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Optimal Locally Recoverable Codes With Hierarchy

From Nested F -Adic Expansions

Austin Dukes, Giacomo Micheli , and Vincenzo Pallozzi Lavorante

Abstract— In this paper we construct new optimal hierarchical
locally recoverable codes. Our construction is based on a com-
bination of the ideas of Ballentine et al., (2019) and Sasidharan
et al., (2015) with an algebraic number theoretical approach
that allows to give a finer tuning of the minimum distance of
the intermediate code (allowing larger dimension of the final
code), and to remove restrictions on the arithmetic properties of
q compared with the size of the locality sets in the hierarchy.
In turn, we manage to obtain codes with a wider set of parameters
both for the size q of the base field, and for the hierarchy size,
while keeping the optimality of the codes we construct.

Index Terms— Hierarchical LRCs, Galois theory, Chebotarev
density theorem.

I. INTRODUCTION

V
ARIOUS classes of locally recoverable codes have

received great attention in recent times due to their

applications to cloud and distributed storage systems [3], [4],

[5], [6], [7], [8], [9], [10], [11]. In this paper we produce

new optimal hierarchical locally recoverable codes (HLRCs).

HLRCs are suitable solutions that address the problem of

recovering lost information in a distributed storage system,

and they have been widely studied in [1], [2], [12], [13], and

[14].

Standard [n, k, r, d]q locally recoverable codes (LRCs) are

linear codes over Fq of dimension k, length n and distance d
that allow to recover a single erasure in a codeword by looking

at a maximum of r other components of the codeword, and

to recover up to d − 1 simultaneous erasures by looking at a

maximum of k other components. The set of other components

that one needs to look at to recover a single erasure is said

to be a locality set. It is clear from this definition that one

desires r to be small and d to be large, while having relatively

large rate k/n. In other words, one desires locality sets to be

as small as possible but the global distance of the code to

be large. The Singleton bound for locally recoverable codes

relates these quantities and shows that at best d can be as
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large as n − k − +k/r, + 2, showing that the smaller the

locality is, the smaller the distance will be (for fixed k and

n). From a general computer science perspective, LRCs deal

with the most common scenario (one erasure) in an optimal

way (looking only at a few other nodes) and with the unlikely

scenario (multiple erasures) in an acceptable way (using the

standard erasure recovery procedure). To motivate the research

in this paper, consider the scenario in which there are ¼
simultaneous erasures, with ¼ satisfying 2 f ¼ f d − 2.

In particular, we set ¼ = 2 here for simplicity. If these

2 erasures happen in different locality sets, then one would

need to look at 2r other nodes to recover the missing symbols,

which is consistent with the fact that one recovers a single

erasure by looking at r other nodes. If the erasures happen in

the same locality set, then we are in the situation in which one

needs (in principle) to use the same procedure as in the worst

case scenario of d− 1 erasures, and this is inefficient because

the case of 2 simultaneous erasures is by far more likely than

the case of d − 1 erasures, when d is larger than ¼.

Hierarchical locally recoverable codes allow the recovery of

certain patterns of erasures by gradually looking at more com-

ponents depending on the number of erasures that occurred.

One can then design codes that recover one erasure by looking

at a maximum of b > 0 other components; ¼ erasures by

looking at a > b other components; and d − 1 erasures by

looking at a maximum of k > a > b components, where k is

the dimension of the code. This is impactful from a practical

perspective, as one can deal with the most likely scenario (one

erasure) in the optimal way, with the less likely scenario (¼
erasures) in an acceptable way, and still be able to recover

d− 1 erasures by accessing k nodes. Tuning these parameters

in an efficient way depends on the reliability of the servers

and the required efficiency of the system in terms of node

retrieval. One of the features that one would desire from this

kind of code is that ¼ is quite small, as the second-most likely

scenario is the failure of only a few other nodes. We address

this problem by writing a sharper Singleton bound for this

regime of parameters and then constructing codes that achieve

the bound.

A. Definitions

In the rest of the paper we will consider the occurence of

either one, ¼, or d−1 erasures, as these arise most commonly

from applications (instead of the more general setting where

one allows ¼1, ¼2, or d − 1 erasures). Let n, k, b be positive

integers with k f n. A locally recoverable code (LRC)
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C having parameters [n, k, b] is an Fq-subspace of Fn
q of

dimension k such that if one erases a single component of

any v ∈ C, that component can be recovered by accessing at

most b other components of v. If d is the minimum distance

of the code, we will write that C is an [n, k, d, b] LRC.

We now give the following definition which will be useful

in the rest of the paper.

Definition 1.1: Let n be a positive integer, C ¦ Fn
q be

a linear code, and S be a subset of the set of indices

{1, . . . , n}. We say that C can tolerate x erasures on S if,

whenever there are x erasures on components of a codeword

with indices belonging to S, the missing components can

be recovered by looking at |S| − x other coordinates with

indices in S.

In this paper we construct new locally recoverable codes

with hierarchy of locality sets. Our Definition 1.2 is equivalent

to the one of hierarchical codes in [1] but we find it slightly

easier to employ ours for practical situations, as we keep direct

track of the size of the “hierarchy”.

