å 41.1 Å 41.2 Å 41.3 Å 41.4 Å 41.5 Å 41.6 Å 41.7 Å

300 K 4.38 4.51 4.67 4.84 5.12 5.33 5.44 5.52 5.52
325 K 4.22 4.22 4.25 4.35 4.55 4.68 4.80 4.82 4.82
350 K 4.41 4.23 4.15 4.09 4.03 4.14 4.19 4.20 4.20
375 K 4.57 4.38 4.20 4.07 3.90 3.89 3.73 3.69 3.69
400 K 4.72 4.59 4.35 4.14 3.95 3.77 3.62 3.46 3.46
425 K 4.82 4.56 4.33 4.09 3.93 3.73 3.47 3.33 3.33

(b) Acetonitrile

Temp

Box length

45.4 Å 45.5 Å 45.6 Å 45.7 Å 45.8 Å 45.9 Å 46.0 Å 46.1 Å

250 K 8.20 7.92 7.52 7.14 6.67 6.21 5.73 5.36
275 K 8.06 7.78 7.35 7.02 6.58 6.19 5.81 5.48
300 K 8.07 7.74 7.36 7.00 6.64 6.20 5.86 5.51
325 K 8.15 7.82 7.47 7.07 6.68 6.27 5.89 5.54
350 K 8.35 8.08 7.72 7.30 6.88 6.51 6.12 5.76
375 K 8.47 8.19 7.83 7.47 7.02 6.68 6.23 5.83

In Ref. 64, we demonstrated that σBH could effectively capture the
repulsive region in relatively soft molecules, e.g., water. At 300 K,
Eq. (53) gives 3.741 Å for the weaker LJ system and 3.811 Å for the
stronger LJ system. The values obtained were used to parametrize
Eq. (52), resulting in the following Gaussian representation for LJ
interactions in units of kcal/mol as

U1−1
LJ (R) = (

3.741
R(Å)

)

14.06

− 0.3856 exp(−
(R − 3.529)2

3.091(Å 2
)
), (54a)

U2−2
LJ (R) = (

3.811
R(Å)

)

16.17

− 0.4282 exp(−
(R − 4.462)2

1.281(Å 2
)
). (54b)

To obtain the combined LJ 1–2 interaction U1−2
LJ (R) by mix-

ing U1−1
LJ and U2−2

LJ , we need to consider the hard sphere-like
repulsion term as well as the Gaussian interaction. For the hard
sphere-like contribution, it is reasonable to approximate d1−2LJ as
the arithmetic mean of d1−1LJ and d2−2LJ , as done previously for
constructing a hard sphere mixture system.185 For the combined
Gaussian interactions, we utilized the combining rule suggested by
the Gaussian core model for designing binary mixtures,83 where
the strength follows the geometric average and the width fol-
lows the arithmetic average. Since the intensity of the Gaussian
functions is in units of interaction strength, the magnitude of
the combined sub-interaction between Gaussian sub-interactions

− f 1−1LJ exp(−
(R−g1−1LJ )

2

(h1−1LJ )
2 ) and− f 2−2LJ exp(−

(R−g2−2LJ )
2

(h2−2LJ )
2 )will also follow

the geometric average, and the mean of combined interaction can be
regarded as their geometric average of

f 1−2LJ :=
√

f 1−1LJ f 2−2LJ . (55)

Similarly, the characteristic lengths appearing in Gaussians g1−2LJ and
h1−2LJ are also designed to be consistent with the Gaussian core model
as

g1−2LJ :=
g1−1LJ + g

2−2
LJ

2
, (56a)

(h1−2LJ )
2
=
(h1−1LJ )

2
+ (h2−2LJ )

2

2
. (56b)

Finally, we arrive at the combined interaction of the form:

U1−2
LJ (R) = (

3.776
R(Å)

)

15.12

− 0.4063 exp(−
(R − 4.000)2

2.186(Å 2
)
). (57)

