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1. Introduction

Let ¢ = p™ be a prime power. Let F, denote the finite fields of ¢ elements. A poly-
nomial f € Fy[z] is called a permutation polynomial (PP) of Fy if the induced mapping
x + f(x) is a bijection of F,. Several authors in recent history have focused on permu-
tation polynomials and their applications. For example, PPs have been widely used in
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coding theory and cryptography, and we refer the reader to [9,10] for a survey on the
latest advances. Recently, PPs taking simple forms and few terms have attracted much
interest and have been deeply investigated. In [19,17] the authors provided a powerful
method to construct PPs using the set of ¢+ 1-th roots of unity. Along this view, several
new families of PPs have been constructed and we refer the reader to [6,15,14,13,12] for
more details.

Another way to look at the PPs is based on algebraic curves over finite fields. In [11], it
was shown how to use the theory of algebraic curves to determine whether a polynomial
is a permutation polynomial or not.

Permutation trinomials with Niho exponents of the form f(z) = x + a x5 "~ D+ 4
azr®2(" =D+ € T 2[7], have attracted much interest in recent years. See for example [2,
8,5]. The parameters s, s2 should be read modulo g+1. Given (s1, s2), finding conditions
on a1, az that are sufficient and necessary for f to be a permutation polynomial of Fe
is a hard question and some progress have been done in that direction. See [7,8,1].

However, the situation for permutation quadrinomials is different. Let f(z) = = +
a1z "= o527 1) 4 o pss(27 1) Recently, Tu et al. investigated the case of
(81,82, 83) = (—1,1,2) under some restrictive conditions [16]. In [18] the authors provided
more classes of permutation quadrinomials from Niho exponents in characteristic two for
(s1,82,83) = (2,3—711,17 23—:), (s1,82,83) = (Q%H,l, %), where m and k are positive
integers and (s1,s2,s3) = (,1,3). Their work focuses on finding sufficient conditions
for the polynomials to be permutation polynomials and it is based on arithmetic over
finite fields. Proving whether these conditions are necessary can be challenging. In fact,
they also suggested that the conditions given were necessary for m big enough, but they
have not found efficient techniques to show those facts.

Very recently the problem of characterizing permutation quadrinomials was also ad-
dress by Ding and Zieve in [4], where the authors determined a very large class of
permutation quadrinomials by using novel geometric techniques (even when the Weil
bounds do not provide useful information). In particular they were able to solve two out
of the three conjectures presented in [18, Th 1.1 and 1.3].

In this paper, we aim to answer the conjecture left open, that is investigating whether
the conditions in [18, Theorem 1.4] are also necessary. We will use the Hasse-Weil type
theorems to prove necessary conditions for a polynomial to be a permutation polynomial.
In particular we will give a complete answer to the question, see Theorem 2.2.

2. Setting and known results

Let ¢ = 2™ be a prime power and F,2 be the finite field of ¢ elements. Let a1, as, a3 €
F,> and denote 6; = 14+ait +ad ' +ad™, 0y = af+azal, 03 = az+agal, 0, = it +ad™!

and 0, = 01 + 0, = 1 + a2*". Note that

097! + 09t = 0,0,
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For the sake of completeness, we now summarize the main previous result we will use
in this paper. See [18] for more details.

Theorem 2.1 ([18, Theorem 1.4]). Let n = 2m be a positive integer. Let (s1,S2,83) =
(%, 1, %) and ay,az,a3 € Fp2. Then f(X) = X+a xs1(a- D+ 4 goxs2(a=D+1 4 goxss(g—1)+1
is a PP of Fp2 if either

0440, 0o=0 and a3z€ g1, azé¢ {2z € g1} (2.1)

or

_ 02
01 #£0,0, #0,0, =0,03 = 9%’1 b and w3+x+ag}r1 =0 has no solutions over Fq. (2.2)

The aim of this paper is to answer the question left open by the authors in [18,
Theorem 1.4] and prove that conditions (2.1) and (2.2) are also necessary.
The main result is stated in the following theorem.

Theorem 2.2. Let m > 9 be an integer and q = 2™. With the notation above, if the
polynomial

fl)y=a+ ayz®t @ DH g gs2(a-DHL 4 g gss(a=1)+1 (2.3)
is a PP of Fp2 then

o ify =0 then 04 #0, az € pg41, as ¢ {23|z € pgy1};
. Zf@Q #0, then 94 :0} 01 #0’ 03 — egqfl and

2

0
34+ 9"‘1“ =0 (2.4)
2

has no solutions in IF,.
Corollary 2.3. Conditions (2.1) and (2.2) of Theorem 2.1 are also necessary.
3. Algebraic curves and necessary conditions
It is well known that polynomials of the form f(x) = zh(z?') permute F, if and
only if g(z) = zh(z)?™! permutes the set y1441 of the (g+1)-roots of unity in F 2. See [19,

Theorem 1.2]. For f(x) in Equation (2.3) this means to prove that the rational function

zt + alzd + alz + al
asx? +aszxd + a1z +1

p(x) =
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permutes fi441, see [18, Section 5] for more details.
Let C be the plane curve associated to p(z), with equation F(X,Y) = (p(X) —
p(Y))/(X —=Y) =0, that is

(@Y +a2Y* 4+ a3V?® +1) (X?a17 4 az? + az?X + X*) N

F(X)Y)=
(X,Y) oy .
(a1 X + a2 X" +a3X® +1) (YPa17 + a2 + Yaz? + Y '
+ _0,
X+Y
or equivalently
F(X,Y) =01 + 03 X3Y3 + 0, XY (X +Y) + 04(X +Y)*+ .

+0:(XY + (X +Y)?) +03(X* Y2+ XY(X +Y)?) =0.

