)

Check for
updates

A Schedule of Duties in the Cloud Space Using
a Modified Salp Swarm Algorithm

Hossein Jamali, Ponkoj Chandra Shill, David Feil-Seifer, Frederick C. Harris Jr.,
and Sergiu M. Dascalu®)

Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
{hossein.jamali, ponkoj}@nevada.unr.edu, {dave, fred.harris,
dascalus}@cse.unr.edu

Abstract. Cloud computing is a concept introduced in the information technology
era, with the main components being the grid, distributed, and valuable computing.
The cloud is being developed continuously and, naturally, comes up with many
challenges, one of which is scheduling. A schedule or timeline is a mechanism
used to optimize the time for performing a duty or set of duties. A scheduling
process is accountable for choosing the best resources for performing a duty. The
main goal of a scheduling algorithm is to improve the efficiency and quality of the
service while at the same time ensuring the acceptability and effectiveness of the
targets. The task scheduling problem is one of the most important NP-hard issues
in the cloud domain and, so far, many techniques have been proposed as solutions,
including using genetic algorithms (GAs), particle swarm optimization, (PSO),
and ant colony optimization (ACO). To address this problem, in this paper one of
the collective intelligence algorithms, called the Salp Swarm Algorithm (SSA),
has been expanded, improved, and applied. The performance of the proposed
algorithm has been compared with that of GAs, PSO, continuous ACO, and the
basic SSA. The results show that our algorithm has generally higher performance
than the other algorithms. For example, compared to the basic SSA, the proposed
method has an average reduction of approximately 21% in makespan.

Keywords: Cloud Computing - Task Scheduling - Salp Swarm Algorithm

1 Introduction

Today, modern computing methods have attracted the attention of researchers in many
fields such as cloud computing, artificial intelligence, and machine learning by using
techniques including artificial neural networks in building air quality prediction models
that can estimate the impact of climate change on future summer trends [1]. A compu-
tational science algorithm is used in this article to determine the schedule of duties in
the cloud.

Cloud computing has brought about the availability of tools that provide extensive
computing resources on the internet platform. Users can submit their requests for various
resources, such as CPU, memory, disk, and applications, to the cloud provider. The

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023

D. Puthal et al. (Eds.): IFIPIoT 2023, IFIP AICT 683, pp. 6275, 2023.
https://doi.org/10.1007/978-3-031-45878-1_5

A Schedule of Duties in the Cloud Space 63

provider then offers the most suitable resources, which meet the user’s requirements and
offer benefits to the resource owners, based on the price that they can afford to pay [2].
In cloud computing, the main entities are users, resource providers, and a scheduling
system whose main body has been proposed for the users’ tasks and timeline strategy
[3].

Cloud computing consumers rent infrastructure from third-party providers instead of
owning it. They opt for this to avoid extra costs. Providers typically use a “pay-as-you-
go0” model, allowing customers to meet short-term needs without long-term contracts,
thus reducing costs [4].

Behind the numerous benefits of cloud computing, there are many challenges too.
The most important is the task scheduling problem or resource allocation to the users’
requests. The targets of task scheduling in cloud computing are to provide operating
power, the optimal timeline for users, and service quality simultaneously. The specific
targets related to scheduling are load balance, service quality, economic principles, the
best execution time, and the operating power of the system [5]. Cloud computing has
three timelines: resources, workflow, and tasks. Resource scheduling involves mapping
virtual resources to physical machines. Workflow scheduling ensures the orderly flow
of work. Task scheduling assigns tasks to virtual resources. Task scheduling methods
can be concentrated or distributed, homogeneous or heterogeneous, and performed on
dependent or independent tasks.

Task scheduling in cloud computing has two types based on the characteristic of the
tasks:

e Static: In static scheduling, the tasks reach the processor simultaneously and are
scheduled on accessible resources. The scheduling decisions are made before reaching
the tasks and the processing time after doing the entire run of duty is updated. This
type of scheduling is mostly employed for tasks that are sent continuously [6]; and

e Dynamic: In dynamic scheduling, the number of tasks, the location of the virtual
machines, and the method for resource allocation are not constant, and the input time
of tasks before sending them is unknown [6].

