
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024 349

Versa-DNN: A Versatile Architecture Enabling
High-Performance and Energy-Efficient

Multi-DNN Acceleration
Jiaqi Yang , Member, IEEE, Hao Zheng , Member, IEEE, and Ahmed Louri , Fellow, IEEE

Abstract—Emerging applications utilize numerous Deep Neural
Networks (DNNs) to address multiple tasks simultaneously. As
these applications continue to expand, there is a growing need for
off-chip memory access optimization and innovative architectures
that can adapt to diverse computation, memory, and communi-
cation requirements of various DNN models. To address these
challenges, we propose Versa-DNN, a versatile DNN accelerator
that can provide efficient computation, memory, and communi-
cation support for the simultaneous execution of multiple DNNs.
Versa-DNN features three unique designs: a flexible off-chip mem-
ory access optimization strategy, adaptable communication fab-
rics, and a communication and computational aware scheduling
algorithm. The proposed off-chip memory optimization strategy
can improve performance and energy efficiency by increasing
hardware utilization, eliminating excess data duplication, and re-
ducing off-chip memory accesses. The adaptable communication
fabrics consist of distributed buffers, processing elements, and a
flexible Network-on-Chip (NoC), which can dynamically morph
and fission to support distinct communication and computation
needs for simultaneously running DNN models. Furthermore, the
proposed scheduling policy manages the simultaneous execution
of multiple DNN models with improved performance and energy
efficiency. Simulation results using several DNN models, show that
the proposed Versa-DNN architecture achieves 41%, 238%, 392%
throughput speedup and 30%, 59%, 63% energy reduction on
average for different workloads when compared to state-of-the-art
accelerators such as Planaria, Herald, and AI-MT, respectively.

Index Terms—Deep neural networks (DNNs), multi-DNN,
dataflow accelerators, domain-specific accelerators, memory
access optimization, Network-on-Chip(NoC).

I. INTRODUCTION

D EEP Neural Networks (DNNs) have emerged as the back-
bone of numerous artificial intelligence applications to in-

fer complex decisions. Specialized hardware accelerators, such
as GPUs and TPUs, have been developed to expedite the training

Manuscript received 11 May 2023; revised 29 October 2023; accepted 4
December 2023. Date of publication 8 December 2023; date of current version
10 January 2024. This work was supported in part by the National Science
Foundation under Grants CCF-1901165, CCF-1702980, CCF-1953980, and
CCF-2131946. Recommended for acceptance by Y. Yang. (Corresponding
author: Jiaqi Yang.)

Jiaqi Yang and Ahmed Louri are with the Department of Electrical and
Computer Engineering, George Washington University, Washington, DC 20052
USA (e-mail: yang_jiaqi_cute@gwu.edu; louri@gwu.edu).

Hao Zheng is with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
hao.zheng@ucf.edu).

Digital Object Identifier 10.1109/TPDS.2023.3340953

and inference of DNNs. However, there has been a surge in
applications that require the concurrent execution of multiple
complex functionalities, such as vision-centric autonomous sys-
tems and Cloud-based systems [1], [2]. For example, today’s
computer vision tasks, such as object detection and semantic
segmentation, involve multiple DNN models to achieve accurate
perception. Similarly, a set of DNNs are combined to enhance
the quality of camera-captured content or provide advanced
augmented reality features [3].

Despite the surge of multi-DNN models, it remains a chal-
lenge to facilitate the multi-DNN execution due to distinct
computation and communication characteristics. For example,
DNN models often involve varying operations and layer sizes, all
with unique computation and communication ratios and memory
access patterns. Current DNN accelerators are mostly optimized
for a given set of DNN models, and thus they are inefficient in
handling various computation and communication characteris-
tics. For example, the datapath of Eyeriss [4] is optimized to
handle row-stationary dataflow, and it has limited applicability
to support other dataflows. The problem is further exacerbated
by resource contention, as network-on-chip, computation units,
and memory are shared among running DNN models.

Significant research efforts [1], [3], [5], [6], [7] have been
dedicated to enhancing the performance and energy efficiency
of simultaneously accelerating multiple DNNs on the same ac-
celerator. However, current multi-DNN accelerators have not yet
addressed all the challenges. For instance, Herald [1] provides
multiple accelerator options with different memory access opti-
mization techniques, but the computing and memory capabilities
are determined at the design stage, making it challenging to adapt
to the dynamic demands and interactions of running DNNs.
Similarly, AI-MT [5] adopts a systolic array architecture that
is not efficient at handling a variety of off-chip memory access
optimization strategies, as its data path only supports a specific
type of data movement.

Planaria [6] proposes a flexible accelerator architecture that
can be dynamically partitioned to accommodate several DNN
models, in which compute and memory resources are dynam-
ically determined and allocated. While the dynamic resource
allocation can alleviate the resource underutilization issue, its
rigid dataflow design still prevents the further optimization such
as reduced off-chip memory access. Moreover, like Herald [1],
MAGMA [8] and Veltair [9], Planaria [6]’s scheduling policy
only considers compute resources and neglects the impacts

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

350 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

of communication latency. On the other hand, AI-MT [5],
PREMA [7], and LayerWeaver [10] adopt a time-multiplexing
approach to interleave the execution of multiple DNN models
based on their computational impacts. Such scheduling policies
are unlikely to be generalized to handle the spatial resource
management.

There is a pressing need for further research to improve the
performance and energy efficiency of multi-DNN accelerators.
To this end, we propose Versa-DNN, a versatile DNN accelerator
that can provide efficient computation, memory, and communi-
cation support for the simultaneous execution of multiple DNNs.
The main contributions of this paper are:
� We propose an adaptable accelerator fabric consisting of

distributed buffers, processing elements, and a flexible
Network-on-Chip (NoC), which can dynamically morph
and fission to simultaneously support distinct communica-
tion needs for running DNN models.

� We explore various parallelism strategies for multi-DNN
accelerators compatible with distributed buffer configura-
tions. The proposed off-chip memory access optimization
strategy selection algorithm can select suitable parame-
ters for parallel DNN execution to avoid data duplication,
thus trading off expensive and energy-inefficient off-chip
memory access for energy-efficient on-chip data move-
ment. More importantly, the proposed strategy maintains
the simplicity of on-chip data movement with hop-to-hop
communications.

� We propose a communication and computational aware
scheduling algorithm for accelerator partition and hard-
ware configuration. The proposed algorithms can dynami-
cally select suitable accelerator partitioning strategies and
interconnection configurations with the aim of satisfy-
ing both computation and communication resource con-
straints.

We evaluate the proposed Versa-DNN with a cycle-accurate
simulator that can accurately capture the behavior of each hard-
ware component of the DNN accelerator. Our evaluation uses the
same benchmark DNN models as compared to state-of-the-art
accelerators, and the simulation results demonstrate that our
proposed Versa-DNN architecture achieves 41%, 238%, 392%
throughput speedup and 30%, 59%, 63% energy reduction on
average for different workloads when compared to Planaria [6],
Herald [1], and AI-MT [5], respectively. We believe that the pro-
posed Versa-DNN accelerator provides a significant addition to
the design of high-performance and energy-efficient multi-DNN
accelerators.