Definition 1.2: Let n, k, d, b, a, ¼ be positive integers with

n > k and 2 f ¼ f b. An [n, k, d, b, a, ¼] hierarchical locally

recoverable code (HLRC) is an [n, k, d]-linear code such that

• (a + ¼) | n,

• (b + 1) | (a + ¼),
• the codeword indices are partitioned into ℓ g 1 distinct

sets Ai, each of size a+¼, such that C tolerates ¼ erasures

on Ai for every i ∈ {1, . . . , ℓ}, and

• each Ai can be partitioned into Bi,j , each of size b + 1,

such that C tolerates 1 erasure on each Bi,j for every

i ∈ {1, . . . , ℓ} and every j ∈ {1, . . . , (a + ¼)/(b + 1)}.

B. Motivation

Let us now briefly explain the motivation behind codes with

hierarchical locality. Let T be the time needed to replace a

failed node. Suppose that a second node fails in the same

locality set as the first node during the time T . An [n, k, d, b]
LRC will still need to access k information symbols, as the

1-locality procedure is not guaranteed to work anymore.

However, an [n, k, d, b, a, ¼] HLRC only requires accessing at

most a information symbols. Since the failure of only a few

nodes, say ¼ < d − 1, is significantly more likely than the

failure of d − 1 nodes in the span of time T , it is convenient

to have a code which addresses separately the case in which

only ¼ nodes fail. The codes in [1] address this issue, but they

are restricted to certain ¼’s, as we explain in subsection III-E.

Moreover, in many cases they require restrictions on the

arithmetic properties of q and on the size of the hierarchy

(see for example the case of power functions in [1, Section

IV.A, Example]).

C. Our Contribution

In this paper we provide new constructions of optimal codes

with hierarchical locality and an improved bound for HLRCs

for a special set of parameters. Our construction is based on the

ideas in [1] combined with powerful techniques from algebraic

number theory, allowing us to remove arithmetic restrictions

on the size of the hierarchy compared with q or q − 1.

Structure of the paper:

• In Section I and its subsections we explain the basic

coding theoretical definitions and provide the practical

motivations for the study of such codes.

• In Section II, for some regime of parameters, we provide

a stronger Singleton bound than the one already present

in the literature for HLRCs [2]. Our bound beats the

previous bound for an infinite set of parameters (see for

example Remark 1).

• In Section III we achieve our new bound with a new

construction of HLRCs that covers a set of parameters

that are not available using previous constructions (see

subsection III-E). In subsection III-F we construct one of

our codes and provide its generator matrix.

• In Section IV we show that our codes are constructible

without requiring arithmetic restrictions on q, q − 1, the

locality parameters, and the sizes of the sets in the

hierarchy.

• Using the existential results provided in Section IV,

in Section V we provide some practical choices of

parameters for codes with large length.

II. AN IMPROVED BOUND FOR HIERARCHICAL LOCALLY

RECOVERABLE CODES

A. The Singleton Bound for [n, k, d, b, a, ¼] HLRCs With

¼ f b.

Let Mm×n(q) denote the set of all matrices of

dimension m × n defined over Fq. The following is

a well-known proposition, but we include a proof for

completeness.

Proposition 2.1: Let C be an [n, k, d]q linear code with

generator matrix G ∈ Mk×n(q) and let S ∈ Mk×t(q)
be a submatrix of G having rank rk(S) f k − 1.

Then t f n − d.

Proof: Let S = [S1, . . . , St], where Si is a column of

G for i ∈ {1, . . . , t}. Define S̃ : Fk
q → Ft

q such that x 7→
S̃(x) = xS = [xS1, . . . , xSt]. Since rk(S) f k − 1 and we

can write S̃(x) = x1R1 + . . . xkRk, where Ri are the rows

of S, there exists a non-zero x′ ∈ Fk
q such that S̃(x′) = 0.

Assuming without loss of generality that S consists of the first

t columns of G, since x′ is non-zero, there exists a non-zero

codeword c = (S̃(x′), yt+1, . . . , yn) whose weight is at most

n − t. Hence d f n − t.
To help the reader understand the more complex bound we

propose on HLRCs, we include here a proof of the standard

Singleton bound for LRCs.

Corollary 2.2: Let C be a [n, k, d, b] LRC. Then

k − 1 +

⌊
k − 1

b

⌋

f n − d.

Proof: We know that every set of b + 1 columns in
each repair group has rank b by the locality condition. This
means that we can choose a set S of

⌊
k−1

b

⌋
(b + 1) +

{
k−1

b

}
b columns in such a way that rk(S) f k − 1

(here {x} denotes the fractional part of x, i.e. {x} =
x − +x,). Thus, by applying Proposition 2.1, we have the
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following:
(⌊

k − 1

b

⌋

+

{

k − 1

b

})

b+

⌊

k − 1

b

⌋

=k − 1 +

⌊

k − 1

b

⌋

≤ n − d.

Notice that the above is equivalent to the well-known bound

d f n − k − +k/b, + 2.

