
A Schedule of Duties in the Cloud Space Using

a Modied Salp Swarm Algorithm

Hossein Jamali, Ponkoj Chandra Shill, David Feil-Seifer, Frederick C. Harris Jr.,

and Sergiu M. Dascalu(B)

Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA

{hossein.jamali,ponkoj}@nevada.unr.edu, {dave,fred.harris,

dascalus}@cse.unr.edu

Abstract. Cloud computing is a concept introduced in the information technology

era, with themain components being the grid, distributed, and valuable computing.

The cloud is being developed continuously and, naturally, comes up with many

challenges, one of which is scheduling. A schedule or timeline is a mechanism

used to optimize the time for performing a duty or set of duties. A scheduling

process is accountable for choosing the best resources for performing a duty. The

main goal of a scheduling algorithm is to improve the efciency and quality of the

service while at the same time ensuring the acceptability and effectiveness of the

targets. The task scheduling problem is one of the most important NP-hard issues

in the cloud domain and, so far, many techniques have been proposed as solutions,

including using genetic algorithms (GAs), particle swarm optimization, (PSO),

and ant colony optimization (ACO). To address this problem, in this paper one of

the collective intelligence algorithms, called the Salp Swarm Algorithm (SSA),

has been expanded, improved, and applied. The performance of the proposed

algorithm has been compared with that of GAs, PSO, continuous ACO, and the

basic SSA. The results show that our algorithm has generally higher performance

than the other algorithms. For example, compared to the basic SSA, the proposed

method has an average reduction of approximately 21% in makespan.

Keywords: Cloud Computing · Task Scheduling · Salp Swarm Algorithm

1 Introduction

Today, modern computing methods have attracted the attention of researchers in many

elds such as cloud computing, articial intelligence, and machine learning by using

techniques including articial neural networks in building air quality prediction models

that can estimate the impact of climate change on future summer trends [1]. A compu-

tational science algorithm is used in this article to determine the schedule of duties in

the cloud.

Cloud computing has brought about the availability of tools that provide extensive

computing resources on the internet platform. Users can submit their requests for various

resources, such as CPU, memory, disk, and applications, to the cloud provider. The

© IFIP International Federation for Information Processing 2023

Published by Springer Nature Switzerland AG 2023

D. Puthal et al. (Eds.): IFIPIoT 2023, IFIP AICT 683, pp. 62–75, 2023.

https://doi.org/10.1007/978-3-031-45878-1_5

A Schedule of Duties in the Cloud Space 63

provider then offers the most suitable resources, which meet the user’s requirements and

offer benets to the resource owners, based on the price that they can afford to pay [2].

In cloud computing, the main entities are users, resource providers, and a scheduling

system whose main body has been proposed for the users’ tasks and timeline strategy

[3].

Cloud computing consumers rent infrastructure from third-party providers instead of

owning it. They opt for this to avoid extra costs. Providers typically use a “pay-as-you-

go” model, allowing customers to meet short-term needs without long-term contracts,

thus reducing costs [4].

Behind the numerous benets of cloud computing, there are many challenges too.

The most important is the task scheduling problem or resource allocation to the users’

requests. The targets of task scheduling in cloud computing are to provide operating

power, the optimal timeline for users, and service quality simultaneously. The specic

targets related to scheduling are load balance, service quality, economic principles, the

best execution time, and the operating power of the system [5]. Cloud computing has

three timelines: resources, workow, and tasks. Resource scheduling involves mapping

virtual resources to physical machines. Workow scheduling ensures the orderly ow

of work. Task scheduling assigns tasks to virtual resources. Task scheduling methods

can be concentrated or distributed, homogeneous or heterogeneous, and performed on

dependent or independent tasks.

Task scheduling in cloud computing has two types based on the characteristic of the

tasks:

• Static: In static scheduling, the tasks reach the processor simultaneously and are

scheduled on accessible resources. The scheduling decisions aremade before reaching

the tasks and the processing time after doing the entire run of duty is updated. This

type of scheduling is mostly employed for tasks that are sent continuously [6]; and

• Dynamic: In dynamic scheduling, the number of tasks, the location of the virtual

machines, and the method for resource allocation are not constant, and the input time

of tasks before sending them is unknown [6].

