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1. Introduction

Let g be a prime power and [, be the finite field of order ¢. Let P?(F,) = PG(2,q)
be the set of Fy-points [Xo, X1, Xs] of the projective plane. Let AG(2,q) be the set of
[F, points of the affine plane, which we will identify with the projective points of P?(F,)
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with X5 # 0. A (k,m)-arc A in P?(IF,) is a set of k points such that there are no m + 1
points that are collinear and such that there exist m collinear points. For fixed m, g,
we have that the set A,,(g) of all m-arcs in P?(FF,) is partially ordered by inclusion. A
complete m-arc is a maximal element in A,,(q), i.e. it is an m-arc that is not contained
in a strictly larger m-arc.

In the late 50’s, Segre introduced the notion of arc for m = 2, which has been exten-
sively studied in the literature (Segre was in fact interested to know how many points a
complete arc in P2(F,) can have, see [25]). In this simpler case m = 2, the theory is well
developed and there are plenty for constructions (see for example [1-3,12,13,15,31,32]).
For maximum size arcs in odd characteristic, Segre himself proved that the set of points
of an arc is a conic.

Concerning minimal sizes, much less is known. Using a probabilistic method, the paper
[17] shows that there exists a complete arc of size O(,/glog®q) in a projective plane of
order ¢ > M (for some positive constants ¢, M independent on ¢). Another clever idea
to construct arcs (due to Segre and Lombardo-Radice [21,26]) is to use a small set of
F,-rational points of a curve of low degree over a finite field. A lot of research has been
done in this direction [19,35,36,24,30,8] and the currently best known bound using this
method gives O(q/%).

The case m > 2 is much more complex and the currently known constructions either
use the theory of 2-character sets (see [13, Sects. 12.2 and 12.3] and [10]) or connections
with certain special family of curves [9,16,34,5]. For m = 3 and m = 4 [4,7] construct
small complete m-arcs of size o(q) using subsets of the F,-rational points of a curve of
degree m + 1. In [6] the authors construct a family of curves that gives rise to m-arcs
of size smaller than ¢ over certain subsequence of extension fields for all m > 8. In fact,
the authors show that they can determine a curve and construct a sequence of positive
integers ny such that the set of Fyn.-rational points of C gives rise to an m-arc of size
roughly ¢"* — C'\/q™ for an explicit C. Using a similar Galois theoretical approach as
[6], in [18] the authors were able to construct complete m-arcs using the Hermitian curve
of degree ¢ + 1 and the BKS curve of degree ¢ + 1.

The purpose of this paper is to provide a general theory to construct families of
complete m-arcs arising from curves that satisfy explicit and easily verifiable generic
conditions. As a proof of concept, we employ our methods in the case of hyperelliptic
curves and Artin-Schreier curves, showing that they can be used to construct complete
mM-arcs.

Apart from their fundamental interest in combinatorics, complete m-arcs of size k
have an important connection with coding theory, as they correspond to codes over
F, of length k, dimension 3 and distance & — m (in the coding theoretical notation,
[k,3, k — m]4-codes) that cannot be extended to a code with same dimension and larger
minimum distance. In fact, given an m-arc A, one can place as columns of a 3 x k matrix
G representatives in F g of the points of the m-arc. Let C be the code generated by G.
Now, for every x € ]Fg’, the codeword xG has weight at least kK — m or otherwise one
could find m + 1 collinear points in A.
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A general introduction to (k,m)-arcs can be found in the monograph [13, Chapter
12], as well as in the survey paper [15, Section 5.

1.1. Outline of the paper

We first provide an introduction to the basic techniques and notations that we use in
the paper (Subsection 1.2 and Section 2). Firstly, we describe the auxiliary results that
we will use to convert geometric properties into the arithmetic ones (Section 3). Then,
we provide the main result (Section 4). Finally, to show the effectiveness of our results,
we give two applications (Section 5) to hyperelliptic and Artin-Schreier curves.

1.2. Notation

Let « be a transcendental element over F, and Fy(z) be the rational function field in
the variable z. For a curve C we denote by C(FF,) the set of F,-rational points of C, and
by F,(C) its function field over F,. For a polynomial F(Xy, ..., X,) we denote by deg(F)
the total degree of I, whereas degy, (F') denotes the maximal degree of X; occurring in
F. In the following we denote by ]P’Q(IF,Z) the set of F,-rational points of the projective
plane P? over F,, and with A%(F,) = P?(F,) \ {s the F,-rational points of the affine
plane A2, where £, is the line at infinity [Xo, X1, 0].

