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Heat stress occurring during rice (Oryza sativa) grain development reduces
grain quality, which often manifests as increased grain chalkiness. Although
the impact of heat stress on grain yield is well-studied, the genetic basis of
rice grain quality under heat stressis less explored as quantifying grain quality
is less tractable than grain yield. To address this, we used an image-based
colorimetric assay (Red, R; and Green, G) for genome-wide association
analysis to identify genetic loci underlying the phenotypic variation in rice
grains exposed to heat stress. We found the R to G pixel ratio (RG) derived
from mature grain images to be effective in distinguishing chalky grains from
translucent grains derived from control (28/24°C) and heat stressed (36/32°C)
plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that
regulates natural variation for grain chalkiness under heat stress. OsCG5
encodes a grain-specific, expressed protein of unknown function.
Accessions with lower transcript abundance of OsCG5 exhibit higher
chalkiness, which correlates with higher RG values under stress. These
findings are supported by increased chalkiness of OsCG5 knock-out (KO)
mutants relative to wildtype (WT) under heat stress. Grains from plants
overexpressing OsCG5 are less chalky than KOs but comparable to WT
under heat stress. Compared to WT and OE, KO mutants exhibit greater
heat sensitivity for grain size and weight relative to controls. Collectively,
these results show that the natural variation at OsCG5 may contribute
towards rice grain quality under heat stress.
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Introduction

Heat stress (HS) poses a serious threat to agriculture
production and food security. Maximum daytime temperature
that exceeds 33°C during reproductive development affects
pollen viability and multiple yield parameters (Hatfield and
Prueger, 2015). In the absence of genetic improvement of
crops for enhanced heat resilience, every 1°C temperature
increment is predicted to result in yield loss of 3.2% for rice,
6% for wheat, 7.4% for maize, and 3.1% for soybean (Zhao et al.,
2017). Rice yield loss is particularly detrimental as it serves as a
major dietary source for nearly 3.5 billion people (Wing et al.,
2018). Besides yield, HS occurring during grain development
also reduces rice grain quality (Ishimaru et al., 2009; Krishnan
etal., 2011; Sreenivasulu et al., 2015; Nakata et al., 2017; Shi et al.,
2017; Wada et al, 2019; Zhen et al, 2019; Paul et al., 2020).
These yield and quality constraints highlight the need for
developing heat resilient rice cultivars (Fragkostefanakis et al.,
2015; Geange et al,, 2021). Various crop improvement programs
have used genome-wide assodation studies (GWAS), genetic
mapping or reverse genetics approaches to characterize major
QTLs for rice yield and grain size (Huang et al., 2013). However,
our understanding of the genetic basis of grain yield and
especially quality under HS is still limited due to challenges in
imposing a targeted HS for large number of accessions (Xu et al.,
2021). The common prioritization of grain yield over grain
quality in breeding programs has also led to development of
many varieties that are preferred by farmers for their yield, but
not by consumers. Climate driven higher temperature during
grain development is predicted to further exacerbate this
problem (Morita et al., 2016).

Rice quality traits are highly correlated with the market price
(Cuevas et al,, 2016; Custodio et al., 2019; Yang et al., 2021). For
instance, milled grains are graded on their percentage of
chalkiness, chalky grains being more prone to breakage in the
milling process due to the lower intrinsic grain strength caused
by airspace among the abnormal starch granules (Misra et al.,
2021). Grain chalkiness is a polygenic trait identified as opaque
white discoloration of the translucent endosperm (Armstrong
etal, 2019). HS occurring during grain development triggers an
increase in grain chalkiness (Tashiro and Wardlaw, 1991;
Yamakawa et al., 2007; Fitzgerald and Resurreccion, 2009;
Masutomi et al, 2015; Morita et al., 2016; Paul et al., 2020).
HS causes misregulation of genes that control starch and storage
protein metabolic pathways (Liu et al, 2010; Yamakawa &
Hakata, 2010; Hakata et al., 2012; Kaneko et al., 2016;
Ishimaru et al, 2019; Gann et al, 2021; Wang et al,, 2021).
For instance, Chalk5 and UGPasel are two of the genes known to
contribute to variation in grain chalkiness (Li et al., 2014a; Woo
et al,, 2008). Other grain quality genes affected by HS include
transcription factors and genes regulating phytohormone
homeostasis (Zhu et al., 2011; Wang et al., 2013; Kaneko et al.,
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2016; Zhang et al., 2018; Wang et al., 2020; Xu et al., 2020; Baysal
et al., 2020). However, the extent to which the determinants of
natural variation for grain quality under normal temperatures
will be involved in grain quality variation under HS is
not known.