Scheduling the mechanism of dynamic algorithms compared to static algorithms
is better but the overhead of the dynamic algorithm is quite significant [7]. Dynamic
scheduling can be done in two ways; in batch and online modes. In batch mode, the
tasks are lying in a line, gathered in a set, and after a certain time, scheduled. In the
online mode, when the tasks reach the system, they are scheduled [6].

The task scheduling problem in cloud computing focuses on efficiently distribut-
ing tasks among machines to minimize completion time [8]. Proper task arrangement
has numerous benefits, including reduced energy consumption, increased productiv-
ity, improved distribution across machines, shorter task waiting times, decreased delay
penalties, and overall faster task completion [9].

The task scheduler plays a crucial role in efficiently scheduling computing actions
and logically allocating computing resources in laaS cloud computing. Its objective is to
assign tasks to the most suitable resources to achieve specific goals. Selecting an appro-
priate scheduling algorithm is essential to enhance resource productivity while maintain-
ing a high quality of service (QoS). Task scheduling involves optimizing the allocation

64 H. Jamali et al.

of subtasks to virtual servers in order to accomplish the task schedule’s objective. This
area of research continues to receive significant attention [10].

Efficient task planning in cloud computing is essential to minimize fetch time, wait-
ing time, computing time, and resource usage. Task scheduling is crucial for maxi-
mizing cloud productivity, meeting user needs, and enhancing overall performance. Its
primary goal is to manage and prioritize tasks, reducing time and preventing work fail-
ures while meeting deadlines. Task scheduling optimizes the cloud computing system
for improved calculation benefits, high performance, and optimal machine output. The
scheduling algorithm distributes work among processors to maximize efficiency and
minimize workflow time [11].

The rest of this paper is organized as follows: Sect. 2 covers related work; Sect. 3 pro-
vides details of the SDSA optimization algorithm; Sect. 4 describes our proposed method,
including the expansion and improvement of the salp algorithm; Sect. 5 focuses on the
algorithm’s target, the fitness function; Sect. 6 presents the results of our simulation;
and, finally, Sect. 7 contains the conclusions of our work.

2 Related Works

Ghazipour et al. [12] have proposed a task scheduling algorithm so the tasks existing
in the grid are allocated to accessible resources. This algorithm is based on the ACO
algorithm, which is mixed with the scheduling algorithm right to choose so that its results
are used in the ACO algorithm. The main goal of their article is to minimize the total
finish time (makespan) for setting up tasks that have been given [12].

In their research on task scheduling in cloud computing, Sharma and Tyagi [13]
examined nine heuristic algorithms. They conducted comparative analyses based on
scheduling parameters, simulation tools, observation domain, and limitations. The results
indicated the existence of a heuristic approach that satisfies all the required parameters.
However, considering specific parameters such as waiting time, resource utilization, or
makespan for each task or workflow individually can lead to improved performance.
[13].

In 2019, Mapetu et al. [14] researched the “binary PSO algorithm for scheduling
the tasks and load power in cloud computing”. They introduced a binary version of the
PSO algorithm named BPSO with lower complexity and cost for scheduling the tasks
and load power in cloud computing, to minimize waiting time, and imbalance degree
while minimizing resource use. The results showed that the proposed algorithm presents
greater task scheduling and load power than existing heuristic algorithms [14].

Saeedi et al. [15] studied the development of the multi-target model of PSO for
scheduling the workflow in the cloud areas. They proposed an approach for solving
the scheduling problem considering four contrasting goals (i.e., minimizing the cost,
waiting time, energy consumption, and maximizing reliability). The results showed
that the proposed approach had a better performance compared to LEAF and EMS-C
algorithms [15].

Zubair et al. [10] presented an optimal task scheduling method using the modified
symbiotic organisms search algorithm (G_SOS) and aimed to minimize the makespan
of the tasks, costs, response time, and imbalance degree, and improve the convergence

A Schedule of Duties in the Cloud Space 65

speed. The performance of the proposed method using CloudSim (a simulator tool) was
evaluated and according to the simulation results, the proposed technique has better
performance than the SOS and PSO-Simulated Annealing (PSO-SA) in terms of the
convergence speed, cost, imbalance degree, response time, and makespan. The findings
confirm the suggested G_SOS approach [10].