Let F = F(Xg,X1,X2) = 0 be the homogeneous equation of an irreducible curve C
of degree n in P2. For i € {1,2,3} let F; = aiXiF(XO,Xl,Xg) be the partial derivative
of F' with respect the i-th variable. Then the dual curve C* of C is defined as the closure
of the image of the Gauss map

G:C—P?
(Xo, X1, X2) = (Fo(Xo, X1, X2), F1(Xo, X1, X2), Fo(Xo, X1, X2)).

For an irreducible plane curve C, let g(z,y) = 0 be its affine equation. We say that F,(C)
is isomorphic to F,(C*) via G, and write F,(C) =g F,(C*), if

_ Oug(@,y)  Ozg(z,y)
Fq(w’y)‘wq@yg(x,y)’ ayg@:,y)*y)' o

Since C is an irreducible plane curve, we have that C* is also plane and irreducible.
Observe that G(C) is closed when C is non-singular.

2. Background
2.1. Arcs

A (k,m)-arc A in P?(F,) is a set of k points no m + 1 of which are collinear and
such that there exist m collinear points. The arc A is called a complete (k, m)-arc if it
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is maximal with respect to the set theoretical inclusion among all m-arcs. In particular,
every point in the complement of a complete m-arc A is collinear with m points in A.

2.2. Rational maps between curves

We recall in this part some facts about rational maps and birational morphisms. For
a complete exposition of the theory see for example [27-29].

Let K be an algebraically closed field and V C P™(K) a projective variety, i.e. an
irreducible algebraic set of zeros in K of homogeneous polynomials with coefficients in
K. In the notation of this paper, an algebraic curve is simply a projective variety of
dimension one. Let K(V) (resp. K[V]) denote the function field (resp. the homogeneous
coordinate ring) of V. A rational function ¢ € K(V) is called regular at = € V if it can be
written as ¢ = £ where f,g € K[V] and g(z) # 0. The value of ¢ at the point z is )

7 g(z)
and it is denoted by @(z). A rational function that is regular at every x € V is called

reqular function.

Let W C P™(K) a projective variety. A rational map ¢ : V --» W is a m-tuple of
©0, -+ om € K(V) such that o(z) = [po(z),...,om(z)] € W for all points z € V at
which all the ¢; are regular. The rational map ¢ is said to be regular at the points
x € V where it is defined. A rational map that is regular at every point z € V is called
a morphism.

The following result states that, for a non-singular curve C a rational map is defined
at every point (see [28, Proposition 2.1]).

Proposition 2.1. Let C be an algebraic curve and W C P™ be a variety. Let P € C be a
non-singular point and let ¢ : C --» W be a rational map. Then ¢ is reqular at P. In
particular, if C is non-singular, then ¢ is a morphism.

A morphism ¢ : V — W is said to be an isomorphism if there exists a morphism
1 : W — V such that ¢ o1 and i o ¢ are the identity maps on W and V respectively.
Two varieties V and W are said to be birationally equivalent (or just birational) if there
exist rational maps ¢ : V --+» W and ¥ : W --» V such that ¢ o9y and 9 o ¢ are the
identity maps on the points of W and V where they are defined. Each rational map ¢ and
1 is called a birational equivalence. If two varieties are isomorphic they are birationally
equivalent, but the converse is generally not true.

Remark 2.2. If o : V --» W is a birational equivalence, then ¢ is a 1-to-1 correspondence
everywhere except at non-regular points of ¥V and W. Therefore, as a consequence of
Proposition 2.1, if C is a non-singular curve, then ¢ : C --» W is defined everywhere
on C, and 1-to-1 only at regular points of W. This means that in the particular case
when W is a curve too, we have that ¢ is defined everywhere on C, and 1-to-1 only at
non-singular points of W.
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2.3. Non-singular model of a curve

