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Optimal Locally Recoverable Codes With Hierarchy
From Nested F'-Adic Expansions

Austin Dukes, Giacomo Micheli

Abstract— In this paper we construct new optimal hierarchical
locally recoverable codes. Our construction is based on a com-
bination of the ideas of Ballentine et al., (2019) and Sasidharan
et al.,, (2015) with an algebraic number theoretical approach
that allows to give a finer tuning of the minimum distance of
the intermediate code (allowing larger dimension of the final
code), and to remove restrictions on the arithmetic properties of
g compared with the size of the locality sets in the hierarchy.
In turn, we manage to obtain codes with a wider set of parameters
both for the size g of the base field, and for the hierarchy size,
while keeping the optimality of the codes we construct.

Index Terms— Hierarchical LRCs, Galois theory, Chebotarev
density theorem.

I. INTRODUCTION

ARIOUS classes of locally recoverable codes have

received great attention in recent times due to their
applications to cloud and distributed storage systems [3], [4],
[51, [6], [7], [8], [9], [10], [11]. In this paper we produce
new optimal hierarchical locally recoverable codes (HLRCs).
HLRCs are suitable solutions that address the problem of
recovering lost information in a distributed storage system,
and they have been widely studied in [1], [2], [12], [13], and
[14].

Standard [n, k,r, d], locally recoverable codes (LRCs) are
linear codes over F, of dimension £, length n and distance d
that allow to recover a single erasure in a codeword by looking
at a maximum of r other components of the codeword, and
to recover up to d — 1 simultaneous erasures by looking at a
maximum of k other components. The set of other components
that one needs to look at to recover a single erasure is said
to be a locality set. It is clear from this definition that one
desires 7 to be small and d to be large, while having relatively
large rate k/n. In other words, one desires locality sets to be
as small as possible but the global distance of the code to
be large. The Singleton bound for locally recoverable codes
relates these quantities and shows that at best d can be as
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large as n — k — [k/r] + 2, showing that the smaller the
locality is, the smaller the distance will be (for fixed k& and
n). From a general computer science perspective, LRCs deal
with the most common scenario (one erasure) in an optimal
way (looking only at a few other nodes) and with the unlikely
scenario (multiple erasures) in an acceptable way (using the
standard erasure recovery procedure). To motivate the research
in this paper, consider the scenario in which there are A
simultaneous erasures, with A satisfying 2 < A < d — 2.
In particular, we set A = 2 here for simplicity. If these
2 erasures happen in different locality sets, then one would
need to look at 2r other nodes to recover the missing symbols,
which is consistent with the fact that one recovers a single
erasure by looking at r other nodes. If the erasures happen in
the same locality set, then we are in the situation in which one
needs (in principle) to use the same procedure as in the worst
case scenario of d — 1 erasures, and this is inefficient because
the case of 2 simultaneous erasures is by far more likely than
the case of d — 1 erasures, when d is larger than .

Hierarchical locally recoverable codes allow the recovery of
certain patterns of erasures by gradually looking at more com-
ponents depending on the number of erasures that occurred.
One can then design codes that recover one erasure by looking
at a maximum of b > 0 other components; )\ erasures by
looking at @ > b other components; and d — 1 erasures by
looking at a maximum of £ > a > b components, where & is
the dimension of the code. This is impactful from a practical
perspective, as one can deal with the most likely scenario (one
erasure) in the optimal way, with the less likely scenario (A
erasures) in an acceptable way, and still be able to recover
d — 1 erasures by accessing k nodes. Tuning these parameters
in an efficient way depends on the reliability of the servers
and the required efficiency of the system in terms of node
retrieval. One of the features that one would desire from this
kind of code is that A is quite small, as the second-most likely
scenario is the failure of only a few other nodes. We address
this problem by writing a sharper Singleton bound for this
regime of parameters and then constructing codes that achieve
the bound.

A. Definitions

In the rest of the paper we will consider the occurence of
either one, A\, or d — 1 erasures, as these arise most commonly
from applications (instead of the more general setting where
one allows A, Ag, or d — 1 erasures). Let n, k, b be positive
integers with & < n. A locally recoverable code (LRC)

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 22,2024 at 15:41:40 UTC from IEEE Xplore. Restrictions apply.



6982

C having parameters [n,k,b] is an [F,-subspace of Fj of
dimension k such that if one erases a single component of
any v € C, that component can be recovered by accessing at
most b other components of v. If d is the minimum distance
of the code, we will write that C is an [n, k, d, b] LRC.

We now give the following definition which will be useful
in the rest of the paper.

Definition 1.1: Let n be a positive integer, C C Fy be
a linear code, and S be a subset of the set of indices
{1,...,n}. We say that C can tolerate z erasures on S if,
whenever there are z erasures on components of a codeword
with indices belonging to S, the missing components can
be recovered by looking at |S| — x other coordinates with
indices in S.