Rajagopalan et al. [16] introduced an optimal task-scheduling method that combines
the firefly optimization algorithm with a genetics-based evolutionary algorithm. This
hybrid algorithm creates a powerful collective intelligence search algorithm. The pro-
posed method excels in minimizing the makespan for all tasks and quickly converges
to near-optimal solutions. The results demonstrated that this hybrid algorithm outper-
formed traditional algorithms like First in, First Out (FIFO) and genetics. However, a
potential drawback of this method is the increased overload resulting from the sequential
use of two algorithms [16].

3 SSA Optimization Algorithm

This section briefly describes the SSA optimization algorithm proposed by Mirjalini Al
which is an extension of the standard SSA algorithm [17]. salps are a type of Salpidae
family and have a transparent and barrel-shaped body. Their bodies are very similar to
jellyfish. They still move the same as jellyfish, and water is pumped from the middle of
the body as a motive force to move forward [17]. The shape of salp is shown in Fig. 1(a).

The biological study of these animals is just starting because it is so difficult to
capture them and maintain them in laboratories. One of the most intriguing habits of
salps is their tendency to swarm. The salps commonly form a chain in the deep oceans.
This chain is shown in Fig. 1(b). Although the primary cause of this behavior is unknown,
some researchers think that it is carried out through quick coordinated movements and
searches to achieve improved movement [17].

Al PYIEW

\
(@) ()

Fig. 1. (A) lustration of a salp. (B) Salp chain structure. [17].

To model mathematically the salp chains, first, the population is divided into two
groups: leaders and followers. The leader is in front of the chain, while the remaining

66 H. Jamali et al.

are considered the followers. As seen from their names, the leader guides the group and
the followers follow each other [17].

Like other techniques based on the swarm, the location of salps in a search space is
n-dimensional, where n is the number of variables in a problem and known; therefore,
the location of all salps is stored in the two-dimensional matrix x. Also, it is assumed
that a food source, F, exists in the search space as a swarm target [17].

Equation 1 has been proposed for updating the location of the leader as follows:

=)

o= {Fj + ¢y ((ubj — lbj)C2 + lbj) c3>0
J F; —ci ((ubj — lbj)cz + lbj) c3 <0

where x! shows the location of the first salp (leader) in the j dimension, F j 1s the location
of the food source in the j dimension, ub; identifies the upper boundary of the j dimension,
Ib; identifies the lower boundary of the j dimension, and cy, ¢ and c3 are random numbers
(between 0,1) [17].

Equation 1 shows that the leader just updates its location according to the food
source. The c; the constant is the most important parameter in the SSA because it
creates a balance between exploration and detection and is defined as Eq. 2:

o =20 (1) ®)

Here, [is the current iteration and L is the maximum iteration.

The parameters of ¢, and c¢3 are the random numbers which are uniformly produced
in the range [0.1]. They determine if the latter location in the j dimension should be
infinite positive or infinite negative, as well as determine the step size.

To update the followers’ location, Eq. 3 is used (Newton’s law of motion):

Xl = lat2+v t (3)
j_2 0

Ifi > 2, xJ’.' shows a salp follows the i location in the j dimension, ¢ is the time,

and vy is the initial velocity; a = Vﬁv—'(’)"’ and v = ==, Since the time is iterated in the
optimization, the difference between the iterations is equal to 1 and, considering vo = 0,

this relation is expressed as Eq. 4.

x; = %(le + x;_l) 4)
Here, i > 2 and x} shows a salp follows the i location in the j dimension.

The salp chains can be simulated by Eqs. 1 and 4. In the SSA model, the followers
follow the salp leader. The leader also moves towards the food source; therefore, if
the food source is substituted for the global optimization, the salp chain automatically
moves towards it. However, there is a problem that global optimization is unknown in
the optimization problems. In this way, it is assumed that the best solution obtained so
far is the global optimum, which is assumed as a food source for following the salp
chain.

