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Recently Zheng et al. [18] characterized the coefficients of 
f(x) = x + a1xs1(2m

−1)+1 + a2xs2(2m
−1)+1 + a3xs3(2m

−1)+1

over F22m that lead f(x) to be a permutation of F22m for 
(s1, s2, s3) = ( 1

4
, 1, 3

4
). They left open the question whether 

those conditions were also necessary. In this paper, we give a 
positive answer to that question, solving their conjecture.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Let q = pm be a prime power. Let Fq denote the finite fields of q elements. A poly-

nomial f ∈ Fq[x] is called a permutation polynomial (PP) of Fq if the induced mapping 

x �→ f(x) is a bijection of Fq. Several authors in recent history have focused on permu-

tation polynomials and their applications. For example, PPs have been widely used in 
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coding theory and cryptography, and we refer the reader to [9,10] for a survey on the 

latest advances. Recently, PPs taking simple forms and few terms have attracted much 

interest and have been deeply investigated. In [19,17] the authors provided a powerful 

method to construct PPs using the set of q +1-th roots of unity. Along this view, several 

new families of PPs have been constructed and we refer the reader to [6,15,14,13,12] for 

more details.

Another way to look at the PPs is based on algebraic curves over finite fields. In [11], it 

was shown how to use the theory of algebraic curves to determine whether a polynomial 

is a permutation polynomial or not.

Permutation trinomials with Niho exponents of the form f(x) = x + a1xs1(2m−1)+1 +

a2xs2(2m−1)+1 ∈ Fq2 [x], have attracted much interest in recent years. See for example [2,

8,5]. The parameters s1, s2 should be read modulo q+1. Given (s1, s2), finding conditions 

on a1, a2 that are sufficient and necessary for f to be a permutation polynomial of Fq2

is a hard question and some progress have been done in that direction. See [7,8,1].

However, the situation for permutation quadrinomials is different. Let f(x) = x +

a1xs1(2m−1) + a2xs2(2m−1) + a3xs3(2m−1). Recently, Tu et al. investigated the case of 

(s1, s2, s3) = (−1, 1, 2) under some restrictive conditions [16]. In [18] the authors provided 

more classes of permutation quadrinomials from Niho exponents in characteristic two for 

(s1, s2, s3) = ( −1
2k−1

, 1, 2k

2k−1
), (s1, s2, s3) = ( 1

2k+1
, 1, 2k

2k+1
), where m and k are positive 

integers and (s1, s2, s3) = (1
4 , 1, 34 ). Their work focuses on finding sufficient conditions 

for the polynomials to be permutation polynomials and it is based on arithmetic over 

finite fields. Proving whether these conditions are necessary can be challenging. In fact, 

they also suggested that the conditions given were necessary for m big enough, but they 

have not found efficient techniques to show those facts.

Very recently the problem of characterizing permutation quadrinomials was also ad-

dress by Ding and Zieve in [4], where the authors determined a very large class of 

permutation quadrinomials by using novel geometric techniques (even when the Weil 

bounds do not provide useful information). In particular they were able to solve two out 

of the three conjectures presented in [18, Th 1.1 and 1.3].

In this paper, we aim to answer the conjecture left open, that is investigating whether 

the conditions in [18, Theorem 1.4] are also necessary. We will use the Hasse-Weil type 

theorems to prove necessary conditions for a polynomial to be a permutation polynomial. 

In particular we will give a complete answer to the question, see Theorem 2.2.

2. Setting and known results

Let q = 2m be a prime power and Fq2 be the finite field of q2 elements. Let a1, a2, a3 ∈
Fq2 and denote θ1 = 1 +aq+1

1 +aq+1
2 +aq+1

3 , θ2 = aq
1+a3aq

2, θ3 = a3+a2aq
1, θ4 = aq+1

1 +aq+1
3

and θ′
4 = θ1 + θ4 = 1 + aq+1

2 . Note that

θq+1
2 + θq+1

3 = θ4θ′
4.
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For the sake of completeness, we now summarize the main previous result we will use 

in this paper. See [18] for more details.

Theorem 2.1 ([18, Theorem 1.4]). Let n = 2m be a positive integer. Let (s1, s2, s3) =

(1
4 , 1, 34 ) and a1, a2, a3 ∈ Fq2 . Then f(X) = X +a1X

s1(q−1)+1 +a2X
s2(q−1)+1 +a3X

s3(q−1)+1

is a PP of Fq2 if either

θ4 �= 0, θ2 = 0 and a3 ∈ µq+1, a3 /∈ {x3|x ∈ µq+1} (2.1)

or

θ1 �= 0, θ2 �= 0, θ4 = 0, θ3 = θ2q−1
2 and x3+x+

θ2
1

θq+1
2

= 0 has no solutions over Fq. (2.2)

The aim of this paper is to answer the question left open by the authors in [18, 

Theorem 1.4] and prove that conditions (2.1) and (2.2) are also necessary.

The main result is stated in the following theorem.

Theorem 2.2. Let m ≥ 9 be an integer and q = 2m. With the notation above, if the 

polynomial

f(x) = x + a1xs1(q−1)+1 + a2xs2(q−1)+1 + a3xs3(q−1)+1 (2.3)

is a PP of Fq2 then

• if θ2 = 0 then θ4 �= 0, a3 ∈ µq+1, a3 /∈ {x3|x ∈ µq+1};

• if θ2 �= 0, then θ4 = 0, θ1 �= 0, θ3 = θ2q−1
2 and

x3 + x +
θ2

1

θq+1
2

= 0 (2.4)

has no solutions in Fq.

Corollary 2.3. Conditions (2.1) and (2.2) of Theorem 2.1 are also necessary.

3. Algebraic curves and necessary conditions

It is well known that polynomials of the form f(x) = xh(xq−1) permute Fq2 if and 

only if g(x) = xh(x)q−1 permutes the set µq+1 of the (q+1)-roots of unity in Fq2 . See [19, 

Theorem 1.2]. For f(x) in Equation (2.3) this means to prove that the rational function

p(x) =
x4 + aq

1x3 + aq
3x + aq

2

a2x4 + a3x3 + a1x + 1
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permutes µq+1, see [18, Section 5] for more details.

Let C be the plane curve associated to p(x), with equation F (X, Y ) = (p(X) −
p(Y ))/(X − Y ) = 0, that is

F (X, Y ) =

(

a1Y + a2Y 4 + a3Y 3 + 1
) (

X3a1
q + a2

q + a3
qX + X4

)

X + Y
+

+

(

a1X + a2X4 + a3X3 + 1
)

(Y 3a1
q + a2

q + Y a3
q + Y 4)

X + Y
= 0,

(3.1)

or equivalently

F (X, Y ) =θq
3 + θ3X3Y 3 + θ4XY (X + Y ) + θ′

4(X + Y )3+

+ θ2(XY + (X + Y )2) + θq
2(X2Y 2 + XY (X + Y )2) = 0.