In this paper we construct new locally recoverable codes
with hierarchy of locality sets. Our Definition 1.2 is equivalent
to the one of hierarchical codes in [1] but we find it slightly
easier to employ ours for practical situations, as we keep direct
track of the size of the “hierarchy”.

Definition 1.2: Let n,k,d,b,a, A be positive integers with
n >k and 2 < X <b. An [n,k,d,b,a, \] hierarchical locally
recoverable code (HLRC) is an [n, k, d]-linear code such that

e (a+ ) |n,

o the codeword indices are partitioned into ¢ > 1 distinct
sets A;, each of size a+ A\, such that C tolerates \ erasures
on A; for every i € {1,...,¢}, and

o each A; can be partitioned into B; ;, each of size b+ 1,
such that C tolerates 1 erasure on each B;; for every
ie{l,...,l} and every j € {1,...,(a+ N)/(b+1)}.

B. Motivation

Let us now briefly explain the motivation behind codes with
hierarchical locality. Let 7' be the time needed to replace a
failed node. Suppose that a second node fails in the same
locality set as the first node during the time 7. An [n, k, d, b]
LRC will still need to access k information symbols, as the
1-locality procedure is not guaranteed to work anymore.
However, an [n, k,d, b, a, A\] HLRC only requires accessing at
most a information symbols. Since the failure of only a few
nodes, say A < d — 1, is significantly more likely than the
failure of d — 1 nodes in the span of time 7, it is convenient
to have a code which addresses separately the case in which
only A nodes fail. The codes in [1] address this issue, but they
are restricted to certain \’s, as we explain in subsection III-E.
Moreover, in many cases they require restrictions on the
arithmetic properties of ¢ and on the size of the hierarchy
(see for example the case of power functions in [1, Section
IV.A, Example]).

C. Our Contribution

In this paper we provide new constructions of optimal codes
with hierarchical locality and an improved bound for HLRCs
for a special set of parameters. Our construction is based on the
ideas in [1] combined with powerful techniques from algebraic
number theory, allowing us to remove arithmetic restrictions
on the size of the hierarchy compared with ¢ or ¢ — 1.
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Structure of the paper:

e In Section I and its subsections we explain the basic
coding theoretical definitions and provide the practical
motivations for the study of such codes.

¢ In Section II, for some regime of parameters, we provide
a stronger Singleton bound than the one already present
in the literature for HLRCs [2]. Our bound beats the
previous bound for an infinite set of parameters (see for
example Remark 1).

e In Section III we achieve our new bound with a new
construction of HLRCs that covers a set of parameters
that are not available using previous constructions (see
subsection III-E). In subsection III-F we construct one of
our codes and provide its generator matrix.

e In Section IV we show that our codes are constructible
without requiring arithmetic restrictions on ¢q,q — 1, the
locality parameters, and the sizes of the sets in the
hierarchy.

o Using the existential results provided in Section IV,
in Section V we provide some practical choices of
parameters for codes with large length.

II. AN IMPROVED BOUND FOR HIERARCHICAL LOCALLY
RECOVERABLE CODES

A. The Singleton Bound for [n,k,d,b,a, \] HLRCs With
A <b

Let M,,xn(q) denote the set of all matrices of
dimension m x n defined over F,;. The following is
a well-known proposition, but we include a proof for
completeness.

Proposition 2.1: Let C be an [n,k,d], linear code with
generator matrix G € Myx,(q) and let S € Myy.:(q)
be a submatrix of G having rank rk(S) < k — 1.
Then t <n —d.

Proof: Let S = [Sy,...,S], where S; is a column of
G for i € {1,...,t}. Define S: F¥ — F! such that =
S(x) = 28 = [xS,...,25;]. Since 7k(S) < k — 1 and we
can write g(x) = x1R1 + ...x, Ry, where R; are the rows
of S, there exists a non-zero 2’ € F¥ such that S(z') = 0.
Assuming without loss of generality that .S consists of the first
t columns of G, since =’ is non-zero, there exists a non-zero
codeword ¢ = (S(x'),y¢+1,.-.,yn) Whose weight is at most
n —t. Hence d < n —t. |

To help the reader understand the more complex bound we
propose on HLRCs, we include here a proof of the standard
Singleton bound for LRCs.

Corollary 2.2: Let C be a [n, k,d,b] LRC. Then

-1
1[5 <nna

Proof: We know that every set of b + 1 columns in
each repair group has rank b by the locality condition. This
means that we can choose a set S of [E:1|(b+ 1) +
{52} b columns in such a way that rk(S) < k — 1
(here {z} denotes the fractional part of z, ie. {z} =
& — |x]). Thus, by applying Proposition 2.1, we have the

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 22,2024 at 15:41:40 UTC from IEEE Xplore. Restrictions apply.



