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Let m be a positive integer and q be a prime power. For large 
finite base fields Fq , we show that any plane curve can be used 
to produce a complete m-arc as long as some generic explicit 
geometric conditions on the curve are verified. To show the 
effectiveness of our theory, we derive complete m-arcs from 
hyperelliptic curves and from Artin-Schreier curves.
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1. Introduction

Let q be a prime power and Fq be the finite field of order q. Let P 2(Fq) = PG(2, q)

be the set of Fq-points [X0, X1, X2] of the projective plane. Let AG(2, q) be the set of 

Fq points of the affine plane, which we will identify with the projective points of P 2(Fq)
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with X2 �= 0. A (k, m)-arc A in P 2(Fq) is a set of k points such that there are no m + 1

points that are collinear and such that there exist m collinear points. For fixed m, q, 

we have that the set Am(q) of all m-arcs in P 2(Fq) is partially ordered by inclusion. A 

complete m-arc is a maximal element in Am(q), i.e. it is an m-arc that is not contained 

in a strictly larger m-arc.

In the late 50’s, Segre introduced the notion of arc for m = 2, which has been exten-

sively studied in the literature (Segre was in fact interested to know how many points a 

complete arc in P 2(Fq) can have, see [25]). In this simpler case m = 2, the theory is well 

developed and there are plenty for constructions (see for example [1–3,12,13,15,31,32]). 

For maximum size arcs in odd characteristic, Segre himself proved that the set of points 

of an arc is a conic.

Concerning minimal sizes, much less is known. Using a probabilistic method, the paper 

[17] shows that there exists a complete arc of size O(
√

q logc q) in a projective plane of 

order q > M (for some positive constants c, M independent on q). Another clever idea 

to construct arcs (due to Segre and Lombardo-Radice [21,26]) is to use a small set of 

Fq-rational points of a curve of low degree over a finite field. A lot of research has been 

done in this direction [19,35,36,24,30,8] and the currently best known bound using this 

method gives O(q3/4).

The case m > 2 is much more complex and the currently known constructions either 

use the theory of 2-character sets (see [13, Sects. 12.2 and 12.3] and [10]) or connections 

with certain special family of curves [9,16,34,5]. For m = 3 and m = 4 [4,7] construct 

small complete m-arcs of size o(q) using subsets of the Fq-rational points of a curve of 

degree m + 1. In [6] the authors construct a family of curves that gives rise to m-arcs 

of size smaller than q over certain subsequence of extension fields for all m > 8. In fact, 

the authors show that they can determine a curve and construct a sequence of positive 

integers nk such that the set of Fqnk -rational points of C gives rise to an m-arc of size 

roughly qnk − C
√

qnk for an explicit C. Using a similar Galois theoretical approach as 

[6], in [18] the authors were able to construct complete m-arcs using the Hermitian curve 

of degree q + 1 and the BKS curve of degree q + 1.

The purpose of this paper is to provide a general theory to construct families of 

complete m-arcs arising from curves that satisfy explicit and easily verifiable generic 

conditions. As a proof of concept, we employ our methods in the case of hyperelliptic 

curves and Artin-Schreier curves, showing that they can be used to construct complete 

m-arcs.

Apart from their fundamental interest in combinatorics, complete m-arcs of size k

have an important connection with coding theory, as they correspond to codes over 

Fq of length k, dimension 3 and distance k − m (in the coding theoretical notation, 

[k, 3, k − m]q-codes) that cannot be extended to a code with same dimension and larger 

minimum distance. In fact, given an m-arc A, one can place as columns of a 3 ×k matrix 

G representatives in F3
q of the points of the m-arc. Let C be the code generated by G. 

Now, for every x ∈ F
3
q , the codeword xG has weight at least k − m or otherwise one 

could find m + 1 collinear points in A.
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A general introduction to (k, m)-arcs can be found in the monograph [13, Chapter 

12], as well as in the survey paper [15, Section 5].

1.1. Outline of the paper

We first provide an introduction to the basic techniques and notations that we use in 

the paper (Subsection 1.2 and Section 2). Firstly, we describe the auxiliary results that 

we will use to convert geometric properties into the arithmetic ones (Section 3). Then, 

we provide the main result (Section 4). Finally, to show the effectiveness of our results, 

we give two applications (Section 5) to hyperelliptic and Artin-Schreier curves.

1.2. Notation

Let x be a transcendental element over Fq and Fq(x) be the rational function field in 

the variable x. For a curve C we denote by C(Fq) the set of Fq-rational points of C, and 

by Fq(C) its function field over Fq. For a polynomial F (X0, . . . , Xn) we denote by deg(F )

the total degree of F , whereas degXi
(F ) denotes the maximal degree of Xi occurring in 

F . In the following we denote by P 2(Fq) the set of Fq-rational points of the projective 

plane P 2 over Fq, and with A2(Fq) = P
2(Fq) \ �∞ the Fq-rational points of the affine 

plane A2, where �∞ is the line at infinity [X0, X1, 0].