Grain properties such as chalkiness, color, and shape have
been quantified using imaging systems. For instance, support
vector machine (SVM) and digital image processing have been
used to analyze grain chalkiness and detect structural
abnormalities in rice (Yoshioka et al,, 2007; Sun et al, 2014;
Chen et al., 2019; Ma et al., 2020; Aznan et al., 2021). Significant
improvement to these approaches, deep learning-based
supervised segmentation methods can estimate HS-induced
grain chalkiness (Wang et al., 2022). Apart from area-based,
two-dimensional imaging systems, the three-dimensional high-
resolution X-ray microcomputed tomography technique has
also been utilized as a volume-based approach to accurately
quantify grain chalkiness (Su and Xiao, 2020). Hyperspectral
imaging system has also been recently used to analyze grain
quality (Caporaso et al, 2018; Armstrong et al., 2019; Feng et al.,
2019; Gao et al, 2021). For instance, recent studies have
combined hyperspectral imaging and genetic association
studies to identify several loci associated with grain chalkiness
(Barnaby et al, 2020; Xiao et al, 2022). However, a similar
approach combining imaging and genetic association analysis
has not been explored for grain quality determination under HS.

Conventional phenotypic evaluation of grain chalkiness
adopts commercial grain analytical scanners and imaging
systems (Qiu et al., 2015; Marschalek et al,, 2017; Misra et al,,
2021). These typically require large grain quantities that are
intended for field-scale experiments. However, conducting
precisely timed HS experiments for a diverse set of accessions
with varying flowering time is not practical in the field
environment. Rather, controlled environment conditions
combined with image-based software that can rapidly quantify
the optical properties of small quantities of grains is preferred for
mapping grain traits from a diverse set of accessions (Velesaca
et al,2021). SeedExtractor, an open source imaging software, can
accurately measure grain colors in three broadband color
intensities, Red (R), Green (G), and Blue (B) (Zhu et al,
2021a). Each pixel in digital images in RGB format ranges
from 0-0-0 to 255-255-255 and produce a single-color value
for that pixel in the image (Dell’Aquila, 2006; Elmasry et al,
2019). RGB intensities associated with grain pixel are then used
to analyze changes in grain properties. The ratio of R to G
spectral reflectance (Rrep : Rgreen) is a robust index to quantify
leaf pigmentation patterns (Gamon and Surfus, 1999). However,
the significance of RGB channel intensities and their ratios in the
context of grain chalkiness is not reported. In this study, we
examined the potential of using the R to G pixel ratio (RG) as an
indicator of grain quality. To achieve this, we first imposed a HS
treatment on a set of accessions from rice diversity panel 1
(RDP1) (Eizenga et al., 2014). Using grains derived from these
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treatments for imaging, we obtained RG values as a derived
phenotypic trait under control and HS for genome-wide
association (GWA) analysis. We have identified a candidate
gene, rice chalky grain 5 (OsCG5) associated with a significant
locus on chromosome 5. Higher OsCG5 transcript level
negatively correlates with grain chalkiness under HS. Grains of
mutant plants deficient in OsCG5 have greater sensitivity to HS
and those from overexpression plants are less sensitive to HS.

Material and methods
Plant material and growth conditions

We selected 229 accessions from RDPI1 representing
different sub-populations of rice germplasm for evaluating the
phenotypic variation in grain quality in response to HS (Zhao
et al.,, 2011; Eizenga et al., 2014; McCouch et al, 2016).
Accessions selected from RDP1 panel represent five major sub-
populations spanning diverse geographical origins, induding 41
indica, 55 temperate japonica, 50 tropical japonica, 39 aus, 7
aromatic, 25 admixed indica or japonica and a set of 12
accessions lacking subspecies information (Figure S1; Table
S1). Dehulled rice grains, sterilized with bleach (40% v/v) for
40 min, and soaked in sterile water overnight, were germinated
on half-strength Murashige and Skoog (MS) media for 2d in the
dark, followed by 1d growth in light. Seedlings transplanted in
10 cm square pots that contained natural soil mix were grown
under a controlled greenhouse diurnal setting with temperature
28/24 + 1°C, light/dark 16/8 h, and relative humidity of 55-60%.
Spikelets were marked to record the flowering time, and half of
the plants (2-8 replicates per accession for each treatment) were
given HS treatment (36/32 + 1°C) 1d after flowering of marked
spikelets. HS condition was maintained for 5 d, and treated
plants were moved back to the control (28/24°C) greenhouse
until maturity. Marked mature dehulled grains harvested from
both control and HS treated plants were used for grain
image analysis.

Mature seed morphometric and
colorimetric analysis

Harvested panicles from control and HS treated plants were
dried for two weeks (28°C), and dehulled marked grains were
collected for imaging. Dehulled grains were scanned using Epson
Expression 12000 XL scanner (Epson America Inc., Los
Alamitos, CA, USA) at 600 dpi resolution. Scanned images
were processed using a MATLAB application, SeedExtractor
(Zhu et al, 2021a). After removing the grain shape outliers
and filtering for normality, the adjusted mean for each accession
across replicates were obtained with the statistical model as
described previously (Zhu et al,, 2021a).
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Genome-wide association study (GWAS)