C is a curve defined over F 2 and p(z) permutes 411 if and only if there are no points
(X,Y) € CNpZyy such that X # Y. Since understanding whether or not C has points
in the set 441 is not always an easy task to do, we will consider also the following idea.
Choose an element e € Fy2 such that e? = e + 1. Every = € ug 11 different from 1 can
be written as z = X)j_'gjl, where X runs over F,. Then p(x) permutes fi,41 if and only
if p(¢(z)): Fg U {oco} — pgy1, where ¢(z) = mff_*@'jl, (00) = 1, is a bijection. This is
equivalent to ask that H(x) = p(¢(x))r,: Fqg = g1 \ {(a1 + a2 +as+1)7 '} is a
bijection. Let H be the affine curve defined by (H(X)—H(Y))/(X —Y) = 0. It is easily
checked that H is defined over F, and therefore H(x) is a bijection if and only if H has
no F,-rational points off the line X =Y.

Moreover, an equation for H is given by H(X,Y) = (X + e+ 1)3(Y + e +

1)3F(¢(X), ¢(Y)) and H is Fge-birationally equivalent to C: let

X(e+1)+e Y(e+1)+e)

MXX):( X+1 ' Y +1

then (14+ X)3(1 +Y)*H(¥(X,Y)) = F(X,Y) and the two curves are F,2-birationally
equivalent.

Proposition 3.1. Let ¢ > 512. If f(x) € Fp2[x] is a PP then C is not absolutely irreducible
over Fge.

Proof. If C is absolutely irreducible over Fg . then # is absolutely irreducible over F,.
Since H has degree at most 6, the Hasse-Weil bound implies that H has at least an affine
rational point (a,b) with a # b whenever

g+1-20/g—12>0, (3.3)

where 12 is the maximum number of points belonging either to the line X =Y or to
the infinity line. Equation (3.3) is satisfied for every integer greatest than 421. Thus, if
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g = 2™ > 512, H has an Fg-rational point (a,b), with a # b. Consequently, we obtain a

point (ai';erl, bi‘é‘&) = (d/,') € p2,, such that

a #b and p(d)=p),
which is in contrast with f(x) being a PP of Fp2. O

Proposition 3.1 allows us to focus on C to obtain necessary conditions on f(z). However
we will see that proving the absolutely irreducibility of C is not always possible. Thus, in
some cases, we will exhibit explicitly points belonging to CN ug 41, off the line X +Y = 0.

Understanding whether C is reducible or not may be difficult. For this reason, one
can ask for a transformation that sends C to a lower degree curve easier to study. In
particular, the group & generated by (X,Y) — (Y, X) is a subgroup of Aut(C), the
automorphism group of C. Furthermore, let u = X 4+Y, v = XY and G(u,v) = F(X,Y).
Let D be the curve defined by G(u,v) = 0, that is

D: 0% + 0ju® + Oguv + 030° + O2(u? + v) + 0%v(u* +v) = 0, (3.4)

which is the quotient curve C/®. When convenient, we will study the connection between
C and D to derive information on the irreducibility of C.

The paper is organized as follows: Sections 4 and 5 are dedicated to the cases 8; = 0
and 64 = 0 respectively, strongly using the connection between C and D. Section 6 will
be devoted to the case 03 # 0 and 04 # 0 and we will focus on the factorization of H
showing that there must always be an absolutely irreducible component defined over I,
in that case.

4. Case 2 =0

We note that if §; = 0 then 04 # 0 and a3z € pg+1. In fact since a1 = agag and

af = alag, then

1 1 1 1 1
0y =al™ +adt = a1+ adt) =ty

and 03 = asf04 which justifies 04 # 0 and a3 € pg41, otherwise f is trivially not a PP
(see for example [13, Result 1.2]). When this happens the equation of D is exactly

G(u,v) = al +u® + uv + azv’.

The latter equation needs to be studied also when 6; # 0, this is why we will see both
cases together at the end of this section. See Remark 4.5.
Let 61 # 0. By the same passages as above, we have

0, =al™'0,, 63=as0, and 6 #0.
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If 6, = 0, then ag = 0,a; = 0 and the binomial f in equation (2.3) is not a PP (see for
example [13, Result 1.2]).
Therefore C becomes F(X,Y) = 0 with

F(X,Y)=ad+asX?Y? + o' XY(X +Y) + (X + V)3
and D becomes G(u,v) = 0 with
G(u,v) = ad + u® + a2 uv + agv®.

Proposition 4.1. The curve D defined by the equation (3.4) is absolutely irreducible if and
only if a3 & pg+1-

Proof. If a3 = 0 then G(u,v) is not absolutely irreducible. Let asz # 0. Note that every
singular point of D is a double point. In fact, we have 9,,G # 0 and 9,,G # 0. The
system of partial derivatives is

u? +altty =0
agquvQ =0

q+2/3 q+1/3
as’ ", a3 ") and

and it implies that a point P = (u,v) is singular if and only if P = (
P € D (note that the cubic roots of az are not uniquely determined). More precisely

G(P) = 0 implies that
al+ a3t =0

which proves that D is singular if and only if ag'H = 1. Furthermore, since the equation

v3 = a3?™" admits 3 solutions in the algebraic closure F, of F 42, we have three double

points and the cubic is the union of three non concurrent lines. This means that D is
absolutely irreducible if and only if it is non-singular, namely ag ¢ pgr1. O

Remark 4.2. Since & is an automorphism group of C, there is only one situation in which
C is reducible whereas D is not: when C is the product of two cubics, which form an orbit
under &. In fact, in that case, D is a cubic curve, which may be irreducible.

Proposition 4.3. The curve C is the union of two cubic curves only if az € fig41-

Proof. Since the action of & is exchanging the x with the y, the only possible factorization
of C is

((100 + a10X+ (120X2 + a30X3 + (l01Y+ allXY+ 021X2Y+ a02Y2 + angY2 + (103Y3)
(ao() + a1 X+ a02X2 + a03X3 +apY +ap1 XY+ a12X2Y—|— a20Y2 + angY2 + a30Y3)
=0 (4.1)
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Note that the equation of C is
ad + X3+ (@™ + XY + (@8 + DXY2 + VP 4+ a3 XPY3 = 0.
Thus, comparing the coefficients, we see that the only possibility for Equation (4.1) is
ago + a00a30X3 + a00a30Y3 + a§0X3Y3 =0.
However, this is admissible if and only if agH +1=0, that is az € yg+1. O

Corollary 4.4. Let az ¢ pg+1. The curve C is absolutely irreducible.