Let F = F (X0, X1, X2) = 0 be the homogeneous equation of an irreducible curve C
of degree n in P 2. For i ∈ {1, 2, 3} let Fi = ∂

∂Xi

F (X0, X1, X2) be the partial derivative 

of F with respect the i-th variable. Then the dual curve C∗ of C is defined as the closure 

of the image of the Gauss map

G : C → P
2

(X0, X1, X2) �→ (F0(X0, X1, X2), F1(X0, X1, X2), F2(X0, X1, X2)).

For an irreducible plane curve C, let g(x, y) = 0 be its affine equation. We say that Fq(C)

is isomorphic to Fq(C∗) via G, and write Fq(C) ∼=G Fq(C∗), if

Fq(x, y) = Fq

(

∂xg(x, y)

∂yg(x, y)
, x

∂xg(x, y)

∂yg(x, y)
+ y

)

. (1)

Since C is an irreducible plane curve, we have that C∗ is also plane and irreducible. 

Observe that G(C) is closed when C is non-singular.

2. Background

2.1. Arcs

A (k, m)-arc A in P
2(Fq) is a set of k points no m + 1 of which are collinear and 

such that there exist m collinear points. The arc A is called a complete (k, m)-arc if it 
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is maximal with respect to the set theoretical inclusion among all m-arcs. In particular, 

every point in the complement of a complete m-arc A is collinear with m points in A.

2.2. Rational maps between curves

We recall in this part some facts about rational maps and birational morphisms. For 

a complete exposition of the theory see for example [27–29].

Let K be an algebraically closed field and V ⊂ P
n(K) a projective variety, i.e. an 

irreducible algebraic set of zeros in K of homogeneous polynomials with coefficients in 

K. In the notation of this paper, an algebraic curve is simply a projective variety of 

dimension one. Let K(V) (resp. K[V]) denote the function field (resp. the homogeneous 

coordinate ring) of V. A rational function ϕ ∈ K(V) is called regular at x ∈ V if it can be 

written as ϕ = f
g where f, g ∈ K[V] and g(x) �= 0. The value of ϕ at the point x is f(x)

g(x)

and it is denoted by ϕ(x). A rational function that is regular at every x ∈ V is called 

regular function.

Let W ⊂ P
m(K) a projective variety. A rational map ϕ : V ��� W is a m-tuple of 

ϕ0, . . . , ϕm ∈ K(V) such that ϕ(x) = [ϕ0(x), . . . , ϕm(x)] ∈ W for all points x ∈ V at 

which all the ϕi are regular. The rational map ϕ is said to be regular at the points 

x ∈ V where it is defined. A rational map that is regular at every point x ∈ V is called 

a morphism.

The following result states that, for a non-singular curve C a rational map is defined 

at every point (see [28, Proposition 2.1]).

Proposition 2.1. Let C be an algebraic curve and W ⊂ P
m be a variety. Let P ∈ C be a 

non-singular point and let ϕ : C ��� W be a rational map. Then ϕ is regular at P . In 

particular, if C is non-singular, then ϕ is a morphism.

A morphism ϕ : V → W is said to be an isomorphism if there exists a morphism 

ψ : W → V such that ϕ ◦ ψ and ψ ◦ ϕ are the identity maps on W and V respectively. 

Two varieties V and W are said to be birationally equivalent (or just birational) if there 

exist rational maps ϕ : V ��� W and ψ : W ��� V such that ϕ ◦ ψ and ψ ◦ ϕ are the 

identity maps on the points of W and V where they are defined. Each rational map ϕ and 

ψ is called a birational equivalence. If two varieties are isomorphic they are birationally 

equivalent, but the converse is generally not true.

Remark 2.2. If ϕ : V ��� W is a birational equivalence, then ϕ is a 1-to-1 correspondence 

everywhere except at non-regular points of V and W. Therefore, as a consequence of 

Proposition 2.1, if C is a non-singular curve, then ϕ : C ��� W is defined everywhere 

on C, and 1-to-1 only at regular points of W. This means that in the particular case 

when W is a curve too, we have that φ is defined everywhere on C, and 1-to-1 only at 

non-singular points of W.
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2.3. Non-singular model of a curve

For the results in this subsection we refer to [29, Appendix B]. Let V be a projective 

curve. Then there exists a non-singular projective curve Vdes and a birational morphism 

π : Vdes → V that satisfies the following universal property: if V ′ is another non-singular 

projective curve, and π′ : V ′ → V is a birational morphism, then there exists a unique 

isomorphism φ : Vdes → V ′ such that π = π′ ◦φ. This is to say that the following diagram 

commutes

Vdes V

V ′

π

φ
π′

The pair (Vdes, π), or simpler just Vdes, is called the non-singular model of V.