A 700K high-density rice array marker dataset was used to
run the GWAS (McCouch et al., 2016). In total, 411,066 SNPs
were retained after filtering for missing data (< 20%) and minor
allele frequency (< 5%). The population structure of the studied
accessions was assessed using principal component analysis
(PCA) on the constructed genomic relationship matrix (Zheng
et al., 2012) (Figure 51). GWAS was conducted in rrBLUP R
package (Endelman, 2011) using the linear mixed model
described earlier (Dhatt et al., 2021). SNP markers were
declared significant using the P-value threshold of -logl0(P) >
6.5, based on method of Li and Ji (2005) using effective number
of markers (Li and Ji, 2005; Hussain et al., 2020). Manhattan plot
and Q-Q plot were created using R package ggman (Turner,
2018). Phenotypic variance (R°) explained by each SNP was
estimated using the mixed.solve () function from the rrBLUP R
package (Endelman, 2011) with SNP having variance equal to
Ko”u, where K is the design matrix of SNP and u is the random
effect of the SNP. Additionally, R’ explained by the locus having
all the significant SNPs was estimated using BGLR R package
(Pérez and De Los Campos, 2014). For this, all the SNPs were
fitted jointly accounting the LD between the markers via a
genomic restricted maximum likelihood method (Dhatt
et al, 2021).

Vector construction and
transgenics generation

We generated mutant and overexpression lines of OsCG5
(LOC_0s05g40850) associated with SNP-5.23896968 at the
position 23,959,548 bp (chr 5) to investigate the genetic basis
of grain chalkiness. For OsCG5 CRISPR-Cas9 mutants, the
single-guide RNAs (sgRNAs) designed using CRISPR-P 2.0
(http://crispr.hzau.edu.cn/CRISPR/) was cloned as described
by Lowder et al. (2015) (Lei et al., 2014; Lowder et al,, 2015).
The single-guide sequence cloned in pYPQI141C (using
Esp31/BsmBI site) was recombined with pANIC6B and
pYPQ167 (Cas9) using LR-clonase. Overexpression construct
for OsCG5 was generated using Gateway cloning system. For
this, the genic region and ~2kb upstream of OsCG5 amplified
from Kitaake DNA using Phusion High Fidility PCR master mix
(ThermoScientific, USA) was cloned in pENTR-D-Topo vector
(ThermoScientific, USA) to get an entry clone. The entry clone
was recombined with modified pMDC99 that contained NOS
terminator (Curtis and Grossniklaus, 2003; Campbell et al,
2017) to construct the destination overexpression. For
generating stable GUS lines, OsCG5 promoter (~2 kb kb
upstream of the start codon) amplified from Kitaake DNA was
cloned into pENTR-D-Topo vector and then recombined with
pMDC163 to get destination clone with GUS reporter. These
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destination constructs were then transformed into
Agrobacterium tumefaciens strain EHA105, which was used
for rice callus transformation (Cheng et al, 1998; Chen et al.,
2016). For CRISPR-Cas9 lines, T1 plants were screened for the
presence of Cas9 construct using GUS-based screening assay.
The DNA extracted from plants lacking the Cas9 construct was
used to screen for the presence of a mutation using Sanger
sequencing. Homozygous plants from T3 or later generations
were used for phenotypic evaluation. For overexpression lines,
homozygous plants were used to confirm the overexpression of
OsCG5 using gPCR assay. For GUS assay, different plant tissues
were stained with GUS solution as described previously (Schmitz
et al., 2015). Primers used in the study are listed in Table 52.

Phenotypic evaluation of grains from
CRISPR-Cas9 and Overexpression
transgenic plants

For analyzing the HS response of grains from transgenic
plants and Kitaake (WT), spikelets were marked at flowering,
and plants were exposed to either HS 1d after flowering (5d HS,
36/32°C) and returned to control condition or grown
throughout in control greenhouse. At maturity, marked,
dehulled grains were used for grain size and colorimetric
analysis. In total, 6-7 plants for each genotype per treatment
were used for phenotypic analysis (Table 53). Cumulatively, we
used 3,988 marked grains from different genotypes and
treatments for this analysis.

Hyperspectral imaging of grains from
transgenic plants

We measured hyperspectral reflectance (600-1700 nm) of
grains from transgenic lines using the HyperSeed imaging
platform (Gao et al,, 2021). Briefly, grains from control and HS
groups were placed on a constantly moving platform and scanned
by a hyperspectral camera (Micro-Hyperspec Imaging Sensors,
Extended VNIR version, Headwall Photonics, Fitchburg, MA,
USA) with Exposure Time and Frame Period set to 12 ms and 18
ms, respectively. The images were captured in the form of three-
dimensional (x, y, A) hypercubes where x, y represented the
position of the pixel in spatial dimensions, and A referred to the
index of wavelength in spectral dimension. Then the images were
preprocessed by removing 5% of bands at the beginning and end
of the spectrum for better accuracy and calibrated using dark and
white references. Afterward, these images were further processed
using a two-step grain segmentation algorithm to extract the grain
spectra and remove the background. Spectral reflectance of grains
from the same plant was averaged along spatial dimensions for
further analysis.
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Statistical analysis of grain RG,
morphometrics and gene
expression data

The significance level for grain RG and morphometrics data
[grain length, grain width, grain area, and single grain weight
(sgw)] was determined using two-way ANOVA. Students t-test
was used to test for statistical significance for gene expression
within and between allelic groups. PCA was used to inspect the
RDP1 population structure using the R packages FactoMineR
and factoextra (Lé et al, 2008). Pairwise Pearson correlation
coefficient (PCC) of OsCG5 with all other grain expressed genes
were calculated using rcorr function with the Pearson option in
Hmisc R package (Harrell, 2014). All statistical analyses in this
study were performed in the R environment (R Core
Team, 2019).