II. BACKGROUND

A. DNNs Workload

Deep Neural Networks (DNNs) have been widely used in
many applications, such as image recognition, speech recog-
nition, and natural language processing. These networks are
composed of a number of convolutional layers, each of which
can be formulated as a nested loop with multiple attributes (e.g.,
N, K, C, R, S, Y, X), as shown in Fig. 1 (stride = 1), to represent
the batches of the input activation (N), the number of input

Fig. 1. (a) Convolutional DNN layer example, (b) tiled convolutional DNN
layer example.

channels (C), the number of output channels (K), and the width
and height of weight filter (S, R), input activation (X, Y), and out-
put activation (X’=X-S+1, Y’=Y-R+1). The operation of each
convolutional layer is primarily composed of high-dimensional
convolutions as shown in Fig. 1. In this computation, input
activation is convolved with the weight matrix in the same input
channel. The results of the convolution at each point are summed
across all the input channels. The result of this computation
is the output activation that comprises one channel of output
feature map (ofmap). The weight can be used on the same input
to create additional output channels. As such, multiple input
feature maps could be processed together as a batch to potentially
improve the reuse of the weights. The high-degree parallelism of
loop structures and rhythmic computation patterns are inherently
suitable for customized accelerators.

B. DNNs Dataflows

DNN dataflow refers to the parallelism strategies that can
efficiently exploit both spatial and temporal data reuse. In
general, there are several types of commonly used dataflows,
including weight-stationary, input-stationary, output-stationary,
and row-stationary dataflows.

Weight-Stationary Dataflow (WS): In weight-stationary
dataflow, the weights are preloaded to PE array, and the input
data is streamed through the network. In this dataflow, the loop
order for computations is arranged to ensure that the weight
values, K, C, R or S, are placed in the outermost loop. As a
result, the input activations are in the inner loops. This allows
the same weight values to be reused multiple times for different
input activations, improving memory access efficiency. The WS
dataflow can benefit large convolutional neural networks where
the weight matrices can be very large and expensive to store and
access.

Input-Stationary Dataflow (IS): In input-stationary dataflow,
the input data are stored in local register, and the weight is
streamed through the network. In this dataflow, the loop order
for computations is arranged in a way that the input data, N, C, X
or Y, are accessed in the outermost loop, followed by the weight
in the inner loops. This allows the same input activations to be

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: VERSA-DNN: VERSATILE ARCHITECTURE ENABLING HIGH-PERFORMANCE 351

reused multiple times for different weight, improving memory
access efficiency. As such, it can significantly reduce the data
movement when the input matrix is large.

Output-Stationary Dataflow (OS): Like WS and IS dataflows,
output-stationary dataflow is designed to retain output matrix in
the local register for partial sum accumulation. Consequently,
the weights and inputs flow through PE array to produce partial
results. The data movement can be significantly reduced when
partial row accumulation happens frequently.

Row-Stationary Dataflow (RS): RS dataflow is an alternative
means to explore the data reuse, in which input, weight, and
output data are temporarily reused at row-wise. N, K, X’, or
Y’ dimensions are arranged in the outermost loop, and it is
beneficial for applications with large input and output data.

Overall, the choice of dataflow mainly depends on the spe-
cific requirements of the application and the available hardware
resources. Given the high dimensionality of DNNs, dataflow is
a critical factor for off-chip memory access and computation
performance.

III. PROPOSED VERSA-DNN DESIGN

DNN models are composed of different operations and lay-
ers, each with their own computation and communication ra-
tio and memory access patterns. This necessitates the use of
contemporary DNN accelerators that are capable of managing
various computation and communication characteristics at the
same time. In addition, resource contention is another major
concern that limits the accelerator performance. The goal of our
proposed design is to simultaneously address the computation
and communication challenges when running multiple DNNs
with distinct characteristics. To achieve this, we propose a novel
framework to support the simultaneous execution of DNNs
spanning architecture, dataflow, and scheduling. Specifically,
we propose three unique designs: (1) universal and modular
memory and communication fabrics to support dynamic ar-
chitecture partitioning, (2) a flexible dataflow to pursue both
communication simplicity and dataflow flexibility, and (3) a
scheduling algorithm to consider the effects of communication
and computation. The details of the proposed architecture and
dataflow will be discussed in the following section.

A. Overall Versa-DNN Architecture Design

As shown in Fig. 2, the overall Versa-DNN architecture
comprises a control unit and multiple computation units. The
control unit is connected to the host (e.g., CPU) through a host
interface. The control unit receives requests from the host and
stores them in the request dispatcher. The proposed design im-
plements instructions necessary for popular inference services
(e.g., CNN), including convolution, vector-vector operations,
activation, batch normalization, and pooling. The accelerator
also uses instructions to configure the interconnects so that
it can flexibly enable on-chip communication. The instruc-
tion dispatcher, shown in Fig. 2, features a controller which
keeps track of instruction issues and completion. The controller
generates addresses for the instruction buffer, which forwards
instructions to the decoder unit. The DRAM is connected to

Fig. 2. Versa-DNN accelerator architecture (an example of 4× 4 architecture).

Fig. 3. (a) Proposed tile architecture, (b) proposed PE architecture.

the proposed accelerator through a DRAM interface. A cross-
bar is implemented to increase the endpoint bandwidth at the
DRAM interface and support all-to-all communication. The
accelerator adopts a tiled-based design, (Fig. 2 shows a 4 ×
4 tiles are connected through the flexible interconnect as an
illustration).

B. Proposed Tile and PE Architecture

Each tile consists of a distributed buffer, a router interface,
a spatial architecture with a 4 × 4 processing element (PE)
array, and a reuse First-in-First-Out (FIFO) buffer, shown in
Fig. 3(a). The reuse FIFO can temporarily store the data it
received and send locally stored data to its neighbors, acting as a
double buffer [11], which can support inter-tile communication.
This is designed to enable the data exchange between dis-
tributed buffers, reducing off-chip memory access. As depicted
in Fig. 3(b), each PE consists of a local buffer, a data dispatcher,
an MAC array, and a processing unit (e.g., ReLu).

C. Flexible NoC Design

Even though altering dataflow can optimize the off-chip mem-
ory access, the distributions of matrices could also lead to various
communication patterns. Previous work [12] has addressed the
communication challenges raised by the dynamic dataflows in
the unified global buffer, the communication behaviors among
distributed buffers remains unexplored.

In general, the flexible NoC design enables data propaga-
tion between adjacent tiles. This can reduce the complexity of

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

352 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

Fig. 4. (a) Proposed router architecture, (b) horizontal switch, and (c) vertical
switch.

data exchange and avoid complicated communication protocols.
Specifically, the proposed NoC design can be partitioned into
multiple ring topologies with any size and location. These rings
will be formed to propagate the weights and input activations.
The proposed flexible NoC consists of a flexible router, reconfig-
urable links, and diagonal links, which will be further discussed
in Fig. 4.