Remarkably, the final Eq. (57) is almost identical to the reference
potential given by the Lorentz–Berthelot combining rule, as shown
in Fig. 15(b). We further corroborated the fidelity of the new com-
bining rule by performing LJ simulations. The LJ system consisted
of 216 particles with 108 weaker and 108 stronger particles, and we
used a cubic simulation box (26.25 × 26.25 × 26.25 Å3) to ensure
a liquid phase. The initial configuration was randomized at a lat-
tice with a spacing of 4.25 Å, and consequently we performed the
LJ simulation for 2.5 ns. The final structural correlation from the
cross-interaction is illustrated in Fig. 15(c) by computing the
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FIG. 14. Validating the transferability of the Gaussian model by extrapolating to thermodynamic state points beyond the parametrized conditions. Two types of extrapolation
were considered: non-parametrized lower temperature conditions for (a) 225 K, (b) 250 K, (c) 275 K and lower density conditions for (d) 42.0 Å, (e) 42.2 Å, (f) 42.4 Å.

RDF between the weaker and stronger particles, showing excel-
lent agreement with the well-known Lorentz–Berthelot combined
model.183,184

Despite the close agreement, the RDF shown in Fig. 15(c) sug-
gests the parametrized interaction form based on Eq. (52) slightly
underestimates the effective hard sphere diameter for the target
LJ system. This observation aligns with the computed dLJ values
for 1–1, 2–2, and 1–2 pairs, which are 3.741, 3.811, and 3.776 Å,
respectively, all smaller than the reference σ = 4.0 Å. Generally, the
relative magnitude of the effective hard sphere diameter obtained
through hard sphere mapping, when compared to the reference
LJ liquid, varies across different reduced temperatures and den-
sities. The temperature and density dependence of the effective
hard sphere diameter for LJ potential parameters was extensively
investigated by Ben-Amotz and Herschbach.186 In Ref. 186, they
reported the hard sphere diameters for the LJ potential as a func-
tion of reduced temperatures at ρ∗ = 0.7. Our system condition,
ρ∗LJ = ρσ

3
= 0.76, is proximate to the reported reduced density. Since

our system is a mixture with different ϵ values, estimating the
reduced temperature is not straightforward, but it should lie between
T∗1 = kBT/ϵ1 = 2.98 and T

∗
2 = kBT/ϵ2 = 1.66. From Fig. 7 in Ref. 186,

the Barker–Henderson approach, based on Eq. (53), is expected to
yield a hard sphere diameter smaller than the reference LJ value,
i.e., σ∗ = σ/σLJ < 1. This also explains why our method slightly
underestimates the effective hard sphere diameters for the mixture
system.

While this conventional treatment utilizing Eq. (52) reason-
ably estimates the size of LJ particles, we would like to high-
light a systematic method that could be considered for the future
enhancement of our approach. One potential direction is to incor-
porate the entire contribution of the repulsive forces from the
LJ interaction, which is not completely addressed by the con-
ventional Barker–Henderson treatment. Specifically, the hybrid
Barker–Henderson (hBH) approximation187 employs a decomposi-
tion scheme akin to the Weeks–Chandler–Andersen approach,60–62

enabling the decomposition of the interaction U(R) as

U∗(R) =
⎧⎪⎪
⎨
⎪⎪⎩

U(R) + ϵ, (R < σm)
0, (R > σm)

, (58)

where σm = 21/6σ represents the distance at which U(R) attains its
minimum value. Note that Eq. (58) divides U∗(R) in a manner akin
to the Weeks–Chandler–Andersen theory60–62 at distances larger
than σ, and then the final effective hard sphere diameter is estimated
by integrating the modified Barker–Henderson integrand up to σm,
i.e.,

σhBH = ∫
σm

0
[1 − exp (−βU∗(R))]dR. (59)