(3.2)

C is a curve defined over Fq2 and p(x) permutes µq+1 if and only if there are no points 

(X, Y ) ∈ C + µ2
q+1 such that X �= Y . Since understanding whether or not C has points 

in the set µq+1 is not always an easy task to do, we will consider also the following idea. 

Choose an element e ∈ Fq2 such that eq = e + 1. Every x ∈ µ2
q+1 different from 1 can 

be written as x = X+e
X+e+1 , where X runs over Fq. Then p(x) permutes µq+1 if and only 

if p(φ(x)) : Fq , {∞} → µq+1, where φ(x) = x+e
x+e+1 , φ(∞) = 1, is a bijection. This is 

equivalent to ask that H(x) = p(φ(x))|Fq
: Fq → µq+1 \ {(a1 + a2 + a3 + 1)q−1} is a 

bijection. Let H be the affine curve defined by (H(X) − H(Y ))/(X − Y ) = 0. It is easily 

checked that H is defined over Fq and therefore H(x) is a bijection if and only if H has 

no Fq-rational points off the line X = Y .

Moreover, an equation for H is given by H(X, Y ) = (X + e + 1)3(Y + e +

1)3F (φ(X), φ(Y )) and H is Fq2 -birationally equivalent to C: let

ψ(X, Y ) =
(X(e + 1) + e

X + 1
,

Y (e + 1) + e

Y + 1

)

,

then (1 + X)3(1 + Y )3H(ψ(X, Y )) = F (X, Y ) and the two curves are Fq2-birationally 

equivalent.

Proposition 3.1. Let q ≥ 512. If f(x) ∈ Fq2 [x] is a PP then C is not absolutely irreducible 

over Fq2 .

Proof. If C is absolutely irreducible over Fq2 then H is absolutely irreducible over Fq. 

Since H has degree at most 6, the Hasse-Weil bound implies that H has at least an affine 

rational point (a, b) with a �= b whenever

q + 1 − 20
√

q − 12 ≥ 0, (3.3)

where 12 is the maximum number of points belonging either to the line X = Y or to 

the infinity line. Equation (3.3) is satisfied for every integer greatest than 421. Thus, if 
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q = 2m ≥ 512, H has an Fq-rational point (a, b), with a �= b. Consequently, we obtain a 

point 
(

a+e
a+e+1 , b+e

b+e+1

)

= (a′, b′) ∈ µ2
q+1 such that

a′ �= b′ and p(a′) = p(b′),

which is in contrast with f(x) being a PP of Fq2 . �

Proposition 3.1 allows us to focus on C to obtain necessary conditions on f(x). However 

we will see that proving the absolutely irreducibility of C is not always possible. Thus, in 

some cases, we will exhibit explicitly points belonging to C +µ2
q+1, off the line X +Y = 0.

Understanding whether C is reducible or not may be difficult. For this reason, one 

can ask for a transformation that sends C to a lower degree curve easier to study. In 

particular, the group G generated by (X, Y ) �→ (Y, X) is a subgroup of Aut(C), the 

automorphism group of C. Furthermore, let u = X +Y , v = XY and G(u, v) = F (X, Y ). 

Let D be the curve defined by G(u, v) = 0, that is

D : θq
3 + θ′

4u3 + θ4uv + θ3v3 + θ2(u2 + v) + θq
2v(u2 + v) = 0, (3.4)

which is the quotient curve C⁄G. When convenient, we will study the connection between 

C and D to derive information on the irreducibility of C.

The paper is organized as follows: Sections 4 and 5 are dedicated to the cases θ2 = 0

and θ4 = 0 respectively, strongly using the connection between C and D. Section 6 will 

be devoted to the case θ2 �= 0 and θ4 �= 0 and we will focus on the factorization of H
showing that there must always be an absolutely irreducible component defined over Fq

in that case.

4. Case θ2 = 0

We note that if θ1 = 0 then θ4 �= 0 and a3 ∈ µq+1. In fact since a1 = aq
3a2 and 

aq
1 = aq

2a3, then

θ4 = aq+1
1 + aq+1

3 = aq+1
3 (1 + aq+1

2 ) = aq+1
3 θ4,

and θ3 = a3θ4 which justifies θ4 �= 0 and a3 ∈ µq+1, otherwise f is trivially not a PP 

(see for example [13, Result 1.2]). When this happens the equation of D is exactly

G(u, v) = aq
3 + u3 + uv + a3v3.

The latter equation needs to be studied also when θ1 �= 0, this is why we will see both 

cases together at the end of this section. See Remark 4.5.

Let θ1 �= 0. By the same passages as above, we have

θ4 = aq+1
3 θ′

4, θ3 = a3θ′
4 and θ′

4 �= 0.



6 V. Pallozzi Lavorante / Finite Fields and Their Applications 96 (2024) 102418

If θ4 = 0, then a3 = 0, a1 = 0 and the binomial f in equation (2.3) is not a PP (see for 

example [13, Result 1.2]).

Therefore C becomes F (X, Y ) = 0 with

F (X, Y ) = aq
3 + a3X3Y 3 + aq+1

3 XY (X + Y ) + (X + Y )3

and D becomes G(u, v) = 0 with

G(u, v) = aq
3 + u3 + aq+1

3 uv + a3v3.

Proposition 4.1. The curve D defined by the equation (3.4) is absolutely irreducible if and 

only if a3 /∈ µq+1.

Proof. If a3 = 0 then G(u, v) is not absolutely irreducible. Let a3 �= 0. Note that every 

singular point of D is a double point. In fact, we have ∂uvG �= 0 and ∂vuG �= 0. The 

system of partial derivatives is

{

u2 + aq+1
3 v = 0

aq
3u + v2 = 0

and it implies that a point P = (u, v) is singular if and only if P = (a
q+2/3
3 , a

q+1/3
3 ) and 

P ∈ D (note that the cubic roots of a3 are not uniquely determined). More precisely 

G(P ) = 0 implies that

aq
3 + a3q+2

3 = 0

which proves that D is singular if and only if aq+1
3 = 1. Furthermore, since the equation 

v3 = a3q+1
3 admits 3 solutions in the algebraic closure Fq of Fq2 , we have three double 

points and the cubic is the union of three non concurrent lines. This means that D is 

absolutely irreducible if and only if it is non-singular, namely a3 /∈ µq+1. �

Remark 4.2. Since G is an automorphism group of C, there is only one situation in which 

C is reducible whereas D is not: when C is the product of two cubics, which form an orbit 

under G. In fact, in that case, D is a cubic curve, which may be irreducible.