Results

Phenotypic variation in heat stress
response of grain colorimetric
parameters

To elucidate the phenotypic variation in grain quality in
response to HS, we exposed 229 accessions from the RDP1to5d
of HS (36/32 + 1°C) treatment beginning at 1d after flowering
(DAF) and a corresponding set to control (28/24 + 1°C)
treatment. Flowering spikelets were individually marked on
the day of fertilization and tracked during the course of the HS
treatment. We collected the mature, marked grains and dehulled
them before scanning for grain color (R, G and B) pixels using
the SeedExtractor (Zhu et al., 2021a). We only used R and G
channel colors for examining the impact of HS on the R and G
pixel intensities from control and HS treatment grains. We
sought to determine if the ratio of R to G pixel intensities
(RG) for grains can be used as proxy for grain chalkiness caused
by HS treatment. Visual examination of grains indicates that
even a transient HS treatment increases grain chalkiness. To test
this, we measured the RG values of translucent and chalky grains
obtained from control and HS treated plants of Kitaake cv,
respectively (Figure 1A). The RG value of HS-treated chalky
grains were significantly higher than the translucent control
grains (Figure 1B). A similar measurement for the RDP1
accessions had a range of grain RG (1.03 to 1.57), with mean
RG values under control and HS to be 1.13 and 1.12, respectively
(Table S4). The RDP1 mean values for RG for control and HS
were similar due to the fact that grains from many accessions
vary in opposite directions in their response to HS.

We next examined whether the HS sensitivity for the RG
trait among RDP1 accessions correlated with chalkiness for
several diverse accessions and obtained the percentage change
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of their RG values under HS (HS/Control) (Figure 1; Table 54).
We visually confirmed that the accessions with higher HS/
Control for RG values generally had higher chalkiness under
HS compared to corresponding controls and, hence, were
considered more heat-sensitive in grain quality context
(Figures 1C, D). Conversely, accessions with lower HS/Control
for RG exhibited relatively lower grain chalkiness in general.
These results suggest that RG values are associated with grain
chalkiness under HS among the diverse accessions, although
there are some accessions where this relationship does not hold
true (Figures 1C, D).

Genome-wide association analysis for
loci associated with RG

Given the association between RG values and chalkiness, we
incorporated the RG values as a phenotypic trait to dissect the
genetic basis of grain chalkiness. We conducted independent
GWA analysis for control and HS treatments. The GWA
analysis identified 106 significant SNPs that are strongly
associated (-logo(P) > 6.5) with RG values (Figure 2). Of
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these 30 SNPs were detected from analysis of control
condition grains and 76 SNPs from the HS treatment. Only
seven SNPs, underlying seven peaks were detected in both
conditions (Table S5). Under control conditions SNP-
11.21577974 on Chr 11 was the most significant (P=10.9) and
was also detected under HS (P=8.28). This SNP localizes to the
second intronic region of a pentatricopeptide repeat domain
(PPR) protein-coding gene (LOC_Os11g37330). A mutant of
another gene (non-homolog) from this domain family in Chr 11,
small kernel 1 (LOC_Os11g10740), is involved in grain
development in rice and maize, and has a chalky and
shrunken phenotype (Li et al,, 2014b). We also identified SNPs
that co-localize to genes functioning in grain development with a
potential auxiliary role in chalkiness. For instance, SNP-
1.42949271 (Control P=8.62, HS P=8.60) is located within a
cell cycle switch 52B gene OsCCS52B (LOC_Os01g74146) that
controls cell size and regulates endoreduplication to determine
the grain size (Su'udi et al., 2012). Although it did not meet the
stringent P-value cutoff, SNP-5.5143433 on Chr 5 appeared in
both conditions (Control P=5.94, HS P=5.83) and is located
171bp upstream of an expressed protein, LOC_Os05g09200.
Notably, LOC_Os05g09200 has been proposed to be a
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regulator of grain chalkiness based on a targeted-gene
association study (Misra et al., 2019).

Our analysis also identified SNPs that were either specific to
HS treatment or were more significant under HS. For instance, a
HS-specific SNP-4.23303276 (HS P=7.74) was found to be
associated with a brassinosteroid biosynthesis gene dwarfl1l
(LOC_Os04¢39430) that regulates grain length (Tanabe et al,
2005). A frame shift mutation of dwarf11 results in a notched
belly phenotype with higher grain chalkiness (Tong et al., 2018).
Given the detection of several genes with grains related
functions, we mined all genes associated with significant SNPs
under control and HS. Our selection criterion involved genes
within 20 kb (10 kb upstream and downstream) of the most
significant SNP for each peak, resulting in a list of 506 non-
redundant genes (Table S5). We further filtered these genes
based on their expression in developing grain using public
dataset (GSE6893) and identified 10 genes that are
preferentially expressed in grains. For the genes associated
with SNP detected under HS treatment, we examined their
expression in a comparable HS treatment in a public dataset
(Sandhu et al,, 2021). We identified 18 genes to be differentially
expressed in response to HS (Table 55). As these genes are
expressed in developing grains, they have a higher likelihood of
impacting grain quality.