Given that the integration range in Eq. (59), spanning
from R = 0 to R = σm, is larger than that of the conventional
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FIG. 15. Generalized combining rule for the Gaussian representation of the LJ interactions. (a) Final snapshot (configuration) of the LJ mixture composed of weaker (type
1, teal) and stronger (type 2, pink) LJ particles. (b) LJ interactions of the combined weaker-stronger cross-interaction interpolated using the reference Lorentz–Berthelot rule
(teal solid line) and the proposed combining rule (red dashed line). (c) Structural cross-correlations using the RDF for weaker-stronger pairs from simulating interactions
shown in panel (b) to the system in panel (a).

Barker–Henderson approach, Eqs. (58) and (59) are expected to cor-
rect the underestimated σBH187 observed in Fig. 15(c) and further
improve the combining rule presented in this section.188

3. Methanol–acetonitrile mixture
Motivated by the success of the new combining rule for accu-

rately predicting the behavior of LJ liquid mixtures, we then aimed
to extend its application to more complex CG interactions in liquid
mixtures. A heterogeneous liquid mixture was prepared by placing
500methanol and 500 acetonitrile molecules in a cubic box. This ini-
tial configuration was generated using the Packmol155 and VMD156

programs, following the same settings used for the bulk simulations.
Energy minimization was performed on the initial configuration
to eliminate artificial stress on the system. Next, the system was
annealed to the target temperature of 300 K for 0.1 ns under the
constant NVT dynamics using the Nosé–Hoover thermostat157,158

with τNVT = 0.1 ps. The system volume was then equilibrated at 1
atm using Andersen barostat189 with τNPT = 0.1 ps for 1 ns, giving
an equilibrated system box length of 43.739 Å. Finally, the FG tra-
jectory for the CG parametrization was generated under constant
NVT dynamics for 2.5 ns using the same thermostat setting. The
final configuration at the FG level is shown in Fig. 16(a), along with
its corresponding mapped CG system in Fig. 16(b).

In order to transfer the bulk methanol and acetonitrile inter-
actions to the mixed phase, we started by constructing the self-
interactions for methanol–methanol and acetonitrile–acetonitrile.
The bulk density for each species was carefully adjusted by con-
sidering an excess volume term. It is known that for liquids, the
excess volume in a mixture can either be larger (repulsively mix-
ing) or smaller (attractively mixing) depending on the nature of
their cross-interactions. In our case, the mixed volume term was
estimated using the naïve bulk volume per molecule (or partial vol-
ume), Vu, of each species. For methanol, the naïve bulk volume per
molecule was calculated as

VMeOH
u =

VMeOH
bulk

Nbulk
= 69.748 Å 3

/molecule. (60)

Similarly, we obtain VMeCN
u = 96.058 Å 3

/molecule. The mixing
volume in this methanol/acetonitrile mixture system can then be
readily calculated as

Vex = Vmixture − (NMeOHVMeOH
u +NMeCNVMeCN

u ) = 771.499 Å 3.
(61)

The non-zero value of Vex indicates that changes in the effective
volume of liquid molecules due to mixing must be considered to
accurately account for the densities of each species in the mixture.
As our mixture has an equal number of species, i.e., χMeOH = χMeCN
= 0.5, we assume that this excess volume effect contributes equally to
each liquid. By using the corrected volume, we arrive at the overall
densities

ρMeOH
=

mMeOH

NMeOHVMeOH
u + χMeOHVex

= 0.7383 g ⋅cm−3, (62a)

ρMeCN
=

mMeCN

NMeCNVMeCN
u + χMeCNVex

= 0.6930 g ⋅cm−3, (62b)

for methanol and acetonitrile, respectively. Plugging in χMeOH and
χMeCN as 0.5 into Eqs. (62a) and (62b) at a temperature of 300 K
results in the reduced interaction forms shown in Figs. 17(a)–17(c).
We note that if we use the naïve bulk volume for each species
NMeOHVMeOH

u and NMeCNVMeCN
u , we obtain a CG PMF that is signif-

icantly more deviated, underscoring the importance of considering
the effect of excess volume.