Proposition 4.3. The curve C is the union of two cubic curves only if a3 ∈ µq+1.

Proof. Since the action of G is exchanging the x with the y, the only possible factorization 

of C is

(a00 + a10X+ a20X2 + a30X3 + a01Y + a11XY + a21X2Y + a02Y 2 + a12XY 2 + a03Y 3)

(a00 + a01X+ a02X2 + a03X3 + a10Y + a11XY + a12X2Y + a20Y 2 + a21XY 2 + a30Y 3)

= 0 (4.1)
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Note that the equation of C is

aq
3 + X3 + (aq+1

3 + 1)X2Y + (aq+1
3 + 1)XY 2 + Y 3 + a3X3Y 3 = 0.

Thus, comparing the coefficients, we see that the only possibility for Equation (4.1) is

a2
00 + a00a30X3 + a00a30Y 3 + a2

30X3Y 3 = 0.

However, this is admissible if and only if aq+1
3 + 1 = 0, that is a3 ∈ µq+1. �

Corollary 4.4. Let a3 /∈ µq+1. The curve C is absolutely irreducible.

Proof. Proposition 4.1 implies that for a3 /∈ µq+1 the curve D is absolutely irreducible. 

The proof follows from Remark 4.2 together with Proposition 4.3. �

We consider now the case when D is not absolutely irreducible. In this case we have

G(u, v) = aq
3 + u3 + uv + a3v3,

since a3 ∈ µq+1.

Remark 4.5. Note that this is the same equation obtained for θ1 = 0, hence what follows 

also applies for θ1 = 0.

Lemma 4.6. Let q = 2m and let a3 be a cube in µq+1. Then the equation x3 = a3 admits 

exactly 3 solutions over Fq2 .

Proof. From [5, pg. 4] the equation x3 = a3 has 3 solutions if 3 | q2 − 1 and a
q2

−1

3

3 = 1. 

Since q2 ≡ 1 (mod 3) and a
q+1

3

3 = 1 the claim follows. �

Proposition 4.7. Let D be the curve with equation (3.4). Let a3 be an element of µq+1 and 

D : G(u, v) = 0. Then G(u, v) is irreducible over Fq2 if and only if a3 /∈ {x3|x ∈ µq+1}. 

Moreover, if a3 ∈ {x3|x ∈ µq+1}, then D is the union of three (absolutely irreducible) 

linear components over Fq2 .

Proof. From Proposition 4.1 we know that the singular points of D are Pi = (aq
3α2

i , aq
3αi), 

for i = 1, 2, 3, where αi are the solutions in Fq of x3 = a3. From Lemma 4.6 D has 

exactly three singular (double) points defined over Fq2 if and only if a3 is a cube in µq+1. 

Moreover, in that case, D is the union of three (non-concurrent) lines passing through 

these points. �

Corollary 4.8. If a3 is a cube in µq+1, then D decomposes as follows:

D : (u + α1v + α−1
1 )(u + α2v + α−1

2 )(u + α3v + α−1
3 ) = 0.
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Proof. We just note that α1α2
2 + α2

1α2 = a3. The claim follows since the line li : u +

αiv + α−1
i = 0 is the one passing through Pj = (aq

3α2
j , aq

3αj), with j �= i. �

After that, our next goal is to understand what happens when we go back to the curve 

C : F (X, Y ) = 0, with

F (X, Y ) = aq
3 + a3X3Y 3 + XY (X + Y ) + (X + Y )3.

Proposition 4.9. Let a3 be a cube in µq+1. Then the curve C splits into linear (absolutely 

irreducible) components over Fq2 . More precisely,

C : Π3
i=1(X + α−1

i )(Y + α−1
i ) = 0,

where α3
i = a3 for i = 1, 2, 3.

Proof. The proof is a consequence of Corollary 4.8 and u = X +Y , v = XY . As a matter 

of fact, the quadric

X + Y + αiXY + α−1
i = 0

splits as

(X + α−1
i )(Y + α−1

i ) = 0

for every i = 1, 2, 3. �

Corollary 4.10. Let a3 be a cube in µq+1. Then the set C + µ2
q+1 is non-empty and f is 

not a PP of Fq2 .

Proof. The claim follows since a3 is a cube in µq+1 (and hence αi ∈ µq+1). �

5. θ2 �= 0 and θ4 = 0

Now we suppose that θ2 �= 0 and θ4 = 0. Recall that in this case

θq+1
2 + θq+1

3 = 0. (5.1)

The equation of C becomes

C : θq
3 + θ3X3Y 3 + θ1(X + Y )3 + θ2(XY + (X + Y )2) + θq

2(X2Y 2 + XY (X + Y )2) = 0,

(5.2)

while D has equation

D : θq
3 + θ1u3 + θ3v3 + θ2(u2 + v) + θq

2v(u2 + v) = 0.
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Similarly to the first case, we want to understand the relation between the irreducibility 

of D and C.

Proposition 5.1. C is absolutely irreducible if and only if D is absolutely irreducible.

Proof. As we have already pointed out, the only case to be checked is when C is the 

product of two cubics, which belong to the same orbit under G. The union of two such 

cubics has equation F ′(X, Y ) = 0, where F ′(X, Y ) is defined as

(a00 + a10X+ a20X2 + a30X3 + a01Y + a11XY + a21X2Y + a02Y 2 + a12XY 2 + a03Y 3)

(a00 + a01X+ a02X2 + a03X3 + a10Y + a11XY + a12X2Y + a20Y 2 + a21XY 2 + a30Y 3)

= 0. (5.3)

By straightforward computations, we obtain

⎧

⎪

⎪

«

⎪

⎪

¬

θq
3 = a2

00

θ2 = a2
01 + a2

10

a00a01 + a00a10 = 0

Since θq+1
3 = θq+1

2 �= 0, this implies a00 �= 0 and hence a10 = a01, which contradicts the 

assumption θ2 �= 0. �

The next propositions allow us to obtain information about the factorization of D
(and so C).

Proposition 5.2. Let θ1 = 0. The followings hold:

1. if θ3 = θ2q−1
2 then the curve D splits as

D : (θ2 + θq
2v)(θ1−q

2 + u2 + θq−1
2 v2) = 0;

2. if θ3 �= θ2q−1
2 then the curve D has exactly one singular point P = (0, α), where α is 

the (unique) solution of α2 = θ2

θ3
.