2.4. Galois theory over global fields

In this section we use the notation and terminology of [29]. For a field M we denote 

by Aut(M) the automorphism group of M . Let L ⊇ K be a separable field extension 

and let M be the Galois closure. We denote by Gal(M : K) the Galois group of M : K, 

i.e. {g ∈ Aut(M) : g(x) = x ∀x ∈ K}. The next result is a consequence of [37, Satz 1].

Lemma 2.3 (Orbits’ lemma). Let L : K be a finite separable extension of function fields, 

let M be its Galois closure and G := Gal(M : K) be its Galois group. Let P be a place 

of K and Q be the set of places of L lying above P . Let R be a place of M lying above 

P . Then we have the following:

1) There is a natural bijection between Q and the set of orbits of H := HomK(L, M)

under the action of the decomposition group D(R|P ) = {g ∈ G | g(R) = R}.

2) Let Q ∈ Q and let HQ be the orbit of D(R|P ) corresponding to Q. Then |HQ| =

e(Q|P )f(Q|P ) where e(Q|P ) and f(Q|P ) are the ramification index and relative de-

gree, respectively.

3) The orbit HQ partitions further under the action of the inertia group I(R|P ) = {g ∈
D(R|P ) | vR(g(s) − s) ≥ 1 ∀s ∈ OR} into f(Q|P ) orbits of size e(Q|P ).

The next result gives a characterization of the Galois group using the inertia groups. 

For a reference see for example [29].

Lemma 2.4. Let L : K be a finite separable extension of function fields, let M be its 

Galois closure and let G := Gal(F̄qM : F̄qK). Then G is generated by the inertia groups 

I(R|P ), i.e.

G = 〈I(R|P ) : P place of K, R|P, R place of M〉.
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The following result follows from [11, Proposition 1 on p275].

Proposition 2.5. Let G be a transitive subgroup of Sn generated by transpositions. Then 

G = Sn.

3. From geometry to Galois theory

For this section, let K be an algebraically closed field, let P
2 = P

2(K), and let r

be a line in P 2. Remark 3.9 combined with Chebotarev Density Theorem explains one 

way to transfer geometric information obtained over P 2(Fq) to arithmetic information 

in P 2(Fq), which will be needed to construct m-arcs in P 2(Fq) in Section 4.

Definition 3.1. The line r ⊆ P
2 is said to be a bitangent to a curve C if it has at least 

two non-singular points of intersection with C where it is tangent to C.

We start with a preliminary lemma.

Lemma 3.2. Let C ⊆ P
2 be an irreducible plane projective curve of degree m over a finite 

field Fq with singular points contained in the line at infinity. Let C∗ be the dual curve 

of C and suppose Fq(C) ∼=G Fq(C∗), that is Fq(C) and Fq(C∗) are isomorphic through the 

Gauss map G. Then there are at most O(m4) affine bitangents to the curve.

Proof. Let F = F (X0, X1, X2) = 0 (resp. G = G(X0, X1, X2) = 0) be the homogeneous 

equation of C (resp. C∗). Since F has degree m, then G has at most degree m(m − 1)

(see for example [23]).

Since Fq(C) ∼=G Fq(C∗), the Gauss map G : C∩A
2 → C∗ can be extended to a birational 

map G′ between C and C∗.

Let Cdes and C∗
des be the non-singular models of C and C∗ respectively. Let π1 : Cdes →

C and π2 : C∗
des → C∗ the birational morphisms attached to the non-singular models 

(satisfying the universal property shown in Subsection 2.3, and defined everywhere as 

explained in Subsection 2.2, notice in particular Remark 2.2).

Notice that, thanks to Proposition 2.1 the birational map G′ ◦ π1 is a birational 

morphism because Cdes is non-singular.

By using the universal property of π2 for the birational morphism G′ ◦ π1 : Cdes ���

C∗ between Cdes and C∗
des one obtains an isomorphism Gdes that makes the diagram 

commutative.
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C ∩ A
2

C C∗

Cdes C∗
des

G

⊆

G
′

π1

Gdes

π2

The number of affine bitangents to C ∩A
2 equals the number of points of C∗ that have 

multiple preimages through G. Our strategy is to prove that the points of C∗ that have 

multiple preimages via G are contained in the points of C∗ that are singular. We will 

then bound the singular points with Bezout’s Theorem. Suppose that P is a point of C∗

that has a set T ⊆ C ∩ A
2 of preimages via G of size larger than or equal to 2. Let now 

T ′ = π−1
1 (T ) ⊆ Cdes. Since the diagram commutes, we have that π2 ◦ Gdes(T ′) = {P}, 

and therefore π2 is mapping a set of points of size larger than 1 to a single point P , so 

P must be a singular point of C∗.

