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ABSTRACT. In this paper we give constructions for infinite sequences of finite non-
N

linear locally recoverable codes C C [] F,, over a product of finite fields arising
i=1

i=
from basis expansions in algebraic number fields. The codes in our sequences have
increasing length and size, constant rate, fixed locality, and minimum distance

going to infinity.

1. INTRODUCTION

There has been a lot of interest recently in Locally Recoverable Codes (LRC)
[1, 2,4, 5,8,9, 10, 11], which are linear codes that allow local recovery of erasures.
More specifically, they allow recovery of simultaneous erasures exactly as commonly
used k-dimensional codes do (e.g. Reed-Solomon codes) by looking at the entries of
a codeword that correspond to an information set (i.e. k other components where
no erasure happened), but they also allow recovery of a single erasure by looking at
fewer nodes than k.

The applications in which LRC thrive are related to distributed storage and cloud
storage systems because they easily allow the recovery of the data in a single failed
server or hard-drive (which in this context we simply call node), but they also allow
recovery of more serious failures, such as simultaneous failures of multiple nodes in
the system.

In this paper we construct Locally Recoverable Codes using Number Fields. The
construction is inspired by Tamo and Barg’s ideas in [11], used in combination with
the framework defined by Guruswami in [6]. The technique to construct our codes
is purely number theoretical, but the constructed codes are subsets of a product
of finite fields (so they are practical to implement). We believe that having LRCs
over products of different finite fields is an interesting feature as it provides more
flexibility in the design of a system: for example, we might want to increase the
length of these codes without having to enlarge the base field for all the components
of every codeword, as one would be forced to do in the context of Reed-Solomon
codes when one wants to extend the length of the code beyond the size of the finite
field. In fact, with our construction, we can simply take additional reductions of
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elements of Ok modulo other prime ideals of Ok. Of course, our codes are not
linear because of the nature of a product of finite fields and the fact that (O, +)
does not have an [F,-linear structure for any gq. Nevertheless, they allow efficient local
recovery and have good minimum distance.

In addition, we can construct a family of codes such that the distance grows
linearly with length and dimension, and the asymptotic rate (see Definition 2.1) can
be made constant. From the methodology standpoint, our construction builds up
new interactions between analytic number theory and coding theory. These new
interactions stem from the idea that one can look at any integer M as a constant
function from the set of primes {pi}z‘e{l,...,n} of the ring of integers lying over a totally
split rational prime p, to I, simply by mapping each p; to the reduction of M modulo
p;. Notice that since p; is totally split, M mod p; = M mod p, independently of i.
This simple idea allows to build the locality sets, which correspond to totally split

primes of the number field.

2. BACKGROUND ON CODING THEORY

Let n be a positive integer and F1, ... F), be finite fields ordered by increasing size.

m

We define a code C in R, = [] F; as a subset of R,,. The distance between two
i=1

codewords x,y € C is the number of indexes ¢ € {1,...n} such that z; # y;. The

minimum distance of C is the minimal positive integer d such that there exist two
elements x,y € C such that d(z,y) = d. If X is a set, let us denote the powerset of
X as 2%,

For every m € N, let C,, € 25 be a choice of a code of R,,. For any set A, let
us denote by #A the cardinality of A. We say that a sequence of codes {Cy, } men is

almost good if

. log(#C
(2.1) lﬂoréflmgg((#m =v>0
and
(2.2) lirrgioréf d(Cp,) = +00.
Notice that the choice of the basis of the logarithm clearly does not affect the def-
inition. Moreover, observe that % is the natural generalization of the concept

of information rate in the non-linear setting, since the dimension of a non-linear code
C is replaced by log(#C) and the dimension of the ambient space is log(#R,,).
Also, notice the difference between our definition and the usual definition of a
good family of codes, where the ratio between distance and length is required to
converge to a constant. In our case, since the distance and locality are not weighted
by how large the finite fields we are using are, the standard definition of good codes

carries an inherent disadvantage that is essentially unavoidable. For this reason, we
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do keep track of the size of the code vs the size of the full space but for simplicity we
avoid weighting the distance d depending on the finite fields where the components
belong, and only require d — oo (even though in our case the growth is linear, which
is what happens with optimal codes).