For the results in this subsection we refer to [29, Appendix B]. Let V be a projective
curve. Then there exists a non-singular projective curve Vg, and a birational morphism
7 : Vges — V that satisfies the following universal property: if V'’ is another non-singular
projective curve, and 7’ : V' — V is a birational morphism, then there exists a unique
isomorphism ¢ : Vg.s — V' such that m = 7’ o¢. This is to say that the following diagram
commutes

The pair (Vges, ), or simpler just Vges, is called the non-singular model of V.
2.4. Galois theory over global fields

In this section we use the notation and terminology of [29]. For a field M we denote
by Aut(M) the automorphism group of M. Let L O K be a separable field extension
and let M be the Galois closure. We denote by Gal(M : K) the Galois group of M : K|
ie. {g € Aut(M): g(x) =z Vx € K}. The next result is a consequence of [37, Satz 1].

Lemma 2.3 (Orbits’ lemma). Let L : K be a finite separable extension of function fields,
let M be its Galois closure and G := Gal(M : K) be its Galois group. Let P be a place
of K and Q be the set of places of L lying above P. Let R be a place of M lying above
P. Then we have the following:

1) There is a natural bijection between Q and the set of orbits of H := Hompg (L, M)
under the action of the decomposition group D(R|P) = {g € G | g(R) = R}.

2) Let Q € Q and let Hg be the orbit of D(R|P) corresponding to Q. Then |Hg| =
e(Q|P) f(Q|P) where e(Q|P) and f(Q|P) are the ramification index and relative de-
gree, respectively.

3) The orbit Hg partitions further under the action of the inertia group I(R|P) = {g €
D(R|P) | vr(g(s) —s) > 1Vs € Or} into f(Q|P) orbits of size e(Q|P).

The next result gives a characterization of the Galois group using the inertia groups.
For a reference see for example [29].

Lemma 2.4. Let L : K be a finite separable extension of function fields, let M be its
Galois closure and let G := Gal(]FqM : ]FqK). Then G is generated by the inertia groups
I(R|P), i.e.

G = (I(R|P) : P place of K, R|P, R place of M).
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The following result follows from [11, Proposition 1 on p275].

Proposition 2.5. Let G be a transitive subgroup of S, generated by transpositions. Then
G=25,.

3. From geometry to Galois theory

For this section, let K be an algebraically closed field, let P2 = P2(K), and let r
be a line in P2. Remark 3.9 combined with Chebotarev Density Theorem explains one
way to transfer geometric information obtained over P%(F,) to arithmetic information
in P%(F,), which will be needed to construct m-arcs in P?(F,) in Section 4.

Definition 3.1. The line r C P? is said to be a bitangent to a curve C if it has at least
two non-singular points of intersection with C where it is tangent to C.

We start with a preliminary lemma.

Lemma 3.2. Let C C P? be an irreducible plane projective curve of degree m over a finite
field Fy with singular points contained in the line at infinity. Let C* be the dual curve
of C and suppose F,(C) =g F,(C*), that is F4(C) and Fy(C*) are isomorphic through the
Gauss map G. Then there are at most O(m?) affine bitangents to the curve.

Proof. Let F = F(Xy, X1,X5) =0 (resp. G = G(Xy, X1, X2) = 0) be the homogeneous
equation of C (resp. C*). Since F' has degree m, then G has at most degree m(m — 1)
(see for example [23]).

Since F,(C) =g F,(C*), the Gauss map G : CNA% — C* can be extended to a birational
map G’ between C and C*.

Let Cges and C¥

s be the non-singular models of C and C* respectively. Let 71 : Cges —

C and m : Cj,, — C* the birational morphisms attached to the non-singular models
(satisfying the universal property shown in Subsection 2.3, and defined everywhere as
explained in Subsection 2.2, notice in particular Remark 2.2).

Notice that, thanks to Proposition 2.1 the birational map G’ o m; is a birational
morphism because Cqes is non-singular.

By using the universal property of my for the birational morphism G’ o 7y : Cges --*
C* between Cges and Cj., one obtains an isomorphism Gges that makes the diagram

commutative.
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Cdes Gdes cx

des

The number of affine bitangents to CNA? equals the number of points of C* that have
multiple preimages through G. Our strategy is to prove that the points of C* that have
multiple preimages via G are contained in the points of C* that are singular. We will
then bound the singular points with Bezout’s Theorem. Suppose that P is a point of C*
that has a set 7 C C N A? of preimages via G of size larger than or equal to 2. Let now
T = 77 (T) C Cyes. Since the diagram commutes, we have that my o Gges(T") = {P},
and therefore 7o is mapping a set of points of size larger than 1 to a single point P, so
P must be a singular point of C*.