We can now estimate the number of singular points of C∗ using Bezout’s Theorem: 

these points are contained in the set of solutions of the equations G = 0 and G0 =
∂

∂X0

G = 0, which are at most O(deg(G) deg(G0)) = O(m4) because G0 cannot divide G

due to irreducibility. �

Lemma 3.3. Let C ⊆ P
2 be a non-singular plane projective curve of degree m over a finite 

field Fq such that C is birationally equivalent to its dual curve C∗ through the Gauss map. 

Then there are at most O(m4) bitangents to the curve.

Proof. It is a direct consequence of Lemma 3.2 because C is non-singular. �

Remark 3.4. Notice that for irreducible, non-singular plane projective curves, being bi-

rationally equivalent to the dual curve is a generic condition as long as the characteristic 

is different from 2 if the base field is large enough (see for example [14, Theorem 5.90]

and specifically the rank condition on the matrix in [14, Equation 5.49]).

Definition 3.5. Let C ⊆ P
2 a plane curve. A line of P 2 that is tangent to C with multi-

plicity at least 3 at a non-singular point P ∈ C is said to be an inflection tangent and 

the point of tangency P is said to be an inflection point.

Theorem 3.6. Let C be an irreducible plane projective curve of degree m ≥ 3 over a field 

K and F = 0 its homogeneous equation. Let HF be the Hessian determinant associated to 

F . Let p be the characteristic of K, and assume that either p = 0 or p > m. Then HF �≡ 0

mod (F ), and the intersection of F with its Hessian curve consists of the singular points 

of C and the inflection points of C.

Proof. The claim follows using [20, Theorem 9.7 (b)] since C is irreducible. �
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Lemma 3.7. Let p be a prime number and q a power of p. Let C ⊆ P
2 be an irreducible 

plane projective curve of degree m ≥ 3 over a finite field Fq. Then, if p > m the number 

of inflection tangents to C are at most O(m2).

Proof. Let F = F (X0, X1, X2) = 0 be a homogeneous equation of C. Let HF be the 

Hessian determinant associated to F , therefore deg(HF ) ≤ 3(m − 2). Now, since C is 

irreducible we can use Theorem 3.6 obtaining that the intersection between C and the 

set of points that vanish at HF consists only of singular points and inflection points 

of C. Since by definition each inflection point has at most one inflection tangent, one 

can bound the number of inflection tangents with the number of inflection points and 

singular points of C, that is O(deg(F ) deg(HF )) = O(m2) as a consequence of Bezout’s 

Theorem. �

The following is a particular instance of a classical fact, we include its proof for 

completeness.

Lemma 3.8. Let p be a prime number, q a power of p, and K/Fq be a function field over 

Fq. Let L : K be a proper finite separable extension of degree n of global function fields, 

and M be the Galois closure of L : K. Let P be a place of K, QP be the set of places 

of L lying above P , e(Q|P ) the ramification index of Q ∈ QP over P and f(Q|P ) the 

relative degree. Suppose that for every P and for every Q ∈ QP we have e(Q|P ) ≤ 2 and 

e(Q̄|P ) = 2 at most once for some Q̄|P . If G := Gal(M : K) is transitive, then G is the 

symmetric group Sn.

Proof. Using Proposition 2.5 it is enough to prove that G is generated by transpositions. 

By Lemma 2.4, since G is generated by the inertia groups I(R|P ) where R is a place of M

lying above P , it is enough to prove that the inertia groups contain only transpositions. 

Since we are working over the algebraic closure, the decomposition group D(R|P ) equals 

the inertia group I(R|P ). In particular f(R|P ) = f(R|Q)f(Q|P ) = 1 and so f(Q|P ) = 1. 