1) Flexible Router: The major functionality required for ring
topology is to forward and eject/inject in-flight packets. This
significantly simplifies the router design with much-reduced
radix. As shown in Fig. 4(a), the flexible router consists of a
vertical switch and a horizontal switch. The vertical switch pro-
cesses column-wise communication, and the horizontal switch
processes row-wise communication. Vertical switches are con-
nected to reconfigurable links (called Re-link in Fig. 4), and
horizontal switches are connected to Re-link and diagonal links
(called D-link in Fig. 4). The Re-link consists of multiple sim-
ple transistors to turn on/off the link connection between two
adjacent routers, avoiding signal interference. The Re-link also
connects the vertical and horizontal switches in the same router
together to fully utilize the radix. D-link is used to connect a pair
of routers residing across the diagonal, which can effectively
reduce the communication distance and hop count and bridge
non-adjacent routers.

IV. PROPOSED FLEXIBLE DATAFLOW

A variety of dataflows have been explored to reduce the
off-chip memory access in current DNN accelerators, but very
few of them can be effectively applied to an accelerator design
with distributed buffers. The major issue with a distributed
buffer setup is data duplication or complicated communication
patterns. For example, Simba [13] proposed a weight-stationary
dataflow in a chiplet-based DNN accelerator, and its dataflow
could result in reduced inter-chiplet communications (given
the limited inter-chiplet bandwidth) but at a considerable cost
of data duplication at each chiplet. To address this limitation,
designing a flexible dataflow with simplified communication and
eliminating data duplication would require two elements:
� A thorough study and analysis of parallelism strategies that

can minimize data duplication and reduce DRAM access.
� A dataflow selection algorithm that can select the optimal

dataflow with the least DRAM access and data duplication.

Fig. 5. (a) Nested loop representation of the parallelism strategy and mapping
example of the conventional WS dataflow, (b) Nested loop representation of the
parallelism strategy and mapping example of the proposed dataflow.

A. Parallelism Strategies

To analyze the parallelism strategies or to answer the raised
question, we need to examine the root cause of data duplication
in existing designs.

Fig. 5(a) shows the nested loop representation of a parallelism
strategy and mapping example of the tiled convolutional layer
with weight-stationary (WS) dataflow [13], [14]. The tiled
weight and input matrices are distributed into each distributed
buffer. The number of partitioned matrices is called parallel
factors Pi. The attributes c and k are spatially parallelized
(denoted as Ver_Paral_For and Hor_Paral_For) on a 2 × 2
tile-based accelerator in the horizontal and vertical direction.
Since attributes k and c are the indexes of the weight matrix
(W[k][c][r][s]), the weight matrix is fully distributed across all
the tiles. On the other hand, the input matrix (I[n][c][x][y]) is
independent of k, and therefore, the input partition remains du-
plicated at each row. Because of the data duplication, the on-chip
buffer cannot be effectively utilized. This further diminishes the
on-chip data reuse opportunities, and thus it could affect the
DRAM access.

To meet the mentioned dataflow requirements, we need to
examine the root cause of data duplication in existing designs.
The primary reason is that only one index (c) of the input matrix
(I[n][c][x][y]) is parallelized in a two-dimensional accelerator
design. As such, to fully distribute a matrix, at least two indexes
need to be distributed across each row and column.

We use a parallelism strategy depicted in Fig. 5(b) to illustrate
the concept. For a nested loop with multiple attributes, both
weight and input matrices can be partitioned and distributed in
2× 2 tiles. Each tile consists of a distributed buffer to store all
the input, weight, and output matrices. If attributes c and n are
parallelized in different directions (Horizontally and Vertically),
the input matrix will be fully distributed across each row and
column. Similarly, the weight matrix will be fully distributed,
as c and k are the two weight matrix attributes. As a result,
on-chip buffers can be fully utilized, and the proposed dataflow
can effectively reduce off-chip memory access thanks to opti-
mized data reuse. Our current analysis can be extended to any
parallelism dimensions.

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: VERSA-DNN: VERSATILE ARCHITECTURE ENABLING HIGH-PERFORMANCE 353

Fig. 6. All the supported dataflows in Versa-DNN accelerator.

If attributes C, K, R, and S are parallelized, the weight matrix
will be fully distributed across each row and column, as these
are four attributes of the weight matrix. Similarly, if attributes C,
N, X, and Y are parallelized, the input matrix will be distributed
across each row and column.

Several parallelism strategies are viable to mitigate the data
duplication issue, but some of them come with complicated
communication patterns. To further address the communication
complexity problem, we aim to select those dataflows with
simple data movement patterns like a ring. This requires that
both input and weight matrices be partitioned with an equal
number of indexes, and that attribute c be parallelized, as each
channel is independent of others and there is no communication
between input and weight matrices across different channels.

As a conclusion, the dataflow must meet the following three
requirements: (1) at least two indexes of both weight and input
matrices must be parallelized across each row and column,
(2) both weight and input matrices must be partitioned with an
equal number of indexes, and (3) attribute c must be parallelized.
All the supported dataflow candidates are shown in Fig. 6.

B. Dataflow Selection

The primary goal of dataflow selection is to reduce off-chip
memory access. The off-chip memory access is determined
by two factors: the data volume of each invocation and the
number of invocations. To better illustrate the problem, we use
an example depicted in Fig. 5.

Recall that the DNN layer (l) is represented with multiple
attributes (i, i ∈ {N,K,C, S,R,X, Y,X ′, Y ′} and X ′ = X −
S + 1, Y ′ = Y −R+ 1). After the loop tiling, the tiled weight
and input matrices have to be distributed into multiple tiles. The
number of partitioned matrices is called parallel factors (Pi).
And, the data volume of attributes in each partitioned matrix is
represented as ipar. For example, input channel C is partitioned
into PC parts, and each part has Cpar elements.

To estimate the DRAM access volume (DA) for the dataflow,
we calculate the product of the data volume involved in each
invocation (Vd) and the total number of invocations (Rd)
for all data types (i.e., weight(wt), input activation(ifmap),
psum(psum)) as shown in Algorithm 1 (Line 7). The data
volume involved in each invocation for different data types can
be calculated as Vwt, Vifmap, Vpsum as depicted in (1)

Vwt =
∏

ipar × Pi, i ∈ {K,C, S,R}

Algorithm 1: Dataflow Parallelism Optimization.

Vifmap =
∏

ipar × Pi, i ∈ {N,C,X, Y }

Vpsum =
∏

ipar × Pi, i ∈ {N,K,X ′, Y ′}. (1)

The parallel factors determine the accessed array regions of each
partitioned matrix, thus different parallel factor configurations
imply different dataflows. We observed that different dataflows
exhibit large differences in DRAM access volume. The to-
tal number of invocations can be calculated as Rwt, Rifmap,
Rpsum. In this section, we use weight stationary dataflow as
an example to explain the equations, but the concept can be
generalized to support output/input/row stationary dataflow. The
total number of invocations (Rd) of weight stationary dataflow
can be calculated as depicted in (2)

Rwt =
∏ i

ipar × Pi
, i ∈ {K,C, S,R}

Rifmap =
∏ i

ipar × Pi
, i ∈ {N,K,C, S,R,X ′, Y ′}

Rpsum =

∏i∈{N,K,S,R,X ′,Y ′} i× (2C
C1×PC

− 1)∏i∈{N,K,S,R,X ′,Y ′} ipar × Pi

. (2)

The data volume of the partitioned matrices (datavolume)
can be calculated as (3)

datavolume =
∏

ipar, i ∈ {K,C, S,R}

+
∏

ipar, i ∈ {N,C,X, Y }

+
∏

ipar, i ∈ {N,C,X ′, Y ′}. (3)

The data volume of the partitioned matrices is the accumulation
of data volume for weight matrix, input activation matrix, and

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

354 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

output activation matrix. The data volume of weight matrix are
the product of data volume for multiple attributes including K,
C, S, and R in each partitioned matrix. The data volume of input
activation matrix are the product of data volume for multiple
attributes including N, C, X, and Y in each partitioned matrix.
The data volume of output activation matrix are the product of
data volume for multiple attributes including N, C, X’, and Y’
in each partitioned matrix. The data volume of the partitioned
matrices is limited by the distributed buffer capacity(CDB)
shown in Algorithm 1 (Line 8). Then we can find the parallel
factors that can minimize the DRAM access with the distributed
buffer capacity(CDB) limitation.

