

1 Bacterial Spores Respond to Humidity Similarly 2 to Hydrogels

3 **6 Gennady Y. Gor^{a,b,1}, George W. Scherer^c, and Howard A. Stone^b**

4 This is a draft version, the final version is available at www.pnas.org/cgi/doi/10.1073/pnas.2320763121

5
10 **Bacterial spores have outstanding properties from the materials science perspective, which**
11 **allow them to survive extreme environmental conditions. Recent work by Harrellson et**
12 **al. [Nature 619, 500-505 (2023)] (1) studied the mechanical properties of *Bacillus subtilis***
13 **spores and the evolution of these properties with the change of humidity. The experimental**
14 **measurements were interpreted assuming that the spores behave as water-filled porous**
15 **solids, subjected to hydration forces. Here we revisit their experimental data using literature**
16 **data on vapor sorption on spores and ideas from polymer physics. We demonstrate that**
17 **upon the change of humidity the spores behave like rubber with respect to their swelling,**
18 **elasticity, and relaxation times. This picture is consistent with the knowledge of the**
19 **materials comprising the bacterial cell walls – cross-linked peptidoglycan. Our results**
20 **provide an interpretation of the mechanics of bacterial spores and can help in developing**
21 **novel synthetic materials mimicking the mechanical properties of the spores.**

22
23 Bacterial spores | Hydrogels | Adsorption | Absorption | Swelling

24
25 **B**acterial spores are of interest due to their unique survival capabilities.
26 Understanding their physical properties is valuable for several reasons. On the
27 one hand, there is a demand to be able to kill spores of pathogenic bacteria (e.g.,
28 anthrax). On the other hand, understanding the physical properties that provide
29 outstanding protection can help in creating nature-inspired materials with similar
30 properties. Additional interest in bacterial spores, and in particular their response
31 to water sorption, is driven by the observed significant swelling upon an increase in
32 humidity. Since this response to humidity is fast and reversible, the materials that
33 comprise spores may be promising materials for actuators (2).

34
35 Harrellson et al. studied dormant *Bacillus subtilis* spores from the perspective of
36 materials science (1). They utilized atomic force microscopy (AFM) and cantilever-
37 bending experiments and measured: (i) swelling of spores as a function of relative
38 humidity (RH), (ii) elastic properties of spores at various RH, and (iii) characteristic
39 relaxation times of spores when RH is perturbed, which appeared strongly dependent
40 on the RH (Fig. 1b). Ref. (1) interpreted these measurements assuming the spores
41 are solids, non-porous at dry conditions, and porous when exposed to humidity.
42 The pore widths x were assumed to change from zero at RH = 0 to 1.5 nm at
43 RH = 100% proportionally to the measured linear expansion of the spore. The
44 deformation was assumed driven by the hydration force expressed as $A \exp(-x/\lambda)$,
45 where A and λ are constants. Harrellson et al. showed that the measured relaxation
46 time cannot be rationalized within the framework of classical poroelasticity (3),
47 since agreement between experiment and theory would have required the viscosity of
48 pore water to exceed the viscosity of bulk water by five orders of magnitude. While
49 nanoscale confinement can alter the properties of water, including viscosity (4), five
50 orders of magnitude increase of viscosity does not appear plausible, and suggests
51 possibilities of additional or alternative mechanisms. This Brief Report proposes
52 such a mechanism based on literature data on sorption of water and nitrogen in *B.*
53 *subtilis* spores, as well as on knowledge of the spore composition.

