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Abscisic acid (ABA) is a key plant hormone that mediates both plant
biotic and abiotic stress responses and many other developmental
processes. ABA receptor antagonists are useful for dissecting and
manipulating ABA’s physiological roles in vivo. We set out to design
antagonists that block receptor–PP2C interactions by modifying the
agonist opabactin (OP), a synthetically accessible, high-affinity scaf-
fold. Click chemistry was used to create an ∼4,000-member library of
C4-diversified opabactin derivatives that were screened for receptor
antagonism in vitro. This revealed a peptidotriazole motif shared
among hits, which we optimized to yield antabactin (ANT), a pan-
receptor antagonist. An X-ray crystal structure of an ANT–PYL10
complex (1.86 Å) reveals that ANT’s peptidotriazole headgroup is
positioned to sterically block receptor–PP2C interactions in the 4′
tunnel and stabilizes a noncanonical closed-gate receptor conformer
that partially opens to accommodate ANT binding. To facilitate
binding-affinity studies using fluorescence polarization,we synthesized
TAMRA–ANT. Equilibrium dissociation constants for TAMRA–ANT
binding to Arabidopsis receptors range from ∼400 to 1,700 pM.
ANT displays improved activity in vivo and disrupts ABA-mediated
processes in multiple species. ANT is able to accelerate seed germi-
nation in Arabidopsis, tomato, and barley, suggesting that it could
be useful as a germination stimulant in species where endogenous
ABA signaling limits seed germination. Thus, click-based diversifi-
cation of a synthetic agonist scaffold allowed us to rapidly develop
a high-affinity probe of ABA–receptor function for dissecting and
manipulating ABA signaling.

antagonist | abscisic acid | receptor | click chemistry | ligand

The phytohormone abscisic acid (ABA) controls numerous
physiological processes in plants ranging from seed devel-

opment, germination, and dormancy to responses for countering
biotic and abiotic stresses (1). ABA binds to the PYR/PYL/
RCAR (Pyrabactin Resistance 1/PYR1-like/Regulatory Component
of ABA Receptor) soluble receptor proteins (2, 3) and triggers a
conformational change in a flexible “gate” loop flanking the
ligand-binding pocket such that the ABA–receptor complex can
then bind to and inhibit clade A type II C protein phosphatases
(PP2Cs), which normally dephosphorylate and inactivate SNF1-
related protein kinase 2 (SnRK2). This, in turn, leads to SnRK2
activation, phosphorylation of downstream targets, and multiple
cellular outputs (4, 5).
Chemical modulators of ABA perception have been sought as

both research tools for dissecting ABA’s role in plant physiology
and for their potential agricultural utility (6, 7). Dozens of ABA
receptor agonists, which reduce transpiration and water use by
inducing guard cell closure, have been developed and are being
explored as chemical tools for mitigating the effects of drought
on crop yields (7–23), most of them either being analogs of ABA or
sulfonamides similar to quinabactin (24). ABA receptor antagonists

could conceivably be useful in cases where water is not limiting, for
example, to increase transpiration and gas exchange under elevated
CO2 in glasshouse agriculture, as germination stimulators, and for
studying the ABA dependence of physiological processes, among
other applications (25–31). Thus, both ABA receptor agonists and
antagonists have potential uses as research tools and for plant
biotechnology.
In principle, there are at least two mechanisms for blocking