Scheduling the mechanism of dynamic algorithms compared to static algorithms

is better but the overhead of the dynamic algorithm is quite signicant [7]. Dynamic

scheduling can be done in two ways; in batch and online modes. In batch mode, the

tasks are lying in a line, gathered in a set, and after a certain time, scheduled. In the

online mode, when the tasks reach the system, they are scheduled [6].

The task scheduling problem in cloud computing focuses on efciently distribut-

ing tasks among machines to minimize completion time [8]. Proper task arrangement

has numerous benets, including reduced energy consumption, increased productiv-

ity, improved distribution across machines, shorter task waiting times, decreased delay

penalties, and overall faster task completion [9].

The task scheduler plays a crucial role in efciently scheduling computing actions

and logically allocating computing resources in IaaS cloud computing. Its objective is to

assign tasks to the most suitable resources to achieve specic goals. Selecting an appro-

priate scheduling algorithm is essential to enhance resource productivity while maintain-

ing a high quality of service (QoS). Task scheduling involves optimizing the allocation

64 H. Jamali et al.

of subtasks to virtual servers in order to accomplish the task schedule’s objective. This

area of research continues to receive signicant attention [10].

Efcient task planning in cloud computing is essential to minimize fetch time, wait-

ing time, computing time, and resource usage. Task scheduling is crucial for maxi-

mizing cloud productivity, meeting user needs, and enhancing overall performance. Its

primary goal is to manage and prioritize tasks, reducing time and preventing work fail-

ures while meeting deadlines. Task scheduling optimizes the cloud computing system

for improved calculation benets, high performance, and optimal machine output. The

scheduling algorithm distributes work among processors to maximize efciency and

minimize workow time [11].

The rest of this paper is organized as follows: Sect. 2 covers related work; Sect. 3 pro-

vides details of theSDSAoptimization algorithm;Sect. 4 describes our proposedmethod,

including the expansion and improvement of the salp algorithm; Sect. 5 focuses on the

algorithm’s target, the tness function; Sect. 6 presents the results of our simulation;

and, nally, Sect. 7 contains the conclusions of our work.

2 Related Works

Ghazipour et al. [12] have proposed a task scheduling algorithm so the tasks existing

in the grid are allocated to accessible resources. This algorithm is based on the ACO

algorithm, which ismixedwith the scheduling algorithm right to choose so that its results

are used in the ACO algorithm. The main goal of their article is to minimize the total

nish time (makespan) for setting up tasks that have been given [12].

In their research on task scheduling in cloud computing, Sharma and Tyagi [13]

examined nine heuristic algorithms. They conducted comparative analyses based on

scheduling parameters, simulation tools, observation domain, and limitations. The results

indicated the existence of a heuristic approach that satises all the required parameters.

However, considering specic parameters such as waiting time, resource utilization, or

makespan for each task or workow individually can lead to improved performance.

[13].

In 2019, Mapetu et al. [14] researched the “binary PSO algorithm for scheduling

the tasks and load power in cloud computing”. They introduced a binary version of the

PSO algorithm named BPSO with lower complexity and cost for scheduling the tasks

and load power in cloud computing, to minimize waiting time, and imbalance degree

while minimizing resource use. The results showed that the proposed algorithm presents

greater task scheduling and load power than existing heuristic algorithms [14].

Saeedi et al. [15] studied the development of the multi-target model of PSO for

scheduling the workow in the cloud areas. They proposed an approach for solving

the scheduling problem considering four contrasting goals (i.e., minimizing the cost,

waiting time, energy consumption, and maximizing reliability). The results showed

that the proposed approach had a better performance compared to LEAF and EMS-C

algorithms [15].

