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Abstract. In this paper we give constructions for infinite sequences of finite non-

linear locally recoverable codes C ⊆
N∏

i=1

Fqi over a product of finite fields arising

from basis expansions in algebraic number fields. The codes in our sequences have

increasing length and size, constant rate, fixed locality, and minimum distance

going to infinity.

1. Introduction

There has been a lot of interest recently in Locally Recoverable Codes (LRC)

[1, 2, 4, 5, 8, 9, 10, 11], which are linear codes that allow local recovery of erasures.

More specifically, they allow recovery of simultaneous erasures exactly as commonly

used k-dimensional codes do (e.g. Reed-Solomon codes) by looking at the entries of

a codeword that correspond to an information set (i.e. k other components where

no erasure happened), but they also allow recovery of a single erasure by looking at

fewer nodes than k.

The applications in which LRC thrive are related to distributed storage and cloud

storage systems because they easily allow the recovery of the data in a single failed

server or hard-drive (which in this context we simply call node), but they also allow

recovery of more serious failures, such as simultaneous failures of multiple nodes in

the system.

In this paper we construct Locally Recoverable Codes using Number Fields. The

construction is inspired by Tamo and Barg’s ideas in [11], used in combination with

the framework defined by Guruswami in [6]. The technique to construct our codes

is purely number theoretical, but the constructed codes are subsets of a product

of finite fields (so they are practical to implement). We believe that having LRCs

over products of different finite fields is an interesting feature as it provides more

flexibility in the design of a system: for example, we might want to increase the

length of these codes without having to enlarge the base field for all the components

of every codeword, as one would be forced to do in the context of Reed-Solomon

codes when one wants to extend the length of the code beyond the size of the finite

field. In fact, with our construction, we can simply take additional reductions of
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elements of OK modulo other prime ideals of OK . Of course, our codes are not

linear because of the nature of a product of finite fields and the fact that (OK ,+)

does not have an Fq-linear structure for any q. Nevertheless, they allow efficient local

recovery and have good minimum distance.

In addition, we can construct a family of codes such that the distance grows

linearly with length and dimension, and the asymptotic rate (see Definition 2.1) can

be made constant. From the methodology standpoint, our construction builds up

new interactions between analytic number theory and coding theory. These new

interactions stem from the idea that one can look at any integer M as a constant

function from the set of primes {pi}i∈{1,...,n} of the ring of integers lying over a totally

split rational prime p, to Fp simply by mapping each pi to the reduction of M modulo

pi. Notice that since pi is totally split, M mod pi = M mod p, independently of i.

This simple idea allows to build the locality sets, which correspond to totally split

primes of the number field.

2. Background on Coding Theory

Let n be a positive integer and F1, . . . Fn be finite fields ordered by increasing size.

We define a code C in Rm =
m∏
i=1

Fi as a subset of Rm. The distance between two

codewords x, y ∈ C is the number of indexes i ∈ {1, . . . n} such that xi 6= yi. The

minimum distance of C is the minimal positive integer d such that there exist two

elements x, y ∈ C such that d(x, y) = d. If X is a set, let us denote the powerset of

X as 2X .

For every m ∈ N, let Cm ∈ 2Rm be a choice of a code of Rm. For any set A, let

us denote by #A the cardinality of A. We say that a sequence of codes {Cm}m∈N is

almost good if

(2.1) lim inf
m→∞

log(#Cm)

log(#Rm)
= γ > 0

and

(2.2) lim inf
m→∞

d(Cm) = +∞.

Notice that the choice of the basis of the logarithm clearly does not affect the def-

inition. Moreover, observe that log(#Cm)
log(#Rm) is the natural generalization of the concept

of information rate in the non-linear setting, since the dimension of a non-linear code

C is replaced by log(#C) and the dimension of the ambient space is log(#Rm).