Proof. Proposition 4.1 implies that for ag ¢ (1q+1 the curve D is absolutely irreducible.
The proof follows from Remark 4.2 together with Proposition 4.3. O

We consider now the case when D is not absolutely irreducible. In this case we have
G(u,v) = a} +u® + uv + azv?,
since a3z € fg41-

Remark 4.5. Note that this is the same equation obtained for #; = 0, hence what follows
also applies for #; = 0.

Lemma 4.6. Let ¢ = 2™ and let as be a cube in pg+1. Then the equation z* = a3 admits
exactly 3 solutions over Fyz.

-1
Proof. From [5, pg. 4] the equation x® = a3 has 3 solutions if 3 | ¢> — 1 and a; ® = 1.

g+l
Since ¢> =1 (mod 3) and a;® =1 the claim follows. O

Proposition 4.7. Let D be the curve with equation (3.4). Let az be an element of pgy1 and
D: G(u,v) = 0. Then G(u,v) is irreducible over Fy2 if and only if ag ¢ {23z € pgy1}-
Moreover, if a3 € {23|x € pgi1}, then D is the union of three (absolutely irreducible)
linear components over Fe.

Proof. From Proposition 4.1 we know that the singular points of D are P; = (ala?, ala;),
for i = 1,2,3, where o; are the solutions in F, of 23 = a3. From Lemma 4.6 D has
exactly three singular (double) points defined over Iz if and only if a3 is a cube in g4 1.
Moreover, in that case, D is the union of three (non-concurrent) lines passing through
these points. O

Corollary 4.8. If as is a cube in pig41, then D decomposes as follows:

D: (u+ v +a; ) (u+ aw + a5 ) (u+azv+az') =0.
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Proof. We just note that alag + a%ag = a3. The claim follows since the line ;: u +
a;v+ a; ' = 0 is the one passing through P; = (a3a2,aday), with j #i. O

After that, our next goal is to understand what happens when we go back to the curve
C:F(X,Y)=0, with

FX,)Y)=al+as XY’ + XY(X +Y)+ (X +Y)>

Proposition 4.9. Let az be a cube in pg+1. Then the curve C splits into linear (absolutely
irreducible) components over Fp2. More precisely,

C: I (X +a; DY +0;71) =0,
where o = as fori=1,2,3.

7

Proof. The proof is a consequence of Corollary 4.8 and u = X +Y, v = XY. As a matter
of fact, the quadric

X+Y+OéiXY—‘rOzi_1 =0
splits as
(X—i—al-_l)(Y—Fai_l) =0

for every i =1,2,3. O

Corollary 4.10. Let a3 be a cube in pg41. Then the set C N N§+1 is non-empty and f is
not a PP of Fga.

Proof. The claim follows since a3 is a cube in p14,41 (and hence a; € pgy1). O
5. 02 #0and 04 =0
Now we suppose that 05 # 0 and 64 = 0. Recall that in this case
o3t + 03t = 0. (5.1)
The equation of C becomes
C: 034+ 03X°Y? +01(X +Y)> +602(XY + (X +Y)?) + 05(X*YV? + XY(X +Y)?) =0,
(5.2)

while D has equation

D: 0% + 01u® + 030° + 02(u® + v) + 0dv(u® +v) = 0.
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Similarly to the first case, we want to understand the relation between the irreducibility
of D and C.

Proposition 5.1. C is absolutely irreducible if and only if D is absolutely irreducible.

Proof. As we have already pointed out, the only case to be checked is when C is the
product of two cubics, which belong to the same orbit under &. The union of two such
cubics has equation F'(X,Y) = 0, where F'(X,Y) is defined as

(aoo + a10X + (lgon + a30X3 +ag Y+ a1 XY+ a21X2Y—i— a02Y2 + angY2 + a03Y3)
(aoo + a01X—|— a02X2 + a03X3 + (L10Y+ (111XY+ a12X2Y—|— (120Y2 + angY2 + a30Y3)
— 0. (5.3)
By straightforward computations, we obtain
05 = ag
02 = agy + afy

apo@o1 + agoaip =0

Since 9%“ = 02" =£ 0, this implies agp # 0 and hence ajp = ag1, which contradicts the
assumption 6, £ 0. O

The next propositions allow us to obtain information about the factorization of D
(and so C).

Proposition 5.2. Let 8 = 0. The followings hold:
1. if 63 = 9§q_1 then the curve D splits as
D: (02 + 9%1})(9;7‘1 +u? + 9‘2171112) =0;

2. if O3 # 95‘171 then the curve D has exactly one singular point P = (0, «), where « is

the (unique) solution of o = Z—g.

Proof. The equation of D becomes
G(u,v) = u?v03 + v?0§ + 05 + Oou® + O2v + 030 = 0
and the partial derivatives system is made by the single equation

oG
% :02+03U2+93U2 :0
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which implies
2 031)2 + 92
ut = ——.
0
Going back to the equation of D, we obtain
02057 + 0304 + 03 + 05030% = 0. (5.4)

Therefore, if 63 # ng_l, equation (5.4), together with equation (5.1), implies

2_ 03 0546 _ 0

B 93‘1_1+03 B 03

which means that « = 0 and D has only one singular double point P = (0, «), where
2 _ 6y
03"
On the other hand, if 63 = ng_l, the equation of D becomes:

«

V0597 + 0579 + 003 (u? +v) + 02 (u¥ +v) =0 (5.5)

Note that the resultant between the equation (5.5) and the derivative with respect to
v is 0. This means that they share a common factor. Indeed, we have the following
factorization for (5.5):

030297 + 0271 + vl (u® +0) 4+ 02 (u* +v) =
(0 + 020) (059 +u® + 0% 0?) =0

where the second factor equals 0, q%. |

Proposition 5.3. Let 6, # 0. The curve D has exactly one singular point P = (0, @),

where o is the (unique) solution of o = z—g.