DUKES et al.: OPTIMAL LOCALLY RECOVERABLE CODES WITH HIERARCHY FROM NESTED F'-ADIC EXPANSIONS

following:

(5552 v 55 o

|
Notice that the above is equivalent to the well-known bound
d<n-—k—[k/b]+2.

We aim to generalize the bound in Corollary 2.2 when C
is an [n,k,d,b,a, \] HLRC. The key observation is that one
can partition the columns of the generator matrix into ¢ sets
of a + A columns so that each set has rank less than a, and
each set of a + A columns can be partitioned further into sets
of b+ 1 columns so that each set has rank at most b. To see
this, notice that for any ¢ € {1,...,¢}, each set S; of a + A
columns (corresponding to A;) can be divided into 8 = (a +
A)/(b+1) sets, say S; ; for j € {1,...,8}, of b+ 1 columns
(corresponding to B; ;) with rank at most b by the definition of
the code. Now, in the first set S; ; we have A columns which
are in the span of the other a columns in S;. This means that
we can choose b+1—\ columns from S; ; and b columns from
each of the other S; ;, with j # 1, and be able to reconstruct
any A of the a+ A columns in S;. Therefore, the rank of each
S; is at most

pi=1[(a+A)/b+1)—1]b+(b+1-)) <a. ()
B—1

Theorem 2.3: Let C be a [n, k,d, b, a, \] HLRC with A < b,
and let p = b(a+ A\)/(b+ 1) — (A —1). Then

=
p
where k; is defined by k — 1 = k1 (mod p) and 0 < ky < p.
Proof: Given Lk_l

J(a+)\)+k1+V2J§n—d, )

J sets of a+ A columns S; correspond-
ing to the larger locality sets for i € {1,...,

@J 1, denote
)
by S the union of the S;’s. Thus, |S| = {% (a+A) and by

the above discussion we have rk(S) = pLj“ Ll < k-1
This allows us to add more columns to .S until the rank
equals k£ — 1 using a smaller locality set. More precisely,
we can always choose a set of the remaining columns of G,
say S', of size |51 |(b+ 1) + {£2}b, such that rk(S’) < k;
(explicitly, S’ is the union of the columns in BL L4 for
je{l,...,[%]} and {&} b columns in B

el EYRERESEY

rk(SUS') < LEJpHﬁ — k-1,

simply by the definition of k. Applying Proposition 2.1 on
the set of columns S U S’ we have that

{%J@wx) + V{;J(b—i—l)—i—{kg}bg n—d.

Now, since & = | % | + ("1} we have

k1

bJ <n-—d.

Lk; |+ X+ k4|

6983

Definition 2.1: We say that an [n,k,d,b,a,\] HLRC is
optimal if its minimum distance attains the upper bound in
(2), ie., if

d:n—(VC;lJ(a—k)\)—kkl—FV?J),

for k—1=k; (mod p) and 0 < ky < p.

Remark 1: Note that our bound improves upon the bound
in [2] for infinitely many parameters, but ours holds only for
A < b. In fact, for any length n, and for parameters k& = 6,
a:4,r1:p:?),rg:6:2,51:)\+1:3and52:2
[2, Theorem 2.1] gives d < n — 8 when instead our bound
gives d < n — 9. The moral reasons for this are that we are
taking into account a finer arithmetic of the parameters which
involves the reduction of the dimension modulo the upper level
hierarchical locality, and we are restricting to the case in which
the number of nodes that we simultaneously erase is strictly
smaller than the size of the smaller locality set.

III. OUR CONSTRUCTION OF OPTIMAL HLRCS USING
NESTED F'-ADIC EXPANSIONS

A. Main Tool for the Construction

Lemma 3.1: Let f,h € F,[X] be non-constant polynomi-
als. Suppose there is some t; € F, such that f(h(X)) —
to splits completely (i.e., factors into (deg f)(degh) distinct
factors) over F,. Then the set of roots of f(h(X)) — to, say
Ay, can be partitioned into sets By, ..., Bgeg y € F, which
satisfy the following:

o h(B;) =c; € F, for each 1 <i < deg f,

e the cardinality of each B; is degh, and

h(B;) # h(Bj) whenever i # j.
Proof: By the hypothesis we may write

(deg f)(deg h)
f(M(X)) — to = Il & — @) for distinct
elements xla---yx(degf)(de;;; € IFF,. Notice now that if
f(R(X)) — to splits completely, then f(X) — to splits
completely. If we let ai,...,qqegf € F, be the
(distinct) roots of f(X) — tp, then we may also write

deg f
f(R(X)) —to = l—g[ (h(X) — ;) € Fy[X]. Combining these

i=1
two factorizations and relabeling the x; appropriately yields

deg f deg h deg f

IT IT x =i = I ((x) = ),
=1 j5=1 1=1

degh

where H

In partlcular it follows that o;; € F,; for each i. Write B; =
{z;; : 1 < j < degh}. Then we have h(B;) = ¢; for each
1, proving the first statement. The second and third statements
both follow from the fact that the x; ;’s are pairwise distinct
and the B;’s are pairwise disjoint. [ ]

Definition 3.1: For f,h € F[X], we say that a set A C F,
is a nest for (f,h) if A is the set of preimages of ty € F,
such that f(h(X)) — to splits completely into distinct linear
factors.