Zubair et al. [10] presented an optimal task scheduling method using the modied

symbiotic organisms search algorithm (G_SOS) and aimed to minimize the makespan

of the tasks, costs, response time, and imbalance degree, and improve the convergence

A Schedule of Duties in the Cloud Space 65

speed. The performance of the proposed method using CloudSim (a simulator tool) was

evaluated and according to the simulation results, the proposed technique has better

performance than the SOS and PSO-Simulated Annealing (PSO-SA) in terms of the

convergence speed, cost, imbalance degree, response time, and makespan. The ndings

conrm the suggested G_SOS approach [10].

Rajagopalan et al. [16] introduced an optimal task-scheduling method that combines

the rey optimization algorithm with a genetics-based evolutionary algorithm. This

hybrid algorithm creates a powerful collective intelligence search algorithm. The pro-

posed method excels in minimizing the makespan for all tasks and quickly converges

to near-optimal solutions. The results demonstrated that this hybrid algorithm outper-

formed traditional algorithms like First in, First Out (FIFO) and genetics. However, a

potential drawback of this method is the increased overload resulting from the sequential

use of two algorithms [16].

3 SSA Optimization Algorithm

This section briey describes the SSA optimization algorithm proposed by Mirjalini Al

which is an extension of the standard SSA algorithm [17]. salps are a type of Salpidae

family and have a transparent and barrel-shaped body. Their bodies are very similar to

jellysh. They still move the same as jellysh, and water is pumped from the middle of

the body as a motive force to move forward [17]. The shape of salp is shown in Fig. 1(a).

The biological study of these animals is just starting because it is so difcult to

capture them and maintain them in laboratories. One of the most intriguing habits of

salps is their tendency to swarm. The salps commonly form a chain in the deep oceans.

This chain is shown in Fig. 1(b). Although the primary cause of this behavior is unknown,

some researchers think that it is carried out through quick coordinated movements and

searches to achieve improved movement [17].

Fig. 1. (A) Illustration of a salp. (B) Salp chain structure. [17].

To model mathematically the salp chains, rst, the population is divided into two

groups: leaders and followers. The leader is in front of the chain, while the remaining

66 H. Jamali et al.

are considered the followers. As seen from their names, the leader guides the group and

the followers follow each other [17].

Like other techniques based on the swarm, the location of salps in a search space is

n-dimensional, where n is the number of variables in a problem and known; therefore,

the location of all salps is stored in the two-dimensional matrix x. Also, it is assumed

that a food source, F, exists in the search space as a swarm target [17].

Equation 1 has been proposed for updating the location of the leader as follows:

x1j =



Fj + c1


ubj − lbj


c2 + lbj


c3 ≥ 0

Fj − c1


ubj − lbj


c2 + lbj


c3 < 0
(1)

where x1j shows the location of the rst salp (leader) in the j dimension, F j is the location

of the food source in the j dimension, ubj identies the upper boundary of the j dimension,

lbj identies the lower boundary of the j dimension, and c1, c2 and c3 are randomnumbers

(between 0,1) [17].

Equation 1 shows that the leader just updates its location according to the food

source. The c1 the constant is the most important parameter in the SSA because it

creates a balance between exploration and detection and is dened as Eq. 2:

c1 = 2e
−

(

4l
L

)2

(2)

Here, l is the current iteration and L is the maximum iteration.

The parameters of c2 and c3 are the random numbers which are uniformly produced

in the range [0.1]. They determine if the latter location in the j dimension should be

innite positive or innite negative, as well as determine the step size.

To update the followers’ location, Eq. 3 is used (Newton’s law of motion):

xij =
1

2
at2 + v0t (3)

If i ≥ 2, xij shows a salp follows the i location in the j dimension, t is the time,

and v0 is the initial velocity; a =
vnal
v0

and v =
x−x0
t

. Since the time is iterated in the

optimization, the difference between the iterations is equal to 1 and, considering v0 = 0,

this relation is expressed as Eq. 4.

xij =
1

2

(

xij + xi−1
j

)

(4)

Here, i ≥ 2 and xij shows a salp follows the i location in the j dimension.

The salp chains can be simulated by Eqs. 1 and 4. In the SSA model, the followers

follow the salp leader. The leader also moves towards the food source; therefore, if

the food source is substituted for the global optimization, the salp chain automatically

moves towards it. However, there is a problem that global optimization is unknown in

the optimization problems. In this way, it is assumed that the best solution obtained so

far is the global optimum, which is assumed as a food source for following the salp

chain.