We say that a code C C Ry, has locality r if for any ¢ € {1,...,n} it is possible
to reconstruct the i-th component of a codeword ¢ € C by knowing at most r other
components of ¢. In other words, there is an algorithm (depending on C) that takes as
input the location ¢ of an erasure together with r other coordinates of ¢ and outputs

the missing component of c.

3. BACKGROUND ON NUMBER FIELDS

Let K/Q be a number field of degree §. Recall that if § € K, the norm of 3,
denoted by N(/3), is the determinant of the Q-linear map K — K defined by = — (.
Let Ok be the ring of integers of K, and let @« € Og be an element that generates
K, i.e. such that Q(a) = K. Let

ma(x) =byp+bix+...+ b5_1$5_1 + .CL‘(S € Z[ﬂ;‘]

be the minimal polynomial of o over Q, and let S = max{|b;|: i € {0,...,5 — 1}},
where | - | denotes the usual archimedean absolute value. For any prime ideal p of
Ok, let Fy be the field Ok /p.

(K:Q]
Recall that a prime p € N is totally split in K/Q if pOk factors as [ pi,
=1
where the p;’s are pairwise distinct prime ideals of Ox and [Fy, : Fp] = 1 for all
ie{l,...,0}.
6—1

Lemma 3.1. With the notation above, let y = > 2ol € Ok, with z € 7 and
i=0
|zi| < M for every i. Then |N(y)| < §%2(1 + S)0=D3/2(M —1)9.

Proof. Clearly we can assume that M > 1, as otherwise the claim is trivial. The set
6—1

B:={1,a,...,a° 1} is a Q-basis of K by assumption. Notice that if w = 3 w;a’ €
i=0
Ok, with w; € Z for every i, then
6—1
w-o = w;at
i=0
6—1

= wi_lai + w5_1a5.
Using now that mq () = 0 we get that

0—1

(3.1) w-a = —byws_1 + Z(wi,l — biwg_l)ai.
=1
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Let A, be the multiplication-by-y matrix with respect to the basis B, where the
elements of K, expressed in the basis I are considered as column vectors. More

precisely, A, is the matrix that makes the following diagram commutative

K Y3 K

[l

@5 Ay ; @6
where ¢ is the usual isomorphism of vector spaces that sends an element of K into
its expression in the basis B. We claim that entries in the j-th column of A, are
bounded, in absolute value, by (M — 1)(1 + S)/~!. For j = 1 this is obvious since
entries in the first column are the coefficients of y - 1 = y with respect to B. Now
suppose that the claim is true for the j-th column and let us prove it for the (j+1)-th.
The j-th column is given by the result of the multiplication

6—1

y-ol Tt =Y e,

i=0
with |¢;| < (M —1)(1+S)7 7! for every i € {0,...,5—1} by the inductive hypothesis.
Now let us consider the (j + 1)-th columns, given by the multiplication

o—1
y-aol = Z d;a’
i=0

with dg,...,ds_1 € Z. Since y-a? = (y-a?~1) - a, Equation (3.1) and the inductive
hypothesis show that |do| < |bocs_1] < S(1+ S) ™1 and |d;| < |ci—1] + |bicn—1] <
(M —1)(1+ S)7. The claim follows since S(1+ S)/=! < (M — 1)(1 + S) for every
j>o.

Now the bound on |N(y)| = | det A, follows from Hadamard’s inequality, which
states that the determinant of a complex matrix is bounded, in absolute value by

the product of the euclidean norms of the column vectors C; of A,. In fact,

é 1)
det Ay < JTICiI < ] \/6(M —1)2(1 + 8)26-1 = §2(M —1)°(1 + §)0-1/2,
Jj=1 Jj=1

O

4. CONSTRUCTION OF NUMBER THEORETICAL LOCALLY RECOVERABLE CODES

4.1. Overview of the construction. First, we construct an ambient code D (that
is essentially a Chinese remainder code), for which we can prove nice distance prop-
erties. After that, we will extract a subcode of D that verifies the locality property
we are seeking for. Finally we show how to construct almost good families of locally

recoverable codes in the sense of Equation (2.1) and Equation (2.2).
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4.2. Construction of the ambient code D. First, we need to construct Chinese

remainder codes that are similar to the Reed-Solomon Codes (a-la Guruswami, see

[6]).
Let K be a number field of degree § with ring of integers O, and let @ € Ok be
such that Q(«) = K. For M > 1 we define

6—1
R[M]| = {Zziai|0§zi<M, ViE{O,...é—l}}.