Also, notice the difference between our definition and the usual definition of a

good family of codes, where the ratio between distance and length is required to

converge to a constant. In our case, since the distance and locality are not weighted

by how large the finite fields we are using are, the standard definition of good codes

carries an inherent disadvantage that is essentially unavoidable. For this reason, we
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do keep track of the size of the code vs the size of the full space but for simplicity we

avoid weighting the distance d depending on the finite fields where the components

belong, and only require d → ∞ (even though in our case the growth is linear, which

is what happens with optimal codes).

We say that a code C ⊆ Rm has locality r if for any i ∈ {1, . . . , n} it is possible

to reconstruct the i-th component of a codeword c ∈ C by knowing at most r other

components of c. In other words, there is an algorithm (depending on C) that takes as

input the location i of an erasure together with r other coordinates of c and outputs

the missing component of c.

3. Background on Number Fields

Let K/Q be a number field of degree δ. Recall that if β ∈ K, the norm of β,

denoted by N(β), is the determinant of the Q-linear map K → K defined by x 7→ βx.

Let OK be the ring of integers of K, and let α ∈ OK be an element that generates

K, i.e. such that Q(α) = K. Let

mα(x) = b0 + b1x+ . . .+ bδ−1x
δ−1 + xδ ∈ Z[x]

be the minimal polynomial of α over Q, and let S := max{|bi| : i ∈ {0, . . . , δ − 1}},
where | · | denotes the usual archimedean absolute value. For any prime ideal p of

OK , let Fp be the field OK/p.

Recall that a prime p ∈ N is totally split in K/Q if pOK factors as
[K:Q]∏
i=1

pi,

where the pi’s are pairwise distinct prime ideals of OK and [Fpi : Fp] = 1 for all

i ∈ {1, . . . , δ}.

Lemma 3.1. With the notation above, let y =
δ−1∑
i=0

ziα
i ∈ OK , with zi ∈ Z and

|zi| < M for every i. Then |N(y)| ≤ δδ/2(1 + S)(δ−1)δ/2(M − 1)δ.

Proof. Clearly we can assume that M > 1, as otherwise the claim is trivial. The set

B := {1, α, . . . , αδ−1} is a Q-basis of K by assumption. Notice that if w :=
δ−1∑
i=0

wiα
i ∈

OK , with wi ∈ Z for every i, then

w · α =

δ−1∑

i=0

wiα
i+1

=
δ−1∑

i=1

wi−1α
i + wδ−1α

δ.

Using now that mα(α) = 0 we get that

(3.1) w · α = −b0wδ−1 +
δ−1∑

i=1

(wi−1 − biwδ−1)α
i.
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Let Ay be the multiplication-by-y matrix with respect to the basis B, where the

elements of K, expressed in the basis B are considered as column vectors. More

precisely, Ay is the matrix that makes the following diagram commutative

K
y·−−−−→ K

yι

yι

Qδ Ay ·−−−−→ Qδ

where ι is the usual isomorphism of vector spaces that sends an element of K into

its expression in the basis B. We claim that entries in the j-th column of Ay are

bounded, in absolute value, by (M − 1)(1 + S)j−1. For j = 1 this is obvious since

entries in the first column are the coefficients of y · 1 = y with respect to B. Now

suppose that the claim is true for the j-th column and let us prove it for the (j+1)-th.

The j-th column is given by the result of the multiplication

y · αj−1 =
δ−1∑

i=0

ciα
i,

with |ci| ≤ (M−1)(1+S)j−1 for every i ∈ {0, . . . , δ−1} by the inductive hypothesis.

Now let us consider the (j + 1)-th columns, given by the multiplication

y · αj =
δ−1∑

i=0

diα
i

with d0, . . . , dδ−1 ∈ Z. Since y · αj = (y · αj−1) · α, Equation (3.1) and the inductive

hypothesis show that |d0| ≤ |b0cδ−1| ≤ S(1 + S)j−1 and |di| ≤ |ci−1| + |bicn−1| ≤
(M − 1)(1 + S)j . The claim follows since S(1 + S)j−1 ≤ (M − 1)(1 + S)j for every

j ≥ 0.