Proof. The system of partial derivatives is

91u2 =0
(5.6)
02 + 93”2 + 93’02 = 0

2 __ 0 0O

This means that there is only one singular point P = (0, «) where o* = o

Propositions 5.2 and 5.3 lead us to study what kind of singular point P = (0, «) is.
We can treat both cases together. Applying a birational transformation which sends P
to the origin, namely
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D (u,v) = (U, V + a),
the equation for ®(D) is
(02 + adDU? + (02 + ab3)V? + 0,U% + 02UV + 65V = 0. (5.7)
2g—1
5.

Proposition 5.4. The curve D is absolutely irreducible if and only if 03 # 6

Proof. The only case in which D is absolutely irreducible is when the origin O is an
ordinary double point of ®(D). However, when 03 = 93‘171 the equation becomes

0,U3 + 03UV 4+ 03V3 =0
and O is a triple point. On the other hand, when 03 # 95‘1_1 the equation is

9(214—0493 3 qrr2 3
(U+ V)V 22— +U) +6,U° + 03UV 4+ 65V° =0
02+C¥02

and P is an ordinary double point. O

Corollary 5.5. Let 05 # 0 and 0, = 0. If 61 =0 then CN ,uiﬂ is non-empty and disjoint
from the line X =Y, whereas if 01 # 0 and Ggq_l # O3 then C is absolutely irreducible
over Fp2 (over Fy) if 63 € Fpe \ Fy (02 € Fy).

Proof. The proof is obtained by summing up the previous propositions. More precisely,
if 0, = 0 and #27"" = @3, from Proposition 5.2, we have

C: (0 +02XY)(0, 9+ (X +Y)2+09 ' X2y?) = 0.

Let a € prgy1\ {eq%l}, then (1/(cfd™ "), ) eC N2y, off the line X =Y. On the other
hand, if 93(1_1 # 03, the proof follows from Proposition 5.3 and 5.4. 0O

We now want to further investigate the remaining case 03 = 9%“1 and 61 # 0. The
equation for ®(D) is

01U + 05UV + 0, T2V3 = 0.

Let Z = % and z = 02Z. Then every solution of

1 3

gives a linear component of ®(D).
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Lemma 5.6. Let 01,05 # 0 and 21, 22, 23 be the solutions of
I 3

in the algebraic closure Fq of Fg2. Only one of the following conditions holds.

e z;€F, fori=1,2,3.
o There exists j such that z; € Fy and z; € Fp2 fori # j.
o 2z ¢ Fpe fori=1,2,3.

Proof. Note that the coefficients of Equation (5.8) are in F,. The claim is obtained by
standard theory, see for example [5, Pg. 20]. O

Proposition 5.7. Let 03 = 92q ! JIf 0L+ 2+ 0q+1 23 = 0 has at least one solution in F,
then the curve C splits as the union of three absolutely irreducible conics defined over F e
(over Fy) if 0 € F2 \Fy (02 € Fy). In particular, C 0 pZ ., is a non-empty set dzsgomt
from the line X =Y.

Proof. Every solution of Equation (5.8) in [F,2 gives a linear component of (D) (and D).

From Lemma 5.6, without loss of generality, we can suppose that z; € F; and 23, 23 € Fy2
are the solutions of Equation (5.8). Going back to the curve D we obtain the followmg
decomposition:

D: (z1u + 03v + 0da) (z0u + 030 + Oda) (z3u + O30 + Oia) =
This means that the equation of the curve C becomes
C:(n(X +Y)+0IXY +02)(22(X +Y) +0IXY +02)(23(X +Y) +03XY + 6,) =

In fact a® = 926; r implies a0 93 ql = 5. We now claim that the above conics are
absolutely 1rredu01ble over Fg2. A conic is absolutely irreducible if and only if it does
not have a singular point. Consider the conic corresponding to z1, the partial derivatives
system is

Y +2,=0
0IX +21=0

which means that a singular point has coordinate X =Y = 2. Such a point belongs to
2

C if and only if

2409 =0
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However, if 22 = 03", from equation (5.8) we obtain
0 +z1+21=0,=0

and this is in contrast with 6; ## 0. Similarly, it can be proven that also the other conics
are absolutely irreducible. Finally, let o € 111 \ {777}, then the point (%122 o) ¢

9‘27—_1 0da+z1
CNplyy, off theline X =Y. O

Corollary 5.8. Let 05 # 0 and 04 = 0. If either 61 = 0 or 03 # 9§q‘1 orf1+z+ gq%z:” =0
has solutions z defined over Iy, then f is not a PP of Fye. ’

6. 02#0311(104;&0

We just need to prove that in this case the polynomial f(X) is never a PP. We will
do that again by using the connection between permutation polynomials and algebraic
curves. This part is inspired by the work done in [1]. In Section 3 we showed that the
polynomial f(z) in Theorem 2.2 is a PP if and only if H has no Fy-rational points off
the line X =Y. In our case the curve H has degree at most 6. By Proposition 3.1, for ¢
large enough such a curve has no [F,-rational points off the line X =Y if only if it splits
into absolutely irreducible components not defined over F, which have no [F,-rational
points off the line X =Y. We will show that for 65 # 0 and 64 # 0 this is never the case.

For this last section, our method requires a computer to assist us in computing re-
sultants between polynomials and in factorizing polynomials of low degrees over small
fields. The elementary MAGMA [3] programs used for our purposes are presented in the
Appendix. However, we point out that our results are valid for general ¢’s of type 2™,
and do not rely on computer searches.

Let k € F, be an element of absolute trace (over Fy) equal to 1. Then we can choose
1 € [Fg2 such that i2 =i+ k and in particular i =4 + 1.