We compare the total DRAM access volume (DA) of all
candidate dataflows (DF) and consider the dataflow with the
minimal DRAM access volume as the optimal one for each DNN
layer. The dataflow selection algorithm is described in detail in
Algorithm 1. We note that the algorithm is performed offline.

V. DYNAMIC ACCELERATOR SCHEDULER

Although pipelining DNN layers [15] could reduce data du-
plication, the inter-layer dependency could still incur resource
underutilization. Each DNN layer has to wait until the comple-
tion of the prior layer. In light of this, simultaneously running
multiple independent DNN applications could provide better
parallelism. This opens up a new question - how shared com-
puting units, buffers, and NoCs should be effectively allocated
among multiple DNN applications?

We propose a scheduling policy to allocate computation and
communication resources for running DNN tasks (i.e., indepen-
dent DNN layers). The scheduler will allocate the accelerator
resources to running DNN tasks when any task is completely
executed or a new task is added. We note that, whenever a new
DNN is dispatched from the host to the accelerator, the DNN
model is assigned a fixed user-defined priority. The priority
is statically predetermined as a configuration parameter [16].
The key idea of the partition algorithm is to fully utilize the
accelerator’s computation resources by (1) creating independent
DNN tasks from multiple DNN applications, (2) scheduling
the candidate tasks during runtime to leverage the flexibility
of interconnects and co-location of multiple DNN models, and
(3) executing them in parallel.

The scheduler follows a two-step procedure: (1) the Candidate
Task Selection that decides which candidate layers to execute
next (Algorithm 2 Line 2–11), and (2) once the candidate tasks
are chosen, the scheduler determines the allocation of resource
(number of tiles) by Allocation Policy and considers both the
task’s running time and its priority level to balance latency and
throughput satisfaction (Algorithm 2 Line 13–31).

First, among all multiple DNN models (represented bym) that
have been dispatched to the scheduler, the scheduler divides each
of them into multiple tasks (represented by l) and selects a group
of tasks as candidates to execute according to the directed acyclic
graph (DAG). A task can be selected as part of the candidate
group if it is independent of all other tasks in the candidate
group. The candidate group is updated when any task completes
its execution or a new task is added.

Algorithm 2: Versa-DNN Scheduler.

Second, the scheduler allocates the resource by considering
both the task running time and model priority level to balance
latency, throughput, and fairness satisfaction. The scheduler
grants an initial number of scores per its priority level for each
DNN model, which is statically predetermined as a configuration
parameter. The scheduler assigns an initial score to tasks based
on the priority level of the DNN model they belong to, as
indicated in Algorithm 2 (Line 18). Then Algorithm 2 adjusts
the number of scores to offer scheduling opportunities to the
layers with low priority but have short execution time.

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: VERSA-DNN: VERSATILE ARCHITECTURE ENABLING HIGH-PERFORMANCE 355

The scheduler distributes these spare resources to running
tasks by following a score function depicted in Algorithm 2
(Line 27), and it balances the execution time, communication,
and priority satisfaction of each candidate layer.

The score function is derived by comparing the ini-
tial score (Score[task]) against its isolated execution time
(IsolatedT ime[task]), and the scheduler grants Isolated
T ime[task] per task’s execution time (T imePredict[task])
with all valid computation resources and without interruption
shown in Algorithm 2. The isolated execution time is prede-
termined by the compiler, as a roofline model [7] can estimate
the T imePredict[task] that can be expressed as a function of
on-chip execution time (T imeOn[task]) and Off-chip DRAM
access time (T imeOff [task]) as follows:

T imePredict[task]← max(T imeOn[task],

T imeOff [task]). (4)

The on-chip execution time can be expressed as a function
of on-chip computation time (OnComp[task]) and on-chip
communication time (OnComm[task])

T imeOn[task] ← max(OnComp[task], OnComm[task]).
(5)

On-chip computation time: We model OnComp[task] as
follows:

OnComp[task] ← MACs[task]

U [task]× F ×MUnit× Totaltiles
.

(6)

Where U is the tile utilization rate, F is the operating frequency
of the accelerator, MUnit is the number of MAC unit in each
tile, and Totaltile means the total number of tile.

On-chip communication time: We model OnComm[task] as
follows:

OnComm[task] ← max

(
iS[task]

iB[task]
,
wS[task]

wB[task]
,
pS[task]

pB[task]

)
.

(7)

Where iS[task], wS[task], pS[task] are the sizes of different
reused data, iB[task], wB[task], pB[task] are the available on-
chip bandwidths for different data types.

Off-chip DRAM access time: Total time for each layer
(T imeOff [task]), includes the time needed to read input data
(input feature and filter weights) from DRAM to scratchpad,
and the time needed to write the output feature back from the
scratchpad to DRAM. We then express the T imeOff [task] as
follows:

T imeOff [task] ← DRAM [task]

OffBw
, (8)

where DRAM [task] is the total DRAM access of each task
obtained by Algorithm 1 and OffBw means the total DRAM
memory bandwidth.

This allows even low-priority tasks to gradually increase their
scores and get a chance to allocate more computation resources.
Consequently, this score function not only fosters throughput but
also the priority among the candidate tasks. Finally, the scheduler

allocates the spare resources (TotalT iles) proportional to the
score of each task, where the allocated number of tiles is rounded
down (not up) to the closest integer, shown in Algorithm 2.

VI. DYNAMIC SUB-ACCELERATOR PARTITION AND HARDWARE

RECONFIGURATION

In this section, we describe the dynamic partitioning and hard-
ware configuration in support of flexible dataflow for multi-DNN
execution. As mentioned, the task scheduler and dataflow selec-
tion determine the overall resource allocation and parallelism
strategies. Upon the decision, versa-DNN will be dynamically
partitioned into several sub-accelerators, each optimized for its
optimal dataflow.