Now the bound on |N(y)| = | detAy| follows from Hadamard’s inequality, which

states that the determinant of a complex matrix is bounded, in absolute value by

the product of the euclidean norms of the column vectors Cj of Ay. In fact,

detAy ≤
δ∏

j=1

‖Cj‖ ≤
δ∏

j=1

√
δ(M − 1)2(1 + S)2(j−1) = δδ/2(M − 1)δ(1 + S)δ(δ−1)/2.

�

4. Construction of Number Theoretical Locally Recoverable Codes

4.1. Overview of the construction. First, we construct an ambient code D (that

is essentially a Chinese remainder code), for which we can prove nice distance prop-

erties. After that, we will extract a subcode of D that verifies the locality property

we are seeking for. Finally we show how to construct almost good families of locally

recoverable codes in the sense of Equation (2.1) and Equation (2.2).
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4.2. Construction of the ambient code D. First, we need to construct Chinese

remainder codes that are similar to the Reed-Solomon Codes (à-la Guruswami, see

[6]).

Let K be a number field of degree δ with ring of integers OK , and let α ∈ OK be

such that Q(α) = K. For M ≥ 1 we define

R[M ] :=

{
δ−1∑

i=0

ziα
i | 0 ≤ zi < M, ∀i ∈ {0, . . . δ − 1}

}
.

Let mα(x) = b0 + b1x+ . . .+ xδ ∈ Z[x] be the minimal polynomial of α over Q, and

let S := max{|bi| : i = 0, . . . , δ − 1}. Let

(4.1) Cα := δδ/2(1 + S)(δ−1)δ/2

so that by Lemma 3.1 we have that |N(y)| ≤ Cα · (M − 1)δ for every y ∈ R[M ].

Let p1, . . . pn be distinct prime ideals of OK , ordered by increasing norm size, and

for every i let Fpi
:= OK/pi. Assume that

n∏
i=1

N(pi) > Cα · (M − 1)δ (this is needed

to achieve injectivity of the encoding map φ defined below).

The number theoretical Reed-Solomon code D = D(K,M, {pi}i∈{1,...n}) is defined

as the image φ(R[M ]) of the map

φ : R[M ] −→
n∏

i=1

Fpi

y 7→ (y mod p1, . . . , y mod pn).

See [7] for more on this. In the rest of the paper we will refer to φ as the encoding

map.

Theorem 4.1. Let D be the code defined above, and let P := {p1, . . . , pn}. Let d(D)

be the minimal distance of D and let

m := min
T⊆P



#T :

∏

p∈T

N(p) > Cα · (M − 1)δ



 .

Then the following hold.

(1) The map φ is injective.

(2) d(D) ≥ n−m+ 1.

(3) If
∏

p∈U N(p) < M δ for some U ⊆ P with #U = m− 1, then equality holds

in (2).

Remark 4.2. Since φ is thought as the encoding map, its injectivity is fundamental

because we want that different messages are mapped to different codewords. This

is achieved by adding just enough redundancy by considering at least n distinct

reductions, where n is chosen such that
n∏

i=1
N(pi) > Cα · (M −1)δ, as we will explain.
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Item (2) provides the code with a lower bound for the minimum distance: in fact

the more redundancy is added (and therefore n grows because we provide reductions

at many prime ideals) the more the minimum distance grows.

Item (3) ensures that, as far as the product of the norms is not too large then

there are indeed two codewords at distance m− 1.

Proof. Let T ⊆ P be a subset of cardinality m such that
∏

p∈T N(p) > Cα ·(M−1)δ,

and let y1, y2 ∈ R[M ] be such that φ(y1) = φ(y2). In particular, we have that

y1 ≡ y2 mod p for every p ∈ T . It follows that
∏

p∈T N(p) | N(y1 − y2). By Lemma

3.1 we have that N(y1 − y2) ≤ Cα · (M − 1)δ, and hence by the definition of m we

must have that y1 = y2. This proves (1) and (2) at the same time.