We detected a significant HS-specific peak on Chr 5, which
spanned coordinates 22.2 to 24.86 Mb (RGAP V7). Cumulative
phenotypic variance explained by the SNPs populating this
region under HS and control was 0.46 and 0.22, respectively.
Among these, SNP-5.23564097 is located upstream of a vacuolar
H+ ATPase (OsVHA-E2; LOC_Os05¢40230) whose isoform
subunit OsVHA-E1 traffics grain storage proteins and grains
from the mutant plants have a floury appearance (Zhu et al.,
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2021b). SNP-5.23599535 is located downstream of serotonin N-
acetyltransferase coding gene, OsSNATI. Transgenic plants
overexpressing OsSNAT1 were shown to enhance grain yield
due to increased panicle number per plant (Lee and Back, 2017).
Endoplasmic reticulum (ER) stress induced by HS lead to floury
or shrunken grain phenotype (Qian et al., 2015). Notably, ER
compartment protein-coding gene LOC_0s05g41120 associated
with SNP-5.24040516 has been shown to have higher transcript
abundance in developing grain (7 DAF) under ER stress (Oono
et al, 2010). Our analysis of the expression profiles from
developing grains showed that, out of the 216 genes associated
with this prominent peak on Chr 5, only 13 (13/216) are HS
responsive (Table S5). From these 13 genes, three genes are
preferentially expressed in developing grains. Of them,
LOC_0s05g40790 is one of the five CCR4-NOT transcription
factors in rice and LOC_Os05g¢38530 is a member of the DnaK
gene family (LOC_Os05g¢38530). The third gene encodes for an
expressed protein (LOC_Os05g40850) with highest expression in
developing grains (Figure 52A). LOC_Os05¢38530 is annotated
as a member of the heat shock protein (HSP) 70 family (Jung
et al, 2013). In contrast, LOC_Os05g40850 is a single copy rice
gene. Based on this cumulative analysis, we considered these
three genes to be high priority candidates for regulating variation
in grain chalkiness under HS at this locus.

Given the early grain-specific expression that coincides with
the HS treatment window and its HS response, we decided to
determine if LOC_Os05¢g40850 (named, OsCG5) regulates
variation in grain chalkiness under HS (Figure S52). OsCG5
carries a significant SNP-5.23896968 (Control P=5.25, HS
P=7.02) within its exonic region (Figure 3A) and is located 1.4
Mb downstream of lead SNP (SNP-5.22423360) on Chr 5 under
HS. Sequence homology search revealed no significant
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orthologues for this gene of unknown function. To confirm
developing grain-specific expression of this gene, we analyzed
OsCG5 promoter-beta-glucuronidase (GUS) lines (pOSCG5::
GUS) and found that GUS signal was restricted to the lower
part of grains at 3 and 4 DAF (Figure 3B). Consistent with the
expression patterns observed from public datasets, GUS activity
was not detected in other developmental stages or tissues (Figure
S$3). HS increases transcript abundance of OsCG5 in developing
grains at 2 DAF (Figure S2B).

Allelic variation in OsCG5 expression
correlates with grain chalkiness under
heat stress

We analyzed the distribution of SNP-5.23896968 among
RDP1 accessions and found that 90% of accessions contain the
“G” allele (referred to as the major allele) and 10% of accessions
have the “T” allele (referred to as the minor allele). Overall, the
major allelic group shows lower RG values than minor
accessions (Figure 3C). However, it should be noted that there
is variability in RG values for accessions of the minor allele and
some accessions for each allelic group have values that are
equivalent to the highest and lowest values in the contrasting
allele group (Figure 3C). This is expected given that grain
chalkiness is a multigenic trait and also exhibits variation
within the same panicle. We investigated if differential
transcript abundance of OsCGS5 could be the basis of the
phenotypic difference between the allelic groups. For this, we
randomly selected three accessions from each allelic group and
measured the expression of OsCG5 in developing control and
HS-treated grains at 2 DAF (1 day after stress), with HS initiated
at 1 DAF (Figure 3D). We also evaluated grain chalkiness for
these accessions by placing the grains on a light box (Figure 3E).
We found that major allelic accessions (Ma) had relatively
higher expression of OsCG5 under both control and HS
treatment. Further, Mal and Ma2 showed higher
accumulation of OsCG5 transcript in response to HS when
compared to corresponding controls. Induction level of OsCG5
transcript in Ma3 was lower compared to Mal and Ma2. Among
minor allelic accessions (Mi), transcript abundance of OsCG5
under HS was significantly reduced for Mi2 and increased for
Mi3. For Mil, transcript abundance of OsCG5 did not change
under HS compared to control. The average transcript
abundance of OsCG5 in Mi under HS was not significantly
different than the corresponding average under control. In
contrast, average transcript abundance of OsCG5 in the three
Ma under HS were significantly higher than control (3.7-fold;
P<0.001). The Mi also exhibited higher levels of chalkiness than
the Ma under HS (Figure 3E). These data suggest that transcript
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abundance of OsCG5 could be positively associated with grain
quality under HS.