=0

Let mq(2) = bo + biz + ... + 2° € Z[z] be the minimal polynomial of a over Q, and
let S :=max{|b;|: i =0,...,6 —1}. Let
(4.1) Cp = 6°2(1 + §)0=1)9/2
so that by Lemma 3.1 we have that |N(y)| < C, - (M — 1)° for every y € R[M].

Let p1,...p, be distinct prime ideals of O, ordered by increasing norm size, and
for every i let By, == Ok /p;. Assume that [[ N(p;) > Cy - (M —1)? (this is needed

i=1

to achieve injectivity of the encoding map ¢ defined below).

The number theoretical Reed-Solomon code D = D(K, M, {pi}ic1,..n}) is defined
as the image ¢(R[M]) of the map

¢ : RIM| — H]Fpi
i=1

y — (y mod p1q, ...,y mod p,).

See |7] for more on this. In the rest of the paper we will refer to ¢ as the encoding

map.

Theorem 4.1. Let D be the code defined above, and let P := {p1,...,pn}. Let d(D)

be the minimal distance of D and let

i : (M —1)
m = min #T: pl;[TN(p)>Ca (M —1)

Then the following hold.

(1) The map ¢ is injective.
(2) d(D) >n—m+ 1.
(3) If [per N(p) < M? for some U C P with #U = m — 1, then equality holds

Remark 4.2. Since ¢ is thought as the encoding map, its injectivity is fundamental
because we want that different messages are mapped to different codewords. This

is achieved by adding just enough redundancy by considering at least n distinct
n

reductions, where n is chosen such that [] N(p;) > Cq- (M —1)%, as we will explain.
i=1
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Item (2) provides the code with a lower bound for the minimum distance: in fact
the more redundancy is added (and therefore n grows because we provide reductions
at many prime ideals) the more the minimum distance grows.

Item (3) ensures that, as far as the product of the norms is not too large then

there are indeed two codewords at distance m — 1.

Proof. Let T C P be a subset of cardinality m such that [, N(p) > Co- (M — 1),
and let y1,y2 € R[M] be such that ¢(y1) = ¢(y2). In particular, we have that
y1 = y2 mod p for every p € T. It follows that HpeT N(p) | N(y1 — y2). By Lemma
3.1 we have that N(y; — y2) < C, - (M — 1)°, and hence by the definition of m we
must have that y; = yo. This proves (1) and (2) at the same time.

To prove (3), notice that if [J,cr; N(p) < M? then the map R[M] — [lper Fp is
not injective for cardinality reasons. It follows that there are y; # y2 € R[M] such
that y; = yo mod p for all p € U. On the other hand ¢(y1) # ¢(y2) by (1), and
hence ¢(y1) and ¢(y2) have distance n — m + 1. O

4.3. Construction of the locally recoverable code C as a subset of D. Let
K be a number field of degree r + 1 with ring of integers Ok, and let M € N. Let
a € Ok be such that K = Q(«). Let

r—1
RIM|” = {Zaiai |0<a;<M Vie{0,...r— 1}} C R[M].
i=0

Notice that this differs from the set R[M] previously defined, as we are forcing the
coefficient of o to be 0 (this is a strictly smaller set of elements than R[M] since
the minimal polyomial of o has degree r + 1). Let now s be a positive integer and
define

AM] =Y fMI: £ € RIM]™ V5 €{0,...,s}
j=0

Lemma 4.3. We have that
#A[M] — MT(S-Q—I).