By the Orbits’ Lemma 2.3 the action of D(R|P ) (i.e. I(R|P )) on HomK(L, M) gives 

orbits of order e(Q|P ), so each decomposition group acts either like the identity or a 

transposition. Since G acts faithfully on HomK(L, M) and D(R|P ) ≤ G, D(R|P ) cannot 

contain more than one element that acts like a transposition on the set HomK(L, M), 

so either D(R|P ) = {1G} or D(R|P ) = {1G, g | g transposition }. This shows that G is 

generated by transpositions, and therefore since G is transitive we have G = Sn. �

Remark 3.9. Notice that the lemma above can also be used to show that an arithmetic

Galois group is symmetric. In fact, if M : K is a Galois extension of a function field 

K/Fq, then we have that Gal(kM M : kM K) = Gal(FqM : FqK), where kM is the field 

of constants of M (see for example [22, Lemma 2.6]). This implies that Gal(FqM : FqK)

is canonically contained in Gal(M : K) ≤ S[M :K]. Therefore, if one can prove Gal(FqM :

FqK) = S[M :K], one also has Gal(M : K) = S[M :K] and most importantly kM = Fq.
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4. Main result

Let us now state and prove the main theorem.

Theorem 4.1. Let p be a prime number and q a power of p. Let C ⊆ P
2 be an irreducible 

plane projective curve of degree m over a finite field Fq such that p > m, the singular 

points of C are contained in the line at infinity, and that C is birationally equivalent to 

its dual C∗ through the Gauss map. There exists an explicit constant c independent of q, 

for which if q > c then there exists a set of points S ⊆ P
2(Fq) of size at most O(m5)

such that C(Fq) ∪ S is a complete m-arc of P 2(Fq).

Remark 4.2. Notice that the condition that C is birationally equivalent to its dual C∗

is generic in characteristic different from 2 (see Remark 3.4). It is possible to calculate 

a sharp explicit constant c by estimating via Hurwitz formula the genus of the Galois 

closure of a certain covering of curves that appears in the proof (see Remark 4.3).

Proof of Theorem 4.1. Consider R = {r1, . . . , rN } with N = O(m4) the set of all the 

bitangents and inflection tangents as in Lemma 3.2 and Lemma 3.7.

Firstly, we prove that through any affine point outside these lines and outside C(Fq), 

there exists a line intersecting C(Fq) in exactly m affine points. Afterwards, we outline 

how to choose a set S of points on the lines in R to construct a complete m-arc C(Fq) ∪S.

Therefore, consider a point P = (a, b) ∈ A
2(Fq) such that P /∈ ri for any 

i ∈ {1, . . . , N}. Let f(x, y) = 0 an affine equation for C, i.e. f(x, y) ∈ Fq[x, y] irre-

ducible of degree m. Let �P,t : y = t(x − a) + b be the (formal) line through P with slope 

t and

FP (t, x) = f(x, t(x − a) + b) ∈ Fq[t, x]

be the polynomial obtained by f(x, y), which results from substituting y with t(x −a) +b. 

We want to prove that there exists a specialization t0 for t such that FP (t0, x) totally 

splits, giving m points of intersection between the curve f(x, y) = 0 and the line �P,t0
. To 

this end, consider G = Gal(FP (t, x) | Fq(t)). Now notice that since f(x, y) is irreducible, 

we have that FP (t, x) is an irreducible polynomial. Set K = Fq(t) and let L be the 

fraction field of Fq[x, t]/〈FP (t, x)〉. Let M be the Galois closure of L : K and observe 

that FqM is the Galois closure of FqL : FqK. Now let P be a place of FqK and QP

the set of places of FqL lying above P . Because we are neither on a bitangent nor on an 

inflection tangent, e(Q|P ) ≤ 2 and e(Q̄|P ) = 2 at most once for some Q̄|P . Therefore, 

by Lemma 3.8 and Remark 3.9.

Gal(FqM : Fq(t)) = Gal(M : K) = Sm.

By [6, Theorem 3.3], there exists an explicit constant c depending only on the genus of 

M and the degree of [L : K] for which if q > c then L : K has a totally split place, that 
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means a t0 exists such that �P,t0
intersects C in m distinct affine points, i.e. the point P

is collinear with other m distinct points of C.

For a set of points T ⊆ P
2(Fq), we say that a point Q ∈ P

2(Fq) \ T is covered by T if 

there are m distinct points of T collinear with Q.

We now show how to construct the set S recursively so that C(Fq) ∪ S is a complete 

m-arc of P 2(Fq). First, set A0 = C(Fq). Now for i ∈ {1, . . . , N} set Ai = Ai−1 ∪Hi where 

Hi satisfies the following

1) Hi ⊂ ri and |Hi| ≤ m;

2) � m + 1 points in Ai = Ai−1 ∪ Hi that are collinear

3) each point of ri is covered by Ai.

Such Hi always exists: running over the points in ri ∈ R we consider them one by one 

and add them to the arc until we get all points on ri covered. This procedure adds at 

most m points, which constitute the set Hi. In other words, for every i ∈ {1, . . . , N}, 

one must consider the tangent ri, take a point and add it to the set if it is not covered 

by the set of points added until then. We observe now that Hi cannot contain more than 

m points because ri is a line (and therefore any m points on ri cover all points in ri). 