In Fig. 17, we assumed that each liquid in the mixture would
behave identically to its bulk phase when borrowing the Gaussian
representation from bulk liquids. This assumption may be strong
since there is a cooperative correlation between the two molecules
in the mixture; however, our hypothesis yields fairly reasonable
CG interactions compared to the reference CG interactions in the
mixture from MS-CG. The self-interactions shown in Figs. 17(a)
and 17(b) agree with the reference MS-CG potentials and capture
their shape accordingly. When comparing with the MS-CG poten-
tial as a reference, we would like to emphasize that the MS-CG
interactions used here to parametrize the Gaussian representation
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FIG. 16. Two-component CG liquid mixtures constructed by combining the CG methanol (red bead) and the CG acetonitrile (sky blue bead). (a) The final FG configuration of
the generated liquid mixtures after the constant NVT simulation. (b) CG trajectories from panel (a) by manually mapping each molecule to its center of mass.

FIG. 17. Assessment of the system transferability for CG models in liquid mixtures using the developed combining rule [Eqs. (62)–(64)]. Panels (a)–(c) compare the effective
CG interactions of the CG pairs, and panels (d)–(e) juxtapose the RDFs computed from the corresponding CG simulations. (a) and (d): Methanol–methanol pairs from the
reference MS-CG (yellow solid) and the Gaussian (purple dashed) models. (b) and (e): Acetonitrile–acetonitrile pairs from the reference MS-CG (blue solid) and the Gaussian
(red dashed). (c) and (f): Methanol–acetonitrile cross-pairs from the reference MS-CG (green solid) and the Gaussian (red dashed).

accurately reflect the structures of the liquid mixture, as shown in
Appendix B, where the CG simulations precisely recapitulate the
atomistic structural correlation from the atomistic MD simulation.

Designing the cross-interaction between methanol and ace-
tonitrile is significantly more challenging than the self-interactions
because there is no rigorous way to infer it from self-interactions.
Nonetheless, we attempt to derive the cross-interaction by extend-
ing our argument from the simple LJ system. Since both liquids
have the same number of Gaussian basis functions due to their
similar coordination profiles, we can envision that the mixed inter-
actions can be constructed by combining the Gaussians at the

same coordination shells. Since each sub-interaction can be sepa-
rated, we assume that there is no correlation between the Gaussians
located at different coordination shells, similar to counting the local
cross-density function.104,190 Then, the combined Gaussian between
ϵ1−1i N(μ1−1i , (σ1−1i )

2
) and ϵ2−2i N(μ2−2i , (σ2−2i )

2
) at the same {Ri}i

interval can be defined as

ϵ1−2i N(μ1−2i , (σ1−2i )
2
) :=
√

ϵ1−1i ϵ2−2i N
⎛

⎝

μ1−1i +μ2−2i

2
,
(σ1−1i )

2
+(σ2−2i )

2

2
⎞

⎠
.

(63)
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For the collective solvation interactions from higher-order correla-
tions, we use the arithmetic average of the interaction strength, k,
since the magnitude of the mean-field collective interactions should
correspond to their mesoscopic densities.

Combined together, our description of the reduced representa-
tion of the cross-interaction is summarized as

U1−2
(R) = [

(d1−1 + d2−2)/2
R

]

e1−1+e2−2
2

+∑
i

√

ϵ1−1i ϵ2−2i N
⎛

⎝

μ1−1i + μ2−2i

2
,
(σ1−1i )

2
+ (σ2−2i )

2

2
⎞

⎠

+
k1−1 + k2−2

2
exp(−

R2

l2
). (64)

Figure 17(c) compares the suggested cross-interactions, using
Eq. (64), with the reference MS-CG from the mixture. Despite a
slight mismatch at 3–4 Å, our Gaussian combining approach is able
to reproduce the general shape of the interaction profile. Notably,
the short-range and long-range behaviors at R < 3.5 Å and R > 6 Å
are in excellent agreement, indicating the high fidelity of our
proposed combining rule.