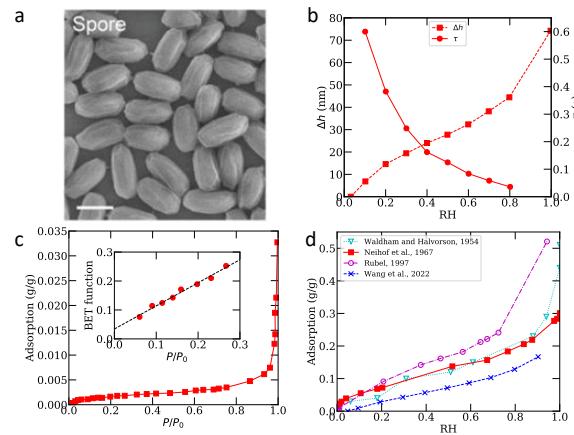
54 Nitrogen adsorption is a standard technique for characterization of nanoporous
55 materials. Nitrogen adsorption isotherms (Fig. 1c) on dry *B. subtilis* spores look
56 similar to isotherms on non-porous solid surfaces (5), consistent with the assumptions
57 made in Ref. (1). The BET (Brunauer–Emmett–Teller) surface area calculated from
58 this isotherm is $5 \text{ m}^2/\text{g}$, which is noticeably lower than for a typical nanoporous
59 material, and comparable to the specific surface area of a non-porous solid the size of
60 a spore. However, adsorption isotherms for water at room temperature on *B. subtilis*
61 spores show qualitatively different behavior (Fig. 1d): the mass of sorbed water
62 exceeds the mass of nitrogen by an order of magnitude and cannot be explained by

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125 G.Y.G., G.W.S. and H.A.S. designed the research, performed the calculations, interpreted the experimental
126 data, wrote and proofered the manuscript.

127 The authors declare no competing interest.

128 ¹To whom correspondence should be addressed. E-mail: gor@njit.edu


125 adsorption on the outer surfaces of the spores. Furthermore,
 126 Neihof et al. (6) provided clear evidence of porosity appearing
 127 in the hydrated state: after the spores were hydrated, water
 128 in the spores was replaced by different solvents, and only
 129 then dried. Nitrogen adsorption on such solvent-replaced
 130 spores showed an order of magnitude higher BET surface
 131 area, $74 \text{ m}^2/\text{g}$ (6). Additional evidence for the appearance
 132 of nanopores of $\sim 2 \text{ nm}$ in size in the hydrated spores comes
 133 from the measurement of diffusion of large molecules through
 134 the spore wall material, peptidoglycan (7).

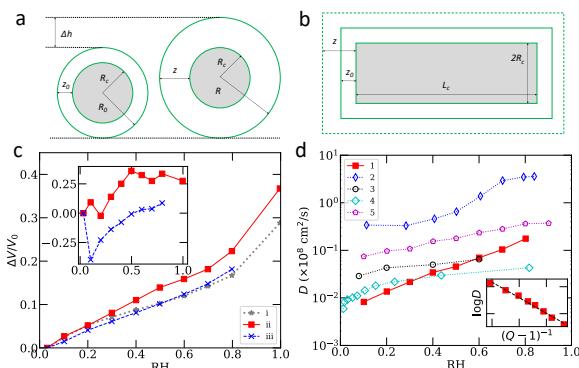
135 Another type of material showing such a change in
 136 behavior is hydrogels. When dry, the solid matrix of a
 137 hydrogel can show no porosity, while the addition of water
 138 leads to penetration (absorption) of water molecules between
 139 the chain-like molecules (free volume) and swelling of the
 140 hydrogel. When hydrogels are dried, the porosity vanishes.
 141 However, if water in a swollen hydrogel is replaced by a
 142 different solvent (e.g., methanol and then carbon dioxide)
 143 and then dried, it is possible to maintain the porous structure,
 144 and form a nanoporous solid structure: a xerogel or an
 145 aerogel. Here we argue that the experimental observations
 146 from Ref. (1) can be explained within the framework of
 147 hydrogels (8): water molecules penetrate between the flexible,
 148 chain-like molecules of the outer layers of the spores. In
 149 particular, we contrast adsorption – a process on a surface
 150 with absorption – a process taking place in the bulk of the
 151 material. While adsorption of vapor in nanoporous solid
 152 materials induces deformation, which can be quantified from
 153 the solvation pressure in the pores, the resulting strains
 154 typically do not exceed 1% (9). Swelling of a polymeric
 155 material as a result of solvent absorption can be quantified
 156 by assuming that a polymer and a solvent form a solution.
 157 The simplest approximation for the swelling can be obtained
 158 from an ideal solution model, i.e., the volume of the swollen
 159 spore V is equal to the sum of the volume of the dry spore V_0
 160 and the volume of the absorbed water V_w . Using the data on
 161 vapor sorption shown in Fig. 1d we can calculate the volume
 162 of absorbed water V_w at various RH and compare it to the
 163 volume change $\Delta V = V - V_0$ based on the change of the
 164 spore height, h , measured in Ref. (1) and geometry shown in
 165 Fig. 2a,b (Fig. 2c and Methods).