A Schedule of Duties in the Cloud Space 67

The pseudo-code for the SSA algorithm is shown in Fig. 2 [17]. This gure shows

that the SSA algorithm begins the global optimum by starting several salps at random

locations. Then, each tting related to the salps are calculated and the location where

they have acquired the best tting is allocated to the variable F as a food source followed

by the salp chain. Meanwhile, the value of c1 constant is updated by Eq. 2. For every

dimension, the location of the leader is updated by relation 1 and that of the followers

by Eq. 4. If each salp goes out of the search space, they are returned to the border again.

All the mentioned stages except for the initial value are iterated till consent is obtained.

The computing complexity of the SSA algorithm is considered

as O(t(d ∗ n+ Cof ∗ n)) where t shows the number of iterations, d is that of variables

(dimension), n is that of solutions, and Cof is a target cost of the function.

Initializes the salp population xi (i = 1,2, ..., n) considering ub and lb

While (end condition is not satisfied)

Calculate the fitness of each search agent(salp)

F= the best search agent(salp)

Update c1 by Eq. (2)

for each salp (xi)

If (i==1)

Update the position of the leading salp by Eq. (1)

else

Update the position of the, follower salp by Eq. (4)

end

end

Amend the salps based on the upper and lower bounds of variables.

end

returnF

Fig. 2. Pseudo-code of the salp swarm algorithm. [17].

4 Proposed Method

Our proposed method for scheduling the tasks of the virtual machines in the cloud

computing area uses an optimized SSA based on the tness function. First, a set of

random answers created is assigned as the initial population. Each member of this set

is called a salp. In the rst stage, the tness of salps produced randomly is calculated

by the target function and the best slap is chosen among all salps and its location is

determined by the location of the food source. In the following, the salps move towards

the food source until they achieve the best food source (i.e., solution). In this algorithm,

each salp is represented as a solution that moves for searching based on a mechanism in

the problem space. In the suggested method, the salps are divided into two groups, the

leaders and the followers. One group of salps named leader salps updates its location

according to the food source and tries to move towards the existing food source and

discover a better solution. If they nd a better solution than the existing food source, the

location of the leader salp is considered as its new location. The group salps follow each

other, and if they discover a better solution for the food source location, the location of

the salp follower is considered the new location of the food source.

68 H. Jamali et al.

4.1 The Task Scheduling Problem in the Cloud Area

The task scheduling problem in the cloud is allocating the settings of tasks to a set of

sources. We have assumed a set of n tasks, T = (T1.T2.T3. · · · .Tn), and of m sources,

which are virtual machines in targeted source research, V = (V1.V2.V3. · · · .Vm). The

set of T includes the tasks which should be scheduled. Each task should be processed

by virtual machines so that the completion time of all tasks is minimized as much as

possible.

The main goal of task scheduling is to allocate optimally to the sources so that the

lowest completion time of the tasks (i.e., makespan) and the lowest cost is obtained. The

makespan shows the total required time for implementing all the tasks. The main goal

of our research is to minimize the makespan using the modied SSA.

4.2 The Proposed Coding Method

Assume that an array of 200 tasks exists and each task has a value between 1–15. For

example, if the second value of this array is 4, it shows that task 2 has been allocated to

the virtual machine 4 and, if the seventh value of the array is 14, it means that, task 7 has

been allocated to the virtual machine 14. Similarly, all the tasks T1 to T200 are allocated

to virtual machines V1–V15. In Fig. 3, an example of allocating tasks to virtual machines

is depicted.

Fig. 3. Allocation of tasks to virtual machines.

In the suggested algorithm, solutions are shown by a salp chains. Each solution of

the suggested algorithm is shown by an array of natural numbers. The locations of all

salps are stored in a 2-dimensional matrix named x. For instance, in a problem with n

tasks and m virtual machines, the rows of a two-dimension matrix are considered as the

number of the salp population. It means that the location of each salp is restored in a

row of a matrix. The columns of the matrix are equal to n. Also, the content of each cell

of the array shows the virtual machine number, which can be a number between 1 to m.