To prove (3), notice that if
∏

p∈U N(p) < M δ then the map R[M ] →
∏

p∈U Fp is

not injective for cardinality reasons. It follows that there are y1 6= y2 ∈ R[M ] such

that y1 ≡ y2 mod p for all p ∈ U . On the other hand φ(y1) 6= φ(y2) by (1), and

hence φ(y1) and φ(y2) have distance n−m+ 1. �

4.3. Construction of the locally recoverable code C as a subset of D. Let

K be a number field of degree r + 1 with ring of integers OK , and let M ∈ N. Let

α ∈ OK be such that K = Q(α). Let

R[M ]− =

{
r−1∑

i=0

aiα
i | 0 ≤ ai < M ∀i ∈ {0, . . . r − 1}

}
( R[M ].

Notice that this differs from the set R[M ] previously defined, as we are forcing the

coefficient of αr to be 0 (this is a strictly smaller set of elements than R[M ] since

the minimal polyomial of α has degree r + 1). Let now s be a positive integer and

define

A[M ] =





s∑

j=0

fjM
j : fj ∈ R[M ]− ∀j ∈ {0, . . . , s}



 .

Lemma 4.3. We have that

#A[M ] = M r(s+1).

Proof. This follows from the fact that elements of R[M ] are a complete set of

representatives for the quotient OK/(M). Hence if
r−1∑
j=0

fjM
j =

r−1∑
j=0

gjM
j then

f0 ≡ g0 mod M , but this implies that f0 = g0. The claim follows then by an easy

induction. �

Let ` be a positive integer, and let p1 < p2 < . . . < p` be rational primes that

are totally split in K : Q. Suppose moreover that no pi divides the discriminant of

the minimal polynomial of α. For every i ∈ {1, . . . `} let p
(pi)
1 , . . . , p

(pi)
r+1 be the prime

ideals of OK that lie above pi. Notice that F
p
(pi)
j

= Fpi for all i, j.
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The number theoretical locally recoverable code C = C
(
r, s,K,M, {pi}i∈{1,...`}

)
is

defined as the image φ(A[M ]) of the map

φ : A[M ] −→
∏̀

i=1

r+1∏

j=1

F
p
(pi)
j

=
∏̀

i=1

Fr+1
pi

x 7→ (x mod p
(pi)
j )(i,j)∈U×V ,

where U = {1, . . . , `} and V = {1, . . . , r+1}. For simplicity of notation, let us define

c
(i)
j = x mod p

(pi)
j . Notice that

C
(
r, s,K,M, {pi}i∈{1,...`}

)
⊆ D

(
K,M s+1, {p(pi)j }i,j

)
.

Lemma 4.4. Assume that
∏

i∈{1,...,`},j∈{1,...,r+1}

N(p
(pi)
j ) > Cα · (M s+1 − 1)r+1,

where Cα is the constant (4.1). Then the code C = φ(A[M ]) has size #A[M ] =

M r(s+1), i.e. φ is injective.

Proof. To see this, simply notice that A[M ] ⊆ R[M s+1] and then apply Theorem

4.1. �

Definition 4.5. Whenever the hypothesis of Lemma 4.4 are verified, we say that

the code C(r, s,K,M, {pi}i∈{1,...`}) is a good split code of length n = (r+1)` and size

M r(s+1) over the number field K.

Proposition 4.6. Let C = C(r, s,K,M, {pi}i∈{1,...`}) be a good split code. Then C
has locality r.

Proof. Suppose that the component c
(h)
k of the codeword c =

(
c
(i)
j

)i=1,...,`

j=1,...,r+1
has to

be retrieved. Such codeword c arises from a message m =
s∑

j=0
fjM

j ∈ A[M ], where

fj =
r−1∑
i=0

ai,jα
i ∈ R[M ]−. Now consider the components c

(h)
1 , . . . , c

(h)
k−1, c

(h)
k+1, . . . , c

(h)
r+1

of the codeword c. Each of them arises as the reduction of m modulo p
(ph)
j , for some

j ∈ {1, . . . , k − 1, k + 1, . . . , r + 1}. The key point is now the following: since ph is