166 Results and Discussion

167 We compare different estimates for the relative volume change
 168 $\Delta V/V_0$ of spores as a function of relative humidity (Fig. 2c).
 169 The grey dotted line shows $\Delta V/V_0$ calculated from the
 170 experimentally measured Δh (1). The red solid line shows
 171 V_w/V_0 calculated based on the water sorption isotherm from
 172 Ref. (6), and the blue dashed line shows V_w/V_0 calculated
 173 based on the sorption isotherm from Ref. (2) (see Methods for
 174 details of the calculations). The sorption data from Ref. (2)
 175 gives an almost perfect match with the measured swelling,
 176 while the calculations based on Ref. (6) slightly over-predict
 177 the measured swelling. Note that when calculating the volume
 178 of absorbed water we assumed that its mass density equals
 179 that of bulk water, which is not necessarily the case, especially
 180 at the low loading, owing to pre-existing free volume between
 181 the polymer chains.

182 The rubber-like behavior of hydrated spores is consistent
 183 with what is known about the material comprising the spores'
 184 outer layers – peptidoglycan (PG) (7, 12). PG, similarly

185 **Fig. 1.** The effect of relative humidity on the swelling of spores. (a) SEM micrograph
 186 of *B. subtilis* spores; scale bar 1 μm , reprinted from H. Wang, et al., *Adv. Sci.* 9,
 187 2104697 (2022), Wiley-VCH GmbH. (b) Change of the spore height h and relaxation
 188 times τ as a function of relative humidity (data from (1)). (c) Nitrogen adsorption
 189 isotherm measured on *B. subtilis* spores at 78.15 K from Ref. (5) and a linear fit for
 190 the BET surface area calculations (inset). (d) Water adsorption isotherms on spores
 191 at room temperature. Data from Ref. (2, 6, 10, 11). Note that there is more than an
 192 order of magnitude difference between the mass of nitrogen and water adsorbed.
 193


194 to rubber, has a cross-linked structure and can swell upon
 195 sorption of water, like rubber swelling in organic solvents or
 196 hydrogels swelling in water.

197 Does the physical picture of a swelling hydrogel explain
 198 the other experimental data from Ref. (1), i.e., measured
 199 relaxation times and their evolution with humidity? The
 200 picture proposed here, where the water diffuses into the
 201 polymer network, suggests that the characteristic relaxation
 202 time (Fig. 1b) should correspond to chemical diffusion rather
 203 than the pressure-driven flow. To evaluate the plausibility of
 204 the proposed physical picture we can estimate the diffusion
 205 coefficient of water in spores as

$$206 D \simeq \alpha z^2 / \tau, \quad [1]$$

207 where z is the thickness of the water-permeable layer of
 208 the spore, τ is the relaxation time measured in Ref. (1),
 209 and $\alpha \simeq 0.24$ is the numerical coefficient corresponding
 210 to transient diffusion in a cylindrical annular geometry.
 211 This value, obtained from the solution in Crank (13, p. 84-
 212 86), differs from the value reported in Ref. (1), which was
 213 derived for a planar geometry. The resulting D values as
 214 a function of RH are shown in Fig. 2d, along with the
 215 diffusion coefficients of water in other types of cross-linked
 216 polymers: the commercial hydrogel Hilafilcon A, used for
 217 contact lenses, (14), densely cross-linked epoxy resin (15),
 218 human stratum corneum (16), and Nylon 6,6 (17). For all
 219 polymers, diffusion coefficients change nearly exponentially
 220 with RH. D in spores is ≈ 20 times lower than in a hydrogel,
 221 however the relative change is the same. Water diffusion
 222 coefficients in rubbery polymers are typically of the order
 223 of $10^{-8} \text{ cm}^2/\text{s}$, but in glassy, semicrystalline polymers (e.g.,
 224 Nylon 6,6, and epoxy resin) the diffusion is slower by 1-2
 225 orders of magnitude (17). Slow diffusion in spores is consistent
 226 with that result, as the glass-rubber transition in *B. subtilis*
 227 is observed at 90–115°C (18). The similar value of D in the
 228 outer layer of spores to the D in human stratum corneum
 229

(outer layer of skin) (16) is noteworthy, as both of them perform similar protective functions.