Proof. The equation of D becomes

G(u, v) = u2vθq
2 + v2θq

2 + θq
3 + θ2u2 + θ2v + θ3v3 = 0

and the partial derivatives system is made by the single equation

∂G

∂v
= θ2 + θq

2u2 + θ3v2 = 0
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which implies

u2 =
θ3v2 + θ2

θq
2

.

Going back to the equation of D, we obtain

v2θ2q
2 + θq

2θq
3 + θ2

2 + θ2θ3v2 = 0. (5.4)

Therefore, if θ3 �= θ2q−1
2 , equation (5.4), together with equation (5.1), implies

v2 =
θq−1

2 θq
3 + θ2

θ2q−1
2 + θ3

=
θ2

θ3

which means that u = 0 and D has only one singular double point P = (0, α), where 

α2 = θ2

θ3
.

On the other hand, if θ3 = θ2q−1
2 , the equation of D becomes:

v3θ2q−1
2 + θ2−q

2 + vθq
2

(

u2 + v
)

+ θ2

(

u2 + v
)

= 0 (5.5)

Note that the resultant between the equation (5.5) and the derivative with respect to 

v is 0. This means that they share a common factor. Indeed, we have the following 

factorization for (5.5):

v3θ2q−1
2 + θ2−q

2 + vθq
2

(

u2 + v
)

+ θ2

(

u2 + v
)

=

(θ2 + θq
2v)(θ1−q

2 + u2 + θq−1
2 v2) = 0

where the second factor equals θ−q
2

∂G
∂v . �

Proposition 5.3. Let θ1 �= 0. The curve D has exactly one singular point P = (0, α), 

where α is the (unique) solution of α2 = θ2

θ3
.

Proof. The system of partial derivatives is

{

θ1u2 = 0

θ2 + θq
2u2 + θ3v2 = 0

(5.6)

This means that there is only one singular point P = (0, α) where α2 = θ2

θ3
. �

Propositions 5.2 and 5.3 lead us to study what kind of singular point P = (0, α) is. 

We can treat both cases together. Applying a birational transformation which sends P

to the origin, namely
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Φ : (u, v) �→ (U, V + α),

the equation for Φ(D) is

(θ2 + αθq
2)U2 + (θq

2 + αθ3)V 2 + θ1U3 + θq
2U2V + θ3V 3 = 0. (5.7)

Proposition 5.4. The curve D is absolutely irreducible if and only if θ3 �= θ2q−1
2 .

Proof. The only case in which D is absolutely irreducible is when the origin O is an 

ordinary double point of Φ(D). However, when θ3 = θ2q−1
2 the equation becomes

θ1U3 + θq
2U2V + θ3V 3 = 0

and O is a triple point. On the other hand, when θ3 �= θ2q−1
2 the equation is

(U + V )(V
θq

2 + αθ3

θ2 + αθq
2

+ U) + θ1U3 + θq
2U2V + θ3V 3 = 0

and P is an ordinary double point. �

Corollary 5.5. Let θ2 �= 0 and θ4 = 0. If θ1 = 0 then C + µ2
q+1 is non-empty and disjoint 

from the line X = Y , whereas if θ1 �= 0 and θ2q−1
2 �= θ3 then C is absolutely irreducible 

over Fq2 (over Fq) if θ2 ∈ Fq2 \ Fq (θ2 ∈ Fq).

Proof. The proof is obtained by summing up the previous propositions. More precisely, 

if θ1 = 0 and θ2q−1
2 = θ3, from Proposition 5.2, we have

C : (θ2 + θq
2XY )(θ1−q

2 + (X + Y )2 + θq−1
2 X2Y 2) = 0.

Let α ∈ µq+1 \ { 1

θq−1

2

}, then (1/(αθq−1
2 ), α) ∈ C + µ2

q+1, off the line X = Y . On the other 

hand, if θ2q−1
2 �= θ3, the proof follows from Proposition 5.3 and 5.4. �

We now want to further investigate the remaining case θ3 = θ2q−1
2 and θ1 �= 0. The 

equation for Φ(D) is

θ1U3 + θq
2U2V + θ−1+2q

2 V 3 = 0.

Let Z = V
U and z = θq

2Z. Then every solution of

θ1 + z +
1

θq+1
2

z3 = 0

gives a linear component of Φ(D).
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Lemma 5.6. Let θ1, θ2 �= 0 and z1, z2, z3 be the solutions of

θ1 + z +
1

θq+1
2

z3 = 0 (5.8)

in the algebraic closure Fq of Fq2 . Only one of the following conditions holds.

• zi ∈ Fq for i = 1, 2, 3.

• There exists j such that zj ∈ Fq and zi ∈ Fq2 for i �= j.

• zi /∈ Fq2 for i = 1, 2, 3.

Proof. Note that the coefficients of Equation (5.8) are in Fq. The claim is obtained by 

standard theory, see for example [5, Pg. 20]. �

Proposition 5.7. Let θ3 = θ2q−1
2 . If θ1 + z + 1

θq+1

2

z3 = 0 has at least one solution in Fq

then the curve C splits as the union of three absolutely irreducible conics defined over Fq2

(over Fq) if θ2 ∈ Fq2 \ Fq (θ2 ∈ Fq). In particular, C + µ2
q+1 is a non-empty set disjoint 

from the line X = Y .

Proof. Every solution of Equation (5.8) in Fq2 gives a linear component of Φ(D) (and D). 

From Lemma 5.6, without loss of generality, we can suppose that z1 ∈ Fq and z2, z3 ∈ Fq2

are the solutions of Equation (5.8). Going back to the curve D we obtain the following 

decomposition:

D : (z1u + θq
2v + θq

2α)(z2u + θq
2v + θq

2α)(z3u + θq
2v + θq

2α) = 0

This means that the equation of the curve C becomes

C : (z1(X + Y ) + θq
2XY + θ2)(z2(X + Y ) + θq

2XY + θ2)(z3(X + Y ) + θq
2XY + θ2) = 0

In fact α2 = θ2

θ2q−1

2

implies αθq
2 = θq

2

θq−1

2

= θ2. We now claim that the above conics are 

absolutely irreducible over Fq2 . A conic is absolutely irreducible if and only if it does 

not have a singular point. Consider the conic corresponding to z1, the partial derivatives 

system is

{

θq
2Y + z1 = 0

θq
2X + z1 = 0

which means that a singular point has coordinate X = Y = z1

θq
2

. Such a point belongs to 

C if and only if

z2
1 + θq+1

2 = 0.
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However, if z2
1 = θq+1

2 , from equation (5.8) we obtain

θ1 + z1 + z1 = θ1 = 0

and this is in contrast with θ1 �= 0. Similarly, it can be proven that also the other conics 

are absolutely irreducible. Finally, let α ∈ µq+1 \ { 1

θq−1

2

}, then the point ( θ2+z1α
θq

2α+z1
, α) ∈

C + µ2
q+1, off the line X = Y . �

Corollary 5.8. Let θ2 �= 0 and θ4 = 0. If either θ1 = 0 or θ3 �= θ2q−1
2 or θ1+z+ 1

θq+1

2

z3 = 0

has solutions z defined over Fq, then f is not a PP of Fq2 .