We aim to generalize the bound in Corollary 2.2 when C
is an [n, k, d, b, a, ¼] HLRC. The key observation is that one

can partition the columns of the generator matrix into ℓ sets

of a + ¼ columns so that each set has rank less than a, and

each set of a + ¼ columns can be partitioned further into sets

of b + 1 columns so that each set has rank at most b. To see

this, notice that for any i ∈ {1, . . . , ℓ}, each set Si of a + ¼
columns (corresponding to Ai) can be divided into ´ = (a +
¼)/(b + 1) sets, say Si,j for j ∈ {1, . . . , ´}, of b + 1 columns

(corresponding to Bi,j) with rank at most b by the definition of

the code. Now, in the first set Si,1 we have ¼ columns which

are in the span of the other a columns in Si. This means that

we can choose b+1−¼ columns from Si,1 and b columns from

each of the other Si,j , with j ̸= 1, and be able to reconstruct

any ¼ of the a+¼ columns in Si. Therefore, the rank of each

Si is at most

Ä :=
[
(a + ¼)/(b + 1) − 1
︸ ︷︷ ︸

´−1

]
b + (b + 1 − ¼) f a. (1)

Theorem 2.3: Let C be a [n, k, d, b, a, ¼] HLRC with ¼ f b,

and let Ä = b(a + ¼)/(b + 1) − (¼ − 1). Then

⌊k − 1

Ä

⌋

(a + ¼) + k1 +
⌊k1

b

⌋

f n − d, (2)

where k1 is defined by k − 1 ≡ k1 (mod Ä) and 0 f k1 < Ä.

Proof: Given
⌊

k−1
Ä

⌋

sets of a+¼ columns Si correspond-

ing to the larger locality sets for i ∈ {1, . . . ,
⌊

k−1
Ä

⌋

}, denote

by S the union of the Si’s. Thus, |S| =
⌊

k−1
Ä

⌋

(a+¼) and by

the above discussion we have rk(S) = Ä
⌊

k−1
Ä

⌋

f k − 1.

This allows us to add more columns to S until the rank

equals k − 1 using a smaller locality set. More precisely,

we can always choose a set of the remaining columns of G,

say S′, of size +k1

b ,(b + 1) + {k1

b }b, such that rk(S′) f k1

(explicitly, S′ is the union of the columns in B+ k−1

ρ
,+1,j , for

j ∈ {1, . . . , +k1

b ,} and
{

k1

b

}
b columns in B

+ k−1

ρ
,+1,+

k1

b
,+1

).

Hence,

rk(S ∪ S′) f
⌊k − 1

Ä

⌋

Ä + k1 = k − 1,

simply by the definition of k1. Applying Proposition 2.1 on

the set of columns S ∪ S′ we have that
⌊k − 1

Ä

⌋

(a + ¼) +
⌊k1

b

⌋

(b + 1)+

{
k1

b

}

b f n − d.

Now, since k1

b = +k1

b , + {k1

b } we have

⌊k − 1

Ä

⌋

(a + ¼) + k1 +
⌊k1

b

⌋

f n − d.

Definition 2.1: We say that an [n, k, d, b, a, ¼] HLRC is

optimal if its minimum distance attains the upper bound in

(2), i.e., if

d = n −
(⌊k − 1

Ä

⌋

(a + ¼) + k1 +
⌊k1

b

⌋)

,

for k − 1 ≡ k1 (mod Ä) and 0 f k1 < Ä.

Remark 1: Note that our bound improves upon the bound

in [2] for infinitely many parameters, but ours holds only for

¼ f b. In fact, for any length n, and for parameters k = 6,

a = 4, r1 = Ä = 3, r2 = b = 2, ¶1 = ¼ + 1 = 3 and ¶2 = 2
[2, Theorem 2.1] gives d f n − 8 when instead our bound

gives d f n − 9. The moral reasons for this are that we are

taking into account a finer arithmetic of the parameters which

involves the reduction of the dimension modulo the upper level

hierarchical locality, and we are restricting to the case in which

the number of nodes that we simultaneously erase is strictly

smaller than the size of the smaller locality set.

III. OUR CONSTRUCTION OF OPTIMAL HLRCS USING

NESTED F -ADIC EXPANSIONS

A. Main Tool for the Construction

Lemma 3.1: Let f, h ∈ Fq[X] be non-constant polynomi-

als. Suppose there is some t0 ∈ Fq such that f(h(X)) −
t0 splits completely (i.e., factors into (deg f)(deg h) distinct

factors) over Fq. Then the set of roots of f(h(X)) − t0, say

A0, can be partitioned into sets B1, . . . , Bdeg f ¦ Fq which

satisfy the following:

• h(Bi) = ci ∈ Fq for each 1 f i f deg f ,

• the cardinality of each Bi is deg h, and

• h(Bi) ̸= h(Bj) whenever i ̸= j.

Proof: By the hypothesis we may write

f(h(X)) − t0 =

(deg f)(deg h)
∏

i=1

(X − xi) for distinct

elements x1, . . . , x(deg f)(deg h) ∈ Fq. Notice now that if

f(h(X)) − t0 splits completely, then f(X) − t0 splits

completely. If we let ³1, . . . , ³deg f ∈ Fq be the

(distinct) roots of f(X) − t0, then we may also write

f(h(X))− t0 =

deg f
∏

i=1

(h(X)− ³i) ∈ Fq[X]. Combining these

two factorizations and relabeling the xi appropriately yields

deg f
∏

i=1

deg h
∏

j=1

(X − xi,j) =

deg f
∏

i=1

(h(X) − ³i),

where

deg h
∏

j=1

(X − xi,j) = h(X) − ³i for each 1 f i f deg f .