Let 0 = C +iD, 03 = E+iF, for C,D,E, F € F,. By direct computations the curve
H has equation L(X,Y) = 0, for:

L(X,Y) =v33X3Y 3 + 32 X3Y 2 + 793XV + 45 1 X2V + 91 3XYV? + 93 0X? + 7937
72,2 X°Y? + 721 X% + 712 XY? + 720X + 71,1 XY + 702V + 710X + 70,1Y + 70,0,
(6.1)
with
V33 =D+ F,
V32 =C+D+E+F+0y4,
v31=C+Dk+D+E+Fk+F+0,,
30 =Ck+C+Ek+E+F+ kg + 04+ 6,
Y23=C+D+E+F+0y,
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Y13=C+Dk+D+E+Fk+F +04,

Y3 =Ck+C+Ek+E+F +kfy+ 04+ 01,

Yoo =C+Dk+D+E+Fk+F,

Y21 =Ck+C+Ek+E+F+kl+6,
Y2=Ck+C+Ek+E+F+kby+0y,

Yo,0 = C + Dk* + Dk + E + Fk* + Fk + F + k0,4,

Y02 = C 4 Dk* + Dk + E + Fk* + Fk + F + kfy,

Y11 =C+Dk*+ Dk +E+Fk*+ Fk + F,

Y1,0 = Ck* + Ck + Dk* + Ek® + Ek + E + FI* + F + k*04,
Y01 = Ck® + Ck + DK? + Fk?> + F + k%0, + Ek* + Ek + E,
Y0,0 = Ck* + Dk* + Fk* + Fk + F + Ek* + E.

In the following we will show that if 8, # 0 and 03 # 0 then H never splits into
components none of them is defined over F,.

6.1. Case 33 #0

In this case H has degree 6. We observe that the morphism (x,y) — (y,x) fixes
‘H and therefore it acts on its components. Also, since H is defined over F,, then the
Frobenius ¢,(z) = 7 acts on its components either. This implies that if there is a line as
a component, then there must be 6 lines. If not, H splits as either 3 absolutely irreducible
conics or 2 absolutely irreducible cubics.

1. H splits into 6 lines. In this case the factorization of L(X,Y") in Equation (6.1) must
be

D+ F)(X+a)(X+0)(X+c)(Y +a)(Y +b)(Y +¢) (6.2)

for some a, b, ¢ in Fq, since the homogeneous part of degree 6 is (D + F)x3y3. Now
we get

C + Dk + Dab+ Dac+ Dbc+ D + E+ Fk+ Fab+ Fac+ Fbc+ F + 0, =0
C+Da+Db+Dc+D+E+Fa+Fb+Fc+F+60,=0

which implies k+ab+ac+a+bc+b+c = 0 since D+ F # 0. Last condition implies:

Ca?® + Cb? + C + Dk? + Dka® + Dkb? + Dk + Da* + Da?b? + Da? + Db* + Db> + D +

Ea® + Eb> + E + Fk? + Fka®? + Fkb®> + Fk+ Fa* + Fa?b?> + Fa®> + Fb* + Fb> + F =0
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Ca?® 4+ Cb? + C + Dk? + Dka? + Dkb? + Dk + Da* + Da?b? + Db* + Ea®? + Eb? + E +

Fk?> + Fka? + Fkb®> + Fk+ Fa* + Fa?b’ + Fa®> + Fb* + Fb> + F =0

which implies in particular: Da?+ Db?+ D = 0. Now let D # 0. Then a?+b?+1 = 0,
which implies k = b* + b+ 1 and a = b+ 1. Thus, substituting in the equation (6.2)
the values @ = b+ 1 and computing the resultant for k = > + b + 1, we get the
following equations

C+DV +Db+D?+D+E+Fb¥ +Fb+Fc? +F =0,
C+ DV +Db+Dc®>+E+ Fb> + Fb+ Fc? + F =0,

which implies D = 0 a contradiction.
On the other hand, if D = 0, we obtain

C+FE+Fa+Fb+Fc+F+60,=0
C+E+Fk+Fab+ Fac+ Fbce+F+0,=0

which implies:
k4+ab+ac+a+bc+b+c=0.
Substituting k& we get
C+FE+Fa+Fb+ Fc+ F+604=0,
and by eliminating F we obtain

Fa? + Fab+ Fac+ Fb?> + Fbe + Fc? + 04+ 601 = 0,
Fa? + Fab+ Fac + Fb* + Fbc+ F2 +60, =0

which implies #; = 0. The details of the latter computations can be found in the
Appendix A.1, case D = 0. By definition we know that 037" + 02" = 0,(0, + 6,).
Since D = 0 and #; = 0, the latter becomes C? + E? + EF + F?k+ 6% = 0. By direct
computations we get

E+Fk+Fa®>+Fb¥*+ F* +F =0,

which implies C' = 0 or F' = 0. In both cases we have a contradiction.

. 'H splits into 3 absolutely irreducible conics. This case is only possible when the
three conics belong to the same orbit under the Frobenius ¢,. More precisely, the
equations of the curve must be of the form

(D+F)(XY +a(X +Y) +b)(XY +a(X +Y) +b7)(XY +a? (X +Y) +b7) =0
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for a,b € Fs. First we suppose that both a, b € F,s \ F,. In this case, {1,a,a?} and
{1,b,b?} are linearly independent over F,. Also, we know that a® = cia + co and
b = d1b+da, for some c1,c2,dy,ds € Fy. First, we derive y from the equation of the
first conic and then we plug it in the equation of our curve. After that, we isolate
the coefficients of @ and a?. By direct computations we obtain:

C+D+E+F+60,=0,0r0,=0
which implies C + D + E + F 4+ 0, = 0. It follows k = ¢; and
DE + DF + Dcyfy + DOy + EF + F? 4 Feobly + FOy + 6% =0 (6.3)
Repeating for b we obtain

Dk+Fk+0,=0
D? + DF + D*dy + F?d, + 02 =0 (6.4)
D?dy + DE + DF + EF + F?dy + F? 4 Ff4 + 603 =0

The first two equations in (6.4) imply that Da?b+ D+ Fa?b-+af,+b04 = 0. From the
latter equation together with the third equation in (6.4) and Equation (6.3) we derive
that either Da+E+F+60, =0or (DE+ DF+ D0, +EF + F?+ F0,)a+ D0, = 0,
which leads to D = 0 and one of the following: either a = 0 or E4+ F + 64, = 0 or
F = 0. However, since D =0and D+ C+ E + F + 64 = 0, the latter two conditions
are both non-admissible (we would have either D + F = 0 or 6 = 0). Hence a = 0,
a contradiction. When either a € F, or b € [F, we derive easily a contradiction by
direct checking (see the Appendix for all the computations).

