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Abstract—Contemporary applications and cloud workloads
often comprise multiple Deep Neural Network (Multi-DNN)
models. These models exhibit significant variations in compu-
tation, memory, and communication characteristics. For such
heterogeneous workloads, a static and rigid hardware accelerator
can no longer provide efficient and high-performance execution.
To this end, we propose a versatile accelerator, called Polyform,
to support the concurrent execution of different DNN models
with the goal of improving energy and performance efficiency.
Specifically, Polyform features two unique designs from both
hardware and scheduling standpoints. On the hardware level, we
have designed a flexible interconnection network that facilitates
the formation of multiple sub-accelerators. Our design allows
for spatial resource partitioning, including bandwidth and com-
putation, while also providing effective communication support
for various parallelism choices. On the scheduling level, Polyform
employs a novel two-stage Genetic Algorithm (GA) to explore
and identify the optimal configurations such as task orders,
partition size, dataflow styles (e.g., weight or output stationary),
and bandwidth. Our simulation shows that Polyform achieves
remarkable results compared to prior work, including up to
77.8% energy reduction and a 2.79× improvement in throughput
as compared to prior work [1]–[3].

I. INTRODUCTION

The success of Deep Neural Networks (DNNs) is tightly

coupled to the increased computing power enabled by the

underlying hardware. Specialized hardware accelerators [4]–

[7] have been designed for specific DNN models. However, the

diverse nature of DNN models, serving various applications,

has resulted in varying computation and communication char-

acteristics. Static accelerator designs can no longer efficiently

meet the demands of executing multiple DNNs.

This challenge involves a spatio-temporal perspective in

executing multi-DNNs. From the temporal point of view,

efficient management of shared resources in a monolithic

accelerator across different time steps is crucial for optimal

performance and resource utilization. The simultaneous exe-

cution of multiple DNNs could lead to resource contention in

shared resources like memory bandwidth and computational

units, resulting in performance degradation or resource under-

utilization [8]. Moreover, effective task scheduling, including

order of execution, dependency management, and workload

balancing, is also important.

From the spatial standpoint, an accelerator needs to be

partitioned spatially, simultaneously accommodating multi-

DNN with different computation and communication require-

ments. For example, Planaria [2] proposed a reconfigurable

architecture that can concurrently execute various DNN tasks,

Table I: A comparison of the state-of-the-art designs for Multi-

DNN Execution.

Design
Spatial Temporal Partition Flexible Flexible

Partitioning Scheduling Granularity Dataflow Bandwidth

PREMA [1] � � Low � �

Planaria [2] � � High � �

MAGMA [3] � Medium �

Polyform � � High � �

� Full support � No support Limited support

where compute/memory resources are dynamically allocated.

MAGMA [3] proposed a design running multi-DNN with a

couple of dataflow choices. However, none of the current

accelerators can provide all the desired spatial and temporal

functionalities in one unified architecture as shown in Table I.

In this paper, we introduce Polyform, a versatile and flexible

accelerator capable of executing multi-DNN on one accelera-

tor. Polyform consists of optimized designs at both the hard-

ware and scheduling levels. On the hardware level, Polyform
supports a flexible interconnection network that can facilitate

the formation of multiple sub-accelerators. Our design allows

for spatial resource partitioning, including bandwidth and

computation, while also providing effective communication

support for various dataflows. Polyform facilitates various

communications, specifically aligning the traffic pattern re-

quirements (e.g., broadcast and unicast communications) and

the dataflow in each sub-accelerator. On the scheduling level,

Polyform employs a novel two-stage Genetic Algorithm (GA).

In the first stage, the algorithm prioritizes finding an optimal

task allocation policy and determining the suitable number

of sub-accelerators. Once the optimal partitioning scheme for

each workload is identified, the second stage configures the

architectural settings within those sub-accelerators, including

processing elements, bandwidth, and different dataflows (such

as weight or output stationary). Through our simulation, we

observe that Polyform achieves up to 77.8% energy reduction

and 2.79× throughput improvement as compared to prior

work [1]–[3].

II. POLYFORM ARCHITECTURE DESIGN

Our proposed accelerator design consists of two unique

designs: (1) a versatile and flexible DNN architecture with

the ability to be spatially partitioned for multiple DNN tasks

with any desired size and dataflow, and (2) a holistic schedul-

ing framework that is capable of managing task allocation,

resource allocation, and dataflow selection at the same time.
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Figure 1: (a) The proposed overall architecture, (b) an example

of accelerator partitioning with five running DNN tasks, and

(c) the flexible router. (d) and (e) are detailed designs of a

horizontal and a vertical switch inside the router, respectively.