To evaluate the performance of the combined model, we com-
puted the RDF of the mixture and compared it with the MS-CG
models that were directly parametrized from the mixture. The struc-
tural correlation displayed by the cross-interaction, as illustrated
in Fig. 17(e), is more similar to the acetonitrile-acetonitrile self-
interaction than the methanol–methanol. This particular feature is
challenging to predict when designing the cross-interaction solely
as an average of self-interactions. However, our proposed combined
interactions can reasonably capture the overall cross-correlation
profile, exhibiting good agreement, reproducing the local minima
and maxima, and accurately describing the long-range behavior.
There is room for systematic improvement of our combining rule
by incorporating additional Gaussian basis sets for bulk interactions
and employing an improved scheme to determine the hard-core
distance.

IV. CONCLUDING REMARKS
Although bottom-up coarse-grained (CG) models can repro-

duce structural correlations with much less computational cost,
their interactions are high-dimensional quantities that can only be
determined from a specific fine-grained (FG) system. Therefore,
accurately estimating CG interactions under unknown conditions
is often not feasible. Additionally, unlike FG simulations or other
top-down models, constructing cross-interactions between different
CG entities presents a major challenge as there is no simple analyti-
cal functional form underlying the bottom-up CG interactions. This
paper proposes a novel parametrization method for understanding
the complex nature of the many-body CG interactions.

Our theory, inspired by classical liquid state perturbation the-
ory, allows us to decouple the hard sphere repulsion term at short
distances and perturbative interactions at long-range distances.
In order to describe the long-range interactions, we introduced
the Gaussian function as a basis, since each localized interaction
gives rise to local densities that can be effectively separated from
each other. Figure 18 schematically depicts this concept. The final

form of the simplified interaction consists of several Gaussian sub-
interactions, along with the hard-core repulsion (inverse power law),
and the collective solvation interaction terms that account for the
mesoscopic repulsive interactions, which are derived from com-
bining the Yvon–Born–Green equation with the Ornstein–Zernike
integral equation. However, even when using two Gaussian func-
tions with additional interactions, this functional representation
requires ten parameters to be determined.

The goal of the proposed parametrization scheme for Gaussian
basis functions is twofold, since each sub-interaction is related to
the structural profile and density at a localized distance interval. The
first goal is to determine the parameter values for each state point
of the system, while the next goal is to infer a simple set of equa-
tions of state that can provide a more generalized description of
how these interactions will change under different thermodynamic
state points. To achieve this, we designed a sequential parametriza-
tion scheme that determines the largely varying parameter first by
separating each interaction based on the CG PMF profile obtained
by force-matching. We then confirmed that these parameters fol-
low a simple linear relationship with temperature or density. Using
the systematically parametrized equations of state, we successfully
interpolated the interactions within the parametrized state points
and extrapolated them outside the dataset. For both cases, we accu-
rately reproduced the CG PMFs and the corresponding pair corre-
lations in good agreement with the reference, supporting the high
transferability of these reduced models.

We expanded our transferability analysis by predicting the
cross-interaction between two CG sites in a multi-component mix-
ture. Drawing on previous studies on combining rules for hard
spheres and the Gaussian core models,83,185 we developed a gener-
alized combining rule for two different Gaussian-represented CG
models. Because of the Gaussian nature of basis sets, the pro-
posed combining rule separately mixes each sub-interaction and
then recombines them. By applying the proposed combining rule to
a simple LJ and then a methanol–acetonitrile mixture, we were able

FIG. 18. Schematic illustrating the use of local Gaussian basis sets to describe CG
liquid interactions.
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to approximate the CG PMFs in different chemical environments.
This achievement addresses a significant bottleneck in the field of
bottom-up CG modeling.