Fig. 2. Comparison of swelling of a spore to hydrogels and other polymeric materials. (a) Schematic of the spore geometry and its change during water absorption: the core remains the same, while the outer layers, cortex and coat, swell; (b) side view. (c) Relative change of the spore volume as a result of water absorption calculated based on the change of the spore height (i), and based on the amount of absorbed water (estimated using sorption data from (6) (ii) and (2) (iii)). The inset shows the relative difference between the data based on the amount absorbed and the measured swelling. (d) Diffusion coefficient of water in various polymer materials as a function of relative humidity: 1 – spores of *B. subtilis* (calculated using Eq. 1, 2) – hydrogel Hilafilcon A (14), 3 – Epoxy resin (15), 4 – human stratum corneum (16), 5 – Nylon 6,6 (17). Inset: dependence of the water diffusion coefficient in spores plotted as function of the volume degree of swelling Q , shown as $\log D$ vs $(Q - 1)^{-1}$.

Sorption induces swelling, which increases the volume, providing the path for more molecules, and resulting in the exponential growth of D . In a simple approximation, $\log D$ changes linearly with $(Q - 1)^{-1}$, where the volume degree of swelling $Q = \Delta V / (V_0 - V_c)$ (19) (V_c is the volume of the core). Fig. 2d (inset) shows that water diffusion coefficients in spores follow this trend.

To conclude, sorption of water induces swelling and change of the relaxation times of bacterial spores, which is not typical for porous solids. However, such behavior is typical for hydrated polymer networks, i.e., hydrogels. This picture is consistent with the knowledge of the materials comprising the bacterial cell walls – cross-linked peptidoglycan. Our interpretation of sorption-induced swelling and relaxation times of bacterial spores can help better understand their humidity-dependent properties.

Materials and Methods

Estimation of volume of adsorbed water. The volume of adsorbed water and the corresponding relative volume change V_w/V_0 can be related to the adsorption isotherm, measured as the mass of water per unit mass of spore, m_w/m_0 :

$$V_w/V_0 = (m_w/m_0) \rho_0/\rho_w. \quad [2]$$

Here ρ_0 is the mass density of dry spores, which we take as 1409 kg/m^3 (5), and ρ_w is the density of liquid water, which we take at 23°C as 998 kg/m^3 (5), since we use the adsorption data from Ref. (6). Note that the data in Fig. 2c are shifted to match zero sorption and zero swelling at the minimum RH.

Estimation of volumetric swelling from measured spore height. Experimental measurements of the spore height and information on the spore geometry and internal structure from Ref. (1) allowed us to estimate the corresponding volumetric swelling. Fig. 2a,b give the approximations for the spore geometry used for calculations

of the relative volume change. Following Ref. (1) we assume that a spore has a cylindrical cross-section, the core of the spore is impermeable and the core size (radius R_c) is not changing with RH. The coat and cortex are both water responsive, and their combined thickness z is changing uniformly upon water sorption (z_0 in the dry spore). According to the Methods section in Ref. (1), $z_0 = 140 \text{ nm}$, and the overall diameter of the dry spore is $2R_0 = 700 \text{ nm}$, so the radius of the core is $R_c = 210 \text{ nm}$. The thickness of the swelling annular shell is $z = z_0 + \Delta h/2$, where Δh is the measured change of the spore height.

The SEM micrographs in Ref. (1) indicate that the length of the spore L is approximately twice the spore diameter. Let the length of the core be L_c . If the swelling layer (coat + cortex) has the same thickness over the ends and sides, then the dry length of the spore is $L_0 = L_c + 2z_0$ and the swollen length is $L = L_c + 2z$. The aspect ratio of the dry spore is $(L_c + 2z_0)/(2(R_c + z_0)) \simeq 2$; normalizing by R_c , then $(L_c/R_c + 2z_0/R_c)/(1 + z_0/R_c) \simeq 4$. Recognizing that $z_0/R_c \simeq 2/3$, we find that the aspect ratio of the core is about $L_c/R_c \simeq 16/3$, so $L_c \simeq 1120 \text{ nm}$ and $L_0 \simeq 1400 \text{ nm}$.