= h(X) — «; for each 1 < i < deg f.

— Tij)

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 22,2024 at 15:41:40 UTC from IEEE Xplore. Restrictions apply.



6984

Furthermore, we say that B C A is a sub-nest if h is constant
on B and |B| = deg h.

B. The Main Construction

We present a general method of constructing linear codes
with the nested locality property. Later we will show that these
codes are optimal in the sense of Section IIl. In line with
the notion of (r,¢)-good polynomials in [15], we now begin
defining our nested polynomials.

Definition 3.2 ((-Nested): Let f,h € F,[X] and let ¢ be
a positive integer. Then f and h are said to be f-nested if
f(h(X))—to splits completely over IF,, for at least ¢ elements
tg € Fq.

Remark 2: Note that if f and h are ¢-nested, then from
Lemma 3.1 there exist Ay, ..., Ay distinct nests for (f, k) such
that

o forany i € {1,...,¢}, f(h(A;)) = {t;} for some t; €

Fy,

o |A;| = deg fdegh,

e A;NA; =0 for any i # j, and

o each A; can be partitioned into sub-nests B; ; for (f,h).
Those properties will be the key of our next construction.

Construction 3.2 (Nested HLRCs): Let f,h € F,[X] be ¢-
nested, with 3 < degh = b+1 and deg f(X) = (a+A)/(b+1)
for some integer 2 < A\ < b, and let A = UleAi, where
{Ay,..., Ay} is a set of nests for (f,h).

For a positive integer s > 1, consider the set M of
polynomials of the form m(X) equals to

s deg f—2
Z[( > gz-,j<X>h<X)j> G (ORI F(R(X))',

i=0 j=0

3

where gi,; € ]Fq[X]Sdegh—Z and g; € Fq[X]gdegh—A—l-

Let n = (deg f deg h)¢ and let k be the dimension of M as
an FFg-vector space. Once an ordering on A is fixed, we can
define

C:={(m(z),z € A) | me M} “)

We will prove that C is an optimal [n, k, b, a, \] HLRC over
F

q-

C. Locality

Since we evaluate at n distinct points of F,, we need ¢ > n.
Write n = (a+ A)(s + 1) and recall that b+ 1 divides a + .
Take a € IF’; and write

Ence(a) = € = (Cijy.j2)1<i<s+1,1<)1 <(a+A)/(b+1),1<ja <b+1-

Note that the index 4 determines a nest A;, the index j, deter-
mines a sub-nest B; ;, and the index j, determines an element
of the sub-nest being considered, which is then denoted by
Ci,j1.j.- We begin by showing that the code C described
in Construction 3.2 allows one to recover a single missing
component of ¢ by accessing at most b other components of c.

Fix ¢ > 1 and let f,h € F,[X] be the ¢-nested polynomials
from which C is obtained. Write A = {A;,..., A¢} with A; =

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 11, NOVEMBER 2023

deg f
| | Bij and Bij, = {@i,, :

j=1
Remark 2.

Without loss of generality, assume that the missing compo-
nent is ¢1,1,p+1 = Ma(®1,1,p4+1), Where my € M. Observe
immediately that because both of f o h and h are constant on
B 1, the restriction ma|BL1 can be written as a polynomial
of degree max{degh — 2,degh — A — 1} = degh — 2 =
b — 1. Since z1,,, € Bi, for each j,, we have that
Malg,  (¥1,1,5,) = ma(®11,,) = c11,5,- Using Lagrange
interpolation on the points (z11,j,,¢1,1,5,) for 1 < jo < b,
we obtain a polynomial AP11 of degree b — 1 which agrees
with ma|31,1 at b distinct points, so the two polynomials must

1 <jo <b+1}asin

be equal. Thus we can recover ci,1,541 by evaluating ABL1
at the element z1 1 p41.