In conclusion, our study provides a promising approach to
enhance the accuracy and transferability of bottom-up CG mod-
els. We note that the presented parametrization protocol serves
as an initial step in this direction to thoroughly address these
challenges. As algorithmic development improves in being able to
parametrize these variables, it is expected that further progress can
be achieved in the overall performance of the simplified model.
One important direction is to understand the physical nature of the
equations of state for CG interactions. While we employed simple
polynomial and exponential functional forms derived from phys-
ical principles, further studies in this direction should focus on
elucidating the microscopic origins of these functional forms and
deriving them from the bottom-up methodology. Addressing these
areas would resolve any remaining uncertainties regarding the trans-
ferability problem. Another interesting direction is to examine how
the devised combining rule would work for different CG systems
with distinct coordination profiles. We chose methanol and acetoni-
trile as prototypical systems, where these molecules share a similar
molecular structure. The remaining question is how to combine
Gaussian basis sets that range over different distances, which will be
of considerable interest for complex systems such as biomolecules or
material systems. Investigating these avenues of research will pro-
vide deeper insight into the design of bottom-up CG models and
pave the way for more accurate and efficient simulations of complex
systems at varying spatiotemporal scales.

SUPPLEMENTARY MATERIAL

See the supplementary material for a complete description of
the interpolated Gaussian CG interactions of methanol and acetoni-
trile, including the corresponding RDFs in comparison with those
obtained by the MS-CG references for the range of thermodynamic
state points analyzed in this study.
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APPENDIX A: DERIVATION OF EQ. (15)

Starting from Eq. (5), we can express the local density ρI as

ρI(R) =
4πρ
VR
{∑

i
∫

Ri

Ri−1

r′2g(r′)dr′}. (A1)

Equation (A1) can be further expressed using the reversible work
theorem [Eq. (6)], resulting in

ρI(R) =
4πρ
VR
{∑

i
∫

Ri

Ri−1

r′2 exp [−βU2(r′)]dr′}. (A2)

Now, considering the perturbative treatment of the PPMF, we can
decompose U2(r′) into U′2(r

′
) and UHS(r′). Additionally, it is

reasonable to assume that UHS(r′) = 0 in the region between Ri−1
and Ri due to the short-ranged and highly repulsive characteristics
of UHS(r′). Therefore, we arrive at

ρI(R) =
4πρ
VR
{∑

i
∫

Ri

Ri−1

r′2 exp [−βU′2(r
′
)]dr′}. (A3)

By introducing Gaussian basis sets, U′2(r
′
) can be expressed as a

sum of Gaussian sub-interactions [Eq. (14)], yielding the following
expression for the local density

ρI(R) =
4πρ
VR
{∑

i
∫

Ri

Ri−1

r′2 exp [−β∑
i
ϵiN(μi, σ2i )]dr

′
}, (A4)

which corresponds to Eq. (15).

APPENDIX B: METHANOL–ACETONITRILE MIXTURE

Figure 19 compares the RDFs from the atomistic simulation
with that from the CG simulations using the MS-CG potentials
displayed in Figs. 17(a)–17(c). Remarkably, the radial distributions
obtained from these distinct atomistic and CG simulations exhibit
close agreement, underscoring the accuracy of the MS-CG model
as a faithful representation of the multi-component liquid mix-
ture. This reaffirms the suitability of these MS-CG interactions
as a reliable reference for the parametriziation of the Gaussian
representation.
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FIG. 19. Intermolecular RDF g(R) acquired from the methanol-acetonitrile mixture: (a) Methanol–methanol pair. (b) Acetonitrile-acetonitrile pair. (c) Methanol–acetonitrile
pair. Note that the atomistic RDFs are represented by solid lines, whereas the MS-CG RDFs are indicated by dashed lines.
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