OsCG5 knockouts are more sensitive to
heat stress

To determine the role of OsCG5 in regulating the grain quality
under HS, we generated native (~ 2kb upstream) promoter-
overexpression (OE) and CRISPR-Cas9 (CR)-based knockout
(KO) mutants in cv Kitaake, which contains the “G” allele for
SNP-5.23896968 and hence belongs to the major allelic group. Ma
have higher transcript abundance of OsCG5 and are less sensitive to
HS than Mi. Therefore, we hypothesized that knocking-out OsCG5
in a major allelic background will render it more sensitive to HS and
cause higher RG values and chalkier grains than WT. We obtained
two OE (OE1 and OE2) and two homozygous KO mutants (KO#5,
KO#6) (Figure 4). Transcript abundance of OsCG5 in the native
promoter-driven OE lines is 2-fold higher relative to WT at 3 DAF
grains (Figure 4A). The homozygous mutants KO#5 and KO#6,
have 1 bp and 109 bp deletions in their target region, respectively
(Figure 4B). KO mutants have reduced OsCG5 transcript
abundance relative to WT at 3 DAF grains (Figure 54). Under
control conditions, OE grains showed a lower RG than KO and WT
(Figure 4C). WT control grains had an RG similar to KO#5 and
KO#6. However, light box imaging did not show a clear difference
in appearance among the grains from three genetic backgrounds
grown under control conditions. Under HS, grain RG values
increased from their respective controls for all genotypes. KO#6
had higher RG values than OE and WT under HS. However, the
RG value for KO#5 was not significantly different from WT under
HS. This could be likely due to the 1 bp deletion in KO#5 compared
to a large deletion in KO#6. Consistent with higher grain RG values
observed under HS, KO#6 also showed higher chalkiness under HS
than OE and WT (Figure 4D). However, overexpressing OsCG5 did
not result in decreased chalkiness under HS. These observations
show that OsCG5 positively contributes to grain quality under HS.

Hyperspectral reflectance of grains from
different genotypes corroborates the
grain chalkiness quantified under HS

Grain chalkiness has recently been estimated using
hyperspectral scanning in rice (Barnaby et al, 2020). Therefore,
we OsCG5 extended the mutant characterization by analyzing the
hyperspectral reflectance of grains from WT, OE and KO lines to
understand the variation in spectral reflectance (lines) of grains with
different chalkiness levels (Figure 4E). Under control, spectral
reflectance of OE, KO and WT grains was indistinguishable.
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Compared to control, HS-treated grains had higher spectral
reflectance in 850-1650 nm range for all the genotypes. Genotypic
difference under HS were primarily observed in the 1400-1650 nm
range, where WT spectral reflectance was lower than KO and
higher than OE. HS-treated KO grains showed highest spectral
reflectance and showed maximum deviation from corresponding
controls in this wavelength range, which may be indicative of higher
grain chalkiness observed in KO lines.

Grain size and weight are more heat-
sensitive in OsCG5 mutants

A difference in the chalkiness among the grains from three
genotypes prompted us to measure the grain size and weight
from WT, OE and KO lines as higher grain chalkiness may
lead to a reduction of grain size and weight due to the
airspaces created among the abnormal starch granules. We
found that HS caused a significant reduction in single grain
weight (sgw), grain width, and grain area for all lines, but grain
length showed minimum sensitivity to HS (Figure 5, Figure S5,
Table 56). Notably, HS resulted in most reduction in grain size
parameters for KO mutants. Grain length was not significantly
impacted by HS for OE and WT. However, KO mutant grains
also showed a reduction in grain length (17.39% and 10.9% for
KO#5 and KO#6, respectively) compared to corresponding
controls (Table S6). We also estimated the total yield for WT,
OE and KO and found that HS caused a severe yield reduction
in these genotypes. We did not observe a genotypic-specific
significant difference in the total yield reduction (Figure S5C).
However, KO#5 showed a maximum percentage reduction
(50%) in total yield (Table S6). Collectively, these results
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suggest that developing grains deficient in OsCG5 are more
sensitive to HS imposed during early grain development
regarding grain size and quality.