Proof. This follows from the fact that elements of R[M] are a complete set of
r—1 . r—1 .

representatives for the quotient O /(M). Hence if ) f;M? = > g;M’ then
Jj=0 Jj=0

fo = go mod M, but this implies that fo = gg. The clai_m follows the_n by an easy

induction. O

Let £ be a positive integer, and let p; < ps < ... < py be rational primes that
are totally split in K : Q. Suppose moreover that no p; divides the discriminant of
the minimal polynomial of a. For every i € {1,...¢} let pgpi), . ,pgﬁ)l be the prime

ideals of Ok that lie above p;. Notice that Fp@i) = [, for all 4, ;.
i
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The number theoretical locally recoverable code C = C (T, s, K, M, {pi}ie{l,mg}) is
defined as the image ¢(A[M]) of the map

¢ r+1 VA
¢: AM) — T11 F o = [T
i=1j=1 i=1

r + (z mod P;-pi))(i,j)eUxV,
where U = {1,...,¢} and V = {1,...,r+1}. For simplicity of notation, let us define
() _

¢;’ =z mod pgpi). Notice that

C (5, K, M pities, ) € D (B, M4 (P )

Lemma 4.4. Assume that

D x6P)>corem
i€{1,.....},je{1,...,r+1}
where Cq is the constant (4.1). Then the code C = ¢(A[M]) has size #A[M] =
MT6HY e ¢ is injective.

Proof. To see this, simply notice that A[M] C R[M**!] and then apply Theorem
4.1. U

Definition 4.5. Whenever the hypothesis of Lemma 4.4 are verified, we say that
the code C(r, s, K, M, {pi}icq1,..ey) is a good split code of length n = (r +1)¢ and size
M7+ over the number field K.

Proposition 4.6. Let C = C(r,s, K, M,{pi}ic(1,..cy) be a good split code. Then C

has locality r.

(h)

Proof. Suppose that the component ¢, of the codeword ¢ = (c(-i))izl""’e

i) im1 i has to

S .
be retrieved. Such codeword c arises from a message m = > f;M7 € A[M], where
=0

r—1 )
fi= 2% a; jo* € R[M]~. Now consider the components cgh), .. ,cgi)l, c,(:gl, el cfﬁ_)l
1=

(ph)
J
je{l,....k—1,k+1,...,r+1}. The key point is now the following: since pj, is

of the codeword c. Each of them arises as the reduction of m modulo p:™"’, for some

totally split in K and it does not divide the discriminant of the minimal polynomial

meq(z) of a, by the Dedekind criterion we have that mq(z) mod pp, = Tﬁl(w —Bi) €
F,, [x] where f1,..., 0,41 € Fp, are pairwise distinct elements and ﬁjzi:sl the image
of o via the reduction map O —» OK/p§ph) = F,,. Since m = ril uja’ for some
i=0
integers ug, ..., u,—1, the component cg-h) of ¢ can be written as Ti; uZB; This gives
i=

us a system of linear equations in [F,,, whose indeterminates are the reductions
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ug, . .., Ur_1 of the u;’s modulo py:

~ ~ ~ — h
u0+u161+...+ur,1ﬁ7{ 1:C§)

~ ~ ~ — h
uo—l—ulﬁg-f—...-i-ur_lﬁ; 1:C§)

~ o~ ~ _ h

Uo + W fBrs1 + ...+ U1 Bl = 67(~+)1
Notice that the k-th row is deleted, since c,(gh) is missing. This is a system of r
equations in r indeterminates, and its determinant is non-zero because the (;’s are

pairwise distinct and the matrix representing the system is a Vandermonde matrix.
r—1 .
If (vo, ..., vr—1) € F}, is its unique solution, then P = > vif. O

=0
Proposition 4.7. Let C = C(r,s, K, M,{pi}icq1,..0}) be a good split code, and let
P={p i {i,....00 je{l,...,r+1}}. Let

] . i s+1 _ q\r+1
m = min § #T peHTN(p) > Cy - (M 1)

Then C has minimum distance d > (r +1){ —m + 1.

Proof. The code C is a subcode of the number theoretical Reed-Solomon Code with
parameter M*t1 so we simply apply again Theorem 4.1 with n = (r + 1)¢ (as our
set of primes consists of r + 1 primes on Ok lying above each of the ¢ rational

primes). O
The following theorem summarizes what we proved until now

Theorem 4.8. Let K be a number field of degree r+1, let s be a positive integer, let
M €N, and let {pi}ic(1,..ey be a set of rational primes that are totally split in K/Q.
Let C = C(r,s, K, M,{pi}icf1,..0y) be a good split code over K. Then C has length
((r +1), size M"Y minimum distance at least (r 4+ 1) —m + 1, and locality 7.