In particular, it follows that ³i ∈ Fq for each i. Write Bi =
{xi,j : 1 f j f deg h}. Then we have h(Bi) = ³i for each

i, proving the first statement. The second and third statements

both follow from the fact that the xi,j’s are pairwise distinct

and the Bi’s are pairwise disjoint.

Definition 3.1: For f, h ∈ Fq[X], we say that a set A ¢ Fq

is a nest for (f, h) if A is the set of preimages of t0 ∈ Fq

such that f(h(X)) − t0 splits completely into distinct linear

factors.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 22,2024 at 15:41:40 UTC from IEEE Xplore.  Restrictions apply. 



6984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 11, NOVEMBER 2023

Furthermore, we say that B ¢ A is a sub-nest if h is constant

on B and |B| = deg h.

B. The Main Construction

We present a general method of constructing linear codes

with the nested locality property. Later we will show that these

codes are optimal in the sense of Section III. In line with

the notion of (r, ℓ)-good polynomials in [15], we now begin

defining our nested polynomials.

Definition 3.2 (ℓ-Nested): Let f, h ∈ Fq[X] and let ℓ be

a positive integer. Then f and h are said to be ℓ-nested if

f(h(X))− t0 splits completely over Fq for at least ℓ elements

t0 ∈ Fq.

Remark 2: Note that if f and h are ℓ-nested, then from

Lemma 3.1 there exist A1, . . . , Aℓ distinct nests for (f, h) such

that

• for any i ∈ {1, . . . , ℓ}, f(h(Ai)) = {ti} for some ti ∈
Fq,

• |Ai| = deg f deg h,

• Ai ∩ Aj = ∅ for any i ̸= j, and

• each Ai can be partitioned into sub-nests Bi,j for (f, h).

Those properties will be the key of our next construction.

Construction 3.2 (Nested HLRCs): Let f, h ∈ Fq[X] be ℓ-

nested, with 3 f deg h = b+1 and deg f(X) = (a+¼)/(b+1)
for some integer 2 f ¼ f b, and let A = ∪ℓ

i=1Ai, where

{A1, . . . , Aℓ} is a set of nests for (f, h).
For a positive integer s g 1, consider the set M of

polynomials of the form m(X) equals to

s
∑

i=0

[(

deg f−2
∑

j=0

gi,j(X)h(X)j

)

+ g̃i(X)h(X)deg f−1

]

f(h(X))i
,

(3)

where gi,j ∈ Fq[X]≤deg h−2 and g̃i ∈ Fq[X]≤deg h−λ−1.

Let n = (deg f deg h)ℓ and let k be the dimension of M as

an Fq-vector space. Once an ordering on A is fixed, we can

define

C := {(m(x), x ∈ A) | m ∈ M}. (4)

We will prove that C is an optimal [n, k, b, a, ¼] HLRC over

Fq.

C. Locality

Since we evaluate at n distinct points of Fq, we need q g n.

Write n = (a + ¼)(s + 1) and recall that b + 1 divides a + ¼.

Take a ∈ Fk
q and write

EncC(a) = c = (ci,j1,j2)1fifs+1,1fj1f(a+¼)/(b+1),1fj2fb+1.

Note that the index i determines a nest Ai, the index j1 deter-

mines a sub-nest Bi,j1 and the index j2 determines an element

of the sub-nest being considered, which is then denoted by

ci,j1,j2 . We begin by showing that the code C described

in Construction 3.2 allows one to recover a single missing

component of c by accessing at most b other components of c.

Fix ℓ g 1 and let f, h ∈ Fq[X] be the ℓ-nested polynomials

from which C is obtained. Write A = {A1, . . . , Aℓ} with Ai =

deg f
⊔

j=1

Bi,j1 and Bi,j1 = {xi,j1,j2 : 1 f j2 f b + 1} as in

Remark 2.

Without loss of generality, assume that the missing compo-

nent is c1,1,b+1 = ma(x1,1,b+1), where ma ∈ M. Observe

immediately that because both of f ◦ h and h are constant on

B1,1, the restriction ma|B1,1
can be written as a polynomial

of degree max{deg h − 2,deg h − ¼ − 1} = deg h − 2 =
b − 1. Since x1,1,j2 ∈ B1,1 for each j2, we have that

ma|B1,1
(x1,1,j2) = ma(x1,1,j2) = c1,1,j2 . Using Lagrange

interpolation on the points (x1,1,j2 , c1,1,j2) for 1 f j2 f b,

we obtain a polynomial ∆B1,1 of degree b − 1 which agrees

with ma|B1,1
at b distinct points, so the two polynomials must

be equal. Thus we can recover c1,1,b+1 by evaluating ∆B1,1

at the element x1,1,b+1.