We can now estimate the number of singular points of C* using Bezout’s Theorem:
these points are contained in the set of solutions of the equations G = 0 and Gy =
%XOG = 0, which are at most O(deg(G) deg(Gp)) = O(m*) because G cannot divide G
due to irreducibility. O

Lemma 3.3. Let C C P2 be a non-singular plane projective curve of degree m over a finite
field Fy such that C is birationally equivalent to its dual curve C* through the Gauss map.
Then there are at most O(m*) bitangents to the curve.

Proof. It is a direct consequence of Lemma 3.2 because C is non-singular. 0O

Remark 3.4. Notice that for irreducible, non-singular plane projective curves, being bi-
rationally equivalent to the dual curve is a generic condition as long as the characteristic
is different from 2 if the base field is large enough (see for example [14, Theorem 5.90]
and specifically the rank condition on the matrix in [14, Equation 5.49]).

Definition 3.5. Let C C P? a plane curve. A line of P2 that is tangent to C with multi-
plicity at least 3 at a non-singular point P € C is said to be an inflection tangent and
the point of tangency P is said to be an inflection point.

Theorem 3.6. Let C be an irreducible plane projective curve of degree m > 3 over a field
K and F = 0 its homogeneous equation. Let Hp be the Hessian determinant associated to
F. Let p be the characteristic of K, and assume that either p =0 orp > m. Then Hp % 0
mod (F), and the intersection of F with its Hessian curve consists of the singular points
of C and the inflection points of C.

Proof. The claim follows using [20, Theorem 9.7 (b)] since C is irreducible. O
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Lemma 3.7. Let p be a prime number and q a power of p. Let C C P? be an irreducible
plane projective curve of degree m > 3 over a finite field F,. Then, if p > m the number
of inflection tangents to C are at most O(m?).

Proof. Let F' = F (X, X1,X2) = 0 be a homogeneous equation of C. Let Hp be the
Hessian determinant associated to F, therefore deg(Hr) < 3(m — 2). Now, since C is
irreducible we can use Theorem 3.6 obtaining that the intersection between C and the
set of points that vanish at Hp consists only of singular points and inflection points
of C. Since by definition each inflection point has at most one inflection tangent, one
can bound the number of inflection tangents with the number of inflection points and
singular points of C, that is O(deg(F)deg(Hr)) = O(m?) as a consequence of Bezout’s
Theorem. O

The following is a particular instance of a classical fact, we include its proof for
completeness.

Lemma 3.8. Let p be a prime number, q¢ a power of p, and K/Fq be a function field over
Fq. Let L : K be a proper finite separable extension of degree n of global function fields,
and M be the Galois closure of L : K. Let P be a place of K, Qp be the set of places
of L lying above P, e(Q|P) the ramification index of Q € Qp over P and f(Q|P) the
relative degree. Suppose that for every P and for every Q € Qp we have e(Q|P) < 2 and
e(Q|P) = 2 at most once for some Q|P. If G := Gal(M : K) is transitive, then G is the
symmetric group Sy,.

Proof. Using Proposition 2.5 it is enough to prove that G is generated by transpositions.
By Lemma 2.4, since G is generated by the inertia groups I(R|P) where R is a place of M
lying above P, it is enough to prove that the inertia groups contain only transpositions.
Since we are working over the algebraic closure, the decomposition group D(R|P) equals
the inertia group I(R|P). In particular f(R|P) = f(R|Q)f(Q|P) =1 and so f(Q|P) = 1.
By the Orbits’” Lemma 2.3 the action of D(R|P) (i.e. I(R|P)) on Hompg (L, M) gives
orbits of order e(Q|P), so each decomposition group acts either like the identity or a
transposition. Since G acts faithfully on Homg (L, M) and D(R|P) < G, D(R|P) cannot
contain more than one element that acts like a transposition on the set Homg (L, M),
so either D(R|P) = {1g} or D(R|P) = {1, g | g transposition }. This shows that G is
generated by transpositions, and therefore since G is transitive we have G = S,,. O