totally split in K and it does not divide the discriminant of the minimal polynomial

mα(x) of α, by the Dedekind criterion we have that mα(x) mod ph =
r+1∏
i=1

(x− βi) ∈
Fph [x] where β1, . . . , βr+1 ∈ Fph are pairwise distinct elements and βj is the image

of α via the reduction map OK � OK/p
(ph)
j

∼= Fph . Since m =
r−1∑
i=0

uiα
i for some

integers u0, . . . , ur−1, the component c
(h)
j of c can be written as

r−1∑
i=0

uiβ
i
j . This gives

us a system of linear equations in Fph , whose indeterminates are the reductions
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ũ0, . . . , ũr−1 of the ui’s modulo ph:




ũ0 + ũ1β1 + . . .+ ũr−1β
r−1
1 = c

(h)
1

ũ0 + ũ1β2 + . . .+ ũr−1β
r−1
2 = c

(h)
2

. . .

ũ0 + ũ1βr+1 + . . .+ ũr−1β
r−1
r+1 = c

(h)
r+1

.

Notice that the k-th row is deleted, since c
(h)
k is missing. This is a system of r

equations in r indeterminates, and its determinant is non-zero because the βi’s are

pairwise distinct and the matrix representing the system is a Vandermonde matrix.

If (v0, . . . , vr−1) ∈ Fr
ph

is its unique solution, then c
(h)
k =

r−1∑
i=0

viβ
i
k. �

Proposition 4.7. Let C = C(r, s,K,M, {pi}i∈{1,...`}) be a good split code, and let

P = {p(pi)j : i ∈ {i, . . . , `}, j ∈ {1, . . . , r + 1}}. Let

m := min
T⊆P



#T :

∏

p∈T

N(p) > Cα · (M s+1 − 1)r+1



 .

Then C has minimum distance d ≥ (r + 1)`−m+ 1.

Proof. The code C is a subcode of the number theoretical Reed-Solomon Code with

parameter M s+1, so we simply apply again Theorem 4.1 with n = (r + 1)` (as our

set of primes consists of r + 1 primes on OK lying above each of the ` rational

primes). �

The following theorem summarizes what we proved until now

Theorem 4.8. Let K be a number field of degree r+1, let s be a positive integer, let

M ∈ N, and let {pi}i∈{1,...`} be a set of rational primes that are totally split in K/Q.

Let C = C(r, s,K,M, {pi}i∈{1,...`}) be a good split code over K. Then C has length

`(r + 1), size M r(s+1), minimum distance at least (r + 1)`−m+ 1, and locality r.

Proof. Simply combine Lemma 4.4 and Propositions 4.6, and 4.7. �

Example 4.9. Let us illustrate our construction with a working example. Let K =

Q(α), where α := ζ16 + ζ−1
16 and ζ16 is a primitive 16-th root of 1. The field K is

the largest totally real subfield of Q(ζ16), and the extension K/Q is cyclic of degree

4 and has discriminant 211. The minimal polynomial of α is x4 − 4x2 + 2. The

constant (4.1) is given by Cα = 42(1 + 4)6 = 16 · 56 = 250000. Primes that split

completely in K are exactly those congruent to ±1 modulo 16. Let p1 = 17, p2 = 31

and p3 = 47, so that ` = 3. Let p
(pi)
1 , . . . , p

(pi)
4 be the primes of K lying above pi,

for every i. Let M = 2 and s = 3. One computes that 174 · 314 > Cα(M
4 − 1)4,

while 174 · 313 < Cα(M
4 − 1)4, so that C = C(3, 3,K, 2, {17, 31, 47}) is a good

split code of size 212 and minimum distance at least 12 − 8 + 1 = 5 according

to Theorem 4.1. We have that R[2]− = {a0 + a1α + a2α
2 : ai ∈ {0, 1}} while
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A[2] = {f0 + f1 · 2 + f2 · 22 + f3 · 23 : fi ∈ R[2]−}. Notice that the encoding map