Let us now consider the case of ¼ erasures. Among these ¼
erasures, the erasures which are isolated in locality sets Bi,j

can be recovered by using the 1-locality, so the interesting

case is when multiple erasures occur in the same Bi,j . Let

us assume that ¼ g 2 erasures occur in the same locality set

Bi,j . In this case, since f ◦h is constant on Ai, the restriction

ma|Ai
is a polynomial of degree deg f deg h − ¼ − 1 = a +

¼ − ¼ − 1 = a − 1. Thus Lagrange interpolation on a set of

at most a points of Ai on which no erasure occurred yields a

polynomial ∆Ai which agrees with ma on all of Ai. Hence

the missing components can be obtained by evaluating ∆Ai

at each of the corresponding locations in Ai.

D. Optimality of the Code

We dedicate this subsection to proving the optimality of our

code C. Therefore, we will be computing the values of k and d.

Lemma 3.3: Let C be the code in (4). Then

k = (s + 1)((deg f − 1)(deg h − 1) + deg h − ¼).

Proof: Since in particular deg(gi,jh
j +deg g̃ih

deg f−1) f
deg(f ◦ h) and deg gi,j ,deg g̃i f deg h, by uniqueness of F -

adic expansion both for F = f ◦ h and for F = h, we have

k = dimFq
M = (s+1)((deg f−1)(deg h−1)+(deg h−¼)),

as we wanted to prove.

Lemma 3.4: Let C be the code in (4). Then d g n− ¶, for

¶ = (s + 1) deg h deg f − ¼ − 1.

Proof: A lower bound for the minimum distance is

obtained by subtracting ¶ from n, where ¶ is the upper bound

for the maximum number of zeros of m ∈ M. We compute

¶ = ((deg f deg h)s + (deg f − 1) deg h + deg h − ¼ − 1)

= (s + 1) deg h deg f − ¼ − 1, (5)

and this proves the claim.

Theorem 3.5: Let C be the code obtained by using Con-

struction 3.2. Then C is an optimal [n, k, b, a, ¼] HLRC.

Proof: Let Ä = b(a + ¼)/(b + 1) − (¼ − 1) and k1 =

k−1−
⌊

k−1
Ä

⌋

Ä. Moreover, we recall that a+¼ = deg f deg h
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and deg h = b + 1. Let d′ denote the optimal distance, such

that

¶′ = n − d′ =

(⌊k − 1

Ä

⌋

(a + ¼) + k1 +
⌊k1

b

⌋)

.

Note that
⌊k − 1

Ä

⌋

=
⌊ 1

−deg f deg h + deg f + ¼ − 1
+ s + 1

⌋

= s,

since ¼ f deg h − 1, and
⌊

k1

b

⌋

=

⌊

deg f − ¼

deg h − 1

⌋

= deg f −
⌈

¼

deg h − 1

⌉

,

in fact k1 = deg f(−(b + 1)s + deg h(s + 1) − 1) − ¼ =
deg f(deg h−1)−¼. By using the results of Lemma 3.3, 3.4,

we have

¶ − ¶′ = (s + 1) deg h deg f − ¼ − 1−sdeg f deg h

+ −k1 −
⌊

k1

b

⌋

= deg f deg h − ¼ − 1 − (deg f(deg h − 1) − ¼)

+ −deg f +

⌈
¼

deg h − 1

⌉

=

⌈
¼

deg h − 1

⌉

− 1, (6)

and since
⌈

¼
deg h−1

⌉

− 1 = 0 for ¼ f deg h − 1, the code is

optimal.

E. Comparison With the Optimal Hierarchical HLRCs in [1]

A construction of optimal HLRCs for a certain set of

parameters is presented in [1, Proposition IV.2]. Let us fix the

parameters for which that construction exists, i.e., r1 = sr2

(we note that we do not require such a constraint, but that

even in this scenario we show that we can construct codes

that are not available from [1, Proposition IV.2]). The set of

parameters of the codes in [1, Proposition IV.2], given also in

our notation, is as follows:

• the length of the codes in both settings is n,

• each small locality set (at the bottom level of the hierar-

chy) has size r2 + 1, so in our case each has size b + 1,

• their ¿ is our a + ¼,

• the middle code has distance r2+3 and hence can tolerate

r2 + 2 erasures, so their r2 + 2 corresponds to our ¼,

• their r1 is our Ä,

• the code is optimal, with distance d = n − t(r1 + r2 +
1 + s) + r2 + 3, for some t, s,

• the two-level hierarchy has locality parameters (r1, r2+3)
and (r2, 2).

Therefore, using the notation of [1] for an

[n, k, d, {r1, ¶1}, {r2, 2}] HLRC, we constructed an

[n, k, d, {Ä, ¼ + 1}, {b, 2}] HLRC, where Ä is defined as

in (1). This shows immediately that our class of codes is

different from the codes in [1, Proposition IV.2]. In fact, the

optimality of our codes strongly relies on the assumption

¼ f r2, which is not the case in the construction in

[1, Proposition IV.2], in which instead they deal with a

complementary case ¼ = r2 + 2. It follows that our class

of codes contains codes which are not covered by this

construction, as we can construct optimal hierarchical codes

with two-level hierarchy having locality parameters (r1, ¼+1)
and (r2, 2), for any ¼ f r2, such as for ¼ = 2.