A. Proposed Accelerator Micro-architecture

In this work, we use a 4×4 design to illustrate the function-

alities of the proposed accelerator, as shown in Figure 1(a).

The accelerator is equipped with a genetic algorithm (GA)-

based scheduler, distributed global buffers (banked buffers),

an array of PEs, and a flexible interconnect. Consequently,

it can be dynamically partitioned into multiple individually

running sub-accelerators, and each sub-accelerator is sized and

configured to support its running DNN tasks, as shown in

Figure 1(b). All the PEs are interconnected by a flexible NoC,

and PEs and banked global buffers are connected by a crossbar

(XBAR) to provide all-to-all connections. Each PE consists of

16 MAC units for matrix multiplication, buffers for weight

filters, input activations, and output activations.

B. Flexible Interconnection Network Design

Conventional routers with complex virtual channels and

crossbars are designed to address the unpredictable CPU cache

and memory traffic. However, multi-DNN execution offers

optimization opportunities due to its predictable, rhythmic

traffic, in which data propagates in a row-wise or column-wise

manner. Given this, complex crossbars and virtual channels are

no longer needed.

In this work, we propose a flexible router and link design to

leverage the mentioned opportunities. Specifically, we design

low-cost vertical and horizontal switches supporting column-

and row-wise communications as shown in Figure 1(c). Both

vertical and horizontal switches can support either bus-based

or packet-based communications. Figure 1(d) and Figure 1(e)

show the detailed design for each switch. For both switches,

the input ports can be used to continue the data propagation

through a wire like a bus or a buffer. Multiple transistors

Table II: Supported Dataflows in Ployform and Their Com-

munication Patterns (Router Modes).
Parallelism Weight Filter Input Activation Output Activation Temporal

Dimension Multi Uni Multi Uni Multi Uni Stationary

C � � � WS/IS/OS

K � � � WS/IS/OS

(R, S) � � � WS/IS/OS

(X’, Y’) � � � IS/OS

(C, R, S) � � � WS/IS/OS

(K, X’, Y’) � � � IS/OS

(C, R, S, K, X’, Y’) � � � N/A
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Figure 2: An example of supporting different dataflows for

different tasks in different sub-accelerators.

are implemented, acting as a link switch to turn off the data

transmission when the router is placed at the edge of the

partitioned network to avoid signal interference. Alternatively,

transistors can be replaced by tri-state link repeaters [9] but

with a much higher cost.

C. Flexible Partitioning and Dataflow Support

The flexible router and links enable the sub-accelerator par-

titioning by turning on the link switch. The signal propagation

is separated among partitions. Each partitioned accelerator

can be configured according to its desired dataflow, including

spatial parallelism (C, R, S, K, X, Y, X’, Y’) and temporal

reuse strategy (weight stationary (WS), input stationary (IS),

and output stationary (OS)). Table II summarizes the charac-

terizations and router mode for different dataflows. Since the

partial sums are accumulated hop by hop, it requires unicast

support at either horizontal or vertical direction. As such, at

least one of the weight filter and input activation matrices

should be distributed in a unicast manner.

To illustrate Polyform’s mapping strategy, we present two

convolutional layer examples as Task 0 and Task 1 in

Figure 2. Task 0 and Task 1 are mapped to partitioned sub-

accelerators 0 and 1, respectively. For Task 0, the weights

(wj
i ) are supplied to their corresponding PEs in a multicast

mode, while the inputs (Iji ) are supplied in a unicast mode. In

such a case, the vertical switches are configured as a bus-

based network. The banked global buffer acts as a master

node, whereas all the PEs at each row or column are slave

nodes. The horizontal switches are configured as a packet-

based network, where the packets are transmitted hop by hop,

reaching their destination. The large dimensions of the input

activation favor the input stationary dataflow, as the reuse

of the input elements avoids redundant memory access for

the large matrix. The following equation shows how different

kernels (wj
i ) are multicasted to the first and second row (row0
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and row1) of sub-accelerator 0, while the inputs (Iji ) are

pinned to the PEs and reused for two consecutive timesteps,

t0 and t1 (underscores denote stationary elements).