is fully defined by giving the image of α, because the reduction maps from OK to

OK/I are homomorphisms for any ideal I ⊆ OK . To obtain the image of α, notice

that

x4 − 4x2 + 2 ≡





(x+ 5)(x+ 8)(x+ 9)(x+ 12) mod 17

(x+ 5)(x+ 14)(x+ 17)(x+ 26) mod 31

(x+ 3)(x+ 18)(x+ 29)(x+ 44) mod 47

,

and therefore the encoding φ is simply defined by

φ : A[M ] → F4
17 × F4

31 × F4
47

α 7→ (12, 9, 8, 5; 26, 17, 14, 5; 44, 29, 18, 3).

f(α) 7→ (f(12), f(9), f(8), f(5); f(26), f(17), f(14), f(5); f(44), f(29), f(18), f(3)).

Using MAGMA[3], one can compute that the actual minimum distance of C is 6,

strictly better than the bound that comes from Theorem 4.1.

4.4. Almost good families of good split codes. We will now show how to con-

struct an almost good family of good split codes, in the sense of Equation (2.1) and

Equation (2.2). To do so, we first need the following analytic number theoretical

lemma.

Lemma 4.10. Let K be a Galois extension of Q. For every ` ≥ 1, let p1, . . . , p` be

the first ` totally split primes of K/Q. Then

log

(
∏̀

i=1

pi

)
∼ ` log `

as ` tends to infinity.

Proof. First, let us recall that, if X is a positive integer, the totally split primes of

K/Q verify

(4.2) log




∏

p≤X
totally split

p


 ∼ X

[K : Q]
.

In addition, the Chebotarev Density Theorem ensures that the asymptotic formula

for the `-th totally split prime is

p` ∼ ` log(`)[K : Q].

By setting X = p` in (4.2) and relabeling the product we get

log

(
∏̀

i=1

pi

)
∼ ` log(`)[K : Q]

[K : Q]
= ` log(`).
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�

Remark 4.11. There are secondary terms in the asymptotic formula for p`, i.e. the

`-th (rational) totally split prime, and these secondary terms are larger than the

secondary terms in the asymptotic formula for the `-th rational prime.

Let now K be a number field of degree r+1 that is Galois over Q (this restriction

allows for easier computations in Theorem 4.12), let α ∈ OK be a generator, let Cα

be the constant (4.1) and let s ∈ N. Let {pj}j∈N be the strictly increasing sequence

of primes that are totally split in K/Q, and for every ` ≥ 1 let P` :=
∏̀
i=1

pi.

Theorem 4.12. Let 0 < c < 1, let k ∈ R+ be such that k < 1/ r+1
√
Cα, and let

M` :=
⌊

s+1

√
k · P`/Pbc`c

⌋
. Let C` := C

(
r, s,K,M`, {pi}i∈{1,...`}

)
. Then {C`}`≥1 is an

almost good family of good split codes.

Proof. To prove that C` is a good split code, it is enough to show that

N



∏

p∈A

r+1∏

j=1

p
(pi)
j


 = P r+1

` > Cα(M
s+1
` − 1)r+1

for some set of primes A ⊆ {p1, . . . , p`}. This also shows that the code has distance

at least n −#A + 1. We now show that if we choose A to be the set of all primes

of OK lying above pbc`c+1, . . . , p`, the hypothesis of Proposition 4.7 are satisfied. By

multiplying both sides of the inequality 1 > k r+1
√
Cα by P`/Pbc`c we obtain that:

P`/Pbc`c =
∏̀

i=bc`c+1

pi >
r+1
√
Cα

kP`

Pbc`c
.