Co-expression analysis links OsCG5
function to endosperm transfer cell layer

We next sought to develop a probable regulatory pathway for
OsGCS5 by performing an in-silico gene co-expression analysis at the
early grain filling stage. We used a public transcriptome dataset for
2 and 3 DAF with three temperature treatments (28°C, 35°C and
39°C) to identify genes co-regulating with OsCG5 (Chen et al,
2016). We found 1,653 positively and negatively (PCC>0.8 or PCC<
-0.8 with P<0.05, respectively) co-regulating partners of OsCG5
(Table 57). A subset of the positively co-regulated genes belongs to
families such as maternally expressed genes (MEG), defensin,
glycosyl hydrolase, invertase, lipid transfer protein (LTP),
transferase, and Sugars Will Eventually be exported Transporters
(SWEET), which have previously been shown to function in basal
endosperm transfer layer (BETL) in maize (Lopato et al., 2014;
Sosso et al,, 2015; Salminen et al., 2016). For instance, Matemaﬂy
expressed gene (MEG) 1 has specific expression in maize BETL cells
(Gutiérrez-Marcos et al,, 2004). Our analysis revealed that 7/11 rice
MEG family genes (MEGL3, MEGL5, MEGLS, MEGL11, MEGLI2,
MEGLI3 and MEGLI19) are positive co-regulated with OsCGS.
Similarly, LTP family genes OsPR602 and OsPR9a are highly
expressed in endosperm transfer cells (ETC) during early grain
filling stages in rice (Li et al, 2008). We found OsPR602 to be co-
regulated with OsCG5 at the grain filling stage. These results suggest
that OsCG5 may interact with other genes expressed in ETC during
the grain filling stage.
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Morphometrics differences in single grain weight (SGW) and grain width from WT, KO and OE plants under control and heat stress. (A) SGW (B)
Grain width. The significance level was estimated using two-way ANOVA. N = 6-7 plants. C and HS indicate control and heat stress, respectively.
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Discussion

In this study, we show that rice grain RG values can be used as a
quantitative estimator for chalkiness. Using RG values, we estimated
the extent of natural variation in heat response of RDP1 accessions
for grain chalkiness. Evaluation of grain chalkiness from RG values
obtained from SeedExtractor is a low-cost, time-efficient, and non-
destructive method that can be easily scaled to screen large
germplasm. Our results show that grains with severe chalkiness
tend to have higher RG values than translucent grains, suggesting a
positive relationship between grain RG values and chalkiness levels
(Figure 1). Using RG value as a proxy trait for grain chalkiness or
quality, we performed GWA analysis and identified several novel
loci associated with grain RG under control and HS with a probable
role in grain chalkiness (Figure 2; Table S5). Grain chalkiness is not
only triggered by high temperature but also determined by factors
such as grain size and humidity level (Misra et al, 2021). For
instance, a higher grain width with low or no amylose content leads
to higher grain chalkiness. The RDP1 population used in the study
consist of accessions with diverse grain size properties. As a result,
we may see a difference in grain chalkiness of these accessions even
under control at a minimal level. Therefore, significant SNPs
detection under control and HS is expected depending on
whether the natural variation contributes to the chalkiness in the
respective environment. GWAS SNPs identified in this study co-
localized with loci such as pentatricopeptide repeat domain,
vacuolar ATP synthase subunit, and endoplasmic reticulum-Golgi
intermediate compartment protein (LOC_Os11g37330,
LOC_0s05g40230, and LOC_Os05g41120, respectively), which are
known to regulate grain chalkiness. ER stress response is one of the
early drivers of HS responses in grains. Mutants impaired in ER-
pathway produce chalky/opaque grains in rice (Yasuda et al., 2009;
Sandhu et al,, 2021; Yang et al, 2022). We identified a prominent
HS-specific peak on Chr 5 and narrowed down to a candidate
(OsCG5) based on its tissue and temporal expression pattern,
OsCG5 transcripts are detected during the early grain
development window that coincides with our HS treatment.
Further, the transcript abundance of OsCG5 in developing grains
is sensitive to temperature increases. Along with HS response and
grain-specific expression, our rationale for characterizing the
OsCG5 is also driven by the fact that expressed protein-coding
genes are among the least explored class of genes in the rice genome
due to the lack of information on the protein domains. Despite
being given less attention, expressed proteins have been shown to
have important roles during development. For instance, a class of
expressed proteins such as microproteins have been shown to fine-
tune an array of events, including shoot apical meristem
maintenance and flowering time regulation (Bhati et al, 2020).

Based on allelic variation and transgenic studies, we present
evidence that OsCG5 regulates grain chalkiness under HS. The HS-
treated grains from major allele accessions (Ma) for OsCG5 SNP
carrying ‘G’ allele had lower RG values and chalkiness than minor
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allelic accessions with “T" allele (Figure 3). Allelic frequency indicates
that the major allele for SNP-5.23896968 is predominant in RDP1.
This distribution shows that the major allele possibly has undergone
a positive selection during evolution, contributing to the grain
quality. We show that allelic difference in grain RG could be a
consequence of differential transcript abundance of OsCG5 as Ma
accessions generally had higher transcript abundance of OsCG5
under control and HS compared to Mi accession (Figures 3D, E). It
is also noteworthy that while the average transcript abundance of
OsCG5 was not significantly different under control and HS for Mi,
we detected more than 3-fold induction of OsCG?5 transcripts in two
major (Mal and Ma2) accessions under HS with a minimal increase
in Ma3 (Figure 3D). Since, different rice accessions can have slightly
varying grain developmental progression, it is possible that lower
expression level on Ma3 could be due to such a difference. This is
relevant for OsCG5 as it is expressed for a short duration during
early grain development and developmental progression during this
stage is highly sensitive to HS. Overall, our analysis suggests that
higher transcript abundance of OsCG5 may contribute to lower
chalkiness and hence lower HS sensitivity in the major allelic
group (Ma).