ABA receptor activation: by preventing gate closure, which is
necessary for PP2C binding, or by sterically disrupting the activated,
closed-gate receptor conformer from binding to PP2Cs. Prior efforts
to design antagonists have focused on the latter strategy and include
multiple ABA-derived ligands such as AS6 (25), PanMe (26), 3′-alkyl
ABA (30–32), 3′-(phenyl alkynyl) ABA (33), or ligands derived from
tetralone ABA (34) with varying degrees of conformational restric-
tion (27, 28, 35). With the exception of PanMe, these antagonists have
linkers attached to the 3′ carbon of ABA or 11′ carbon of tetralone
ABA, which is positioned to disrupt receptor–PP2C interactions by
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protruding through the 3′ tunnel. PanMe was created by modifying
ABA’s C4′ (Fig. 1) with a toluylpropynyl ether substituent designed
to occupy the 4′ tunnel, a site of close receptor–PP2C contact (26).
Structural studies showed that this 4′ moiety adopts two confor-
mations, one that resides in the 4′ tunnel and another that occupies
the adjacent 3′ tunnel (26). Collectively, these elegant studies have
demonstrated that antagonists of receptor–PP2C interactions can
be designed by modifying agonists at sites situated proximal to the
3′ or 4′ tunnels. Despite these advances, current antagonists have
limitations. For example, PanMe, which has low nanomolar affinity
for the subfamily II receptor PYL5, is limited by relatively low
activity on subfamily I and III ABA receptors, and as we show here,
the ABA antagonist AA1 (36) (Fig. 1) lacks detectable antagonist
activity in vitro and is, therefore, unlikely to be a true ABA receptor
antagonist. Together, these data suggest that higher-affinity pan-
antagonists and/or molecules with increased bioavailability will be
necessary to more efficiently block endogenous ABA signaling. We
set out to address these limitations by modifying the scaffold of the
synthetic ABA agonist opabactin (OP), which has an approximately
sevenfold increase in both affinity and bioactivity relative to ABA
(21). We describe an OP derivative called antabactin (ANT) and
show that it is a high-affinity binder and antagonist of ABA re-
ceptors that disrupts ABA-mediated signaling in vivo.

Results and Discussion
Discovery of ABA Receptor Antagonists by Click Chemistry Mediated
Scaffold Elaboration. OP possesses a C4-nitrile substituent that is
superimposable with ABA’s C4′-ring ketone in ternary receptor/
ligand/complexes (21). We hypothesized that this position could
be used to design high-affinity antagonists by appending moieties
that block receptor–PP2C interactions (Fig. 2A), analogously to
C4′-modified ABA-based antagonists like PanMe (Fig. 1). To
create a library of C4-modified OP analogs, we designed OPZ,
which replaces OP’s 4-nitrile substituent with an azide that can
be diversified into OP-4-triazoles using Cu(I) catalyzed 1–3 dipolar
alkyne-azide cycloadditions (click chemistry; Fig. 2B and SI Ap-
pendix, Fig. S1A). ABA receptor activity is conveniently measured
in vitro by ligand- and receptor-dependent inhibition of clade A
PP2C phosphatase activity; antagonism of this can be measured by

the antagonist-mediated recovery of PP2C activity in the presence
of saturating ABA. Characterization of OPZ by PP2C recovery
assays showed that it is a weak partial antagonist of ABA-mediated
PP2C inhibition, indicating that it retains receptor binding activity
(SI Appendix, Fig. S2). We additionally observed that unpurified
click reactions, BTTAA ligand, Cu++, and ascorbate can all be
added to PP2C recovery assays with minimal effect on phosphatase
activity, which enables direct and rapid screening of unpurified click
reactions (SI Appendix, Fig. S2). With this assay for rapid synthesis
and screening established, we assembled a library of ∼4,000 alkynes
from commercial vendors and used these to synthesize a collection
of OP-4-triazoles in microtiter plates. The crude reactions were
assayed directly for antagonism of PYR1 activity without purifica-
tion; 204 of the reactions contained products that enabled recovery
of >90% of PP2C activity when present at a 10-fold theoretical
excess over saturating ABA (5,000 nM). The hits clustered into 10
scaffolds, although most were derived from reactions with propargyl
amides that create OP-4-peptidotriazoles (SI Appendix, Fig. S3 and
Dataset S1). The alkyne library that we screened contained 735
propargyl amides (out of 4,002 compounds in total). Of the total of
204 hits, 121 (∼59%) were propargyl amides, which indicates sig-
nificant enrichment among hits (P < 2e-38, χ2 test). To optimize
activity, we synthesized a focused library of aryl/heteroaryl prop-
argyl amides using polymer-supported chemistry to link propargyl
amine to carboxylates similar to our best hits. The resultant prop-
argyl amides were clicked against OPZ and assayed for antagonist
activity (Dataset S2). These efforts ultimately yielded a quinoline
peptidotriazole with an improved activity that we have named
antabactin (antagonist of ABA action or ANT) (Fig. 2B and SI
Appendix, Fig. S1B). In vitro pulldown assays demonstrate that ANT
disrupts ABA-mediated receptor–PP2C interactions, as expected,
based on our structure-guided design strategy (SI Appendix, Fig. S4).
To compare ANT’s activity to PanMe and AA1, we used PP2C