Remark 3.9. Notice that the lemma above can also be used to show that an arithmetic
Galois group is symmetric. In fact, if M : K is a Galois extension of a function field
K/F,, then we have that Gal(ky M : kyK) = Gal(F M : F, K), where kj; is the field
of constants of M (see for example [22, Lemma 2.6]). This implies that Gal(F,M : F,K)
is canonically contained in Gal(M : K) < S(ys. k] Therefore, if one can prove Gal(F,M :
F,K) = Siu. k), one also has Gal(M : K) = S|y k) and most importantly ky; = F,.
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4. Main result

Let us now state and prove the main theorem.

Theorem 4.1. Let p be a prime number and q a power of p. Let C C P2 be an irreducible
plane projective curve of degree m over a finite field ¥, such that p > m, the singular
points of C are contained in the line at infinity, and that C is birationally equivalent to
its dual C* through the Gauss map. There exists an explicit constant ¢ independent of q,
for which if ¢ > c then there exists a set of points S C P2(F,) of size at most O(m®)
such that C(F,) U S is a complete m-arc of P2(F,).

Remark 4.2. Notice that the condition that C is birationally equivalent to its dual C*
is generic in characteristic different from 2 (see Remark 3.4). It is possible to calculate
a sharp explicit constant ¢ by estimating via Hurwitz formula the genus of the Galois
closure of a certain covering of curves that appears in the proof (see Remark 4.3).

Proof of Theorem 4.1. Consider R = {ry,...,rn} with N = O(m?) the set of all the
bitangents and inflection tangents as in Lemma 3.2 and Lemma 3.7.

Firstly, we prove that through any affine point outside these lines and outside C(IF,),
there exists a line intersecting C(FF,) in exactly m affine points. Afterwards, we outline
how to choose a set S of points on the lines in R to construct a complete m-arc C(Fq)US.

Therefore, consider a point P = (a,b) € A?%*(F,) such that P ¢ r; for any
i€ {1,...,N}. Let f(xz,y) = 0 an affine equation for C, i.e. f(z,y) € Fy[z,y] irre-
ducible of degree m. Let £p; : y = t(x — a) + b be the (formal) line through P with slope
t and

Fp(t,z) = f(z,t(x —a) + b) € Fy[t, x]

be the polynomial obtained by f(z,y), which results from substituting y with ¢(z —a)+b.
We want to prove that there exists a specialization ¢ty for ¢ such that Fp(to,z) totally
splits, giving m points of intersection between the curve f(z,y) = 0 and the line £p,,. To
this end, consider G = Gal(Fp(t,z) | F,(t)). Now notice that since f(x,y) is irreducible,
we have that Fp(t,x) is an irreducible polynomial. Set K = F,(t) and let L be the
fraction field of F,[z,t]/(Fp(t,x)). Let M be the Galois closure of L : K and observe
that F,M is the Galois closure of F,L : F,K. Now let P be a place of F,K and Qp
the set of places of F,L lying above P. Because we are neither on a bitangent nor on an
inflection tangent, e(Q|P) < 2 and e(Q|P) = 2 at most once for some Q|P. Therefore,
by Lemma 3.8 and Remark 3.9.

Gal(F,M : Fy(t)) = Gal(M : K) = S,.

By [6, Theorem 3.3], there exists an explicit constant ¢ depending only on the genus of
M and the degree of [L : K| for which if ¢ > ¢ then L : K has a totally split place, that
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means a tg exists such that ¢p,, intersects C in m distinct affine points, i.e. the point P
is collinear with other m distinct points of C.

For a set of points 7' C P?(F,), we say that a point Q € P?(F,) \ T is covered by T if
there are m distinct points of T' collinear with Q.

We now show how to construct the set S recursively so that C(F,) U S is a complete
m-arc of P?(IF,). First, set Ay = C(F,). Now fori € {1,...,N} set A; = A;_1UH; where
H, satisfies the following

1) H; Cr; and |H;| < m;
2) #m + 1 points in A; = A;_; U H; that are collinear
3) each point of r; is covered by A;.