Essentially, the sub-accelerator partitioning is to partition the
computation, memory, and communication modules. As the
computation and memory modules are distributed, the difficulty
is to partition the NoC and configure it to support various
dataflows. As such, the NoC of the sub-accelerator will be
partitioned into multiple disjoint subNoCs. Each NoC will be
configured to support the communication patterns of the selected
dataflow method. For example, as shown in Fig. 7, multiple rings
are configured to support various communication patterns of dif-
ferent dataflows. To better illustrate the proposed design, we pro-
vide three examples to represent three representative dataflows
- weight-stationary, row-stationary, and output-stationary. The
differences among these dataflows include the data movement
patterns of input, weight, and partial sums. For example, in
Fig. 7(a), a weight stationary dataflow is deployed, where Pc

= 2, Pn = 2, Pk = 4, Ps = 2, and Px = 4. As attribute
C is divided into two parts, two rings will be generated. In
each ring, the input data is forwarded, while partial sums are
accumulated horizontally. For RS dataflow shown in Fig. 7(b),
inputs are communicated horizontally via those rings, and partial
sums are accumulated via diagonal links. For output-stationary
dataflow shown in Fig. 7(b), the weight matrices are propagated
horizontally, whereas the input matrices move vertically.

For these examples, we can summarize that each partition
with the same attribute C will be clustered into the same ring
in weight/input stationary dataflow to transfer input activations
or weights. Each partition with same attributes C and Y will be
clustered into same ring in row stationary dataflow to forward
input activations. In output stationary dataflow, each partition
with the same attributes C, X, and Y will be clustered into
same ring to transfer input activations and each partition with
the same attributes S and R will be clustered into same ring to
forward weights. Within each ring, each tile will forward the
data to its bottom tile given a simpler routing algorithm. This
naturally avoids the deadlock while maintaining the simplicity
of the routing.

Network deadlock can occur due to protocol dependency or
circular channel dependency. Specifically, the protocol depen-
dency is eliminated by separating the request and reply packets
to different virtual networks so that the protocol deadlock is
avoided. To prevent circular channel dependency [17], [18], [19],
we use the simple yet effective dateline [17].

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

356 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

Fig. 7. Topology configurations of (a) weight stationary/input stationary dataflow, (b) row stationary dataflow, and (c) output stationary dataflow with different
parallelism strategies.

TABLE I
MULT-DNN WORKLOADS

VII. EVALUATION

A. Simulation Setup

We extend Timeloop [20] simulator to support the non-
uniform latency and bandwidth between tiles, and the non-
uniform latency and bandwidth between PEs. The extended
simulation framework is capable of capturing various acceler-
ator activities, such as arithmetic operation, memory access at
different levels, and NoC latency and bandwidth. The simulator
also considers the consequences of the application of various
dataflows and system configurations. The energy consumption
of these DRAM read/write operations is modeled by [21].

Multi-DNN workloads: For a fair comparison, we reproduced
similar benchmark applications as the ones used in Planaria [6],
Herald [1], and AI-MT [5], shown in Table I.

Accelerator Modeling: We implement the proposed design
including 32 × 32 tiles interconnected by a flexible NoC. Each

tile consists of 4 × 4 processing elements (PEs), a distributed
buffer, and a FIFO buffer. Each PE consists of local buffer, data
dispatcher, MAC array, and processing unit (e.g., ReLu). The
on-chip frequency of the proposed accelerator is 700 MHz. The
on-chip distributed buffer capacity of each tile is 100 KB. For a
fair comparison, we keep the configurations to be consistent for
all compared designs (Planaria [6], Herald [1], and AI-MT [5]):
All designs use 16384 processing elements, and each processing
element contains 16 MAC units, the SRAM of each processing
element is 5 KB and the total on-chip SRAM capacity is 100 MB.

Dataflow Modeling: For our evaluations, we use our pro-
posed dataflow for the proposed accelerator Versa-DNN. The
proposed dataflow is fully distributed and has an optimal
parallel policy at the tile level, determined by Algorithm 1
according to different workloads requirements and hardware
resource allocation. We use conventional weight stationary
dataflow(WS) [14], row stationary dataflow(RS) [4], and output
stationary dataflow(OS) [35] for comparison. We implement
all compared dataflows on a systolic array-based accelerator
platform and our proposed dataflow on the proposed Versa-DNN
accelerator to act as a good test for our proposed dataflow to learn
and exploit their difference.

Interconnect Configuration: We use the proposed hardware
reconfiguration mentioned in Section VI for the configuration
of the proposed accelerator. The Interconnection of AI-MT [5]
and Herald [1] are fixed. The AI-MT [5] consists of several
systolic arrays of identical and Herald [1] consists of several
heterogeneous sub-accelerators that are optimized for conven-
tional dataflows (WS, OS, and RS). We use the Manual-tuned
method for the dynamic architecture fission of Planaria [6].

B. On-Chip Distributed Buffer Utilization Analysis

Fig. 8 illustrates the time stamp of normalized efficient on-
chip distributed buffer capacity utilization of conventional WS,
RS, OS, the average of compared conventional dataflows, and
proposed dataflow in a single layer of DNN model VGG-16.
The proposed dataflow has higher utilization of on-chip dis-
tributed buffers in each time stamp compared to conventional
WS, OS, and RS. Fig. 9 illustrates the normalized efficient
on-chip distributed buffer capacity utilization for conventional

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: VERSA-DNN: VERSATILE ARCHITECTURE ENABLING HIGH-PERFORMANCE 357

Fig. 8. Time stamp of normalized efficient on-chip distributed buffer capacity
utilization of conventional weight stationary dataflow(WS) [14], row stationary
dataflow(RS) [4], output stationary dataflow(OS) [35], the average of compared
conventional dataflows, and proposed dataflow in a single layer of DNN model
VGG-16 [34]. T is the execution time of a single layer of DNN model VGG-16.

WS [14], RS [4], OS [35], the average of compared conventional
dataflows, and the proposed dataflow for each convolutional
layer of the DNN model VGG-16 [34]. To improve the ef-
ficient utilization of on-chip distributed buffers, the proposed
dataflow eliminates the data duplication that exists in conven-
tional dataflows. The proposed dataflow increases the efficient
utilization of on-chip distributed buffers for each convolutional
layer of the DNN model VGG-16 by an average of 68% com-
pared to WS, RS, and OS. The proposed dataflow can hold more
data on-chip, which can help reduce excessive DRAM accesses
(discussed in the next subsection).

C. DRAM Analysis

Fig. 10 illustrates the normalized DRAM Access for con-
ventional WS [14], RS [4], OS [35], the average of compared
conventional dataflows, and the proposed dataflow for each con-
volutional layer of the DNN model VGG-16 [34]. The DRAM
accesses include the off-chip DRAM accesses for weights, input
activations, and output activations.

The conventional weight stationary dataflow [14] parallelizes
over channel and kernel dimensions, and thus it is highly efficient
for late layers in CNN-based models. The conventional row
stationary dataflow [4] parallelizes across weight and input acti-
vation dimensions and excels on the early layers of CNN-based
models. The conventional output stationary dataflow parallelizes
on output activation dimensions.

The proposed dataflow outperforms the conventional
dataflows in a single DNN model because of its higher on-chip
distributed buffer utilization (discussed in the last subsection).
Furthermore, conventional dataflows cannot adapt to various
parallelism policies and tiling factors. More importantly, they are
designed for centralized buffers and have limited applicability
to distributed buffer settings. As such, in a single DNN model,
the proposed dataflow reduces DRAM Access by an average of
71.9% in each convolutional layer of VGG-16 [34], compared
to the average of conventional weight stationary dataflow, row
stationary dataflow, and output stationary dataflow.