Task 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t0

{
row0 : (I00 × w0

0) + (I01 × w0
1) + (I06 × w0

2) + (I07 × w0
3)

row1 : (I01 × w0
0) + (I02 × w0

1) + (I07 × w0
2) + (I08 × w0

3)

t1

{
row0 : (I00 × w3

0) + (I01 × w3
1) + (I06 × w3

2) + (I07 × w3
3)

row1 : (I01 × w3
0) + (I02 × w3

1) + (I07 × w3
2) + (I08 × w3

3)

For Task 1, however, the large channel size of the filter,

together with the small size of the input channel necessitates

a weight stationary dataflow. The weights are stored in the

PE buffers while the inputs are iterated through different time

steps. Polyform’s flexible router links multicast the same input

element (Iji ) across each row of the sub-accelerator, in which

NoC is configured as a bus. Meanwhile, the weight elements

(wj
i ) are unicasted vertically to each PEs. For Task 1 in sub-

accelerator 1, we compute the following in t0 and t1 timesteps:

Task 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t0

{
row0 : (I00 × w0

0) + (I00 × w3
0) + (I00 × w6

0) + (I00 × w9
0)

row1 : (I01 × w0
1) + (I01 × w3

1) + (I01 × w6
1) + (I01 × w9

1)

t1

{
row0 : (I01 × w0

0) + (I01 × w3
0) + (I01 × w6

0) + (I01 × w9
0)

row1 : (I02 × w0
1) + (I02 × w3

1) + (I02 × w6
1) + (I02 × w9

1)

Such adaptive interconnects within each individual sub-

accelerator enable an opportunistic choice of dataflow, in-

troducing a new parameter when exploring the architectural

design space for Polyform.

D. Routing Deadlock Avoidance
Routing deadlock can arise as a result of circular channel

dependency. To resolve the circular channel dependency, turn-

restricted routing algorithms or deadlock recovery techniques

are implemented [10], [11] to remove the circular dependency.

However, the data movement flows at each row/column in

Polyform, and thus the decoupled horizontal and vertical

data paths are exempt from the prerequisites forming any

dependency.

III. POLYFORM TWO-STAGE GA-BASED SEARCH MODEL

GA, inspired by biological evolution, excels in address-

ing complex, multi-objective problems [12]. However, its

applicability is limited when dealing with concurrent task

allocation, resource allocation, and dataflows due to vast

design possibilities and problem variations. Our approach

involves treating the design space exploration as two distinct

optimization problems: task allocation, referred to as ‘stage 1,’

and resource allocation and dataflow selection, referred to as

‘stage 2’. These problems are addressed using a unified GA,

as illustrated in Figure 3.
1) Stage 1 - Task Allocation: During the execution of

multiple DNN models, each model can be divided into layers,

referred to as tasks. The inherent independence between dif-

ferent DNNs allows for concurrent, non-blocking execution

of these tasks, offering spatial parallelization opportunities.

In stage 1, our aim is to achieve optimal task allocation and

determine the appropriate number of sub-accelerators.

Yes

No

No

Finish

Yes

Stage 1: Task Allocation

Stage 2: Resource Allocation & Dataflow Selection

Task  
Lists 

Generate�
Genes�

task id 
task�priority 
sub-accel.�
index 

Initialize 
Genomes

Fitness Cal. 
(Fitness Value
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Two)

New 
Genomes

Termination
Criteria

Initialize 
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Gene Decoder 
(Allocated Resource,
Selected Dataflow)
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(Hardware
Simulation)

Termination
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New
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Gene Decoder 
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Generate�
Genes�

PE alloc. 
BW alloc. 
supported�
dataflow 

Figure 3: Illustration of our proposed two-stage genetic algo-

rithm for task allocation (stage 1) and resource allocation and

dataflow selection (stage 2).

2) Stage 2 - Resource Allocation and Dataflow Selection:
Similarly, this stage starts with gene generation, but each

gene represents the number of PEs, bandwidth, and dataflow

selected for each sub-accelerator. Gene decoder feeds task

allocation, dataflow, and resource allocation information into

MAESTRO [13] to calculate fitness.

Fitness calculation is used to evaluate the configuration

with specific objectives (e.g., latency, energy, or energy-delay

product). Here, the fitness calculation is divided into two

stages but correlated, as the maximum fitness value obtained

in the second stage is returned to the first stage. Our two-

stage GA terminates after 10,000 iterations, as determined

by our empirical study, or when the fitness converges. The

entire search duration ranges from 20 to 30 seconds, and

the overhead can be overlapped with the execution time of

multiple DNN workloads.

IV. EVALUATION

A. ASIC Synthesis Tools

To evaluate the area and power consumption, we use the

Synopsys Design Compiler NXT with the Synopsys SAED-

PDK 32nm technology for the synthesis of Polyform’s archi-

tecture and estimate the power using Synopsys PrimeTime PX

with worse case PVT corner.