Let us now consider the case of A\ erasures. Among these A
erasures, the erasures which are isolated in locality sets B; ;
can be recovered by using the 1-locality, so the interesting
case is when multiple erasures occur in the same B; ;. Let
us assume that A\ > 2 erasures occur in the same locality set
B, ;. In this case, since foh is constant on A;, the restriction
ma\Ai is a polynomial of degree deg fdegh — A —1=a+
A— A —1=a— 1. Thus Lagrange interpolation on a set of
at most a points of A; on which no erasure occurred yields a
polynomial A“4¢ which agrees with m, on all of A;. Hence
the missing components can be obtained by evaluating A
at each of the corresponding locations in A;.

D. Optimality of the Code

We dedicate this subsection to proving the optimality of our
code C. Therefore, we will be computing the values of k£ and d.
Lemma 3.3: Let C be the code in (4). Then

k= (s+1)((deg f —1)(degh — 1) + degh — A).

Proof: Since in particular deg(g; ;17 + deg gihdes f=1) <
deg(f o h) and degg; ;,deg g; < deg h, by uniqueness of F-
adic expansion both for F' = f o h and for F' = h, we have

k = dimp, M = (s+1)((deg f —1)(degh—1)+(degh—N)),

as we wanted to prove. |
Lemma 3.4: Let C be the code in (4). Then d > n — §, for

0= (s+1)deghdeg f— X — 1.

Proof: A lower bound for the minimum distance is
obtained by subtracting ¢ from n, where § is the upper bound
for the maximum number of zeros of m € M. We compute

§ = ((deg fdegh)s+ (deg f —1)degh +degh — X — 1)
= (s+1)deghdeg f — X — 1, (5)

and this proves the claim. [ ]
Theorem 3.5: Let C be the code obtained by using Con-
struction 3.2. Then C is an optimal [n, k, b, a, \] HLRC.
Proof: Let p = bla+ A)/(b+1) —(A—1) and ky =
k—1-— {%J p. Moreover, we recall that a+ A = deg f deg h
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and degh = b+ 1. Let d’ denote the optimal distance, such

that
§ =n—d = (Lk;lJ(aJFA)ijzﬁ Lkle

Note that

Lk;w - LGlegfcleghidergfjt)\—1+8+1J -

since A < degh — 1, and
k1 A A
{bJ B {degf— deghlJ = deg /= {deghl-‘ ’

in fact k1 = deg f(—(b+ 1)s + degh(s +1) —1) — A =
deg f(deg h —1) — A\. By using the results of Lemma 3.3, 3.4,
we have

§—8 =(s+1)deghdeg f — X\ — 1—sdeg fdegh

k
o3

=deg fdegh—A—1— (deg f(degh —1) — \)

A
+ —deg f+ [degh— 1—‘
A
=|— -1 6
[degh — 1—‘ ’ ©
and since [degz_li‘ —1 =0 for A < degh — 1, the code is
optimal. [ |

E. Comparison With the Optimal Hierarchical HLRCs in [1]

A construction of optimal HLRCs for a certain set of
parameters is presented in [1, Proposition IV.2]. Let us fix the
parameters for which that construction exists, i.e., 71 = 572
(we note that we do not require such a constraint, but that
even in this scenario we show that we can construct codes
that are not available from [1, Proposition IV.2]). The set of
parameters of the codes in [1, Proposition IV.2], given also in
our notation, is as follows:

« the length of the codes in both settings is n,
« cach small locality set (at the bottom level of the hierar-
chy) has size ro + 1, so in our case each has size b+ 1,
o their v is our a + A,
o the middle code has distance r5+3 and hence can tolerate
ro + 2 erasures, so their ro + 2 corresponds to our A,
o their ry is our p,
« the code is optimal, with distance d = n — t(r; + ro +
1+ s) 4+ ro + 3, for some ¢, s,
o the two-level hierarchy has locality parameters (71, r2+3)
and (rq,2).
Therefore, using the notation of [1] for an
[n, k,d, {r1,01},{r2,2}] HLRC, we constructed an
[n, k,d, {p,\ + 1},{b,2}] HLRC, where p is defined as
in (1). This shows immediately that our class of codes is
different from the codes in [1, Proposition IV.2]. In fact, the
optimality of our codes strongly relies on the assumption
A < 719, which is not the case in the construction in
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[1, Proposition IV.2], in which instead they deal with a
complementary case A = ry + 2. It follows that our class
of codes contains codes which are not covered by this
construction, as we can construct optimal hierarchical codes
with two-level hierarchy having locality parameters (r1, A+1)
and (rg,2), for any A\ < rs, such as for A = 2.

We emphasize that in [2] it is necessary to set a fixed
A = r9 + 2 since in this way one can reach optimality using
the bound in [2, Theorem 2.1], while, using our improved
bound and enhancing the construction in [1], one obtains more
flexibility as we explained. Moreover, we will see in detail
how to construct our codes without the arithmetic restrictions
appearing in the examples which use monomials or linearized
functions (see Section IV).