Figure 4 shows an example of a salp.

Fig. 4. An example of a salp.

To begin thework, this salp can be produced as a desired numberwhere this number is

the same as the primary population of the algorithm that is adjusted. First, the population

A Schedule of Duties in the Cloud Space 69

is randomly generated and stored in a two-dimensionalmatrixwhere its rows are identical

to the number of salps and its columns equal to those of tasks identied for the scheduling.

After generating the primary population of salps in the range of the problem answer,

the tness of all salps is assessed by all salps and the salp with the best tness is

determined. In this algorithm, it is assumed that a food source named F exits in a search

space as a swarm target that all salps try to move towards it.

In the rst stage of this algorithm, the location of the best generated salp (the best

solution) is considered as the food source.

In the next stage of this algorithm, the salps are divided into two groups of leaders and

followers. The number of salps is considered as the leader salp group and the remaining

as the follower one. In the proposed algorithm, 50% of salps are considered as the leader

group and the remaining 50% as followers. The location of the leader group is updated

by Eq. 5.

xij = Fj + αRandn() (5)

where xij is the location of the leader salp, i, Fj the location of the food source in the j

dimension,α the constant of the randommoving step in the range of [0, 1] that is adjusted

by the targeted problem, and Randn() a random number with a normal distribution and

determines a random step with a normal distribution for the leader group. Equation 6

updates the location of the follower group.

xij =
1

2

(

xij + xi−1
j

)

+ c1Randn() (6)

where xij is the location of the follower salp i in the j dimension. The constant c1 creates

a balance between the exploration and discovery by generating an adaptive step, and this

constant decrease consistently during the iterations; so, it leads to higher discovery in

the rst iterations and higher exploration in the end iterations if the algorithm, Randn()

is a random number with a normal distribution and determines a random step with this

distribution for the leader group. The parameter c1 is dened in Eq. 7 and is updated in

each iteration.

c1 = 2e
−

(

4l
L

)2

(7)

Here, l is the current iteration and L the maximum of iterations.

In each iteration of the algorithm, after updating, rst, the location of each salp is

explored; if each salp goes out of the search space, it returns to the borders. Next, its

tness has been assessed based on the target function; if its tness has been better than

that of the food source, the location of the desired salp has been substituted for that of

the food source.

It is noted that in the substitution of the salp location for the food source, there is a

difference between the leader group and the follower group when swapping. In the case

of the leader group, even if the tness of the leader salp and food source are identical,

the location of the leader salp is substituted for the food source, because the salps with

equal tness have different locations, and this mechanism is an effective alternative for

70 H. Jamali et al.

diversifying a search space, releasing from the local optimum, as well as discovering

accurately surrounding the existing food source.

Based on this, the population of the leader group updated its location using the

location of the food source. When the location of each leader salp group is substituted

for that of the food source, the latter group has updated its location using the new location

of the food source. Figure 5 depicts the algorithm’s pseudo-code of the optimized SSA.

The stages of the algorithm until reaching the end are continued. In the proposed

algorithm, the condition for nishing the algorithm is the number of iterations.

Initializes the salp population xi(i = 1,2, ... , n) considering ub and lb

Calculate the fitness of each search agent(salp) from the fitness function.

F= the best search agent(salp)

Initialize α

While (end condition is not satisfied)

Update c1 by Eq. (7)

For each salp (xi)

If (i<=N* 0.5)

Update the position of the leading salp by Eq. (5)

Amend the sales based on the upper and lower bounds of variables.

Calculate the fitness of the leading salp from the fitness function.

If (the fitness of the leading salp <= the fitness of the F)

F= position of the leading salp

End If

else

Update the position of the follower salp by Eq. (6)

Amend the salps based on the upper and lower bounds of variables.

Calculate the fitness of the follower salp from the fitness function.

If (the fitness of the follower salp < the fitness of the F)

F= position of the follower salp

End If

End If

End For

End While

returnF

Fig. 5. The pseudo-code of the modied SSA.