Once all points on the line ri are covered, one can move to ri+1 continuing the same 

procedure.

Finally, consider �∞ the line at infinity in P 2(Fq). With the same procedure, we can 

find at most m points P1, . . . , Pm ∈ �∞ in such a way that

A = AN ∪ {P1, . . . , Pm}

is also an m-arc. Set now

S := A \ C(Fq).

Note that since we have added at most m points for each tangent in R and for �∞, the 

size of S is at most O(m5). Obviously the set A = C(Fq) ∪ S is a complete m-arc of 

P
2(Fq) by construction. �

Remark 4.3. Following [6, Corollary 3.4], since p > m, the explicit constant c can be 

chosen to be

c = 9(gK + gL + m)2(m!)2 = 9m2(m!)2,

where gK and gL are the genera of K and L appearing in the proof of Theorem 4.1.

Since a non-singular projective curve obviously verifies the hypothesis of Theorem 4.1, 

we have proven the following, which we state for conveniency of future reference.
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Theorem 4.4. Let p be a prime number and q a power of p. Let C ⊆ P
2 be a nonsingular 

plane projective curve of degree m over a finite field Fq such that p > m, and C is 

birationally equivalent to its dual C∗ through the Gauss map. There exists an explicit 

constant c independent of q, for which if q > c then there exists a set of points S ⊆ P
2(Fq)

of size at most O(m5) such that C(Fq) ∪ S is a complete m-arc of P 2(Fq).

We now observe that our theory goes well beyond the restrictions given by Theo-

rem 4.1. In fact, if one does not require the characteristic to be greater than the degree 

of the curve one has the following result.

Theorem 4.5. Let p be a prime number and q a power of p. Let C ⊆ P
2 be an irreducible 

plane projective curve of degree m over a finite field Fq, the singular points of C are 

contained in the line at infinity, and C is birationally equivalent to its dual C∗ through 

the Gauss map. There exists an explicit constant c independent of q, for which if q > c

then there exists a set of points S ⊆ P
2(Fq) of size at most mT + O(m5) such that 

C(Fq) ∪ S is a complete m-arc of P 2(Fq), where T is the number of inflection tangents 

to the curve C.

Proof. The proof of this is completely identical with the wrinkle that one has to add 

separately m points for every inflection tangent to the curve, where now the number 

of inflection tangents is not absolutely bounded. More precisely, this refined count is 

necessary because we are not anymore ensured that the number of inflection tangents is 

O(m2), as Lemma 3.6 would prescribe in the case p > m. Notice also that the genus of 

M (on which the constant c depends in the proof of Theorem 4.1) can be bounded inde-

pendently of q simply using recursively Castelnuovo Inequality [29, Theorem 3.11.3]. �

We will show an application of Theorem 3.6 in the case of Artin-Schreier curves.

5. Applications

To show the effectiveness of our construction, in this section we want to illustrate 

how a complete m-arc can be constructed using hyperelliptic curves, and Artin-Schreier 

curves of degree m > p.

Proposition 5.1. Let p be an odd prime number, q be a power of p, and m ≥ 3 be a 

positive integer smaller than p. Let f(x) ∈ Fq[x] be a polynomial of degree m with m

distinct roots. Let C be the projective closure of the affine curve defined by the equation 

y2 − f(x) = 0. Then Fq(C) is isomorphic to Fq(C∗) via the Gauss map G.

Proof. It is enough to show the equality in (1) using g(x, y) = y2 − f(x). First, let us 

observe that

Fq(C∗) ∼= Fq

(

−f ′(x)

2y
, −xf ′(x)

2y
+ y

)

⊆ Fq(C) = Fq(x)[y]/〈y2 − f(x)〉.
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From now on, we will omit the dependence on x when it does not create confusion, 

and write f and f ′ instead of f(x) and f ′(x). In the rest of the proof we show that 

Fq(x) ⊆ Fq

(

f ′

2y , −xf ′

2y + y
)

which directly implies that

Fq

(

f ′

2y
, −xf ′

2y
+ y

)

= Fq(C).

Notice that

(

f ′

2y

)2

=
(f ′)2

4f
=: k,

f ′

2y

(

−xf ′

2y
+ y

)

= −x(f ′)2

4f
+

f ′

2
=

−x(f ′)2 + 2ff ′

4f
=: h

and that

(

−xf ′

2y
+ y

)2

=
(xf ′ − 2f)2

4f
=: u.