For a better comparison and to simplify the understanding,
in the next paragraph, we will still use monomials for a tutorial
example, even if it is not a requirement as we explain in
Section IV.

F. Tutorial Example

Suppose one desires a code over 19 of dimension 6 which
can recover 1, 2, and 8 lost nodes by accessing at most 2, 4,
and 6 other nodes, respectively (i.e., the distance of the code
equal 9). This is not possible using the standard Tamo-Barg
construction since, to recover more than 1 node, one would
need to access as many nodes as the dimension of the code,
that is, 6 nodes. Let now C), denote the cyclic group with n
elements (in this framework we use the multiplicative notation,
ie, C, := {l,g,...,¢g" '} with g" = 1). Another option
is to consider codes with availability using an orthogonal
partition of the multiplicative group of 19 that includes C's (as
one wants the locality to be 3). But this does not work in this
case either as the only other option is Cg and C5 C Cy (since
I, is cyclic for any prime power g). Moreover [2, Proposition
IV.2] does not hold for A = 2.

Our construction instead provides a code that allows these
recovery capabilities and is information theoretically optimal
in the sense of the Singleton bound in Subsection II-A.

Suppose we choose f = X2 and h = X2 (so b = 2 and
a = 4). A general information polynomial is given by

1
m(X) =3 [g:(X) + i(X)a® |2,
i=0
for g; € Fy[X]<1 and §; € Fy[X]<o. In particular the
gi(X) = §; are constants (notice that the internal sum in j
in (3) disappears as deg(f) = 2). Therefore, by evaluating
the messages at the preimage of the 3 totally split places of
28 = foh, we get a code of length n = 18, dimension k = 6,
b =2 and a = 4. Notice that this code can recover 1 erasure
by looking at b = 2 other nodes. Moreover, if two erasures
occur, we have two possibilities: either the erasures occurred
in different nests, or the erasures occurred in the same nest
for (f,h). In the first case, one can use twice the locality
(that is 2) to recover each node. In the second case one needs
to access just 3 other nodes by carefully considering all the
linear dependencies of the nodes in the nest. Since we are
evaluating polynomials of degree at most 9, the distance of
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The nests for the pair (22, 23) and their evaluations.

Fig. 1.

the code is 18 —9 = 9 and therefore one has a fault tolerance
of 8 erasures. Practically, given those 18 nodes, we are looking
at the following matrix:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 7 11 8 12 18 2 3 14 5 16 17 4 6 9 10 13 15
1 1 1 18 18 18 8 8 8 11 11 11 7 7 7 12 12 12
1 1 1 1 1 1 7 7 7 7 7 7 11 11 11 11 11 11
i 7 11 8 12 18 14 2 3 16 17 5 6 9 4 15 10 13
1 1 1 18 18 18 18 18 18 1 1 1 1 1 1 18 18 18

where the rows correspond to (the evaluation of) the basis
{1,2,23,2% 27,2} and the columns to the elements of F%,
ordered as in Figure 1. This means that to check the locality of
each set one just needs to check the rank of the corresponding
set of columns in the above matrix. For example, suppose we
want to recover the third column, which corresponds to the
symbol 11. We can do that using only the first two columns,
since the matrix

— = e = e
[N TR SRR, gy

has rank equal to 2. Similarly, we can recover any two lost
symbols using either 3 (if they belong to the same nest) or 4
(otherwise, if they belong to distinct nests) other symbols.

IV. EXISTENTIAL RESULTS VIA CHEBOTAREV DENSITY
THEOREM

In this section we explain how to apply Chebotarev Density
Theorem to count the places ty € F, such that f(h) — ¢ is
totally split, i.e. splits completely into deg(f(h)) linear factors.
A lower bound on this quantity determines directly a lower
bound on the size of the hierarchy in our construction. This
determines completely the range of parameters of our hierar-
chical codes, and in turn it shows that they always exist for ¢
large enough, without arithmetic restrictions on the localities
and the size of the base field.

A. Background on Galois Theory

We begin by recalling a few preliminary definitions. Let K
and M be fields. We will write K [X] to denote the polynomial
ring in the indeterminate X over K. The field extension
K C M will be written as M/K, and its degree, that is,
the dimension of M as a K-vector space, as [M : K]. For g a
power of a prime, let Iy be the finite field with ¢ elements and
let Fy =, \ {0} be its (cyclic) multiplicative subgroup. Let
t be transcendental over [, and denote by F,(¢) the rational
function field in ¢ over F,.
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We follow closely the notation and terminology in [16]
throughout this section, and we provide the essential notions
here. A finite-dimensional extension K of F(t) is said to be a
(global) function field over FF,. A valuation ring of a function
field M is aring O such that K C O C M and which contains
at least one of z or z~! for every z € M. A place P of M
is the unique maximal ideal of some valuation ring O of M,
and the degree of P is defined to be deg P = [O/P : F,].
In particular, P is said to be a place of degree one (or
equivalently, a rational place) of M if [O/P : F,] = 1.
There is a one-to-one correspondence between places of M
and valuation rings O of M, so we will write Op to denote
the valuation ring whose maximal ideal is P. We will write
Pys to denote the set of all places of M and IP’}M C Py to
denote the set of all degree one (rational) places of M. Let
K C M be an extension of function fields. For places P € Px
and Q € Py, we say that @ lies above P (and write @ | P) if
P C @. We denote the ramification index and relative degree
of the extension of places ) | P by e(Q | P) and by f(Q | P),
respectively. Let PL- be the set of places of degree 1 of K.
Also, we define