Such H; always exists: running over the points in r; € R we consider them one by one
and add them to the arc until we get all points on r; covered. This procedure adds at
most m points, which constitute the set H;. In other words, for every i € {1,..., N},
one must consider the tangent r;, take a point and add it to the set if it is not covered
by the set of points added until then. We observe now that H; cannot contain more than
m points because r; is a line (and therefore any m points on r; cover all points in ;).
Once all points on the line r; are covered, one can move to r;41 continuing the same
procedure.

Finally, consider £, the line at infinity in P2(Fq). With the same procedure, we can
find at most m points Py,..., P, € { in such a way that

A=Ay U{Py,...,Py}
is also an m-arc. Set now
S :=A\C(F,).
Note that since we have added at most m points for each tangent in R and for /., the
size of S is at most O(m%). Obviously the set A = C(F,) U S is a complete m-arc of

P2(F,) by construction. 0O

Remark 4.3. Following [6, Corollary 3.4], since p > m, the explicit constant ¢ can be
chosen to be

¢ =9(gx + g1 +m)*(m!)? = 9m*(m!)*,
where gx and gy, are the genera of K and L appearing in the proof of Theorem 4.1.

Since a non-singular projective curve obviously verifies the hypothesis of Theorem 4.1,
we have proven the following, which we state for conveniency of future reference.
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Theorem 4.4. Let p be a prime number and q a power of p. Let C C P? be a nonsingular
plane projective curve of degree m over a finite field F, such that p > m, and C is
birationally equivalent to its dual C* through the Gauss map. There exists an explicit
constant ¢ independent of q, for which if ¢ > c then there exists a set of points S C ]P’Q(]Fq)
of size at most O(m>) such that C(F,) U S is a complete m-arc of P?(F,).

We now observe that our theory goes well beyond the restrictions given by Theo-
rem 4.1. In fact, if one does not require the characteristic to be greater than the degree
of the curve one has the following result.

Theorem 4.5. Let p be a prime number and q a power of p. Let C C P? be an irreducible
plane projective curve of degree m over a finite field F,, the singular points of C are
contained in the line at infinity, and C is birationally equivalent to its dual C* through
the Gauss map. There exists an explicit constant c independent of q, for which if ¢ > ¢
then there exists a set of points S C P2(F,) of size at most mT + O(m?) such that
C(F,) U S is a complete m-arc of P%(F,), where T is the number of inflection tangents
to the curve C.

Proof. The proof of this is completely identical with the wrinkle that one has to add
separately m points for every inflection tangent to the curve, where now the number
of inflection tangents is not absolutely bounded. More precisely, this refined count is
necessary because we are not anymore ensured that the number of inflection tangents is
O(m?), as Lemma 3.6 would prescribe in the case p > m. Notice also that the genus of
M (on which the constant ¢ depends in the proof of Theorem 4.1) can be bounded inde-
pendently of ¢ simply using recursively Castelnuovo Inequality [29, Theorem 3.11.3]. O

We will show an application of Theorem 3.6 in the case of Artin-Schreier curves.
5. Applications

To show the effectiveness of our construction, in this section we want to illustrate
how a complete m-arc can be constructed using hyperelliptic curves, and Artin-Schreier
curves of degree m > p.

Proposition 5.1. Let p be an odd prime number, q be a power of p, and m > 3 be a
positive integer smaller than p. Let f(x) € Fq[z] be a polynomial of degree m with m
distinct roots. Let C be the projective closure of the affine curve defined by the equation
y* — f(z) = 0. Then F,(C) is isomorphic to F,(C*) via the Gauss map G.

Proof. It is enough to show the equality in (1) using g(z,y) = y?* — f(z). First, let us
observe that
f'(z) _xf'(x)

oD, ) 4 y) € RO = F @l ? - )

F,(C*) =T, (-
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From now on, we will omit the dependence on x when it does not create confusion,
and write f and f’ instead of f(x) and f’(x). In the rest of the proof we show that

Fq(x) C T, (f—/ —% + y) which directly implies that

2y
Ioaf B
Fq (Za——% —i—y) = Fy(C).

Notice that

+ = =

f’( zf ):_w(f’)2 ;s ey
Af 2 if '

and that
.

af N (af —2f)?
() =5

Let a € F; be the leading coefficient of f. Observe that the leading coeflicient of
—a(f')2 + 2f ' is —(adeg(f))? + 202 deg(f) = deg(f)a?(— deg(f) + 2) # 0 because f
has degree larger than 2 and the characteristic is larger than deg(f). Let us now treat
two separate cases.