Proof. Simply combine Lemma 4.4 and Propositions 4.6, and 4.7. O

Example 4.9. Let us illustrate our construction with a working example. Let K =
Q(w), where a = (16 + (jg and (6 is a primitive 16-th root of 1. The field K is
the largest totally real subfield of Q((16), and the extension K/Q is cyclic of degree
4 and has discriminant 2'*. The minimal polynomial of « is % — 422 + 2. The
constant (4.1) is given by C, = 42(1 + 4)® = 16 - 5¢ = 250000. Primes that split
completely in K are exactly those congruent to £1 modulo 16. Let p; = 17, po = 31
and p3 = 47, so that £ = 3. Let p§p¢)7 . ,pz(lp") be the primes of K lying above p;,
for every i. Let M = 2 and s = 3. One computes that 174 . 31* > C,(M* — 1)4,
while 17% - 313 < C,(M* — 1)4, so that C = C(3,3,K,2,{17,31,47}) is a good

212

split code of size and minimum distance at least 12 — 8 + 1 = 5 according

to Theorem 4.1. We have that R[2]” = {ao + a1a + aza?: a; € {0,1}} while
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A2l = {fo+ fi-24 f2- 22+ f3-23: f; € R[2]"}. Notice that the encoding map
is fully defined by giving the image of «, because the reduction maps from Og to
Ok /I are homomorphisms for any ideal I C Ok. To obtain the image of «, notice
that

(x+5)(x+8)(x+9)(z + 12) mod 17

ot =4 +2=S (2 45)(z +14)(z +17)(z +26)  mod 31,

(x4 3)(x + 18)(x + 29)(x + 44) mod 47

and therefore the encoding ¢ is simply defined by

¢: AIM] — Fi; x Fgy x Fig
a— (12,9,8,5;26,17, 14, 5; 44, 29, 18, 3).
fla) = (F(12), £(9), f(8), F(5); f(26), F(17), F(14), [ (5); F(44), [(29), F(18), F(3))-

Using MAGMAL3], one can compute that the actual minimum distance of C is 6,
strictly better than the bound that comes from Theorem 4.1.

4.4. Almost good families of good split codes. We will now show how to con-
struct an almost good family of good split codes, in the sense of Equation (2.1) and
Equation (2.2). To do so, we first need the following analytic number theoretical

lemma.

Lemma 4.10. Let K be a Galois extension of Q. For every £ > 1, let p1,...,pp be
the first £ totally split primes of K/Q. Then

¢
log (H pi> ~ {log/t

=1

as £ tends to infinity.

Proof. First, let us recall that, if X is a positive integer, the totally split primes of
K/Q verify

(4.2) log H p|~ X

p<X
totally split

In addition, the Chebotarev Density Theorem ensures that the asymptotic formula
for the /-th totally split prime is

pe ~ Llog(€)[K : Q].

By setting X = py in (4.2) and relabeling the product we get

4 .
log (1:[1pz> ~ W = llog(¥).
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Remark 4.11. There are secondary terms in the asymptotic formula for py, i.e. the
¢-th (rational) totally split prime, and these secondary terms are larger than the

secondary terms in the asymptotic formula for the ¢-th rational prime.

Let now K be a number field of degree r + 1 that is Galois over Q (this restriction
allows for easier computations in Theorem 4.12), let & € Ok be a generator, let C,
be the constant (4.1) and let s € N. Let {p;};jen be the strictly increasing sequence

4
of primes that are totally split in K/Q, and for every ¢ > 1 let Py == [] pi-
i=1

Theorem 4.12. Let 0 < ¢ < 1, let k € R™ be such that k < 1/ "™/C,, and let
M, = {Sﬂl/k . Pg/PchJJ. Let Cp == C (r,s, K, My, {pi}ie{lrng}). Then {Cy}e>1 is an
almost good family of good split codes.