Ram'(M/K) = {P € Pk : e(Q|P) > 2,
for some @ place of M lying above P }.

The automorphism group of M /K, that is, the group of all
automorphisms of M which fix K element-wise, is denoted by
Aut(M/K). When |Aut(M/K)| = [M : K], we say that the
extension M /K is Galois with Galois group Gal(M/K) =
Aut(M/K). For a polynomial g € K [x] with splitting field M
we write Gal(g | K) = Gal(M/K). We say that a polynomial
f € Fy[X] is separable over I, if f ¢ F,[X?], where p =
charF,, and for such an f, the polynomial f—t is seen to be a
separable irreducible polynomial over F(¢). We will write M ¢
to denote the splitting field of f — ¢ over F,(¢). Equivalently,
M denotes the Galois closure of the extension F,(z)/F,(¢),
where x is any root of f(X)—t in the algebraic closure m
of Fy(t). The field of constants of M, will be denoted by ky,
and we note that it is possible to have ky 2 F,. Let Gy be
the monodromy group of f (sometimes called the arithmetic
Galois group of f—t), that is, the Galois group of the extension
My [Fq(t). Let Ny = Gal(My/ks(t)) = Gal(Fg My /Fq(t)).

B. The Number of Totally Split Places ty of f(h) —t

We will use the Chebotarev density theorem as in Proposi-
tion 3.1 of [15] since this formulation is the most convenient
for our purposes. We provide a full exposition in this section,
but we briefly describe in the next paragraph the general
procedure and ideas.

For polynomials f,h € F,[X], consider the composition
f(h). By the lower bound in [15, Proposition 3.1] on the
number ¢ of ty € F, such that f(h) — to splits into lin-
ear factors over IF,, we have that for large enough ¢ it is
guaranteed to have a large number of totally split places of
degree 1 of Fy(x)/F,(t) when f(h) is chosen correctly. Now,
we may assume that the field of constants kg,y of My is
trivial since otherwise there cannot be a totally split place
of degree 1. Since we want ¢ to be as large as possible,
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one quickly sees from the lower bound in [15, Proposition
3.1] that minimizing the size of the monodromy group G ;)
of f(h) guarantees a large lower bound for ¢. Thus our
construction always effectively results in an optimal code
as long as the size of the alphabet verifies a certain lower
bound.

For the extension My, /Fy(t), let Gy =
Gal(Myp,)/Fq(t)) be its arithmetic Galois group and
let Ny be its geometric Galois group. Since we are
interested in the number ¢ of places P C F,(t) of degree
1 which are totally split in My, by Proposition 3.4 of [15]
we may assume that ky) = My NFy = F, is the field
of constants of the extension My ) /IF,(t) since otherwise
¢ = 0. Hence Gf(h) = Nj(h)

Lemma 4.1: Let f,h € F,[X] be nonzero polynomials
having positive degrees and assume that ky(;) = ;. Define
Gy = Gal(f(X)—1t|F4(t)) and similarly G, = Gal(h(X) —
t | Fq(t)). Then the number of ¢, € F, such that f(h(X)) —
to splits completely into distinct (linear) factors over [, is at

least g+0O(/q), where the implied constant can

|Gn| 8 |G |
be made explicit and is independent of q.

Proof: Denoting the number of ¢y € F, we are consid-
ering by |T,;,(f(h))], from Proposition 3.1(ii) of [15] we
immediately have

q+1-29/q #Ram' (M) /Fy(t))
Gyl 2 ’
)

where g is the genus of Mp;,). We proceed by proving an
upper bound on the size of G;), which in turn gives the
wanted lower bound for [T}, (f(h))].