Let a ∈ Fq be the leading coefficient of f . Observe that the leading coefficient of 

−x(f ′)2 + 2ff ′ is −(a deg(f))2 + 2a2 deg(f) = deg(f)a2(− deg(f) + 2) �= 0 because f

has degree larger than 2 and the characteristic is larger than deg(f). Let us now treat 

two separate cases.

Case (1): x � f . In this case deg(h) = 2 deg(f) −1, because numerator and denominator 

are coprime, and k has degree 2 deg(f) −2. By Luroth Theorem this shows that Fq(h, k) =

Fq(x), as we now explain. In fact, let s = s1/s2 ∈ Fq(x) (with s1, s2 ∈ Fq[x] and 

coprime) be such that Fq(h, k) = Fq(s) and let n = deg(s) = max{deg(s1), deg(s2)} =

[Fq(x) : Fq(s)]. Then by the Tower Law we also have that every function in Fq(s) has 

degree divisible by n, but since gcd(deg(h), deg(k)) = 1, then n = 1, and therefore 

Fq(x) = Fq(s), concluding the proof for this case.

Case (2): x | f . Rewrite u as

u =
x(f ′ − 2(f/x))2

4(f/x)

and therefore observe that deg(u) = 2 deg(f) − 1 because the leading coefficient of 

f ′ − 2(f/x) is a deg(f) − 2a �= 0, f is squarefree, and the numerator and denominator 

are coprime because f and f ′ are coprime. But deg(k) = 2 deg(f) − 2 which concludes 

the proof using Luroth’s theorem with the same argument as Case (1). �

The following is immediate to see using Theorem 4.1.

Corollary 5.2. Let m ≥ 3 be a positive integer and p an odd prime greater than m. There 

exists an absolute constant c, depending only on m, such that for any q = p� > c power of 
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p, any hyperelliptic curve H : y2 − f(x) = 0 over Fq of degree m gives rise to a complete 

m-arc of size |H(Fq)| + O(m5) in the sense of Theorem 4.1.

Proof. It is enough to check that the hypotheses of Theorem 4.1 are verified. �

The next example allows us to construct a complete m-arc on Fq2 with q2 − 2gq + c

points, where c is a constant that does not depend on q, and g is the genus of the 

hyperelliptic curve:

g =

{

(m − 1)/2 if m ≡ 1 mod 2,

(m − 2)/2 if m ≡ 0 mod 2.

Example 5.3. We illustrate now how our method works by producing a complete m-

arc of small size for a very well known family of hyperelliptic curves. Let q be an odd 

prime power and m a positive integer that divides q + 1. Then, by [33, Theorem 1], 

the hyperelliptic curve C given by y2 = xm + 1 is maximal over Fq2 , i.e. the number of 

places of degree 1 (i.e. defined over Fq2) of Fq2(C) = Fq2(x, y) (with y2 = xm + 1) is 

#C(Fq2) = q2 + 1 + 2gq where g indicates the genus of C. Notice that the affine places of 

degree 1 of Fq2(C) are in natural bijective correspondence with the Fq2-rational points 

of the affine points of C, as the only singular point is at infinity.

We note that, as x varies in Fq2 , xm + 1 essentially covers the maximal number of 

squares. Conversely, for every non-square ξ ∈ Fq2 , the curve C′ defined by y2 = ξ(xm +1)

covers fewer squares and can be used to construct a m-arc with less points. We now give 

an estimate of the number of points of C′.

First of all, notice that if a point (x, 0) belongs to C, it also belongs to C′. Moreover, 

since m|q +1 and q −1 is even, 2m|q2 −1. Thus the polynomial x2m −1 splits completely 

over Fq2 and so xm + 1 does. This means that the number of points of the form (x, 0) is 

exactly m.

The Fq2 affine rational points (x0, y0) of C such that y0 �= 0 are at least

q2 + 1 + 2gq − #P∞ − m,

where #P∞ refers to the number of places at the infinity of Fq(C). Therefore, the x0’s 

such that xm
0 + 1 is a square different from zero are at least

q2 + 1 + 2gq − #P∞ − m

2
.

We can now count the Fq2 affine rational points of C′, which are

m + 2
(

q2 − q2 + 1 + 2gq − #P∞ − m

2

)

= q2 − (1 + 2gq − #P∞) + 2m.
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Therefore, the complete m-arc obtained from C′ is made of q2 − 2gq + O(m5) points. 

Of course, if one works out exactly the constants and the number of bitangents it follows 

that the implied constants and the O(m5) are loose bounds and one can do better. 

Nevertheless, this shows that the size of the complete m-arc Aq2 constructed from these 

hyperelliptic curves satisfies #Aq2 − q2 → −∞ for q → ∞. As a byproduct, this also 

removes the restriction on the existence of the prime r in [6, Proposition 6.4].