H splits into 2 absolutely irreducible cubics defined over F,2. The leading homoge-
neous part of L(X,Y) is (D + F)X3Y3, so the homogeneous part of the cubics is
either X3 Y3 or X2Y, XY?. Since the Frobenius ¢4 switches the two cubics, this
implies that they must be defined over .

6.2. Case y33 =0

If 04 # C + E, H has degree 5. In this case we note that the line X +Y = 0 cannot

be a component of H. In fact, by direct computations, X =Y implies C + E = F =0

and E = 0 which in particular means 65 = 0. Now, since the leading homogeneous part
is (C+ E+ 04)(X3Y?% + X?Y3), the point P = (1:1:0) is a simple F,-rational point.
Then there must be an absolutely irreducible component through P distinct from the
line X +Y =0.

Let 64 = C + E. Note that 637" + 04" = 0,(6, + 6,), we obtain

CD + C6, + D*k+ EF + E6, + F%k =0,
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and, since D + F =0,
F+60,=00rC+E=0

which implies F' = 6. In this case the homogeneous part of L(z,y) is (C + E)z%y>.
Since now the degree of H is 4 we need to deal only with two cases: 4 lines or 2
absolutely irreducible conics.

1. H splits as the union of 4 lines. The factorization of L(z,y) must be
(CH+E)YX+a)( X+ +a) (Y +b) =0 (6.5)
for some a,b € Fq. Then
a+b+1=0
which implies F' = 0. It follows that
E4+b>+b+1=0

which leads to C' = 0. But this is a contradiction since C' = D = 0 implies 03 = 0.

2. H splits as the union of two absolutely irreducible conics. Since those conics are
switched by ¢4, we have only two possibilities, according whether they are switched
by (x,y) — (y,x) or not, that is either

XY +(a+i0) X +(a+(i+1)0)Y +c =0, and XY +(a+(i+1)b) X +(a+ib)Y +c =0,
for some a,b,c € [Fy, or

X(a+bi)+Y(a+bi)+c+di+ XY =0, and
X(a+b(i+1)+Y(a+bli+1)+c+di+1)+XY =0,

for some a,b,c,d € Fy.
In the first case we get b+ 1 = 0 which leads to F' = 0 and then a? +a+1 = 0. It
follows

Ck+Cc+Fk+FEc+FE=0

which implies either C'= 0 or £ = 0. Since C' = 0 is again a contradiction this means
that £ = 0 and ¢ = k. However when F' = 6, = D = E = 0, the equation of our
curve C (see Equations (3.1) and (3.2)) becomes

CX+1)(Y+1)(X?*+XY +Y? =0,
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for 0 = 6, = C, which has points (X,Y) € pZ,, off the line X =Y.
In the second case, by direct computation, we obtain b = 1 and after substituting,

Cd+C+Ed+E+F =0,
which implies
Ck+Ca+Cc+ FEk+FEa+FEc+ E+ Fa+ F =0.
Again, by direct computation, one finds
Ca*+Ca+C+Ea*+FEa+E+F=0.
Now we distinguish two cases. If F' # 0, then
k=(C®-C*F—-CF*-F®-C?E—~CFE - F*E)/(F*(C + E)),

and by replacing k£ in the equation of our curve H, we obtain the following factor-
ization of L(X,Y):

(FX +C)(FY + C)L'(X,Y),

(for the equation of L'(X,Y") see the Appendix) which leads to a contradiction, for
the conics being irreducible. If F' = 0, by direct computations, we obtain b = 1,
d=1,a°+a+1=0and

Ck>+Ck+CP +Cc+FEk?*+Ek+E +FEc+FE =0,
which implies C' = 0, a contradiction again since 65 # 0.
Proof of main Theorem 2.2

If 65 = 0, the proof is obtained by Corollary 4.4 and Corollary 4.10. When 65 # 0 and

04 = 0, the proof follows from Corollary 5.8, since the equation

1 3

is equivalent to the equation (2.4) after substituting z = 037 z. When 65 # 0 and 6, # 0,
the proof is obtained in Section 6.
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Appendix A

In [1], the author provided a very useful mini-program to compute resultant of poly-
nomials over finite fields. In what follows we will use the same Magma procedure to
investigate the solutions of a system of polynomial equations. For the sake of complete-
ness, we now recall the main functions we use in this paper “FindCoefficients2” and
“Substitution” See [1, Appendix] for more details.

K<x,y,C,D,E,F,i,j,m,k,a,b,c,d,e,f,g,t4,t1,aq,bq,aq2,bq2> := PolynomialRing(GF(2),23);

FindCoefficients2 := function(pol,varl,var2)
T := Terms(pol);

Coeff := {};

MAX1 := Degree(pol,varl);

MAX2 := Degree(pol,var2);

for i in [0..MAX1] do

for j in [0..MAX2] do

c := K!0;

for t in T do

if IsDivisibleBy(t,varl~i*var2~j) eq true and
IsDivisibleBy(t,varl~i*var2~(j+1)) eq false and
IsDivisibleBy(t,varl”(i+1)*var2~j) eq false then
c := c+ K! (t/(varl~i*var27j));

end if;

end for;

if ¢ ne O then

Coeff := Coeff join {c};

i,j,c;

end if;

end for;

end for;

return Coeff;

end function;

Substitution := function (pol, m, p)
e := 0;

New := K! pol;

while e eq O do

N := K!0;
T := Terms(New);
i:= 0;

for t in T do
if IsDivisibleBy(t,m) eq true then

Q :=K! (t/m);
i=1;

N := K!(N + Q* p);
else

N := KI(N + t);
end if;

end for;
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if i eq O then
return New;
else

New := K!N;
end if;

end while;

end function;

t2:=C+i*D;
t2q:=C+(i+1)*D;
t3:=E+i%*F;

t3q:=E+(i+1)*F;
eql:=Substitution(t2*t2q+t3*t3q+t4*(t4+tl),i72,i+k);
Xe=(x+i)/(x+i+1);

Yi=(y+i)/(y+i+1);

Gxy:=t3q + t3*X"3*xY"3 +

t4xX*xY*(X + Y) +

(t1 + t4)*(X + )3 +

t2x(X*Y + (X + Y)72) +

t2g*X*AY* (X*Y + (X + Y)72);
Curve:=(x+i+1) 3% (y+i+1) ~3*Gxy;
Curve:=Substitution(Curve,i”2,i+k);

A.l. 73,3 ;é 0
‘H splits as 6 lines.