6. θ2 �= 0 and θ4 �= 0

We just need to prove that in this case the polynomial f(X) is never a PP. We will 

do that again by using the connection between permutation polynomials and algebraic 

curves. This part is inspired by the work done in [1]. In Section 3 we showed that the 

polynomial f(x) in Theorem 2.2 is a PP if and only if H has no Fq-rational points off 

the line X = Y . In our case the curve H has degree at most 6. By Proposition 3.1, for q

large enough such a curve has no Fq-rational points off the line X = Y if only if it splits 

into absolutely irreducible components not defined over Fq which have no Fq-rational 

points off the line X = Y . We will show that for θ2 �= 0 and θ4 �= 0 this is never the case.

For this last section, our method requires a computer to assist us in computing re-

sultants between polynomials and in factorizing polynomials of low degrees over small 

fields. The elementary MAGMA [3] programs used for our purposes are presented in the 

Appendix. However, we point out that our results are valid for general q’s of type 2m, 

and do not rely on computer searches.

Let k ∈ Fq be an element of absolute trace (over F2) equal to 1. Then we can choose 

i ∈ Fq2 such that i2 = i + k and in particular iq = i + 1.

Let θ2 = C + iD, θ3 = E + iF , for C, D, E, F ∈ Fq. By direct computations the curve 

H has equation L(X, Y ) = 0, for:

L(X, Y ) =γ3,3X3Y 3 + γ3,2X3Y 2 + γ2,3X2Y 3 + γ3,1X3Y + γ1,3XY 3 + γ3,0X3 + γ0,3Y 3

+γ2,2X2Y 2 + γ2,1X2Y + γ1,2XY 2 + γ2,0X2 + γ1,1XY + γ0,2Y 2 + γ1,0X + γ0,1Y + γ0,0,

(6.1)

with

γ3,3 = D + F,

γ3,2 = C + D + E + F + θ4,

γ3,1 = C + Dk + D + E + Fk + F + θ4,

γ3,0 = Ck + C + Ek + E + F + kθ4 + θ4 + θ1,

γ2,3 = C + D + E + F + θ4,
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γ1,3 = C + Dk + D + E + Fk + F + θ4,

γ0,3 = Ck + C + Ek + E + F + kθ4 + θ4 + θ1,

γ2,2 = C + Dk + D + E + Fk + F,

γ2,1 = Ck + C + Ek + E + F + kθ4 + θ1,

γ1,2 = Ck + C + Ek + E + F + kθ4 + θ1,

γ2,0 = C + Dk2 + Dk + E + Fk2 + Fk + F + kθ4,

γ0,2 = C + Dk2 + Dk + E + Fk2 + Fk + F + kθ4,

γ1,1 = C + Dk2 + Dk + E + Fk2 + Fk + F,

γ1,0 = Ck2 + Ck + Dk2 + Ek2 + Ek + E + Fk2 + F + k2θ4,

γ0,1 = Ck2 + Ck + Dk2 + Fk2 + F + k2θ4 + Ek2 + Ek + E,

γ0,0 = Ck2 + Dk3 + Fk3 + Fk + F + Ek2 + E.

In the following we will show that if θ4 �= 0 and θ2 �= 0 then H never splits into 

components none of them is defined over Fq.

6.1. Case γ3,3 �= 0

In this case H has degree 6. We observe that the morphism (x, y) �→ (y, x) fixes 

H and therefore it acts on its components. Also, since H is defined over Fq, then the 

Frobenius φq(x) = xq acts on its components either. This implies that if there is a line as 

a component, then there must be 6 lines. If not, H splits as either 3 absolutely irreducible 

conics or 2 absolutely irreducible cubics.

1. H splits into 6 lines. In this case the factorization of L(X, Y ) in Equation (6.1) must 

be

(D + F )(X + a)(X + b)(X + c)(Y + a)(Y + b)(Y + c) (6.2)

for some a, b, c in Fq, since the homogeneous part of degree 6 is (D + F )x3y3. Now 

we get

C + Dk + Dab + Dac + Dbc + D + E + Fk + Fab + Fac + Fbc + F + θ4 = 0

C + Da + Db + Dc + D + E + Fa + F b + Fc + F + θ4 = 0

which implies k +ab +ac +a +bc +b +c = 0 since D +F �= 0. Last condition implies:

Ca2 + Cb2 + C + Dk2 + Dka2 + Dkb2 + Dk + Da4 + Da2b2 + Da2 + Db4 + Db2 + D +

Ea2 + Eb2 + E + F k2 + F ka2 + F kb2 + F k + F a4 + F a2b2 + F a2 + F b4 + F b2 + F = 0
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Ca2 + Cb2 + C + Dk2 + Dka2 + Dkb2 + Dk + Da4 + Da2b2 + Db4 + Ea2 + Eb2 + E +

F k2 + F ka2 + F kb2 + F k + F a4 + F a2b2 + F a2 + F b4 + F b2 + F = 0

which implies in particular: Da2 +Db2 +D = 0. Now let D �= 0. Then a2 +b2 +1 = 0, 

which implies k = b2 + b + 1 and a = b + 1. Thus, substituting in the equation (6.2)

the values a = b + 1 and computing the resultant for k = b2 + b + 1, we get the 

following equations

C + Db2 + Db + Dc2 + D + E + Fb2 + Fb + Fc2 + F = 0,

C + Db2 + Db + Dc2 + E + Fb2 + Fb + Fc2 + F = 0,

which implies D = 0 a contradiction.

On the other hand, if D = 0, we obtain

C + E + Fa + Fb + Fc + F + θ4 = 0

C + E + Fk + Fab + Fac + Fbc + F + θ4 = 0

which implies:

k + ab + ac + a + bc + b + c = 0.