recovery assays in the presence of ABA using a panel of
10 Arabidopsis and eight wheat receptors that span the three
clades of angiosperm ABA receptors. These data show ANT is a
highly active pan-receptor antagonist that disrupts ABA-
mediated receptor activation at concentrations up to 50-fold
lower than ABA (Fig. 2C and SI Appendix, Fig. S5). In com-
parison to other antagonists, ANT is between 5.6- and 430-fold
more potent than PanMe and has high activity across all recep-
tors tested (Fig. 2C and SI Appendix, Fig. S5). Unexpectedly, we
observed that AA1 does not antagonize Arabidopsis, wheat, or
Brachypodium ABA receptors in vitro (Fig. 2C and SI Appendix,
Figs. S5 and S6), in contrast to previous reports (32). ANT’s
improved activity in vitro is paralleled in vivo, which we measured
by quantifying reversal of ABA-mediated inhibition of seedling
establishment (Fig. 2D and SI Appendix, Fig. S7A). In these assays,
ANT is ∼2.5- and 34-fold more potent than PanMe and AA1, re-
spectively (Fig. 2D). In addition, we note that PanMe has a complex
dose–response curve that suggests possible phytotoxicity unrelated
to ABA, since PanMe’s high-concentration growth inhibition was
also observed in the abi1-1 mutant strain (Fig. 2D and SI Appendix,
Fig. S7 B and C). Collectively, our data demonstrate that ANT is a
highly active pan-receptor ABA antagonist that disrupts signaling
by preventing receptor–PP2C interactions.

ANT Is Positioned to Block PP2C Binding. To better understand the
molecular basis of ANT’s mechanism of action, we solved the
structure of a PYL1025-183–ANT binary complex using X-ray
crystallography to a resolution of 1.80 Å. The complex crystal-
lized in the C121 space group and contained a single protomer in
the asymmetric unit. Several iterations of structural refinement
were conducted prior to modeling ANT into the PYL10 ligand-
binding pocket’s unbiased electron density (SI Appendix, Fig.
S8 A–C). A real-space correlation coefficient of 0.97 calculated
between the unbiased electron density and ANT indicates good
agreement between our model and the observed electron density.Fig. 1. Structures of ABA, PanMe, and AA1.
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A second crystal structure was also obtained at a resolution of 1.77 Å
for a quinoxaline analog 4a of ANT, and this displayed a consistent
ligand placement (SI Appendix, Fig. S8 D–F).
The structure of the ANT–PYL10 complex is broadly consis-

tent with the initial design strategy—that of OP modified to
disrupt receptor–PP2C interactions at the 4′ tunnel. The struc-
ture reveals that ANT–PYL10 interactions are stabilized by a
combination of water-mediated and direct H bonds, numerous
hydrophobic contacts, and π–π/π–cation interactions (Fig. 3A and
SI Appendix, Fig. S8). ANT’s carboxylate forms a salt bridge to
K56, makes extensive water-mediated contacts with polar resi-
dues lining PYL10’s ligand-binding pocket and hydrophobic in-
teractions with the C6 tunnel (which normally accommodates
ABA’s C6 methyl and modulates ABA binding affinity) (23)