For the same reason, our proposed design reduces DRAM
access in multi-DNN workload scenarios. Fig. 11 shows the
normalized DRAM access for each workload scenario using
our proposed accelerator compared to other accelerators (Pla-
naria [6], Herald [1], and AI-MT [5]). In multi-DNN workload

scenarios A1, A2, and A3, our proposed acceleration platform
reduces DRAM access by 35%, 42%, and 17%, respectively,
compared to the Planaria accelerator [6]. In scenarios B1, B2,
and B3, our proposed accelerator, Versa, reduces DRAM access
by 40%, 42%, and 48%, respectively, compared to the Herald
accelerator [1]. In scenarios C1, C2, and C3, the proposed
accelerator reduces DRAM access by 38%, 21%, and 32%,
respectively, compared to the AI-MT accelerator [5].

D. Throughput Analysis

Throughput is the main performance metric for the evaluation
of server scenarios for inference tasks in MLPerf [36] and
AR/VR [37]. Fig. 12 compares the throughput of the proposed
design with Planaria [6], Herald [1], and AI-MT [5] across vari-
ous workload scenarios while meeting the priority requirements.
The proposed design outperforms the compared accelerator
platforms in all workload scenarios. Herald [1] executes the
DNN layers sequentially, but AI-MT [5], Planaria [6], and the
proposed design run multiple independent sublayers or layers in
parallel, which can fully utilize the on-chip hardware resource
and layer-wise parallelism. All baseline designs utilize fixed
parallelism and were originally designed for centralized buffers.
As a result, these designs may lead to data duplication when used
with distributed buffers.

Our proposed architecture can support multiple fully dis-
tributed dataflows with an optimal parallelism strategy that can
eliminate data duplication and minimize DRAM access at run-
time. The proposed acceleration platform increases throughput
by 1.13×, 1.32×, and 1.80× compared to the compared accel-
eration platform Planaria [6] in multi-DNN workload scenarios
A1, A2, and A3, respectively. The performance gains of our
proposed design come from better hardware utilization provided
by the adaptive dataflow design, as each layer of those DNN
models can be optimized individually. In contrast, the hardware
resources of prior work are underutilized due to inadequate
dataflows in workloads A1, A2, and A3.

The proposed acceleration platform increases throughput by
3.33×, 2.04×, and 4.76× compared to the compared accelera-
tion platform Herald [1] in multi-DNN workload scenarios B1,
B2, and B3, respectively. This trend can be traced back to the
capabilities of the proposed accelerator compared to Herald [1].
Unlike Herald, the proposed accelerator is capable of executing
different layers from different models concurrently through the
implementation of a scheduling Algorithm 2. The DNN mod-
els in workload scenarios B1, B2, and B3 involve significant
amounts of depth-wise/point-wise convolutions, where data-
level parallelism has very limited performance. The proposed
design demonstrates superior performance in resource utiliza-
tion for these types of convolutions by simultaneously running
multiple independent tasks to exploit the task-level parallelism.

The proposed acceleration platform increases throughput by
6.06×, 4.85×, and 3.85× when compared to AI-MT [5], in
multi-DNN workload scenarios C1, C2, and C3, respectively.
Even though AI-MI can support the simultaneous execution of
multiple DNN layers, it still suffers from resource underutiliza-
tion caused by the rigid PE design and fixed dataflow. This issue

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

358 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

Fig. 9. Normalized efficient on-chip distributed buffer capacity utilization of conventional weight stationary dataflow(WS) [14], row stationary dataflow(RS) [4],
output stationary dataflow(OS) [35], the average of compared conventional dataflows, and proposed dataflow in each convolutional layer of DNN model VGG-16 [34],
normalized to efficient on-chip distributed buffer capacity utilization of proposed dataflow.

Fig. 10. Normalized DRAM Access of conventional weight stationary dataflow(WS) [14], row stationary dataflow(RS) [4], output stationary dataflow(OS) [35],
the average of compared conventional dataflows, and proposed dataflow in each convolutional layer of DNN model VGG-16 [34], normalized to DRAM Access
of proposed dataflow.

Fig. 11. Normalized DRAM Access for each workload scenario by using our proposed accelerator and compared accelerators ((a) Planaria [6], (b) Herald [1],
and (c) AI-MT [5]), normalized to DRAM Access of compared accelerators respectively.

is addressed in our proposed design via the architecture and
dataflow flexibility.

E. Energy Consumption Analysis

For energy analysis, we utilize a customized version of the
open-source Timeloop simulator [20] to obtain power consump-
tion and execution time. It should be noted that the evaluation
takes into account the energy consumption of the entire system,
including control units, computation units, DRAM, distributed
buffer, local buffer, and interconnects. Fig. 13 presents the
normalized overall energy consumption analysis of the proposed

accelerator. As can be seen, the proposed acceleration platform
increases throughput by 24%, 33%, and 32% compared to the
Planaria platform [6] in multi-DNN workload scenarios A1, A2,
and A3, respectively. The proposed acceleration platform in-
creases throughput by 58%, 47%, and 67% compared to the Her-
ald platform [1] in multi-DNN workload scenarios B1, B2, and
B3, respectively. The proposed acceleration platform increases
throughput by 68%, 60%, and 58% compared to the AI-MT
platform [5] in multi-DNN workload scenarios C1, C2, and C3,
respectively. The main factors contributing to these reductions
are the reduction in DRAM access (due to the proposed dataflow)
and the dataflow selection Algorithm 1, a simple interconnect,

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: VERSA-DNN: VERSATILE ARCHITECTURE ENABLING HIGH-PERFORMANCE 359

Fig. 12. Normalized throughput for each workload scenario by using our proposed accelerator and compared accelerators ((a) Planaria [6], (b) Herald [1], and
(c) AI-MT [5]), normalized to throughput of compared accelerators respectively.

Fig. 13. Normalized energy consumption for each workload scenario by using our proposed accelerator and compared accelerators ((a) Planaria [6], (b) Herald [1],
and (c) AI-MT [5]), normalized to the energy consumption of compared accelerators respectively.

reduced long-distance communication (owing to the multiple
dimensions parallelism strategy), and low configuration time
(attributed to hardware reconfiguration).

F. Area Analysis

We evaluate the area consumption of the various architectures
under TSMC 40 mm technology, the MAC array consumes
only 7.1% of the total PE area, while the memory hierarchy,
consumes a majority fraction, 82.9%, of the total area. The PE
control unit consumes 3.7% of the total PE area. The total area
consumption takes PE, SRAM, flexible interconnect, and control
logic into account. For the entire proposed accelerator, the PE
array, which consists of 16384 PEs consumes a major fraction
of the overall chip area, which implies 65.23% total chip area.
The controller consumes 0.6% total chip area which is negli-
gible. The additional components for the flexible interconnect
including flexible routers, reconfigurable links, diagonal links,
and muxes consume 3.7% of the total chip area.