Substituting k we get

C + E + Fa + Fb + Fc + F + θ4 = 0,

and by eliminating E we obtain

Fa2 + Fab + Fac + Fb2 + Fbc + Fc2 + θ4 + θ1 = 0,

Fa2 + Fab + Fac + Fb2 + Fbc + Fc2 + θ4 = 0

which implies θ1 = 0. The details of the latter computations can be found in the 

Appendix A.1, case D = 0. By definition we know that θq+1
2 + θq+1

3 = θ4(θ4 + θ1). 

Since D = 0 and θ1 = 0, the latter becomes C2 + E2 + EF + F 2k + θ2
4 = 0. By direct 

computations we get

E + Fk + Fa2 + Fb2 + Fc2 + F = 0,

which implies C = 0 or F = 0. In both cases we have a contradiction.

2. H splits into 3 absolutely irreducible conics. This case is only possible when the 

three conics belong to the same orbit under the Frobenius φq. More precisely, the 

equations of the curve must be of the form

(D + F )(XY + a(X + Y ) + b)(XY + aq(X + Y ) + bq)(XY + aq2

(X + Y ) + bq2

) = 0
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for a, b ∈ Fq3 . First we suppose that both a, b ∈ Fq3 \ Fq. In this case, {1, a, a2} and 

{1, b, b2} are linearly independent over Fq. Also, we know that a3 = c1a + c2 and 

b3 = d1b + d2, for some c1, c2, d1, d2 ∈ Fq. First, we derive y from the equation of the 

first conic and then we plug it in the equation of our curve. After that, we isolate 

the coefficients of a and a2. By direct computations we obtain:

C + D + E + F + θ4 = 0, or θ4 = 0

which implies C + D + E + F + θ4 = 0. It follows k = c1 and

DE + DF + Dc2θ4 + Dθ4 + EF + F 2 + Fc2θ4 + Fθ4 + θ2
4 = 0 (6.3)

Repeating for b we obtain

Dk + Fk + θ4 = 0

D2 + DF + D2d1 + F 2d1 + θ2
4 = 0

D2d2 + DE + DF + EF + F 2d2 + F 2 + Fθ4 + θ2
4 = 0

(6.4)

The first two equations in (6.4) imply that Da2b +D+Fa2b +aθ4 +bθ4 = 0. From the 

latter equation together with the third equation in (6.4) and Equation (6.3) we derive 

that either Da + E + F + θ4 = 0 or (DE + DF + Dθ4 + EF + F 2 + Fθ4)a + Dθ4 = 0, 

which leads to D = 0 and one of the following: either a = 0 or E + F + θ4 = 0 or 

F = 0. However, since D = 0 and D + C + E + F + θ4 = 0, the latter two conditions 

are both non-admissible (we would have either D + F = 0 or θ2 = 0). Hence a = 0, 

a contradiction. When either a ∈ Fq or b ∈ Fq we derive easily a contradiction by 

direct checking (see the Appendix for all the computations).

3. H splits into 2 absolutely irreducible cubics defined over Fq2 . The leading homoge-

neous part of L(X, Y ) is (D + F )X3Y 3, so the homogeneous part of the cubics is 

either X3, Y 3 or X2Y, XY 2. Since the Frobenius φq switches the two cubics, this 

implies that they must be defined over Fq.

6.2. Case γ3,3 = 0

If θ4 �= C + E, H has degree 5. In this case we note that the line X + Y = 0 cannot 

be a component of H. In fact, by direct computations, X = Y implies C + E = F = 0

and E = 0 which in particular means θ2 = 0. Now, since the leading homogeneous part 

is (C + E + θ4)(X3Y 2 + X2Y 3), the point P = (1 : 1 : 0) is a simple Fq-rational point. 

Then there must be an absolutely irreducible component through P distinct from the 

line X + Y = 0.

Let θ4 = C + E. Note that θq+1
2 + θq+1

3 = θ4(θ1 + θ4), we obtain

CD + Cθ1 + D2k + EF + Eθ1 + F 2k = 0,
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and, since D + F = 0,

F + θ1 = 0 or C + E = 0

which implies F = θ1. In this case the homogeneous part of L(x, y) is (C + E)x2y2.

Since now the degree of H is 4 we need to deal only with two cases: 4 lines or 2

absolutely irreducible conics.

1. H splits as the union of 4 lines. The factorization of L(x, y) must be

(C + E)(X + a)(X + b)(Y + a)(Y + b) = 0 (6.5)

for some a, b ∈ Fq. Then

a + b + 1 = 0

which implies F = 0. It follows that

k + b2 + b + 1 = 0

which leads to C = 0. But this is a contradiction since C = D = 0 implies θ2 = 0.

2. H splits as the union of two absolutely irreducible conics. Since those conics are 

switched by φq, we have only two possibilities, according whether they are switched 

by (x, y) �→ (y, x) or not, that is either

XY +(a+ib)X +(a+(i+1)b)Y +c = 0, and XY +(a+(i+1)b)X +(a+ib)Y +c = 0,

for some a, b, c ∈ Fq, or

X(a + bi) + Y (a + bi) + c + di + XY = 0, and

X(a + b(i + 1)) + Y (a + b(i + 1)) + c + d(i + 1) + XY = 0,

for some a, b, c, d ∈ Fq.

In the first case we get b + 1 = 0 which leads to F = 0 and then a2 + a + 1 = 0. It 

follows

Ck + Cc + Ek + Ec + E = 0

which implies either C = 0 or E = 0. Since C = 0 is again a contradiction this means 

that E = 0 and c = k. However when F = θ1 = D = E = 0, the equation of our 

curve C (see Equations (3.1) and (3.2)) becomes

C(X + 1)(Y + 1)(X2 + XY + Y 2) = 0,
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for θ2 = θ4 = C, which has points (X, Y ) ∈ µ2
q+1 off the line X = Y .

In the second case, by direct computation, we obtain b = 1 and after substituting,

Cd + C + Ed + E + F = 0,

which implies

Ck + Ca + Cc + Ek + Ea + Ec + E + Fa + F = 0.

Again, by direct computation, one finds

Ca2 + Ca + C + Ea2 + Ea + E + F = 0.

Now we distinguish two cases. If F �= 0, then

k = (C3 − C2F − CF 2 − F 3 − C2E − CFE − F 2E)/(F 2(C + E)),

and by replacing k in the equation of our curve H, we obtain the following factor-

ization of L(X, Y ):

(FX + C)(FY + C)L′(X, Y ),

(for the equation of L′(X, Y ) see the Appendix) which leads to a contradiction, for 

the conics being irreducible. If F = 0, by direct computations, we obtain b = 1, 

d = 1, a2 + a + 1 = 0 and

Ck2 + Ck + Cc2 + Cc + Ek2 + Ek + Ec2 + Ec + E = 0,

which implies C = 0, a contradiction again since θ2 �= 0.