Case (1): z 1 f. In this case deg(h) = 2 deg(f)—1, because numerator and denominator
are coprime, and k has degree 2 deg(f)—2. By Luroth Theorem this shows that F,(h, k) =
F,(x), as we now explain. In fact, let s = s1/s2 € Fy(z) (with s1,s2 € Fy[z] and
coprime) be such that Fy(h, k) = F4(s) and let n = deg(s) = max{deg(s1),deg(s2)} =
[Fq(x) : Fy(s)]. Then by the Tower Law we also have that every function in F,(s) has
degree divisible by n, but since ged(deg(h),deg(k)) = 1, then n = 1, and therefore
F,(x) = F4(s), concluding the proof for this case.

Case (2): z | f. Rewrite u as

a(f = 2(f/))?
A(f/x)

and therefore observe that deg(u) = 2deg(f) — 1 because the leading coefficient of

u =

f'=2(f/z) is adeg(f) — 2a # 0, f is squarefree, and the numerator and denominator
are coprime because f and f’ are coprime. But deg(k) = 2deg(f) — 2 which concludes
the proof using Luroth’s theorem with the same argument as Case (1). O

The following is immediate to see using Theorem 4.1.

Corollary 5.2. Let m > 3 be a positive integer and p an odd prime greater than m. There
exists an absolute constant c, depending only on m, such that for any ¢ = p* > ¢ power of
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p, any hyperelliptic curve H : y*> — f(x) = 0 over Fy of degree m gives rise to a complete
m-arc of size |H(F,)| + O(m®) in the sense of Theorem /.1.

Proof. It is enough to check that the hypotheses of Theorem 4.1 are verified. O

The next example allows us to construct a complete m-arc on F,2 with > —29q+c
points, where ¢ is a constant that does not depend on ¢, and g is the genus of the
hyperelliptic curve:

(m—1)/2 ifn=1 mod 2,
g:
(m—2)/2 ifm=0 mod 2.

Example 5.3. We illustrate now how our method works by producing a complete m-
arc of small size for a very well known family of hyperelliptic curves. Let ¢ be an odd
prime power and m a positive integer that divides ¢ + 1. Then, by [33, Theorem 1],
the hyperelliptic curve C given by y? = ™ + 1 is maximal over Fg2, i.e. the number of
places of degree 1 (i.e. defined over Fy2) of F2(C) = Fp2(z,y) (with y* = 2™ + 1) is
#C(F,2) = ¢* + 14 2gq where g indicates the genus of C. Notice that the affine places of
degree 1 of F2(C) are in natural bijective correspondence with the F,2-rational points
of the affine points of C, as the only singular point is at infinity.

We note that, as = varies in Fg2, 2™ + 1 essentially covers the maximal number of
squares. Conversely, for every non-square § € F2, the curve C’ defined by y? = E(@m+1)
covers fewer squares and can be used to construct a m-arc with less points. We now give
an estimate of the number of points of C’.

First of all, notice that if a point (z,0) belongs to C, it also belongs to C’. Moreover,
since m|q+1 and g — 1 is even, 2m|q? — 1. Thus the polynomial 2?™ — 1 splits completely
over [F 2 and so ™ + 1 does. This means that the number of points of the form (z,0) is
exactly m.

The F,2 affine rational points (zo,%0) of C such that yo # 0 are at least

q2+1+2gq—#7300—m,

where #P, refers to the number of places at the infinity of F,(C). Therefore, the z¢’s
such that z{* 4+ 1 is a square different from zero are at least

P+ 14299 — #Poo —m
5 .

We can now count the F2 affine rational points of C’, which are

_q2+1+2gq—#7300—m
2

m+2(q2 )=q2—(1+29q—#’Poo)+2m.
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Therefore, the complete m-arc obtained from C’ is made of ¢® — 2gq + O(m®) points.
Of course, if one works out exactly the constants and the number of bitangents it follows
that the implied constants and the O(m®) are loose bounds and one can do better.
Nevertheless, this shows that the size of the complete m-arc A, constructed from these
hyperelliptic curves satisfies #A,2 — ¢> — —oo for ¢ = co. As a byproduct, this also
removes the restriction on the existence of the prime r in [6, Proposition 6.4].