5 Fitness Function

The main goal of this research is to minimize the makespan, one of the most important

targets for the task scheduling problem in the cloud areas. An example of task samples

and task sizes is given in Table 1 and another is shown in Table 2 for virtual machines

and the processor speed as individual values.

Table 1. An example of the tasks and their size.

Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Size 18 15 19 24 33 41 22 12 30 16 13 32

We aim to reduce the completion time of tasks in this research. This time duration is

the longest completion time among virtual machines. If we consider Ti as the task size

A Schedule of Duties in the Cloud Space 71

Table 2. An example of virtual machines and their speed.

Virtual machine number 1 2 3 4 5

Processor speed 3.4 2.4 3.2 1.8 2.2

of i and Cj as the processor speed of the virtual machine j, we can obtain the makespan

i from Eq. 8.

texe(i.j) = Ti/Cj (8)

According to the allocated tasks for each resource and the length of desired tasks,

there has been a completion time for tasks relative to the processor speed of the virtual

machine for each of them.

For instance, assume that the tasks T3, T6, T10, T8 are allocated to virtual machine 2,

the makespan of each task delivered to virtual machine 2 can be calculated as follows:

texe(3.2) =
19

2.4
= 7.9 texe(6.2) =

41

2.4
= 17.1

texe(10.2) =
16

2.4
= 6.7 texe(8.2) =

12

2.4
= 5

So, the completion time of tasks calculated on virtual machine 2 is:

tcomplete(2) = 7.9+ 17.1+ 6.7+ 5 = 36.7

Similarly, the times for all virtual machines can be computed from the assigned tasks.

The longest completion time of tasks amongst that for all virtual machines is calculated

by Eq. 9:

Makespan = Max
{

tcomplete(j)
}

1 ≤ j ≤ m (9)

In Eq. 9, tcomplete(j) shows the completion time of tasks allocated to the virtual

machine j. Minimizing Eq. 9 (i.e., the completion time of all tasks (makespan)) is the

main target of this research.

6 Simulation and Results

In this section, the performance of the proposed algorithm (Modied salp Swarm Algo-

rithm) is evaluated for solving the task scheduling problem in the cloud area and com-

pared with other algorithms such as Standard salp Swarm Algorithm (SSA), Ant Colony

Optimization (ACOr), Particle SwarmOptimization (PSO), andGeneticAlgorithm (GA)

in multiple scenarios [17]. MATLAB software has been used for simulation. The param-

eters and their initial values of the compared algorithms have been given in Table 3 and

their description in Table 4. The simulation was run for four scenarios with parameters

shown in Table 5 and the ndings of each scenario are depicted in Fig. 6 using associated

the chart.

72 H. Jamali et al.

Table 3. Parameters and the initial values of the compared algorithms.

Algorithm Parameters and the initial values of the algorithms

GA nPop = 40, MaxIt = 500, pc = 0.8, pm = 0.3, mu = 0.02, nc = 32, nm = 12,

beta = 8, RWS = 0

PSO nPop = 40, MaxIt = 500, C1 = 2, C2 = 2, w = 0.7

ACO nPop = 40, MaxIt = 500, nSample = 40, q = 0.9, zeta = 0.1

SSA nPop = 40, MaxIt = 500

Modied SSA nPop = 40, MaxIt = 500, α = 0.19

Table 4. Description of parameters used for comparing the algorithms.

For all MaxIt = Maximum Number of Iterations nPop = Population Size

GA Pc = Crossover Percentage nc = Number of Offsprings (Parnets)

pm = Mutation Percentage nm = Number of Mutants mu = Mutation Rate

beta = Roulette Wheel Selection (RWS) Pressure RWS = 0 or 1

PSO c1 = Personal Learning Coefcient w = Inertia Weight c2 = Global Learning

Coefcient

ACOR nSample = Archive Size, q = Intensication Factor (Selection Pressure) zeta

= Deviation-Distance Ratio

Modied SSA α = Random step coefcient

Table 5. Parameters of the scenarios.