We emphasize that in [2] it is necessary to set a fixed

¼ = r2 + 2 since in this way one can reach optimality using

the bound in [2, Theorem 2.1], while, using our improved

bound and enhancing the construction in [1], one obtains more

flexibility as we explained. Moreover, we will see in detail

how to construct our codes without the arithmetic restrictions

appearing in the examples which use monomials or linearized

functions (see Section IV).

For a better comparison and to simplify the understanding,

in the next paragraph, we will still use monomials for a tutorial

example, even if it is not a requirement as we explain in

Section IV.

F. Tutorial Example

Suppose one desires a code over F19 of dimension 6 which

can recover 1, 2, and 8 lost nodes by accessing at most 2, 4,

and 6 other nodes, respectively (i.e., the distance of the code

equal 9). This is not possible using the standard Tamo-Barg

construction since, to recover more than 1 node, one would

need to access as many nodes as the dimension of the code,

that is, 6 nodes. Let now Cn denote the cyclic group with n
elements (in this framework we use the multiplicative notation,

i.e., Cn := {1, g, . . . , gn−1} with gn = 1). Another option

is to consider codes with availability using an orthogonal

partition of the multiplicative group of F19 that includes C3 (as

one wants the locality to be 3). But this does not work in this

case either as the only other option is C9 and C3 ¦ C9 (since

F∗
q is cyclic for any prime power q). Moreover [2, Proposition

IV.2] does not hold for ¼ = 2.

Our construction instead provides a code that allows these

recovery capabilities and is information theoretically optimal

in the sense of the Singleton bound in Subsection II-A.

Suppose we choose f = X2 and h = X3 (so b = 2 and

a = 4). A general information polynomial is given by

m(X) =

1∑

i=0

[

gi(X) + g̃i(X)x3
]

x6i,

for gi ∈ Fq[X]f1 and g̃i ∈ Fq[X]f0. In particular the

g̃i(X) = g̃i are constants (notice that the internal sum in j
in (3) disappears as deg(f) = 2). Therefore, by evaluating

the messages at the preimage of the 3 totally split places of

x6 = f ◦h, we get a code of length n = 18, dimension k = 6,

b = 2 and a = 4. Notice that this code can recover 1 erasure

by looking at b = 2 other nodes. Moreover, if two erasures

occur, we have two possibilities: either the erasures occurred

in different nests, or the erasures occurred in the same nest

for (f, h). In the first case, one can use twice the locality

(that is 2) to recover each node. In the second case one needs

to access just 3 other nodes by carefully considering all the

linear dependencies of the nodes in the nest. Since we are

evaluating polynomials of degree at most 9, the distance of
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Fig. 1. The nests for the pair (x2
, x

3) and their evaluations.

the code is 18− 9 = 9 and therefore one has a fault tolerance

of 8 erasures. Practically, given those 18 nodes, we are looking

at the following matrix:




























































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 7 11 8 12 18 2 3 14 5 16 17 4 6 9 10 13 15

1 1 1 18 18 18 8 8 8 11 11 11 7 7 7 12 12 12

1 1 1 1 1 1 7 7 7 7 7 7 11 11 11 11 11 11

1 7 11 8 12 18 14 2 3 16 17 5 6 9 4 15 10 13

1 1 1 18 18 18 18 18 18 1 1 1 1 1 1 18 18 18





























































where the rows correspond to (the evaluation of) the basis

{1, x, x3, x6, x7, x9} and the columns to the elements of F∗
19

ordered as in Figure 1. This means that to check the locality of

each set one just needs to check the rank of the corresponding

set of columns in the above matrix. For example, suppose we

want to recover the third column, which corresponds to the

symbol 11. We can do that using only the first two columns,

since the matrix










1 1 1
1 7 11
1 1 1
1 1 1
1 7 11
1 1 1











has rank equal to 2. Similarly, we can recover any two lost

symbols using either 3 (if they belong to the same nest) or 4
(otherwise, if they belong to distinct nests) other symbols.

IV. EXISTENTIAL RESULTS VIA CHEBOTAREV DENSITY

THEOREM

In this section we explain how to apply Chebotarev Density

Theorem to count the places t0 ∈ Fq such that f(h) − t0 is

totally split, i.e. splits completely into deg(f(h)) linear factors.

A lower bound on this quantity determines directly a lower

bound on the size of the hierarchy in our construction. This

determines completely the range of parameters of our hierar-

chical codes, and in turn it shows that they always exist for q
large enough, without arithmetic restrictions on the localities

and the size of the base field.

A. Background on Galois Theory

We begin by recalling a few preliminary definitions. Let K
and M be fields. We will write K[X] to denote the polynomial

ring in the indeterminate X over K. The field extension

K ¦ M will be written as M/K, and its degree, that is,

the dimension of M as a K-vector space, as [M : K]. For q a

power of a prime, let Fq be the finite field with q elements and

let F∗
q = Fq \ {0} be its (cyclic) multiplicative subgroup. Let

t be transcendental over Fq and denote by Fq(t) the rational

function field in t over Fq.