VIII. RELATED WORK

A. Heterogeneous NoC Designs

In addition to reconfigurable NoC topologies, prior re-
search [38], [39], [40], [41], [42], [43] has been proposed to

combine the benefits of various topologies in a holistic manner.
A hierarchical ring topology, with local and global rings, is
designed to take both local and global communication into
consideration. Asit et al. [42] designed a heterogeneous NoC
consisting of two subnetworks with optimized bandwidth and
latency. In addition to these heterogeneous designs, high-radix
on-chip networks [39], [41] often deploy both concentration
and bypassing techniques to keep the NoC latency scaling to
increased NoC size while maintaining the area and wiring costs.
However, these designs only provide the flexibility in space but
have restricted flexibility in handling diverse communication
behaviors at runtime.

B. Optimized DNN Dataflow

In the field of hardware acceleration for machine learning,
various dataflows have been proposed to optimize data access
and communication patterns. Chen et al. performed a classifi-
cation of neural network accelerators based on their data reuse
characteristics, including weight stationary, output-stationary,
and row-stationary dataflows. These dataflows determine the
mapping of data to Processing Elements (PEs) in different
ways, which affects the spatial and temporal utilization of data.
Furthermore, Yang et al. [12], [44], [45], [46] broadened the
scope of the dataflows utilized in contemporary Neural Network

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

360 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

(NN) accelerators by providing a comprehensive taxonomy of
these dataflows. This work underscores the importance of un-
derstanding the interplay between dataflow design and hardware
acceleration for NN computation.

C. Multi-DNN Accelerators

Several DNN accelerators with varying dataflows have been
proposed in recent years. These accelerators are implemented
on a monolithic processing array and focus on improving data
reuse, assuming uniform latency and bandwidth across all pro-
cessing elements (PEs). However, the increasing size of DNN
models has led to the development of scale-up systems, such
as distributed architectures. Shao et al. implemented a DNN
on a distributed architecture using an electrical mesh network
for inter-tile communication. Despite using aggressive electrical
wire technology, this approach still becomes a performance
bottleneck as the system scales, highlighting the scalability
limitations of electrical networks at the chiplet scale. Shen
et al. investigated the use of multiple FDA sub-accelerators,
which they referred to as convolutional layer processors, running
the same dataflow in FPGAs [47]. PREMA [7] developed a
scheduling algorithm for preemptive execution of DNNs on a
monolithic accelerator and utilized time-sharing for multi-DNN.
AI-MT [5], on the other hand, developed an architecture that
supports multi-DNN by first tiling the layers at compile time
and then exploiting hardware-based scheduling to maximize
resource utilization. This approach employed multiple systolic
arrays within an accelerator chip and parallelized computation
tiles of each layer. Planaria [6] explored the design of an architec-
ture for spatial co-location of DNNs for multi-DNN acceleration
and addressed its unique scheduling challenges.

IX. CONCLUSION

In this paper, we propose Versa-DNN, a versatile DNN ac-
celerator that can provide efficient computation, memory, and
communication support for the simultaneous execution of mul-
tiple DNNs, which is also suitable for NLP tasks. The Versa-
DNN features three unique designs: a flexible off-chip memory
access optimization strategy, adaptable communication fabrics
and distributed buffers, and a communication-aware scheduling
algorithm. The proposed off-chip memory access optimization
strategy can improve the performance and energy efficiency by
increasing hardware utilization, eliminating excess data dupli-
cation (we never mention this before), and reducing off-chip
memory accesses. The adaptable fabrics consist of distributed
buffers, processing elements, and a flexible Network-on-Chip
(NoC), which can dynamically morph and fission to support
distinct communication and computation needs for various si-
multaneously running DNN models. Furthermore, the proposed
communication-aware scheduling policy orchestrates the si-
multaneous execution of multiple DNN models with improved
performance and energy efficiency. The Versa-DNN is evaluated
using same benchmark DNN models as compared state-of-art
accelerators, and the simulation results demonstrate that our
proposed Versa-DNN architecture achieves 41%, 238%, 392%
throughput speedup and 30%, 59%, 63% energy reduction on

average for different workloads when compared to Planaria,
Herald, and AI-MT, respectively.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their insightful comments.

REFERENCES

[1] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous dataflow accelerators for multi-DNN workloads,” in Proc.
IEEE Int. Symp. High Perform. Comput. Architecture, 2021, pp. 71–83.

[2] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of DNN dataflow:
A data-centric approach,” in Proc. IEEE/ACM Int. Symp. Microarchitec-
ture, 2019, pp. 754–768.

[3] S. I. Venieris, C.-S. Bouganis, and N. D. Lane, “Multi-DNN accelerators
for next-generation ai systems,” 2022, arXiv:2205.09376.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[5] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration
architecture,” in Proc. ACM/IEEE 47th Int. Symp. Comput. Archit., 2020,
pp. 940–953.

[6] S. Ghodrati et al., “Planaria: Dynamic architecture fission for spatial multi-
tenant acceleration of deep neural networks,” in Proc. IEEE/ACM 53rd Int.
Symp. Microarchitecture, 2020, pp. 681–697.

[7] Y. Choi and M. Rhu, “PREMA: A predictive multi-task scheduling algo-
rithm for preemptible neural processing units,” in Proc. IEEE Int. Symp.
High Perform. Comput. Architecture, 2020, pp. 220–233.

[8] S.-C. Kao and T. Krishna, “MAGMA: An optimization framework for
mapping multiple DNNs on multiple accelerator cores,” in Proc. IEEE
Int. Symp. High Perform. Comput. Architecture, 2022, pp. 814–830.

[9] Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo, “VELTAIR: To-
wards high-performance multi-tenant deep learning services via adaptive
compilation and scheduling,” in Proc. ACM 27th Int. Conf. Archit. Support
Program. Lang. Operating Syst., 2022, pp. 388–401.

[10] Y. H. Oh et al., “Layerweaver: Maximizing resource utilization of neural
processing units via layer-wise scheduling,” in Proc. IEEE Int. Symp. High
Perform. Comput. Architecture, 2021, pp. 584–597.

[11] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-
based accelerator design for deep convolutional neural networks,” in Proc.
ACM/SIGDA Int. Symp. Field- Program. Gate Arrays, 2015, pp. 161–170.

[12] J. Yang, H. Zheng, and A. Louri, “Adapt-flow: A flexible DNN accelerator
architecture for heterogeneous dataflow implementation,” in Proc. ACM
Great Lakes Symp. VLSI, 2022, pp. 287–292.

[13] Y. S. Shao et al., “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proc. IEEE/ACM 52nd Int. Symp.
Microarchitecture, 2019, pp. 14–27.

[14] NVDLA deep learning accelerator, 2017. [Online]. Available: http://nvdla.
org

[15] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “TANGRAM:
Optimized coarse-grained dataflow for scalable NN accelerators,” in Proc.
ACM Int. Conf. Archit. Support Program. Lang. Operating Syst., 2019,
pp. 807–820.

[16] P. Minet, E. Renault, I. Khoufi, and S. Boumerdassi, “Analyzing traces
from a Google data center,” in Proc. IEEE Int. Wireless Commun. Mobile
Comput. Conf., 2018, pp. 1167–1172.

[17] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2003.