7. Proof of main Theorem 2.2

If θ2 = 0, the proof is obtained by Corollary 4.4 and Corollary 4.10. When θ2 �= 0 and 

θ4 = 0, the proof follows from Corollary 5.8, since the equation

θ1 + z +
1

θq+1
2

z3 = 0

is equivalent to the equation (2.4) after substituting z = θq+1
2 x. When θ2 �= 0 and θ4 �= 0, 

the proof is obtained in Section 6.
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Appendix A

In [1], the author provided a very useful mini-program to compute resultant of poly-

nomials over finite fields. In what follows we will use the same Magma procedure to 

investigate the solutions of a system of polynomial equations. For the sake of complete-

ness, we now recall the main functions we use in this paper “FindCoefficients2” and 

“Substitution”. See [1, Appendix] for more details.

K<x,y,C,D,E,F,i,j,m,k,a,b,c,d,e,f,g,t4,t1,aq,bq,aq2,bq2> := PolynomialRing(GF(2),23);

FindCoefficients2 := function(pol,var1,var2)

T := Terms(pol);

Coeff := {};

MAX1 := Degree(pol,var1);

MAX2 := Degree(pol,var2);

for i in [0..MAX1] do

for j in [0..MAX2] do

c := K!0;

for t in T do

if IsDivisibleBy(t,var1^i*var2^j) eq true and

IsDivisibleBy(t,var1^i*var2^(j+1)) eq false and

IsDivisibleBy(t,var1^(i+1)*var2^j) eq false then

c := c+ K! (t/(var1^i*var2^j));

end if;

end for;

if c ne 0 then

Coeff := Coeff join {c};

i,j,c;

end if;

end for;

end for;

return Coeff;

end function;

Substitution := function (pol, m, p)

e := 0;

New := K! pol;

while e eq 0 do

N := K!0;

T := Terms(New);

i:= 0;

for t in T do

if IsDivisibleBy(t,m) eq true then

Q := K! (t/m);

i := 1;

N := K!(N + Q* p);

else

N := K!(N + t);

end if;

end for;
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if i eq 0 then

return New;

else

New := K!N;

end if;

end while;

end function;

t2:=C+i*D;

t2q:=C+(i+1)*D;

t3:=E+i*F;

t3q:=E+(i+1)*F;

eq1:=Substitution(t2*t2q+t3*t3q+t4*(t4+t1),i^2,i+k);

X:=(x+i)/(x+i+1);

Y:=(y+i)/(y+i+1);

Gxy:=t3q + t3*X^3*Y^3 +

t4*X*Y*(X + Y) +

(t1 + t4)*(X + Y)^3 +

t2*(X*Y + (X + Y)^2) +

t2q*X*Y*(X*Y + (X + Y)^2);

Curve:=(x+i+1)^3*(y+i+1)^3*Gxy;

Curve:=Substitution(Curve,i^2,i+k);

A.1. γ3,3 �= 0

H splits as 6 lines.

Case D �= 0.

PROD := (x+a)*(x+b)*(x+c)*(y+a)*(y+b)*(y+c);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

///C + D*a + D*b + D*c + D + E + F*a + F*b + F*c + F + t4+C + D*k + D*a*b + D*a*c + D*b*c + D + E +

F*k + F*a*b + F*a*c + F*b*c + F + t4=0

/// C + D*k + D*a*b + D*a*c + D*b*c + D + E + F*k + F*a*b + F*a*c + F*b*c + F + t4=0

p2 := k+ a*b + a*c + a + b*c + b + c;

CC2 := {Resultant(pol,p2,c) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

///D*a^2 + D*b^2 + D=0

p3:=a + b + 1;

CC3 := {Resultant(pol,p3,a) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

///k=b^2+b+1

PROD := (x+b+1)*(x+b)*(x+c)*(y+b+1)*(y+b)*(y+c);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);

CC := {Resultant(pol,k+b^2+b+1,k) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

///D=0 ###

Case D = 0.

PROD := (x+a)*(x+b)*(x+c)*(y+a)*(y+b)*(y+c);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);

CC:={Resultant(pol,D,D) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

p2 := k + a*b + a*c + a + b*c + b + c;

CC2 := {Resultant(pol,p2,k) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};
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p3:=C + E + F*a + F*b + F*c + F + t4;

CC3 := {Resultant(pol,p3,E) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

///t1=0

eq1_2:=Substitution(eq1,t1,0);

eq1_2:=Substitution(eq1_2,D,0);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);

CC:={Resultant(pol,D,D) : pol in CC};

CC:={Resultant(pol,t1,t1) : pol in CC};

p1:=eq1;

CC1:={Resultant(pol,p1,C) : pol in CC};

{Factorization(pol) : pol in CC1 | pol ne 0};

p2 :=E + F*k + F*a^2 + F*b^2 + F*c^2 + F;

CC2 := {Resultant(pol,p2,a) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

/// C=0 or F=0 ###

H splits as 3 absolutely irreducible conics. Case α, β ∈ Fq3 \ Fq.

Curve1:=K!((x+a)^3*Evaluate(Curve, [x,(b+a*x)/(x+(a)),C,D,E,F,i,j,m,k,

a,b,c,d,e,f,g,t4,t1,aq,bq,aq2,bq2]));

CC := FindCoefficients2(Curve1,x,y);

CC:={Resultant(pol,eq1,t1) : pol in CC};

CC:={Substitution(pol,a^3,m*a+g) : pol in CC};

CC:={Substitution(pol,b^3,i*b+j) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

pa1:=C^2 + C*D + C*k*t4 + C*a^2*t4 + C*a*t4 + C*t4 + D^2*k + D*m*a*t4 + D*k*a*t4 +

D*a^2*t4 + D*a*t4 + D*g*t4 + E^2 + E*F + E*k*t4 + E*a^2*t4 + E*a*t4 + E*t4 +

F^2*k + F*m*a*t4 + F*k*a*t4 + F*a^2*t4 + F*a*t4 + F*g*t4 + F*t4 + k*t4^2 + a^2*t4^2 + a*t4^2;

Coefficients(pa1,a);

p1:=C + D + E + F + t4;

CC1:={Resultant(pol,p1,C) : pol in CC};

{Factorization(pol) : pol in CC1 | pol ne 0};

pa2:=D*k + E + F*k + F + m*a*t4 + k*a*t4 + k*t4 + g*t4;

Coefficients(pa2,a);

p2:=k +m;