We follow closely the notation and terminology in [16]

throughout this section, and we provide the essential notions

here. A finite-dimensional extension K of Fq(t) is said to be a

(global) function field over Fq. A valuation ring of a function

field M is a ring O such that K ª O ª M and which contains

at least one of z or z−1 for every z ∈ M . A place P of M
is the unique maximal ideal of some valuation ring O of M ,

and the degree of P is defined to be deg P = [O/P : Fq].
In particular, P is said to be a place of degree one (or

equivalently, a rational place) of M if [O/P : Fq] = 1.

There is a one-to-one correspondence between places of M
and valuation rings O of M , so we will write OP to denote

the valuation ring whose maximal ideal is P . We will write

PM to denote the set of all places of M and P1
M ¦ PM to

denote the set of all degree one (rational) places of M . Let

K ¦ M be an extension of function fields. For places P ∈ PK

and Q ∈ PM , we say that Q lies above P (and write Q | P ) if

P ¦ Q. We denote the ramification index and relative degree

of the extension of places Q | P by e(Q | P ) and by f(Q | P ),
respectively. Let P1

K be the set of places of degree 1 of K.

Also, we define

Ram1(M/K) = {P ∈ P1
K : e(Q|P ) g 2,

for some Q place of M lying above P }.
The automorphism group of M/K, that is, the group of all

automorphisms of M which fix K element-wise, is denoted by

Aut(M/K). When |Aut(M/K)| = [M : K], we say that the

extension M/K is Galois with Galois group Gal(M/K) =
Aut(M/K). For a polynomial g ∈ K[x] with splitting field M
we write Gal(g | K) = Gal(M/K). We say that a polynomial

f ∈ Fq[X] is separable over Fq if f ̸∈ Fq[X
p], where p =

char Fq, and for such an f , the polynomial f−t is seen to be a

separable irreducible polynomial over Fq(t). We will write Mf

to denote the splitting field of f − t over Fq(t). Equivalently,

Mf denotes the Galois closure of the extension Fq(x)/Fq(t),
where x is any root of f(X)− t in the algebraic closure Fq(t)
of Fq(t). The field of constants of Mf will be denoted by kf ,

and we note that it is possible to have kf « Fq. Let Gf be

the monodromy group of f (sometimes called the arithmetic

Galois group of f−t), that is, the Galois group of the extension

Mf/Fq(t). Let Nf = Gal(Mf/kf (t)) ∼= Gal(FqMf/Fq(t)).

B. The Number of Totally Split Places t0 of f (h) − t

We will use the Chebotarev density theorem as in Proposi-

tion 3.1 of [15] since this formulation is the most convenient

for our purposes. We provide a full exposition in this section,

but we briefly describe in the next paragraph the general

procedure and ideas.

For polynomials f, h ∈ Fq[X], consider the composition

f(h). By the lower bound in [15, Proposition 3.1] on the

number ℓ of t0 ∈ Fq such that f(h) − t0 splits into lin-

ear factors over Fq, we have that for large enough q it is

guaranteed to have a large number of totally split places of

degree 1 of Fq(x)/Fq(t) when f(h) is chosen correctly. Now,

we may assume that the field of constants kf(h) of Mf(h) is

trivial since otherwise there cannot be a totally split place

of degree 1. Since we want ℓ to be as large as possible,
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one quickly sees from the lower bound in [15, Proposition

3.1] that minimizing the size of the monodromy group Gf(h)

of f(h) guarantees a large lower bound for ℓ. Thus our

construction always effectively results in an optimal code

as long as the size of the alphabet verifies a certain lower

bound.

For the extension Mf(h)/Fq(t), let Gf(h) =
Gal(Mf(h)/Fq(t)) be its arithmetic Galois group and

let Nf(h) be its geometric Galois group. Since we are

interested in the number ℓ of places P ¦ Fq(t) of degree

1 which are totally split in Mf(h), by Proposition 3.4 of [15]

we may assume that kf(h) = Mf(h) ∩ Fq = Fq is the field

of constants of the extension Mf(h)/Fq(t) since otherwise

ℓ = 0. Hence Gf(h) = Nf(h).

Lemma 4.1: Let f, h ∈ Fq[X] be nonzero polynomials

having positive degrees and assume that kf(h) = Fq. Define

Gf = Gal(f(X)− t | Fq(t)) and similarly Gh = Gal(h(X)−
t | Fq(t)). Then the number of t0 ∈ Fq such that f(h(X)) −
t0 splits completely into distinct (linear) factors over Fq is at

least
1

|Gh|deg f |Gf |
q+O(

√
q), where the implied constant can

be made explicit and is independent of q.

Proof: Denoting the number of t0 ∈ Fq we are consid-

ering by |T 1
split(f(h))|, from Proposition 3.1(ii) of [15] we

immediately have

|T 1
split(f(h))| g q + 1 − 2g

√
q

|Gf(h)|
− #Ram1(Mf(h)/Fq(t))

2
,

(7)

where g is the genus of Mf(h). We proceed by proving an

upper bound on the size of Gf(h), which in turn gives the

wanted lower bound for |T 1
split(f(h))|.