B. Simulation Setup

We compare Polyform with several state-of-the-art designs:

PREMA [1], which utilizes a single accelerator with se-

quential task scheduling based on priorities; Planaria [2],

which supports dynamic spatial partitioning with a fixed

dataflow and compute-memory resource ratio; and MAGMA-

HO and MAGMA-HE [3], which consist of four homogeneous

and heterogeneous sub-accelerators, respectively. Each sub-

accelerator in MAGMA is designed with different numbers of

PEs and dataflows. All designs have identical specifications:

a 16×16 PE array, a memory bandwidth of 64 GB/s, and a

global buffer size of 16 MB. Each PE includes 16 KB weight

buffers, 8 KB input buffers, 8 KB output buffers, and 16 16-

bit MAC units. We select a set of benchmark applications to

examine different DNN applications with unique computation

characteristics shown in Table III. For multi-DNN execution,

each dataset consists of 20 randomly selected tasks from

different application domains.

C. Performance Analysis

Figure 4 shows that Polyform outperforms PREMA, Pla-

naria, MAGMA-HO, and MAGMA-HE by factors of 2.79×,
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Figure 4: Throughput comparison with different DNN models,

normalized to PREMA.

Table III: Benchmarks Description

Domain DNN Model
Image Classification (IC) ResNet50, Mobilenets
Machine Translation (MT) GNMT, Transformer-XL
Recommendation System (RS) WnD, DIN
Mixed Workload Random tasks from IC, MT, and RS

1.44×, 1.22×, and 1.28× on average. In the RS benchmark,

Polyform achieves a comparable throughput to MAGMA-HO

and MAGMA-HE because it is partitioned into four sub-

accelerators with similar dataflow choices. In the IC bench-

mark, Polyform demonstrates more significant throughput en-

hancements, improving by factors of 2.94×, 1.76×, 1.30×,

and 1.52× compared to PREMA, Planaria, MAGMA-HO,

and MAGMA-HE, respectively. This improvement indicates

Polyform’s ability to handle various sizes of DNN models in

the IC benchmark.

D. Energy Analysis

Figure 5 illustrates that Polyform reduces the overall energy

consumption by 77.8%, 49.0%, 29.3%, and 34.3% on average

when compared to PREMA, Planaria, MAGMA-HO, and

MAGMA-HE, respectively. This reduction is attributed to the

increased throughput (resulting in a shorter makespan) and

reduced off-chip memory access.

E. Sensitivity Study for Different Number of Tasks

We investigate the impact of varying the number of Mixed

tasks from 5 to 20 on the effectiveness of Polyform. Figure 6(a)

demonstrates that Polyform improves the overall throughput by

up to 2.50×, 1.43×, 1.33×, and 1.39× compared to PREMA,

Planaria, MAGMA-HO, and MAGMA-HE, respectively. The

improvement becomes more significant with a larger number

of tasks. This observation highlights the crucial role of spatial

parallelism in effectively handling a large set of tasks.

F. Area Analysis

The area breakdown is shown in Figure 6(b). The over-

all accelerator requires an area of 39.89 mm2, where the

global buffers, NoC, MACs, local buffer, and control logic

consume 19.03 mm2, 2.43 mm2, 1.76 mm2, 15.43 mm2

and 1.24 mm2, respectively. Given its architectural simplicity,

our proposed flexible router achieves a 56% reduction in area

compared to a traditional 256-bit router.

V. CONCLUSION

In this paper, we propose an energy and performance-

efficient DNN accelerator in pursuit of multi-DNN execution.

The proposed accelerator employs two unique designs for the

exploitation of DNN parallelism. First, we propose a flexible

Figure 5: Energy comparison with different DNN models,

normalized to PREMA.

(a)

47.7% 
Global 
Buffer 4.4% 

MAC

6.1% 
NoC 

38.7% 
Local
Buffer 

3.1% 
Control 
Logic

(b)

Figure 6: (a) Throughput analysis for the various number of

concurrent scheduled Mix tasks, and (b) the area breakdown

of our proposed accelerator.

accelerator architecture that can be spatially partitioned into

multiple smaller accelerators called sub-accelerators. Each

sub-accelerator can be optimized in accordance with different

parallelization and data reuse strategies. Second, a GA-based

framework is proposed to simultaneously manage resource

allocation, dataflow selection, and task scheduling. Our pro-

posed design can achieve significant energy and throughput

improvements as compared to prior work.
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