A Schedule of Duties in the Cloud Space 67

The pseudo-code for the SSA algorithm is shown in Fig. 2 [17]. This figure shows
that the SSA algorithm begins the global optimum by starting several salps at random
locations. Then, each fitting related to the salps are calculated and the location where
they have acquired the best fitting is allocated to the variable F’ as a food source followed
by the salp chain. Meanwhile, the value of ¢ constant is updated by Eq. 2. For every
dimension, the location of the leader is updated by relation 1 and that of the followers
by Eq. 4. If each salp goes out of the search space, they are returned to the border again.
All the mentioned stages except for the initial value are iterated till consent is obtained.

The computing complexity of the SSA algorithm is considered
as O(t(d = n + Cof % n)) where t shows the number of iterations, d is that of variables
(dimension), n is that of solutions, and Cof is a target cost of the function.

Initializes the salp population x; 1= 1,2, ..., n) considering ub and [b
While (end condition is not satisfied)
Calculate the fitness of each search agent(salp)
F= the best search agent(salp)
Update c; by Eq. (2)
Sor each salp (x;)

If (i==1)
Update the position of the leading salp by Eq. (1)
else
Update the position of the, follower salp by Eq. (4)
end
end
Amend the salps based on the upper and lower bounds of variables.
end
returnF’

Fig. 2. Pseudo-code of the salp swarm algorithm. [17].

4 Proposed Method

Our proposed method for scheduling the tasks of the virtual machines in the cloud
computing area uses an optimized SSA based on the fitness function. First, a set of
random answers created is assigned as the initial population. Each member of this set
is called a salp. In the first stage, the fitness of salps produced randomly is calculated
by the target function and the best slap is chosen among all salps and its location is
determined by the location of the food source. In the following, the salps move towards
the food source until they achieve the best food source (i.e., solution). In this algorithm,
each salp is represented as a solution that moves for searching based on a mechanism in
the problem space. In the suggested method, the salps are divided into two groups, the
leaders and the followers. One group of salps named leader salps updates its location
according to the food source and tries to move towards the existing food source and
discover a better solution. If they find a better solution than the existing food source, the
location of the leader salp is considered as its new location. The group salps follow each
other, and if they discover a better solution for the food source location, the location of
the salp follower is considered the new location of the food source.

68 H. Jamali et al.

4.1 The Task Scheduling Problem in the Cloud Area

The task scheduling problem in the cloud is allocating the settings of tasks to a set of
sources. We have assumed a set of n tasks, T = (T1.7T>.T3.--- .T,), and of m sources,
which are virtual machines in targeted source research, V = (V1.V52.V3.--- .Vy,). The
set of T includes the tasks which should be scheduled. Each task should be processed
by virtual machines so that the completion time of all tasks is minimized as much as
possible.

The main goal of task scheduling is to allocate optimally to the sources so that the
lowest completion time of the tasks (i.e., makespan) and the lowest cost is obtained. The
makespan shows the total required time for implementing all the tasks. The main goal
of our research is to minimize the makespan using the modified SSA.

4.2 The Proposed Coding Method

Assume that an array of 200 tasks exists and each task has a value between 1-15. For
example, if the second value of this array is 4, it shows that task 2 has been allocated to
the virtual machine 4 and, if the seventh value of the array is 14, it means that, task 7 has
been allocated to the virtual machine 14. Similarly, all the tasks 7' to Tog are allocated
to virtual machines V1—Vjs. In Fig. 3, an example of allocating tasks to virtual machines
is depicted.

Tl TZ T3 Ti TZOO
VZ V4 V14 V1 V7

Fig. 3. Allocation of tasks to virtual machines.

In the suggested algorithm, solutions are shown by a salp chains. Each solution of
the suggested algorithm is shown by an array of natural numbers. The locations of all
salps are stored in a 2-dimensional matrix named x. For instance, in a problem with n
tasks and m virtual machines, the rows of a two-dimension matrix are considered as the
number of the salp population. It means that the location of each salp is restored in a
row of a matrix. The columns of the matrix are equal to n. Also, the content of each cell
of the array shows the virtual machine number, which can be a number between 1 to m.
Figure 4 shows an example of a salp.