CC2 := {Resultant(pol,p2,m) : pol in CC1};

{Factorization(pol) : pol in CC2 | pol ne 0};

pb1:=D*i*b + D*j + D*k^3 + D*k^2*b + D*k^2 + D*k*b^2 + D*k*b + D*b + E + F*i*b + F*j +

F*k^3 + F*k^2*b + F*k^2 + F*k*b^2 + F*k*b + F*k + F + k^2*t4 + b^2*t4 + b*t4;

Coefficients(pb1,b);

p3:= D*k + F*k + t4;

CC3:={Resultant(pol,p3,k) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

pb2:=D^2*i*b + D^2*j + D^2*b + D*E + D*F*b + D*F + E*F + F^2*i*b +

F^2*j + F^2 + F*t4 + b*t4^2 + t4^2;

Coefficients(pb2,b);

p4:= D^2 + D*F + D^2*i + F^2*i + t4^2;

CC4:={Resultant(pol,p4,i) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=D*a^2*b + D + F*a^2*b + a*t4 + b*t4;

CC5:={Resultant(pol,p5,b) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};

CC6:={Substitution(pol,a^3,k*a+g) : pol in CC5};

CC6:={Resultant(pol,D*k+ F*k + t4,k) : pol in CC6};

{Factorization(pol) : pol in CC6 | pol ne 0};

p7:=D*E + D*F + D*g*t4 + D*t4 + E*F + F^2 + F*g*t4 + F*t4 + t4^2;

CC7:={Resultant(pol,p7,g) : pol in CC6};

{Factorization(pol) : pol in CC7 | pol ne 0};

p8:=D^2*j + D*E + D*F + E*F + F^2*j + F^2 + F*t4 + t4^2;

CC8:={Resultant(pol,p8,j) : pol in CC7};

{Factorization(pol) : pol in CC8 | pol ne 0};

p9:=D;
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CC9:={Resultant(pol,p9,D) : pol in CC8};

{Factorization(pol) : pol in CC9 | pol ne 0};

///a=0 ###

Case α ∈ Fq or β ∈ Fq.

PROD1:= (x*y+a*(x+y)+b)*(x*y+a*(x+y)+bq)*(x*y+a*(x+y)+bq2);

PROD2:= (x*y+a*(x+y)+b)*(x*y+aq*(x+y)+b)*(x*y+aq2*(x+y)+b);

CC := FindCoefficients2(Curve+(D+F)*PROD1,x,y);

CC:={Resultant(pol,eq1,t1) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

/// t4=0 (by sum of the two equations starting by C^2+CD+..) ###

CC := FindCoefficients2(Curve+(D+F)*PROD2,x,y);

CC:={Resultant(pol,eq1,t1) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

/// t4=0 (by sum of the two equations starting by C^2+CD+..) ###

A.2. γ3,3 = 0

In this case we recall that D + F = 0 and θ4 = C + E, implying θ1 = F .

Curve2:=Substitution(Curve,D,F);

Curve2:=Substitution(Curve2,t4,C+E);

Curve2:=Substitution(Curve2,t1,F);

H splits as 4 lines.

PROD := (x+a)*(x+b)*(y+a)*(y+b);

CC := FindCoefficients2(Curve2+ (C+E)*PROD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

p2 := a + b + 1;

CC2 := {Resultant(pol,p2,a) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

p3:=F;

CC3 := {Resultant(pol,p3,F) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

p4:=k + b^2 + b + 1;

CC4 := {Resultant(pol,p4,k) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

/// C=0 ###

H splits as the union of two absolutely irreducible conics.

Case 1: (x, y) �→ (y, x) switches the two conics.

PROD := (x*y+(a+i*b)*x+(a+(i+1)*b)*y+c)*(x*y+(a+(i+1)*b)*x+(a+i*b)*y+c);

PROD := Substitution(PROD,i^2,i+k);

CC := FindCoefficients2(Curve2+(C+E)*PROD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

p2 := b + 1;

CC2 := {Resultant(pol,p2,b) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

p3:=F;

CC3 := {Resultant(pol,p3,F) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

p4:=a^2+a+1;

CC4 := {Resultant(pol,p4,a) : pol in CC3};



V. Pallozzi Lavorante / Finite Fields and Their Applications 96 (2024) 102418 23

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=C*k + C*c + E*k + E*c + E;

CC5:={Resultant(pol,p5,k) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};

/// E=0 ###

Case 2: (x, y) �→ (y, x) fixes the two conics.

Case F �= 0.

PROD := (x*y+(a+i*b)*x+(a+i*b)*y+(c+i*d))*(x*y+(a+(i+1)*b)*x+(a+(i+1)*b)*y+(c+(i+1)*d));

PROD := Substitution(PROD,i^2,i+k);

CC := FindCoefficients2(Curve2+(C+E)*PROD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

p2 := b + 1;

CC2 := {Resultant(pol,p2,b) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

p3:=C*d + C + E*d + E + F;

CC3 := {Resultant(pol,p3,d) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

p4:=C*k + C*a + C*c + E*k + E*a + E*c + E + F*a + F;

CC4 := {Resultant(pol,p4,c) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=C*a^2 + C*a + C + E*a^2 + E*a + E + F;

CC5:={Resultant(pol,p5,a) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};

/// k:=-(C^3 - C^2*F - C*F^2 - F^3 - C^2*E - C*F*E - F^2*E)/(F^2*(C + E));

Factorization(K!(F^4*Evaluate(Curve2,

[x,y,C,D,E,F,i,j,m,(C^3 + C^2*F + C*F^2 + F^3 + C^2*E + C*F*E + F^2*E)/(F^2*(C + E)),

a,b,c,d,e,f,g,t4,t1,aq,bq,aq2,bq2])));

Case F = 0

Curve3:=Substitution(Curve2,F,0);

PROD := (x*y+(a+i*b)*x+(a+i*b)*y+(c+i*d))*(x*y+(a+(i+1)*b)*x+(a+(i+1)*b)*y+(c+(i+1)*d));

PROD := Substitution(PROD,i^2,i+k);

CC := FindCoefficients2(Curve3+(C+E)*PROD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

p2 := b + 1;

CC2 := {Resultant(pol,p2,b) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

p3:=d+1;

CC3 := {Resultant(pol,p3,d) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

p4:=a^2+a+1;

CC4 := {Resultant(pol,p4,a) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=C*k^2 + C*k + C*c^2 + C*c + E*k^2 + E*k + E*c^2 + E*c + E;

CC5:={Resultant(pol,p5,c) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};

/// C=0 ###
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