Proof. To prove that Cp is a good split code, it is enough to show that

r+1
N TTTIe% | = Pt > Calgtt — 1)+
peA j=1
for some set of primes A C {p1,...,pe}. This also shows that the code has distance

at least n — #A4 + 1. We now show that if we choose A to be the set of all primes
of Ok lying above p|.s 41, ., pe, the hypothesis of Proposition 4.7 are satisfied. By
multiplying both sides of the inequality 1 > k "/Cy by P/ P ¢ we obtain that:

y4
kP,
PZ/PLCZJ = H pi > 7n+\/1 Co ! .
i=|cl]+1

By raising both sides to the (r 4+ 1)-th power we get that, since N(pgp")) = p; for all
J’s,

V4 r+1 v0) l k‘Pg r+1
Di _ r—41
VI I ) = T1 v see(5e)
i=|cl]+1 =1 i=[cl]+1
>CaM€(s+1)(r+1)

>Co (M — 1)

proving both that the code is good, that the distance tends to infinity as £ grows.
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Next, we need to prove that the rate of Cy tends to a constant greater than zero,

4
ie. (2.2). Let Ry := [] FyI'. Then
=1

1

(s -+ 1)log | “4/k - Po/Plag |

lim inf w = lim inf
£—+o00 log #Ry N £—+o00 (T‘ + 1) log B
r(s+1)log ( **/k- Po/P o — 1
> lim inf ( <t )
£—+00 (r+1)log P,

1 k-Py/P
> lim inf ro8 ( t/ MJ) )
£—+o00 (’I“ + 1) log Pg

Now, using the properties of logarithms and the fact that log(Fy) ~ ¢log ¢ thanks
to Lemma 4.10 we get

rlog (k . Pg/PLCgJ) — liminf r(logk + £log ¢ — cllog cl)

lelglilolo (r+1)logP;  t—+x (r+1)llog?
r(1—c)
e
satisfying (2.1). O

Remark 4.13. Notice that the distance grows linearly in ¢ (which is itself propor-

tional to length and dimension), that is a desirable code property.

5. REALIZATION OF THE CONSTRUCTION

By the Kronecker-Weber theorem, one can always construct a Galois extension
K/Q of degree r + 1 such that Gal(K/Q) is cyclic of order r + 1. This guarantees
that the construction is always feasible and the number of totally split places is
“large” (as their density will be roughly asymptotic to 1/(r + 1)).

The lemma that follows provides a constructive proof for the following curious
(but expected) fact, for which we could not find reference in the literature: given a
positive integer § and n rational primes p1,...,p, larger than ¢ it is always possible
to construct explicitly a number field of degree § where p1, ..., p, are all totally split.
This shows that if one desires to construct a locally recoverable code over a certain
fixed product of finite fields, this is in theory possible.

Lemma 5.1. Let § € Z~1 and let py,...,p, be distinct rational primes all larger
than 6. Then it is possible to explicitly construct a monic, irreducible polynomial
f(z) € Z[z] of degree & such that if a is a root of f then all the p;’s are totally split
in the number field Q(«).

Proof. For each i € {1,...,n}, choose ail,...,afg € 7 such that aé % ai mod p;
for every j # k (this is possible because p; > §). Next, choose a new prime p,1,
different from p1,...,p,, and for every i € {1,...,n+ 1} let ¢; = Hj#pj. Notice
that ¢1 + ...+ gy is coprime with g,41, as if a prime p divides ¢,+1 then p = p; for
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some i € {1,...,n} and hence p divides g; for every j € {1,...,n} \ {i}; it follows
that p does not divide ¢ + ...+ ¢,,. Hence there exist uy, us € Z with ujus # 0 such
that u1(q1 + ... + gn) + u2gn+1 = 1. Notice that uy is coprime with p; - ... - p, and
ug is coprime with p,4+1. Now let g(x) € Z[z] be a monic degree § polynomial that
is irreducible modulo pp41.
Consider then the polynomial
n )
flz) =w Z i H(m — aé-) + uaqnt19(x) € Zlz].

i=1  j=1
By construction, f(x) is monic. Moreover f(x) is irreducible in Z[x] because f(z)
is irreducible modulo p,4+1 (because its reduction is g(z) mod p,1, which is irre-
ducible by construction), and hence the number field K generated by a root « of
f has degree §. It remains to show that pi,...,p, are totally split in K. But this
follows immediately from Dedekind criterion, that can be applied because none of
the p;’s divide the discriminant of f since f has no multiple roots modulo any p;. It
follows that the factorization pattern of p; in Ok coincides with that of f modulo

pi; by construction this is a product of ¢ distinct linear terms. O
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