Let T be the rooted tree of height 2 with deg f branches and

deg h leaves on each branch. One can easily see that Gf(h)

is a subgroup of the wreath product (Gh × · · · × Gh
︸ ︷︷ ︸

deg f

) ì Gf ,

because Galois automorphisms have to preserve adjacency of

the nodes of T : in fact, if ³ ∈ Fq(t) is a root of f , then h−³ is

a factor of f(h) and therefore also h−µ(³) is a factor of f(h)
for any µ ∈ Gf(h). It follows that |Gf(h)| f |Gh|deg f |Gf |.

Combining (7) with the bound on |Gf(h)|, we obtain

ℓ g q + 1 − 2g
√

q

|Gh|deg f |Gf |
− Ram1(Mf(h)/Fq(t))

2
.

Note that the previous theorem implies that

ℓ g (q + 1) − 2g
√

q

|Gh|deg f |Gf |
− (deg f)(deg h)/2.

Proposition 4.2: Let f, h ∈ Fq[x] be separable polynomials

such that f−t, h−t, and f(h)−t have Galois groups Gf , Gh,

and Gf(h), respectively. Suppose that the splitting field Mf(h)

of f(h)−t has constant field equal to Fq. Then there exists an

optimal HLRC, with parameters [deg(f(h))ℓ, k, d,deg(h) −
1,deg(f(h)) − ¼, ¼] for any ¼ < deg(h) and

ℓ g q

|Gh|deg f |Gf |
+ O(

√
q),

where the implied constant can be made explicit and indepen-

dent of q, and the dimension k (resp. the distance d) is as in

Lemma 3.3 (resp. Lemma 3.4).

Remark 3: Notice that the condition of having trivial con-

stant field extension is automatic once there is a single totally

split place, and this situation is generic if the polynomials f, h
are chosen at random.

Proof: Since Mf(h) has trivial constant field Fq, Lemma

4.1 guarantees that there exist at least

ℓ g 1

|Gh|deg f |Gf |
q + O(

√
q)

totally split places, i.e. elements t0 of Fq such that f(h)−t0 is

totally split. Let us denote this set of t0’s by T . Now construct

the code by evaluating the polynomials in (3) at the subset A
of preimages of T via f(h), i.e. A = (f ◦h)−1(T ), which has

size deg(f(h))ℓ and is a nest for the pair (f, h) by Lemma 3.1.

The hierarchy is now given by the nest structure in the sense of

Remark 2, and the parameters obtained from Subsection III-D.

V. PRACTICAL CHOICE OF PARAMETERS TO CONSTRUCT

OPTIMAL HLRC

The construction we presented in the previous sections

allows us to exhibit some interesting examples of HLRCs.

To begin with, we consider the field F64. Choosing f = h =
x3 and ℓ = 7, our construction gives rise to a (63, k, d, 2, 7, 2)
HLRC, where the values of k and d depend on the choice of s
in Construction 3.2 (which is flexible). In fact, the first locality

b equals deg h − 1 = 2, whereas the second locality (Ä = 5)

can be computed by following the passages of Section III-C

and using the linear dependencies of the generator matrix

arising from the first locality. This means that we are able

to recover 1 (resp. 2) lost node(s) by looking at 2 (resp.

5) other nodes at most. We point out that the Tamo-Barg

construction for availability over the field of size 64, under the

same first locality assumption (b = 2), forces to have length

21 (with locality sets of size 3 and 7), whereas ours permits

to have length 63, leading to a much better minimum distance

and a larger number of servers allowed. More precisely, the

Tamo-Barg construction requires the use of two orthogonal

partitions, and this can be achieved by using 21 symbols

corresponding to the action of x3 and of x7 on F64\{0}. Note

further that their construction has a larger second locality: 7,

against our better parameter Ä = 5.

We conclude the paper with an infinite family of examples

of HLRCs with some specified localities and practical param-

eters that can be constructed for infinitely many q’s.

Theorem 5.1: There exists an optimal [6ℓ, 3s + 3, d, 2, 4, 2]
HLRC over Fq for gcd(q, 6) = 1, an integer s ∈ {1, . . . , ℓ−2},

ℓ =

⌈
q + 1 − 2

√
q

12
− 2

⌉

, and d = 6ℓ − 6s − 3.

Proof: Let ³ be a non-square in Fq. Apply our con-

struction for h = x3 − ³x, f = x2 and then use Theorem

3.14 of [15] to obtain the minimum number of nests for

(f, h). The optimality follows by specializing the parameters

of Definition 2.1 to the above set of parameters.
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Notice that this theorem also shows that one can fix a nested

pair for which the general lower bound in Proposition 4.2 can

be improved (for some special set of parameters) for infinitely

many q’s, as |Gf(h)| = 12 in this case. The study of such

nested pairs is an interesting direction for future work.

VI. CONCLUSION AND FUTURE WORK

In this paper we constructed HLRCs that attain the

(improved) Singleton-like bound (2) from nested F -adic

expansions of polynomials. Future research directions related

to the family of codes studied here include determining and

classifying good nested polynomial pairs (f, h) ∈ Fq[x]2,

understanding which is the minimal Galois group of f(h)−t ∈
Fq(t)[x] when f, g varies among polynomials of certain fixed

degree. Whenever this Galois group is small, this type of

result, combined with the results of this paper, would provide

a tool to construct optimal HRLCs with large length and

dimension. Another interesting research direction is extending

our construction to algebraic geometric codes arising from

global function fields.
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