Case D # 0.

PROD := (x+a)*(x+b)*(x+c)*(y+a)*(y+b)*(y+c);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

///C + D*a + Dx¥b + Dxc + D + E + F*a + F¥b + Fxc + F + t4+C + D*k + D¥a*b + D*a*c + D*b*c + D + E +
Fxk + Fxaxb + Fka*c + Fxb*c + F + t4=0

/// C + Dxk + D*a*b + D¥axc + D*b*xc + D + E + Fxk + F*axb + Fxaxc + F*b*xc + F + t4=0

p2 := k+ a*b + axc + a + b*c + b + c;

CC2 := {Resultant(pol,p2,c) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

///D*a~2 + D*b~2 + D=0

p3:=a + b + 1;

CC3 := {Resultant(pol,p3,a) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

///k=b"2+b+1

PROD := (x+b+1)*(x+b)*(x+c)* (y+b+1)*(y+b)*(y+c);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);

CC := {Resultant(pol,k+b”2+b+1,k) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

///D=0 ###

Case D = 0.

PROD := (x+a)*(x+b)*(x+c)*(y+a)*(y+b)*(y+c);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);
CC:={Resultant(pol,D,D) : pol in CC};
{Factorization(pol) : pol in CC | pol ne 0};
p2 := k + axb + a*c + a + b*c + b + c;

CC2 := {Resultant(pol,p2,k) : pol in CC};
{Factorization(pol) : pol in CC2 | pol ne 0};
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p3:=C + E + Fxa + F*¥b + F*c + F + t4;

CC3 := {Resultant(pol,p3,E) : pol in CC2};
{Factorization(pol) : pol in CC3 | pol ne 0};
///t1=0

eql_2:=Substitution(eql,t1,0);
eql_2:=Substitution(eql_2,D,0);

CC := FindCoefficients2(Curve+ (D+F)*PROD,x,y);
CC:={Resultant(pol,D,D) : pol in CC};
CC:={Resultant(pol,t1,t1) : pol in CC};
pl:=eql;

CC1:={Resultant(pol,pl,C) : pol in CC};
{Factorization(pol) : pol in CC1 | pol ne O0};
p2 :=E + Fxk + F*a”™2 + Fxb™2 + Fxc™2 + F;

CC2 := {Resultant(pol,p2,a) : pol in CC};
{Factorization(pol) : pol in CC2 | pol ne 0};
/// C=0 or F=0 ###

H splits as 3 absolutely irreducible conics. Case «, 3 € Fgs \ Fy.

Curvel:=K! ((x+a) “3*Evaluate(Curve, [x,(b+a*x)/(x+(a)),C,D,E,F,i,j,m,k,
a,b,c,d,e,f,g,t4,t1,aq,bq,aq2,bq2]));

CC := FindCoefficients2(Curvel,x,y);

CC:={Resultant(pol,eql,tl) : pol in CC};

CC:={Substitution(pol,a~3,m*a+g) : pol in CC};

CC:={Substitution(pol,b”3,i*b+j) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

pa1:=CA2 + C*D + Cxk*t4d + C*a"2xt4 + Cxaxtd + Cxt4d + D”2%k + D*m¥axt4d + Dxkxaxtd +
D*a~2*t4 + D*xaxtd + D*g*t4 + E72 + ExF + Exk*t4 + E*a™2%t4 + Exaxt4 + Ext4 +

F~2%k + Fxmkxaxtd + Fxk¥axt4d + F*xa"2%t4d + Fxa*xtd + Fxgktd + Fxtd + kxt4d™2 + a”2%t4d72 + a*xtd™2;

Coefficients(pal,a);

pl:=C + D + E + F + t4;

CC1:={Resultant(pol,p1,C) : pol in CC};

{Factorization(pol) : pol in CCl1 | pol ne 0};

pa2:=Dxk + E + Fxk + F + m*a*xtd + kxaxtd + k*td + gxt4d;
Coefficients(pa2,a);

p2:=k +m;

CC2 := {Resultant(pol,p2,m) : pol in CCi};

{Factorization(pol) : pol in CC2 | pol ne 0};

pbl:=D*i*b + D*j + Dxk™3 + D*k™2%b + D*k™2 + D*k*b"2 + D*kxb + Dxb + E + Fxixb + F*j +
F*¥k™3 + F*k™2%b + F*¥k~™2 + F*xk*b~2 + Fxk*b + F*k + F + k™2*t4 + b™2xt4d + b*t4;
Coefficients(pbl,b);

p3:= Dxk + Fxk + t4;

CC3:={Resultant (pol,p3,k) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

pb2:=D"2%ixb + D72%j + D"2%b + D*E + D*Fxb + D*F + E*F + F™2%ixb +
F™2%j + F72 + Fxt4 + b*t4"2 + t472;

Coefficients(pb2,b);

p4:= D72 + D*F + D72xi + F72%i + t472;

CC4:={Resultant(pol,p4,i) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=D*a”2%b + D + Fxa"2%b + a*td + b*t4;
CC5:={Resultant(pol,p5,b) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};
CC6:={Substitution(pol,a~3,k*a+g) : pol in CC5};

CC6:={Resultant (pol,Dxk+ F*k + t4,k) : pol in CC6};
{Factorization(pol) : pol in CC6 | pol ne 0};

p7:=D#E + DxF + Dkg#td + Dktd + ExF + F~2 + Fkgxtd + Fxtd + td"2;
CC7:={Resultant (pol,p7,g) : pol in CC6};

{Factorization(pol) : pol in CC7 | pol ne 0};

p8:=D"2%j + DXE + DF + EF + F 2%j + F~2 + F¥td + t4°2;
CcC8:={Resultant(pol,p8,j) : pol in CC7};