Scenario The number of virtual machines The number of tasks

First 10 150-200-250-300

Second 15 150-200-250-300

Third 20 150-200-250-300

Fourth 25 150-200-250-300

In the experiments, all algorithms used a number of 40 primary populations and a

maximum of 500 iterations. Each scenario was run 20 times to obtain the results. The

primary objective was to examine and minimize the makespan measure across different

scenarios.

The results of our simulation study using an Modied Salp Swarm Algorithm

(MSSA) for scheduling cloud computing tasks have been analyzed and compared with

other well-known optimization algorithms, specically the Standard salp Swarm Algo-

rithm (SSA), (ACOr), (PSO), and (GA). The simulation results demonstrate that the

proposed MSSA algorithm outperforms other algorithms in terms of task completion

time.

A Schedule of Duties in the Cloud Space 73

Table 6. Data results of the rst scenario.

No. of Tasks

Algorithm

300 250 200 150

SSA 308.00 258.34 212.50 156.15

ACOr 282.69 236.85 192.44 144.69

PSO 275.05 230.64 186.71 139.91

GA 271.71 226.82 184.80 138.48

Average 284.36 238.16 194.61 144.80

STD 16.4148 14.07 12.68 8.014

MSSA 269.80 225.39 182.41 136.09

Average

Improvement in MSSA

5.40% 5.66% 6.68% 6.40%

Fig. 6. Performance output for the four scenarios, comparingMSSAwith other algorithms;MSSA

shows lower calculation amount, which is desirable as lower values indicate improved efciency

in minimizing makespan for cloud computing task scheduling.

As shown in Table 6, the MSSA algorithm achieved an average completion time

that was 5.40%, 5.66%, 6.68%, and 6.40% better than the average completion time

of SSA, ACOr, PSO, and GA, respectively. Furthermore, the standard deviation of the

MSSA algorithm was lower than that of other algorithms, indicating more consistent

performance. The ndings of this study provide valuable insights into the efciency

of different optimization algorithms for scheduling cloud computing tasks. The MSSA

algorithm has shown substantial potential in reducing task completion time and improv-

ing the overall performance of cloud computing systems. Therefore, it can be concluded

74 H. Jamali et al.

that the MSSA algorithm can be a useful tool for scheduling cloud computing tasks in

real-world scenarios.

7 Conclusion

The results from the stated scenarios show that the proposed algorithm had better per-

formance compared to the other algorithms to solve the task scheduling problem in all

four scenarios of cloud computing.

The results show that the makespan is reduced by increasing the number of virtual

machines and vice versa. They also indicate that the optimized salp swarm algorithm

has increased performance compared to the basic one. The outputs of all scenarios were

similar and the MSSA is better in all case. As a result, the suggested method has shown

better performance in all scenarios to solve the task scheduling problem in the cloud

computing domain.

In addition, the ndings of this study provide valuable insights into the efciency

of different optimization algorithms for scheduling cloud computing tasks. The MSSA

algorithm has shown substantial potential in reducing task completion time and improv-

ing the overall performance of cloud computing systems. Therefore, it can be concluded

that the MSSA algorithm can be a useful tool for scheduling cloud computing tasks in

real-world scenarios.

Overall, while the study’s results demonstrate the effectiveness of the MSSA algo-

rithm in reducing task completion time and improving the overall performance of cloud

computing systems, it is important to consider the limitations and scope of the study’s

ndings. Future work could explore alternative performance metrics, evaluate the algo-

rithm’s robustness and scalability, and investigate its suitability for different cloud

computing scenarios.

Acknowledgment. This material is based in part upon work supported by the National Science

Foundation under grant #DUE-2142360. Any opinions, ndings, and conclusions or recommen-

dations expressed in this material are those of the authors and do not necessarily reect the views

of the National Science Foundation.

References

1. Mosadegh, E., Ashra, K., Motlagh, M.S., Babaeian, I.: Modeling the regional effects of

climate change on future urban ozone air quality in Tehran, Iran. arXiv: abs/2109.04644

(2021)

2. Jamali, H., Karimi, A., Haghighizadeh, M.: A new method of cloud-based computation

model for mobile devices: energy consumption optimization in mobile-to-mobile compu-

tation ofoading. In: Proceedings of the 6th International Conference on Communications

and Broadband Networking, pp. 32–37. Presented at Singapore (2018). https://doi.org/10.