The relative change of the volume of the spore can be calculated from the change of the volume of the cylindrical shell (including caps) from the thickness of z_0 to z :

$$\Delta V/V_0 = (R^2(L_c + 2z) - R_0^2(L_c + 2z_0)) / (R_0^2(L_c + 2z_0)) \quad [3]$$

where $R = R_c + z = R_c + z_0 + \Delta h/2$. Eq. 3 is used for calculations in Fig. 2c.

The geometric dimensions of the pores allow us also to estimate the specific surface area of dry spores as $a = A_0 / (\rho_0 V) = 2(R_0 + L_0) / (R_0 L_0 \rho_0) \simeq 5 \text{ m}^2/\text{g}$. This value is the same as the BET surface area calculated from nitrogen adsorption data. This agreement may be fortuitous, given the additional surface area of the wrinkles on the spores' surface clearly seen in the SEM micrographs, and the distribution in size of the spores.

ACKNOWLEDGMENTS. The authors thank Prof. Ozgur Sahin for discussions. G.Y.G. and H.A.S. thank NSF CBET-1944495 and DMS-2245850 grants for the support respectively.

- SG Harrellson, et al., Hydration solids. *Nature* **619**, 500–505 (2023).
- H Wang, et al., High energy and power density peptidoglycan muscles through super-viscous nanocentrifuged water. *Adv. Sci.* **9**, 2104697 (2022).
- MA Biot, General theory of three-dimensional consolidation. *J. Appl. Phys.* **12**, 155–164 (1941).
- U Raviv, P Laurat, J Klein, Fluidity of water confined to subnanometre films. *Nature* **413**, 51–54 (2001).
- E Berlin, H Curran, M Pallansch, Physical surface features and chemical density of dry bacterial spores. *J. Bacteriol.* **66**, 1030–1036 (1963).
- R Neihof, J Thompson, V Deitz, Sorption of water vapour and nitrogen gas by bacterial spores. *Nature* **216**, 1304–1306 (1967).
- P Demchick, AL Koch, The permeability of the wall fabric of *Escherichia coli* and *Bacillus subtilis*. *J. Bacteriol.* **178**, 768–773 (1996).
- JC Brinker, GW Scherer, *Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing*. (Academic Press), (1990).
- GY Gor, P Huber, N Bernstein, Adsorption-Induced Deformation of Nanoporous Materials – a Review. *Appl. Phys. Rev.* **4**, 011303 (2017).
- DG Waldham, H Halvorson, Studies on the relationship between equilibrium vapor pressure and moisture content of bacterial endospores. *Appl. Microbiol.* **2**, 333–338 (1954).
- GO Rubel, Measurement of water vapor sorption by single biological aerosols. *Aerosol Sci. Technol.* **27**, 481–490 (1997).
- DL Popham, J Helin, CE Costello, P Setlow, Muramic lactam in peptidoglycan of *Bacillus subtilis* spores is required for spore outgrowth but not for spore dehydration or heat resistance. *Proc. Natl. Acad. Sci.* **93**, 15405–15410 (1996).
- J Crank, *The Mathematics of Diffusion*. (Clarendon, Oxford), 2 edition, (1975).
- C Weinmüller, C Langel, F Fornasiero, CJ Radke, JM Prausnitz, Sorption kinetics and equilibrium uptake for water vapor in soft-contact-lens hydrogels. *J. Biomed. Mater. Res. Part A* **77**, 230–241 (2006).
- S Cotugno, G Mensitieri, P Musto, L Sanguigno, Molecular interactions in and transport properties of densely cross-linked networks: a time-resolved FT-IR spectroscopy investigation of the epoxy/H₂O system. *Macromolecules* **38**, 801–811 (2005).
- A El-Shimi, H Princen, Diffusion characteristics of water vapor in some keratins. *Colloid Polym. Sci.* **256**, 209–217 (1978).
- FM Preda, et al., Investigation of water diffusion mechanisms in relation to polymer relaxations in polyamides. *Macromolecules* **48**, 5730–5741 (2015).
- ML Stecchini, et al., Glassy state in *Bacillus subtilis* spores analyzed by differential scanning calorimetry. *Int. J. Food Microbiol.* **106**, 286–290 (2006).
- NA Peppas, CT Reinhart, Solute diffusion in swollen membranes. Part I. A new theory. *J. Membr. Sci.* **15**, 275–287 (1983).