T T T T Ts T T Ty
l 1 1 1 1 1 1
‘ 4 ‘ 2 3 | 2 | 3

Fig. 4. An example of a salp.

To begin the work, this salp can be produced as a desired number where this number is
the same as the primary population of the algorithm that is adjusted. First, the population

A Schedule of Duties in the Cloud Space 69

israndomly generated and stored in a two-dimensional matrix where its rows are identical
to the number of salps and its columns equal to those of tasks identified for the scheduling.

After generating the primary population of salps in the range of the problem answer,
the fitness of all salps is assessed by all salps and the salp with the best fitness is
determined. In this algorithm, it is assumed that a food source named F exits in a search
space as a swarm target that all salps try to move towards it.

In the first stage of this algorithm, the location of the best generated salp (the best
solution) is considered as the food source.

In the next stage of this algorithm, the salps are divided into two groups of leaders and
followers. The number of salps is considered as the leader salp group and the remaining
as the follower one. In the proposed algorithm, 50% of salps are considered as the leader
group and the remaining 50% as followers. The location of the leader group is updated
by Eq. 5.

xj = Fj + aRandn() (5)

where x; is the location of the leader salp, i, F; the location of the food source in the j
dimension, « the constant of the random moving step in the range of [0, 1] that is adjusted
by the targeted problem, and Randn() a random number with a normal distribution and
determines a random step with a normal distribution for the leader group. Equation 6
updates the location of the follower group.

x]’: = %(xj’ + x;_l) + ciRandn() (6)
where x; is the location of the follower salp i in the j dimension. The constant ¢ creates
a balance between the exploration and discovery by generating an adaptive step, and this
constant decrease consistently during the iterations; so, it leads to higher discovery in
the first iterations and higher exploration in the end iterations if the algorithm, Randn()
is a random number with a normal distribution and determines a random step with this
distribution for the leader group. The parameter c; is defined in Eq. 7 and is updated in
each iteration.

2
c| = 2e_(%> @)

Here, [is the current iteration and L the maximum of iterations.

In each iteration of the algorithm, after updating, first, the location of each salp is
explored; if each salp goes out of the search space, it returns to the borders. Next, its
fitness has been assessed based on the target function; if its fitness has been better than
that of the food source, the location of the desired salp has been substituted for that of
the food source.

It is noted that in the substitution of the salp location for the food source, there is a
difference between the leader group and the follower group when swapping. In the case
of the leader group, even if the fitness of the leader salp and food source are identical,
the location of the leader salp is substituted for the food source, because the salps with
equal fitness have different locations, and this mechanism is an effective alternative for

70 H. Jamali et al.

diversifying a search space, releasing from the local optimum, as well as discovering
accurately surrounding the existing food source.

Based on this, the population of the leader group updated its location using the
location of the food source. When the location of each leader salp group is substituted
for that of the food source, the latter group has updated its location using the new location
of the food source. Figure 5 depicts the algorithm’s pseudo-code of the optimized SSA.

The stages of the algorithm until reaching the end are continued. In the proposed
algorithm, the condition for finishing the algorithm is the number of iterations.

Initializes the salp population x(i= 1,2, ..., n) considering ub and lb
Calculate the fitness of each search agent(salp) from the fitness function.
F= the best search agent(salp)
Initialize a
While (end condition is not satisfied)
Update c; by Eq. (7)
For each salp (x;)
If (i<=N*0.5)
Update the position of the leading salp by Eq. (5)
Amend the sales based on the upper and lower bounds of variables.
Calculate the fitness of the leading salp from the fitness function.
If (the fitness of the leading salp <= the fitness of the F)
F= position of the leading salp
End If
else
Update the position of the follower salp by Eq. (6)
Amend the salps based on the upper and lower bounds of variables.
Calculate the fitness of the follower salp from the fitness function.
If (the fitness of the follower salp < the fitness of the F)
F= position of the follower salp
End If
End If
End For
End While
returnF

Fig. 5. The pseudo-code of the modified SSA.