1145/3193092.3193103

3. Chen, H., Wang, F.Z., Helian, N., Akanmu, G.: User-priority guided Min-Min scheduling

algorithm for load balancing in cloud computing. In: 2013 National Conference on Parallel

Computing Technologies (PARCOMPTECH), pp. 1–8 (2013)

A Schedule of Duties in the Cloud Space 75

4. Sehgal, N.K., Bhatt, P.C.P.: Cloud Computing: Concepts and Practices. Springer, Cham

(2018). https://doi.org/10.1007/978-3-319-77839-6

5. Sun, H., Chen, S.-P., Jin, C., Guo, K.: Research and simulation of task scheduling algorithm in

cloud computing. TELKOMNIKA Indonesian J. Electr. Eng. 11, 6664–6672 (2013). https://

doi.org/10.11591/telkomnika.v11i11.3513

6. Akilandeswari, P., Srimathi, H.: Survey and analysis on task scheduling in cloud environment.

Indian J. Sci. Technol. 9(37), 1–6 (2016). https://doi.org/10.17485/ijst/2016/v9i37/102058

7. Singh, A.B., Bhat, S., Raju, R., D’Souza, R.: A comparative study of various scheduling

algorithms in cloud computing. Am. J. Intell. Syst. 7(3), 68–72 (2017). https://doi.org/10.

5923/j.ajis.20170703.06

8. Lavanya, M., Shanthi, B., Saravanan, S.: Multi objective task scheduling algorithm based on

SLA and processing time suitable for cloud environment. Comput. Commun. 151, 183–195

(2020)

9. Mansouri, N., Javidi, M.M.: Cost-based job scheduling strategy in cloud computing environ-

ments. Distrib. Parallel Databases 38, 365–400 (2020). https://doi.org/10.1007/s10619-019-

07273-y

10. Zubair, A.A., et al.: A cloud computing-basedmodied symbiotic organisms search algorithm

(AI) for optimal task scheduling. Sensors 22(4), 1674 (2022). https://doi.org/10.3390/s22

041674

11. Rajakumari, K., Kumar, M.V., Verma, G., Balu, S., Sharma, D.K., Sengan, S.: Fuzzy based

Ant Colony Optimization scheduling in cloud computing. Comput. Syst. Sci. Eng. 40(2),

581–592 (2022)

12. Ghazipour, F., Mirabedini, S.J., Harounabadi, A.: Proposing a new job scheduling algorithm

in grid environment using a combination of Ant Colony Optimization Algorithm (ACO) and

Suffrage. Int. J. Comput. Appl. Technol. Res. 5(1), 20–25 (2016)

13. Sharma, S., Tyagi, S.: A survey on heuristic approach for task scheduling in cloud computing.

Int. J. Adv. Res. Comput. Sci. 8, 1089–1092 (2017)

14. Mapetu, J.P., Chen, Z., Kong, L.: Low-time complexity and low-cost binary particle swarm

optimization algorithm for task scheduling and load balancing in cloud computing. Appl.

Intell. 49, 3308–3330 (2019)

15. Saeedi, S., Khorsand, R., Ghandi Bidgoli, S., Ramezanpour, M.: Improved many-objective

particle swarm optimization algorithm for scientic workow scheduling in cloud computing.

Comput. Ind. Eng. 147, 159–187 (2020)

16. Rajagopalan, A., Modale, D.R., Senthilkumar, R.: Optimal scheduling of tasks in cloud com-

puting using hybrid rey-genetic algorithm. In: Satapathy, S.C., Raju, K.S., Shyamala, K.,

Krishna, D.R., Favorskaya, M.N. (eds.) ICETE 2019. LAIS, vol. 4, pp. 678–687. Springer,

Cham (2020). https://doi.org/10.1007/978-3-030-24318-0_77

17. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm

Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114,

163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