This is supported by increased chalkiness of grains from KO
lines under HS but not under control temperatures. This
suggests that Kitaake OsCG5 does not contribute to the
chalkiness trait under normal temperatures. Overexpressing
OsCG5 in Kitaake did not decrease chalkiness under HS. This
could be because the basal (control) level of OsCGS5 in the major
alleles examined here (Figure 3) may be sufficient to limit
chalkiness under HS. The observed marked increase under HS
for lines Mal and Ma2 may be inconsequential with regards to
chalkiness. These results corroborate the phenotypic difference
found in allelic variants of OsCG5 (Figures 3, 4). We
complemented the results obtained from transgenic studies
using hyperspectral reflectance analysis of grains from different
genetic backgrounds (Figure 4E). We found an increase in
spectral reflectance of transgenic grains with increase in
chalkiness. A clear separation of spectral lines identified for
WT, KO, and OE grains at 1400-1650 nm is comparable to the
various degrees of chalkiness observed in these genotypes. The
comparison of RG values with hyperspectral scan of grains
suggest that these two platforms are complementary and have
different sensitivity in distinguishing the mutants from WT.

We evaluated our GWAS results by comparing them with
novel QTLs or loci identified in previous association studies on
grain chalkiness. Comparative analysis showed that three genes
associated with significant SNPs identified in our study, RNA
polymerase sigma factor, a hypothetical protein, and
retrotransposon protein (LOC_Os11g26160, LOC_Os05g37090,
and LOC_Os05g¢37100, respectively) have also been detected as
candidate genes regulating chalkiness in the GWAS study of 583
accessions from indica and japonica panels and multi-parent
advanced generation intercross populations (Misra et al., 2021).
Similarly, detection of an expressed protein coding gene
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(LOC_Os05g09200) in the present study and a TGWAS study with
a different population structure indicates the high probability of
LOC_0s05g09200 functioning as a regulator of chalkiness (Misra
et al., 2019). We did not identify a significant overlap with other
association studies on grain chalkiness, which may be due to the
complexity in the genetic architecture of this polygenic trait. Since
our HS treatments were imposed precisely for 5d during early
grain development, which is normally not the set-up used by other
studies especially in the field. Our experimental treatment choice
may have increased the likelihood of identifying novel loci that
have higher developmental specificity.

Our co-expression analysis indicates that OsCG5 mediated
grain chalkiness functions in the ETC layer or by interacting with
other genes expressed in the ETC layer. We detected the promoter-
GUS activity at the base of the developing endosperm, which is
consistent with the expression of BETL genes in maize (Figure 3B).
The rice ETC layer, the equivalent of maize BETL, channels
nutrients from maternal tissues to developing endosperm and
protects the grains from infection (Li et al., 2008). Having a role
of ETC layer in pathogen defense, eight defensin family genes co-
regulated with OsCG5 may have a role in the biotic stress tolerance
of developing grains. Two maize BETL genes (BETL-1 and BETL-3)
show sequence homology with defensin-like proteins (Li et al,
2008). Most of the MEGs are exclusively expressed in the BETL
region in maize (Xiong et al, 2014). Given the identification of 7
MEGs co-regulating with OsCG5, we speculate that some may share
functional role with their maize orthologs.

Summary

This study identifies the grain RG trait as a potential means to
estimate HS induced grain chalkiness. Integrating RG values as a
phenotypic trait in GWAS yielded a novel candidate OsCG5.
Functional validation suggests that OsCG5 may regulate natural
variation for grain quality under HS. Transgenic studies further
suggested that the transcript abundance of OsCG5 positively
regulates grain quality under HS. Given the grain quality
reduction due to HS and frequent heat waves occurring more
frequently, natural variants of OsCG5 may serve as a potential
genetic resource to mitigate the grain quality reduction in breeding
programs. A similar functional characterization strategy might be
required to reveal the role of other candidate genes identified in this
study in regulating grain quality under HS.
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Principal component analysis depicting population structure of rice
diversity panel 1 accessions.
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SUPPLEMENTARY FIGURE 52
Expression pattern of chalky grain 5 in (A) various anatomical samples (B)
developing grains (12 - 48 hours after fertilization) profiled from time-
series RNASeq dataset (Sandhu et al,, 2021). C and HS indicate control and
heat stress, respectively.

SUPPLEMENTARY FIGURE 53
GUS-stained samples of (A) 1 week old seedling (B) germinating grain.

SUPPLEMENTARY FIGURE 54
RT-PCR assay showing the reduction in the expression of chalky grain 5in
KO#5 and KO#6 transgenic lines compared to wild-type. Significance
level for t-test, *, P<0.05; **, P<0.0L

SUPPLEMENTARY FIGURE S5
Morphometrics differences in grain area, grain length and total yield from
WT KO and OE plants under control and heat stress. (A) Grain area (B)
Grain length (C) Total yield. The significance level was estimated using
two-way ANOVA. N = 6-7 plants. C and HS indicate control and heat
stress, respectively.

SUPPLEMENTARY TABLE 51
Details of rice diversity panel 1 accessions used in the study.
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