Remark 5.4. So far in the literature, it has been shown how complete m-arcs can be 

constructed for m = 2, 3, 4 and m ≥ 8 using certain curves, see [6]. This example, 

and more generally the theory developed in this work, can be used to construct m-

arcs for arbitrary values of m ≥ 3 and arbitrary curve verifying generic conditions. As a 

byproduct, we have covered the cases when m = 5, 6, 7 that were missing in the literature.

Using Theorem 4.5, we now show that Artin-Schreier curves of degree m > p can be 

used to construct an m-arc.

Theorem 5.5. Let Fq be a finite field of odd characteristic p and m be a positive integer 

larger than p. Let f ∈ Fq[x] be such that f �= zp −z for any z ∈ Fq[x], and f squarefree of 

degree m such that f ′ /∈ Fq[xp]. Let C be the projective closure of the affine curve defined 

by g(x, y) := yp − y − f(x) = 0. Then there exists an absolute constant c, depending only 

on m, such that if q > c, then there exists a complete m-arc with |C(Fq)| +O(m5) points.

Proof. First, we will prove that

Fq(x, y) = Fq

(

∂xg(x, y)

∂yg(x, y)
, x

∂xg(x, y)

∂yg(x, y)
+ y

)

,

verifying the hypothesis of Lemma 3.2. Therefore, we need to show that

Fq(f ′, xf ′ + y) = Fq(x, y),

where g(x, y) = 0. By computing

(xf ′ + y)p − (xf ′ + y) = xp(f ′)p − xf ′ + f =: h.

We realize that if we prove that Fq(f ′, h) = Fq(x), then Fq(x) ⊆ Fq(f ′, xf ′ + y) which 

implies Fq(f ′, xf ′ + y) ⊇ Fq(x, y) and therefore the claim.

Since Fq(f ′, h) ⊆ Fq(x), by Luroth’s Theorem there exists s ∈ Fq(x) such that 

Fq(f ′, h) = Fq(s). In particular, this implies that, for some u, v ∈ Fq(x), we have that 

u(s) = f ′ and v(s) = h, which forces

xpu(s)p − xu(s) + f = v(s).

By deriving both sides we get
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−u(s) − xu′(s)s′ + u(s) = v′(s)s′

and therefore

(xu′(s) + v′(s))s′ = 0

so either x = −v′(s)/u′(s), in which case we are done, or s′ = 0, but then s = �(xp) ∈
Fq(xp) and therefore f ′ = u(�(xp)), contradicting the hypothesis f ′ /∈ Fq[xp].

We now count the number of inflection tangents. Notice that for every inflection 

point there exists exactly one inflection tangent. Therefore, one can bound the number 

of inflection tangents by the number of inflection points.

We are now going to characterize the inflection points. Suppose P0 = (x0, y0) is an 

affine inflection point of C and let �P0
be the affine tangent line to C at such a point, 

namely

�P0
: −f ′(x0)(x − x0) + y0 − y = 0.

Now, intersecting g(x, y) = 0 with �P0
, one gets

−f ′(x0)p(x − x0)p + yp
0 + f ′(x0)(x − x0) − y0 − f(x) = 0

and since yp
0 − y0 = f(x0) we have

−f ′(x0)p(x − x0)p + f ′(x0)(x − x0) + f(x0) − f(x) = 0.

Writing t := x − x0 one can rewrite the previous equation as follows

−f ′(x0)ptp + f ′(x0)t + f(x0) − f(t + x0) = 0. (2)

Now notice that, for suitable a0, . . . , am ∈ Fq, one always has

f(t + x0) =
m

∑

i=0

ai(t + x0)i =
m

∑

i=0

i
∑

j=0

ai

(

i

j

)

xj
0ti−j =

=f(x0) + f ′(x0)t +
1

2
f ′′(x0)t2 +

m
∑

i=0

i−3
∑

j=0

ai

(

i

j

)

xj
0ti−j .

(3)

Using (3) and (2) one gets

f ′(x0)ptp +
1

2
f ′′(x0)t2 +

m
∑

i=0

i−3
∑

j=0

ai

(

i

j

)

xj
0ti−j = 0. (4)

However, since P0 = (x0, y0) is an inflection point, the order of tangency must be at 

least 3, namely in the equation (4) the term f ′′(x0) should be zero. This means that the 
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inflection points are contained in the set of solutions of g(x0, y0) = 0 and f ′′(x0) = 0. 

Since f ′ /∈ Fq[xp], then f ′′ is not identically zero, which implies that there are at most 

deg(f ′′)p = (m − 2)p inflection tangents. Since p < m we have that the number of 

inflection tangents is at most m2. We now apply directly Theorem 4.5. �
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