[18] C. Carrión, R. Beivide, J. Gregorio, and F. Vallejo, “A flow control
mechanism to avoid message deadlock in k-ary n-cube networks,” in Proc.
IEEE 4th Int. Conf. High-Perform. Comput., 1997, pp. 322–329.

[19] S. Ma, Z. Wang, Z. Liu, and N. E. Jerger, “Leaving one slot empty: Flit
bubble flow control for torus cache-coherent NoCs,” IEEE Trans. Comput.,
vol. 64, no. 3, pp. 763–777, Mar. 2015.

[20] A. Parashar et al., “Timeloop: A systematic approach to DNN accelerator
evaluation,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2019,
pp. 304–315.

[21] R. Gonzalez and M. Horowitz, “Energy dissipation in general pur-
pose microprocessors,” IEEE J. Solid-State Circuits, vol. 31, no. 9,
pp. 1277–1284, Sep. 1996.

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: VERSA-DNN: VERSATILE ARCHITECTURE ENABLING HIGH-PERFORMANCE 361

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[23] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[24] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[25] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. 14th Eur.
Conf. Comput. Vis., Amsterdam, The Netherlands, 2016, pp. 21–37.

[26] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.

[27] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[28] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[29] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 7263–7271.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image Com-
put. Comput.-Assisted Intervention, Munich, Germany, 2015, pp. 234–241.

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[32] M. Madadi, S. Escalera, X. Baró, and J. Gonzalez, “End-to-end
global to local CNN learning for hand pose recovery in depth data,”
2017, arXiv:1705.09606.

[33] L. He, G. Wang, and Z. Hu, “Learning depth from single images with deep
neural network embedding focal length,” IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4676–4689, Sep. 2018.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[35] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the sensor,”
in Proc. ACM 42nd Int. Symp. Comput. Archit., 2015, pp. 92–104.

[36] V. Janapa Reddi et al., “MLPerf inference benchmark,” 2019,
arXiv:1911.02549.

[37] C.-J. Wu et al., “Machine learning at Facebook: Understanding inference
at the edge,” in Proc. IEEE Int. Symp. High Perform. Comput. Architecture,
2019, pp. 331–344.

[38] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das, “Design
and evaluation of a hierarchical on-chip interconnect for next-generation
CMPs,” in Proc. IEEE Int. Symp. High Perform. Comput. Architecture,
2009, pp. 175–186.

[39] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip
networks,” in Proc. IEEE Int. Symp. Microarchitecture, 2007, pp. 172–182.

[40] H. Zheng, K. Wang, and A. Louri, “A versatile and flexible chiplet-based
system design for heterogeneous manycore architectures,” in Proc. 57th
ACM/IEEE Des. Automat. Conf., 2020, pp. 1–6.

[41] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express cube topolo-
gies for on-chip interconnects,” in Proc. IEEE Int. Symp. High Perform.
Comput. Architecture, 2009, pp. 163–174.

[42] A. K. Mishra, O. Mutlu, and C. R. Das, “A heterogeneous multi-
ple network-on-chip design: An application-aware approach,” in Proc.
ACM/EDAC/IEEE Des. Autom. Conf., 2013, pp. 1–10.

[43] H. Zheng, K. Wang, and A. Louri, “Adapt-NoC: A flexible network-on-
chip design for heterogeneous manycore architectures,” in Proc. Int. Symp.
High- Perform. Comput. Archit., 2021, pp. 723–735.

[44] X. Yang et al., “Interstellar: Using halide’s scheduling language to analyze
DNN accelerators,” in Proc. ACM Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2020, pp. 369–383.

[45] J. Yang, H. Zheng, and A. Louri, “Venus: A versatile deep neural network
accelerator architecture design for multiple applications,” in Proc. 60th
ACM/IEEE Des. Automat. Conf., San Francisco, CA, USA, 2023, pp. 1–6,
doi: 10.1109/DAC56929.2023.10247897.

[46] L. Yin, J. Wang, and H. Zheng, “Exploring architecture, dataflow, and
sparsity for GCN accelerators: A holistic framework,” in Proc. Great Lakes
Symp. VLSI, 2023, pp. 489–495.

[47] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator effi-
ciency through resource partitioning,” in Proc. IEEE Int. Symp. Comput.
Archit., 2017, pp. 535–547.

Jiaqi Yang (Member, IEEE) received the BS de-
gree in electrical engineering and telecommunica-
tions engineering with management from the Beijing
University of Posts and Telecommunications, China,
in 2018, and the MS degree in electrical engineer-
ing from George Washington University, Washing-
ton, DC, in 2020. Currently, She is working toward
the PhD degree in computer engineering with the
School of Engineering and Applied Science, George
Washington University, Washington, DC. Her re-
search interests primarily lie in computer architecture,

Network-on-Chip (NoC), and the design of high-performance, energy-efficient
re-configurable DNN accelerators.

Hao Zheng (Member, IEEE) received the BS de-
gree in electrical engineering from Beijing Jiaotong
University, Beijing, China, and the PhD degree in
computer engineering from George Washington Uni-
versity, Washington, DC. He is currently an assistant
professor of electrical and computer engineering with
the University of Central Florida, Orlando, Florida.
His research interests include computer architecture
and parallel computing, with emphasis on intercon-
nection networks, machine learning techniques for
efficient computing, and energy-efficient manycore
architecture designs.

Ahmed Louri (Fellow, IEEE) received the PhD de-
gree in computer engineering from the University
of Southern California, Los Angeles, California, in
1988. He is the David and Marilyn Karlgaard En-
dowed chair professor of electrical and computer
engineering with the George Washington University,
Washington, DC, which he joined in 2015. He is also
the director of High Performance Computing Archi-
tectures and Technologies Laboratory. From 1988 to
2015, he was a professor of electrical and computer
engineering with the University of Arizona, Tucson,

Arizona, and during that time, he served six years (2000 to 2006) as the chair
of the Computer Engineering Program. From 2010 to 2013, he served as a
program director with the National Science Foundation’s (NSF) Directorate
for Computer and Information Science and Engineering. He directed the core
computer architecture program and was on the management team of several
cross-cutting programs. He conducts research in the broad area of computer
architecture and parallel computing, with emphasis on interconnection networks,
optical interconnects for parallel computing systems, reconfigurable computing
systems, and power-efficient and reliable Network-on-Chips (NoCs) for mul-
ticore architectures. Recently he has been concentrating on energy-efficient,
reliable, and high-performance many-core architectures, accelerator-rich recon-
figurable heterogeneous architectures, machine learning techniques for efficient
computing, memory, and interconnect systems, emerging interconnect tech-
nologies (photonic, wireless, RF, hybrid) for NoCs, future parallel computing
models and architectures (including convolutional neural networks, deep neural
networks, and approximate computing), and cloud-computing and data centers.
He is the recipient of 2020 IEEE Computer Society Edward J. McCluskey
Technical Achievement Award for pioneering contributions to the solution
of on-chip and off-chip communication problems for parallel computing and
many-core architectures. He is currently the editor-in-chief of IEEE Transactions
on Computers.

Authorized licensed use limited to: The George Washington University. Downloaded on May 12,2024 at 17:45:38 UTC from IEEE Xplore. Restrictions apply.