Let 7 be the rooted tree of height 2 with deg f branches and
deg h leaves on each branch. One can easily see that Gy (p,)
is a subgroup of the wreath product (Gp, x --- x Gp) % Gy,

— —
deg f
because Galois automorphisms have to preserve adjacency of
the nodes of 7: in fact, if & € Fy(¢) is a root of f, then h—ais
a factor of f(h) and therefore also h—~(«) is a factor of f(h)
for any v € Gy (). It follows that |G ()| < |G| |Gyl
Combining (7) with the bound on |G ¢(;)|, we obtain

q+1—2g/g Ram'(M;q,/Fq(t))

|Tslplit(f(h))| >

{> -
~ |Galdes |Gyl 2
|
Note that the previous theorem implies that
(¢+1) —29v/4
0> ———"—"V=_(d degh)/2.
> oy ~ (des Ndegh)/

Proposition 4.2: Let f,h € F,[z] be separable polynomials
such that f—t, h—t, and f(h)—¢ have Galois groups G, G,
and G y(p,), respectively. Suppose that the splitting field M)
of f(h)—t has constant field equal to F,. Then there exists an
optimal HLRC, with parameters [deg(f(h))¢, k,d, deg(h) —
1,deg(f(h)) — A, A] for any A < deg(h) and

q
‘= gy T OV
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where the implied constant can be made explicit and indepen-
dent of g, and the dimension k (resp. the distance d) is as in
Lemma 3.3 (resp. Lemma 3.4).

Remark 3: Notice that the condition of having trivial con-
stant field extension is automatic once there is a single totally
split place, and this situation is generic if the polynomials f, h
are chosen at random.

Proof: Since My, has trivial constant field F,;, Lemma
4.1 guarantees that there exist at least

1
0> —————q+0
GrdeeT]ar 1 T OWD

totally split places, i.e. elements ¢ of F, such that f(h)—t, is
totally split. Let us denote this set of ¢(’s by T". Now construct
the code by evaluating the polynomials in (3) at the subset A
of preimages of T  via f(h), i.e. A = (foh)~1(T), which has
size deg(f(h))¢ and is a nest for the pair (f, h) by Lemma 3.1.
The hierarchy is now given by the nest structure in the sense of
Remark 2, and the parameters obtained from Subsection III-D.

|

V. PRACTICAL CHOICE OF PARAMETERS TO CONSTRUCT
OpPTIMAL HLRC

The construction we presented in the previous sections
allows us to exhibit some interesting examples of HLRCs.
To begin with, we consider the field Fgy. Choosing f = h =
23 and £ = 7, our construction gives rise to a (63, k,d,2,7,2)
HLRC, where the values of k£ and d depend on the choice of s
in Construction 3.2 (which is flexible). In fact, the first locality
b equals degh — 1 = 2, whereas the second locality (p = 5)
can be computed by following the passages of Section III-C
and using the linear dependencies of the generator matrix
arising from the first locality. This means that we are able
to recover 1 (resp. 2) lost node(s) by looking at 2 (resp.
5) other nodes at most. We point out that the Tamo-Barg
construction for availability over the field of size 64, under the
same first locality assumption (b = 2), forces to have length
21 (with locality sets of size 3 and 7), whereas ours permits
to have length 63, leading to a much better minimum distance
and a larger number of servers allowed. More precisely, the
Tamo-Barg construction requires the use of two orthogonal
partitions, and this can be achieved by using 21 symbols
corresponding to the action of 2 and of 27 on Fg4\ {0}. Note
further that their construction has a larger second locality: 7,
against our better parameter p = 5.

We conclude the paper with an infinite family of examples
of HLRCs with some specified localities and practical param-
eters that can be constructed for infinitely many ¢’s.

Theorem 5.1: There exists an optimal [6¢,3s + 3, d, 2,4, 2]
HLRC over F, for gcd(¢,6) = 1, an integer s € {1,...,¢—2},

1-2
(= [W—zw, and d = 60 — 65— 3.

Proof: Let a be a non-square in IF,. Apply our con-
struction for h = 23 — ax, f = 22 and then use Theorem
3.14 of [15] to obtain the minimum number of nests for
(f,h). The optimality follows by specializing the parameters
of Definition 2.1 to the above set of parameters. [ ]
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Notice that this theorem also shows that one can fix a nested
pair for which the general lower bound in Proposition 4.2 can
be improved (for some special set of parameters) for infinitely
many ¢’s, as |G| = 12 in this case. The study of such
nested pairs is an interesting direction for future work.

VI. CONCLUSION AND FUTURE WORK

In this paper we constructed HLRCs that attain the
(improved) Singleton-like bound (2) from nested F'-adic
expansions of polynomials. Future research directions related
to the family of codes studied here include determining and
classifying good nested polynomial pairs (f,h) € F,[z]?,
understanding which is the minimal Galois group of f(h)—t €
F,(t)[x] when f, g varies among polynomials of certain fixed
degree. Whenever this Galois group is small, this type of
result, combined with the results of this paper, would provide
a tool to construct optimal HRLCs with large length and
dimension. Another interesting research direction is extending
our construction to algebraic geometric codes arising from
global function fields.
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