Remark 5.4. So far in the literature, it has been shown how complete m-arcs can be
constructed for m = 2,3,4 and m > 8 using certain curves, see [6]. This example,
and more generally the theory developed in this work, can be used to construct m-
arcs for arbitrary values of m > 3 and arbitrary curve verifying generic conditions. As a
byproduct, we have covered the cases when m = 5,6, 7 that were missing in the literature.

Using Theorem 4.5, we now show that Artin-Schreier curves of degree m > p can be
used to construct an m-arc.

Theorem 5.5. Let Fy be a finite field of odd characteristic p and m be a positive integer
larger than p. Let f € Fylx] be such that f # 2P —z for any z € Fylx], and f squarefree of
degree m such that f' ¢ Fy[xP]. Let C be the projective closure of the affine curve defined
by g(x,y) == y? —y — f(x) = 0. Then there exists an absolute constant ¢, depending only
on m, such that if ¢ > c, then there exists a complete m-arc with |C(F,)|+O(m®) points.

Proof. First, we will prove that

832 ) ax )
g(x,y) g(x,y) +y> ,

Fy(z,y) =Fy (ayg(x,y)’ 9y9(z,y)

verifying the hypothesis of Lemma 3.2. Therefore, we need to show that
Fo(f',2f +y) = Fy(z,y),
where g(x,y) = 0. By computing
(@f +y)f = (@f +y) =2 (f) —af + f=h

We realize that if we prove that F,(f’,h) = F,(z), then Fy(x) C F,(f',zf + y) which
implies Fy (f", zf" +y) 2 Fy(z,y) and therefore the claim.

Since Fy(f’,h) C F4(x), by Luroth’s Theorem there exists s € F,(z) such that
F,(f',h) = Fy(s). In particular, this implies that, for some u,v € Fy(x), we have that
u(s) = f’ and v(s) = h, which forces

2Pu(s)? — zu(s) + f = v(s).

By deriving both sides we get
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—u(s) — zu'(s5)s +u(s) = v'(s)s

and therefore

(zu/(s) +'(s))s’ =0

so either z = —v’'(s)/u/(s), in which case we are done, or s’ = 0, but then s = £(zP) €
F,(z?) and therefore f’ = u(¢(a?)), contradicting the hypothesis f" ¢ F,[z?].

We now count the number of inflection tangents. Notice that for every inflection
point there exists exactly one inflection tangent. Therefore, one can bound the number
of inflection tangents by the number of inflection points.

We are now going to characterize the inflection points. Suppose Py = (xg,¥o) is an
affine inflection point of C and let £p, be the affine tangent line to C at such a point,
namely

lpy: —f(z0)(x —20) +yo —y = 0.

Now, intersecting g(z,y) = 0 with ¢p,, one gets

—f"(@o)"(x — 20)” + i + f'(x0)(x — w0) —yo — f(x) =0
and since yf — yo = f(xo) we have

—f'(20)?(z — 20)” + f'(20)(z — 20) + f(z0) — f(z) = 0.
Writing ¢ := x — ¢ one can rewrite the previous equation as follows

—f'(x0)Pt” + f'(z0)t + f(z0) — f(t + 20) = 0. (2)

Now notice that, for suitable ay, ..., a, € Fy, one always has

f(t+x0) ZGZ +x0 ZZm()x I =

1=0 j=0

m i—3 .
= flan) + )t + 370+ 3 Y )
=0 j=0
Using (3) and (2) one gets
m 1—3
f'(a:o)ptp—l—%f” t2—|—z;]zoal< )x tI = 0. (4)

However, since Py = (g, yo) is an inflection point, the order of tangency must be at
least 3, namely in the equation (4) the term f”(zq) should be zero. This means that the
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inflection points are contained in the set of solutions of g(xg,y0) = 0 and f”(z¢) = 0.
Since f’ ¢ Fy[aP], then f” is not identically zero, which implies that there are at most
deg(f")p = (m — 2)p inflection tangents. Since p < m we have that the number of
inflection tangents is at most m?2. We now apply directly Theorem 4.5. O
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