5 Fitness Function

The main goal of this research is to minimize the makespan, one of the most important
targets for the task scheduling problem in the cloud areas. An example of task samples
and task sizes is given in Table 1 and another is shown in Table 2 for virtual machines
and the processor speed as individual values.

Table 1. An example of the tasks and their size.

Tasks T, T> T3 Ty Ts Te Ty Tg Tg T10 T11 T12
Size 18 15 19 24 33 41 22 12 30 16 13 32

We aim to reduce the completion time of tasks in this research. This time duration is
the longest completion time among virtual machines. If we consider 7; as the task size

A Schedule of Duties in the Cloud Space 71

Table 2. An example of virtual machines and their speed.

Virtual machine number 1 2 3 4 5
Processor speed 34 24 3.2 1.8 22

of i and C; as the processor speed of the virtual machine j, we can obtain the makespan
i from Eq. 8.

texe(i-j) = Ti/Cj ()

According to the allocated tasks for each resource and the length of desired tasks,
there has been a completion time for tasks relative to the processor speed of the virtual
machine for each of them.

For instance, assume that the tasks 73, T, T10, T3 are allocated to virtual machine 2,
the makespan of each task delivered to virtual machine 2 can be calculated as follows:

19 41
texe(3.2) = — =T7.9 10(62) = — =17.1

2.4 2.4
16 12
texe(10.2) = >4 =6.7 1t,(82) = 77 =5

So, the completion time of tasks calculated on virtual machine 2 is:
teomplete(2) = 7.9+ 17.1 + 6.7+ 5 = 36.7

Similarly, the times for all virtual machines can be computed from the assigned tasks.
The longest completion time of tasks amongst that for all virtual machines is calculated
by Eq. 9:

Makespan = Max{tcomplete () } l<j<m)]

In Eq. 9, fcomplere(j) shows the completion time of tasks allocated to the virtual
machine j. Minimizing Eq. 9 (i.e., the completion time of all tasks (makespan)) is the
main target of this research.

6 Simulation and Results

In this section, the performance of the proposed algorithm (Modified salp Swarm Algo-
rithm) is evaluated for solving the task scheduling problem in the cloud area and com-
pared with other algorithms such as Standard salp Swarm Algorithm (SSA), Ant Colony
Optimization (ACOr), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA)
in multiple scenarios [17]. MATLAB software has been used for simulation. The param-
eters and their initial values of the compared algorithms have been given in Table 3 and
their description in Table 4. The simulation was run for four scenarios with parameters
shown in Table 5 and the findings of each scenario are depicted in Fig. 6 using associated
the chart.

72 H. Jamali et al.

Table 3. Parameters and the initial values of the compared algorithms.

Algorithm Parameters and the initial values of the algorithms

GA nPop = 40, MaxIt = 500, pc = 0.8, pm = 0.3, mu = 0.02, nc = 32, nm = 12,
beta =8, RWS =0

PSO nPop = 40, MaxIt =500,C1 =2,C2=2,w=0.7

ACO nPop = 40, MaxIt = 500, nSample = 40, q = 0.9, zeta = 0.1

SSA nPop = 40, MaxIt = 500

Modified SSA | nPop = 40, MaxIt = 500, o = 0.19

Table 4. Description of parameters used for comparing the algorithms.

For all MaxIt = Maximum Number of Iterations nPop = Population Size

GA Pc = Crossover Percentage nc = Number of Offsprings (Parnets)
pm = Mutation Percentage nm = Number of Mutants mu = Mutation Rate
beta = Roulette Wheel Selection (RWS) Pressure RWS =0 or 1

PSO cl = Personal Learning Coefficient w = Inertia Weight c2 = Global Learning
Coefficient

ACOR nSample = Archive Size, q = Intensification Factor (Selection Pressure) zeta
= Deviation-Distance Ratio

Modified SSA | a = Random step coefficient

Table 5. Parameters of the scenarios.