{Factorization(pol) : pol in CC8 | pol ne 0};

p9:=D;

21
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CC9:={Resultant (pol,p9,D) : pol in CC8};
{Factorization(pol) : pol in CC9 | pol ne 0};
///a=0 ###

Case a € Fy or B € I,

PROD1:= (x*y+a*(x+y)+b)* (xxy+ax(x+y)+bq) * (x*y+ax (x+y)+bq2) ;
PROD2:= (x¥y+ax (x+y)+b)*(x*y+aq* (x+y)+b)* (x*y+aq2* (x+y)+b) ;

CC := FindCoefficients2(Curve+(D+F)*PROD1,x,y);
CC:={Resultant(pol,eql,tl) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

/// t4=0 (by sum of the two equations starting by C~2+CD+..) ###
CC := FindCoefficients2(Curve+(D+F)*PR0OD2,x,y) ;
CC:={Resultant(pol,eql,tl) : pol in CC};

{Factorization(pol) : pol in CC | pol ne 0};

/// t4=0 (by sum of the two equations starting by C~2+CD+..) ###

A.2. 73,3 = 0

In this case we recall that D + F' =0 and 04 = C + F, implying 6, = F.

Curve2:=Substitution(Curve,D,F);
Curve2:=Substitution(Curve2,t4,C+E);
Curve2:=Substitution(Curve2,t1,F);

‘H splits as 4 lines.

PROD := (x+a)*(x+b)*(y+a)*(y+b);

CC := FindCoefficients2(Curve2+ (C+E)*PROD,x,y);
{Factorization(pol) : pol in CC | pol ne 0};
p2 :=a+ b+ 1;

CC2 := {Resultant(pol,p2,a) : pol in CC};
{Factorization(pol) : pol in CC2 | pol ne 0};
p3:=F;

CC3 := {Resultant(pol,p3,F) : pol in CC2};
{Factorization(pol) : pol in CC3 | pol ne 0};
p4:=k + b"2 + b + 1;

CC4 := {Resultant(pol,p4,k) : pol in CC3};
{Factorization(pol) : pol in CC4 | pol ne O0};
/// C=0 #i##

‘H splits as the union of two absolutely irreducible conics.

Case 1: (z,y) — (y, ) switches the two conics.

PROD := (x*y+(a+i*b)*x+(a+(i+1)*b)*y+c)* (x*xy+(a+(i+1)*b)*x+(a+i*b)*y+c);
PROD := Substitution(PROD,i"2,i+k);

CC := FindCoefficients2(Curve2+(C+E)*PROD,x,y) ;
{Factorization(pol) : pol in CC | pol ne 0};

p2 := b+ 1;

CC2 := {Resultant(pol,p2,b) : pol in CC};
{Factorization(pol) : pol in CC2 | pol ne 0};
p3:=F;

CC3 := {Resultant(pol,p3,F) : pol in CC2};
{Factorization(pol) : pol in CC3 | pol ne 0};
p4:=a”2+a+l;

CC4 := {Resultant(pol,p4,a) : pol in CC3};
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{Factorization(pol) : pol in CC4 | pol ne 0};
p5:=Cxk + Cxc + Exk + Exc + E;
CC5:={Resultant(pol,p5,k) : pol in CC4};
{Factorization(pol) : pol in CC5 | pol ne 0};
/// E=0 ###

Case 2: (z,y) — (y, x) fixes the two conics.
Case F # 0.

PROD := (x*y+(a+i*b)*x+(a+i*b)*y+(c+i*d))* (x*y+(a+(i+1)*b)*x+(a+(i+1)*Db)*y+(c+(i+1)*d));
PROD := Substitution(PROD,i"2,i+k);

CC := FindCoefficients2(Curve2+(C+E)*PR0OD,x,y);

{Factorization(pol) : pol in CC | pol ne 0};

p2 := b+ 1;

CC2 := {Resultant(pol,p2,b) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

p3:=C*d + C + Exd + E + F;

CC3 := {Resultant(pol,p3,d) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

p4:=Cxk + Cxa + Cxc + Exk + Exa + Exc + E + F¥a + F;

CC4 := {Resultant(pol,p4,c) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=C*a”2 + C*xa + C + Exa”™2 + Exa + E + F;

CC5:={Resultant (pol,p5,a) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};

/// k:==(C"3 - C"2*F - C+F"2 - F°3 - C"2*E - C#F*E - F"2*E)/(F"2*(C + E));
Factorization(K! (F~4*Evaluate(Curve2,

[x,y,C,D,E,F,i,j,m,(C™3 + C™24F + C+F"2 + F"3 + C"2«E + CxF+E + F"2xE)/(F"2x(C + E)),
a,b,c,d,e,f,g,t4,tl,aq,bq,aq2,bq21)));

Case F =0

Curve3:=Substitution(Curve2,F,0);

PROD := (x*y+(at+tixb)*x+(at+i*b)*y+(c+ixd))*(xxy+(a+(i+1)*b)*x+(a+(i+1)*b)*y+(c+(i+1)*d));
PROD := Substitution(PROD,i"2,i+k);

CC := FindCoefficients2(Curve3+(C+E)*PROD,x,y) ;
{Factorization(pol) : pol in CC | pol ne 0};

p2 := b + 1;

CC2 := {Resultant(pol,p2,b) : pol in CC};

{Factorization(pol) : pol in CC2 | pol ne 0};

p3:=d+1;

CC3 := {Resultant(pol,p3,d) : pol in CC2};

{Factorization(pol) : pol in CC3 | pol ne 0};

pé:=a”2+a+l;

CC4 := {Resultant(pol,p4,a) : pol in CC3};

{Factorization(pol) : pol in CC4 | pol ne 0};

p5:=C*xk™2 + Cxk + C*c”2 + C*c + Exk™2 + Exk + E*c™2 + Exc + E;
CC5:={Resultant(pol,p5,c) : pol in CC4};

{Factorization(pol) : pol in CC5 | pol ne 0};

/// C=0 ###
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