By raising both sides to the (r + 1)-th power we get that, since N(p
(pi)
j ) = pi for all

j’s,

N




∏̀

i=bc`c+1

r+1∏

j=1

p
(pi)
j


 =

∏̀

i=bc`c+1

pr+1
i >Cα

(
kP`

Pbc`c

)r+1

≥CαM
(s+1)(r+1)
`

>Cα(M
s+1
` − 1)r+1,

proving both that the code is good, that the distance tends to infinity as ` grows.
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Next, we need to prove that the rate of C` tends to a constant greater than zero,

i.e. (2.2). Let R` :=
∏̀
i=1

Fr+1
pi . Then

lim inf
`→+∞

log#C`
log#R`

= lim inf
`→+∞

r(s+ 1) log
⌊

s+1

√
k · P`/Pbc`c

⌋

(r + 1) logP`

≥ lim inf
`→+∞

r(s+ 1) log
(

s+1

√
k · P`/Pbc`c − 1

)

(r + 1) logP`

≥ lim inf
`→+∞

r log
(
k · P`/Pbc`c

)

(r + 1) logP`
.

Now, using the properties of logarithms and the fact that log(P`) ∼ ` log ` thanks

to Lemma 4.10 we get

lim inf
`→+∞

r log
(
k · P`/Pbc`c

)

(r + 1) logP`
= lim inf

`→+∞

r(log k + ` log `− c` log c`)

(r + 1)` log `

=
r(1− c)

r + 1
,

satisfying (2.1). �

Remark 4.13. Notice that the distance grows linearly in ` (which is itself propor-

tional to length and dimension), that is a desirable code property.

5. Realization of the construction

By the Kronecker-Weber theorem, one can always construct a Galois extension

K/Q of degree r + 1 such that Gal(K/Q) is cyclic of order r + 1. This guarantees

that the construction is always feasible and the number of totally split places is

“large” (as their density will be roughly asymptotic to 1/(r + 1)).

The lemma that follows provides a constructive proof for the following curious

(but expected) fact, for which we could not find reference in the literature: given a

positive integer δ and n rational primes p1, . . . , pn larger than δ it is always possible

to construct explicitly a number field of degree δ where p1, . . . , pn are all totally split.

This shows that if one desires to construct a locally recoverable code over a certain

fixed product of finite fields, this is in theory possible.

Lemma 5.1. Let δ ∈ Z>1 and let p1, . . . , pn be distinct rational primes all larger

than δ. Then it is possible to explicitly construct a monic, irreducible polynomial

f(x) ∈ Z[x] of degree δ such that if α is a root of f then all the pi’s are totally split

in the number field Q(α).

Proof. For each i ∈ {1, . . . , n}, choose αi
1, . . . , α

i
δ ∈ Z such that αi

j 6≡ αi
k mod pi

for every j 6= k (this is possible because pi > δ). Next, choose a new prime pn+1,

different from p1, . . . , pn, and for every i ∈ {1, . . . , n + 1} let qi :=
∏

j 6=i pj . Notice

that q1 + . . .+ qn is coprime with qn+1, as if a prime p divides qn+1 then p = pi for
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some i ∈ {1, . . . , n} and hence p divides qj for every j ∈ {1, . . . , n} \ {i}; it follows

that p does not divide q1+ . . .+ qn. Hence there exist u1, u2 ∈ Z with u1u2 6= 0 such

that u1(q1 + . . .+ qn) + u2qn+1 = 1. Notice that u1 is coprime with p1 · . . . · pn and

u2 is coprime with pn+1. Now let g(x) ∈ Z[x] be a monic degree δ polynomial that

is irreducible modulo pn+1.

Consider then the polynomial

f(x) = u1

n∑

i=1

qi

δ∏

j=1

(x− αi
j) + u2qn+1g(x) ∈ Z[x].

By construction, f(x) is monic. Moreover f(x) is irreducible in Z[x] because f(x)

is irreducible modulo pn+1 (because its reduction is g(x) mod pn+1, which is irre-

ducible by construction), and hence the number field K generated by a root α of

f has degree δ. It remains to show that p1, . . . , pn are totally split in K. But this

follows immediately from Dedekind criterion, that can be applied because none of

the pi’s divide the discriminant of f since f has no multiple roots modulo any pi. It

follows that the factorization pattern of pi in OK coincides with that of f modulo

pi; by construction this is a product of δ distinct linear terms. �
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