Scenario The number of virtual machines The number of tasks

First 10 150-200-250-300

Second 15 150-200-250-300

Third 20 150-200-250-300

Fourth 25 150-200-250-300

In the experiments, all algorithms used a number of 40 primary populations and a
maximum of 500 iterations. Each scenario was run 20 times to obtain the results. The
primary objective was to examine and minimize the makespan measure across different

scenarios.

The results of our simulation study using an Modified Salp Swarm Algorithm
(MSSA) for scheduling cloud computing tasks have been analyzed and compared with
other well-known optimization algorithms, specifically the Standard salp Swarm Algo-
rithm (SSA), (ACOr), (PSO), and (GA). The simulation results demonstrate that the
proposed MSSA algorithm outperforms other algorithms in terms of task completion

time.

A Schedule of Duties in the Cloud Space 73

Table 6. Data results of the first scenario.

No. of Tasks 300 250 200 150
Algorithm
SSA 308.00 258.34 212.50 156.15
ACOr 282.69 236.85 192.44 144.69
PSO 275.05 230.64 186.71 139.91
GA 271.71 226.82 184.80 138.48
Average 284.36 238.16 194.61 144.80
STD 16.4148 14.07 12.68 8.014
MSSA 269.80 225.39 182.41 136.09
Average 5.40% 5.66% 6.68% 6.40%
Improvement in MSSA
Evaluation Criteria: Makespan Evaluation Criteria: Makespan
s ¢ I — ... ¢
3 v I — £ o
Evaluation Criteria: Makespan Evaluation Criteria; Makespan
A ———— S e —

Fig. 6. Performance output for the four scenarios, comparing MSS A with other algorithms; MSSA
shows lower calculation amount, which is desirable as lower values indicate improved efficiency
in minimizing makespan for cloud computing task scheduling.

As shown in Table 6, the MSSA algorithm achieved an average completion time
that was 5.40%, 5.66%, 6.68%, and 6.40% better than the average completion time
of SSA, ACOr, PSO, and GA, respectively. Furthermore, the standard deviation of the
MSSA algorithm was lower than that of other algorithms, indicating more consistent
performance. The findings of this study provide valuable insights into the efficiency
of different optimization algorithms for scheduling cloud computing tasks. The MSSA
algorithm has shown substantial potential in reducing task completion time and improv-
ing the overall performance of cloud computing systems. Therefore, it can be concluded

74 H. Jamali et al.

that the MSSA algorithm can be a useful tool for scheduling cloud computing tasks in
real-world scenarios.

7 Conclusion

The results from the stated scenarios show that the proposed algorithm had better per-
formance compared to the other algorithms to solve the task scheduling problem in all
four scenarios of cloud computing.

The results show that the makespan is reduced by increasing the number of virtual
machines and vice versa. They also indicate that the optimized salp swarm algorithm
has increased performance compared to the basic one. The outputs of all scenarios were
similar and the MSSA is better in all case. As a result, the suggested method has shown
better performance in all scenarios to solve the task scheduling problem in the cloud
computing domain.

In addition, the findings of this study provide valuable insights into the efficiency
of different optimization algorithms for scheduling cloud computing tasks. The MSSA
algorithm has shown substantial potential in reducing task completion time and improv-
ing the overall performance of cloud computing systems. Therefore, it can be concluded
that the MSSA algorithm can be a useful tool for scheduling cloud computing tasks in
real-world scenarios.

Overall, while the study’s results demonstrate the effectiveness of the MSSA algo-
rithm in reducing task completion time and improving the overall performance of cloud
computing systems, it is important to consider the limitations and scope of the study’s
findings. Future work could explore alternative performance metrics, evaluate the algo-
rithm’s robustness and scalability, and investigate its suitability for different cloud
computing scenarios.

Acknowledgment. This material is based in part upon work supported by the National Science
Foundation under grant #DUE-2142360. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

1. Mosadegh, E., Ashrafi, K., Motlagh, M.S., Babaeian, I.: Modeling the regional effects of
climate change on future urban ozone air quality in Tehran, Iran. arXiv: abs/2109.04644
(2021)

2. Jamali, H., Karimi, A., Haghighizadeh, M.: A new method of cloud-based computation
model for mobile devices: energy consumption optimization in mobile-to-mobile compu-
tation offloading. In: Proceedings of the 6th International Conference on Communications
and Broadband Networking, pp. 32-37. Presented at Singapore (2018). https://doi.org/10.
1145/3193092.3193103

3. Chen, H., Wang, F.Z., Helian, N., Akanmu, G.: User-priority guided Min-Min scheduling
algorithm for load balancing in cloud computing. In: 2013 National Conference on Parallel
Computing Technologies (PARCOMPTECH), pp. 1-8 (2013)

10.

11.

12.

13.

14.

15.

16.

17.

A Schedule of Duties in the Cloud Space 75

. Sehgal, N.K., Bhatt, PC.P.: Cloud Computing: Concepts and Practices. Springer, Cham

(2018). https://doi.org/10.1007/978-3-319-77839-6

. Sun, H., Chen, S.-P, Jin, C., Guo, K.: Research and simulation of task scheduling algorithm in

cloud computing. TELKOMNIKA Indonesian J. Electr. Eng. 11, 6664—-6672 (2013). https://
doi.org/10.11591/telkomnika.v11i11.3513

Akilandeswari, P., Srimathi, H.: Survey and analysis on task scheduling in cloud environment.
Indian J. Sci. Technol. 9(37), 1-6 (2016). https://doi.org/10.17485/ijst/2016/v9i37/102058

. Singh, A.B., Bhat, S., Raju, R., D’Souza, R.: A comparative study of various scheduling

algorithms in cloud computing. Am. J. Intell. Syst. 7(3), 68-72 (2017). https://doi.org/10.
5923/j.ajis.20170703.06

. Lavanya, M., Shanthi, B., Saravanan, S.: Multi objective task scheduling algorithm based on

SLA and processing time suitable for cloud environment. Comput. Commun. 151, 183-195
(2020)

Mansouri, N., Javidi, M.M.: Cost-based job scheduling strategy in cloud computing environ-
ments. Distrib. Parallel Databases 38, 365-400 (2020). https://doi.org/10.1007/s10619-019-
07273-y

Zubair, A.A., etal.: A cloud computing-based modified symbiotic organisms search algorithm
(AI) for optimal task scheduling. Sensors 22(4), 1674 (2022). https://doi.org/10.3390/s22
041674

Rajakumari, K., Kumar, M.V., Verma, G., Balu, S., Sharma, D.K., Sengan, S.: Fuzzy based
Ant Colony Optimization scheduling in cloud computing. Comput. Syst. Sci. Eng. 40(2),
581-592 (2022)

Ghazipour, F., Mirabedini, S.J., Harounabadi, A.: Proposing a new job scheduling algorithm
in grid environment using a combination of Ant Colony Optimization Algorithm (ACO) and
Suffrage. Int. J. Comput. Appl. Technol. Res. 5(1), 20-25 (2016)

Sharma, S., Tyagi, S.: A survey on heuristic approach for task scheduling in cloud computing.
Int. J. Adv. Res. Comput. Sci. 8, 1089-1092 (2017)

Mapetu, J.P., Chen, Z., Kong, L.: Low-time complexity and low-cost binary particle swarm
optimization algorithm for task scheduling and load balancing in cloud computing. Appl.
Intell. 49, 3308-3330 (2019)

Saeedi, S., Khorsand, R., Ghandi Bidgoli, S., Ramezanpour, M.: Improved many-objective
particle swarm optimization algorithm for scientific workflow scheduling in cloud computing.
Comput. Ind. Eng. 147, 159-187 (2020)

Rajagopalan, A., Modale, D.R., Senthilkumar, R.: Optimal scheduling of tasks in cloud com-
puting using hybrid firefly-genetic algorithm. In: Satapathy, S.C., Raju, K.S., Shyamala, K.,
Krishna, D.R., Favorskaya, M.N. (eds.) ICETE 2019. LAIS, vol. 4, pp. 678-687. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-24318-0_77

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm
Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114,
163-191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