(SI Appendix, Fig. S8G). In addition, the structure illuminates the
importance of ANT’s peptidotriazole head group to binding,
which is stabilized by a network of polar contacts between the gate
and latch loops and the peptidotriazole module and π–π/π–cation
interactions. These position ANT’s quinoline ring in the 4′ tunnel
and occlude access to the solvent-exposed pocket that would nor-
mally contact the PP2C’s Trp lock in an activated receptor–
ligand–PP2C complex (Fig. 3C). ANT’s triazole forms direct con-
tacts to amide NH of A85 of the gate loop, and ANT’s peptide
bond forms contacts with the amide NHs of R112 and L113 in the
“latch” loop. ANT’s quinoline ring system forms a π–cation inter-
action with the latch R112 guanidinium, engages in π–π stacking
interactions with F155 phenyl side chain, and forms an H bond
between R112’s guanidinium and the quinoline’s nitrogen (Fig. 3A).
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Fig. 2. Rapid discovery of 4-OP-triazole ABA receptor antagonists. (A) Comparison of agonist and antagonist mechanisms. ABA stabilizes a PYL/RCAR–PP2C
complex and inactivates PP2C activity. Antagonists that disrupt PP2C interactions block agonist-mediated PP2C inactivation. (B) Discovery of ANT using click
chemistry ligand diversification. The ABA receptor agonist OP was diversified at its C4 nitrile position to identify substituents that disrupt PP2C interactions in
the 4′ tunnel. OPZ is a C4-azido derivative of OP; OPZ was clicked against a collection of alkynes and the reactions were screened in vitro to identify an-
tagonists. Subsequent optimization led to ANT. (C) ANT is a potent ABA receptor antagonist. The potency of ANT, PanMe, and AA1 receptor antagonism was
quantified by measuring the antagonist-mediated recovery of PP2C activity in the presence of saturating ABA (5,000 nM), PYL/RCAR, and ΔN-HAB1 proteins
(both at 25 nM). EC50 values were obtained by nonlinear fits of dose–response data to the four parameter log-logistic equation using the drc R package (47);
assays were conducted in triplicate. The full dataset for all Arabidopsis and wheat receptors is presented in SI Appendix, Fig. S4. (D) ANT is active in vivo.
Antagonist-dependent recovery of seedling establishment in the presence of ANT, PanME, or AA1 (+1,000 nM ABA). Seedling growth was measured by
quantifying the green cotyledon area normalized to seed number 4 d after stratification; EC50 values indicate the concentration of the antagonist at 50%
maximal green pixel area relative to mock control (1,000 nM ABA); errors indicate SD of two independent experiments each conducted in triplicate.
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The positioning of ANT’s quinoline ring is superimposable with the
positioning of the Trp lock’s indole ring in PYL–ABA–PP2C
complexes, which also engages in π–π/π–cation interactions with
homologous residues (Fig. 3 B and C). These data demonstrate that
ANT engages PYL10 with extensive contacts to form a binary
complex that positions ANT’s quinoline ring in the 4′ tunnel,
blocking receptor–PP2C interactions.

Based on prior structural analyses of PYL10 in complex with
3CB, an OP analog that activates all receptor types, we antici-
pated that ANT’s second cyclopropyl substituent might sterically

clash with L159, which determines the selectivity of OP for subfamily
II/III receptors (21); however, our structure shows that the gate loop
adopts a noncanonical closed conformation (SI Appendix, Fig. S8H)
that expands to accommodate ANT’s second cyclopropyl and allows

4’-tunnel

Trp-lock

3’-tunnel
PYL2-ABA-

HAB1 PYL10-ANT

gate
C7

B C

K56

N163

R112

π-π

π-cation

triazole

Salt bridge

F155

latch

gate

A85

A

L113

Fig. 3. ANT–receptor binding is stabilized by numerous direct contacts and
occludes the 4′ tunnel. (A) The cocrystal structure of ANT bound to PYL10,
highlighting direct receptor–ligand contacts, as determined using PLIP
analyses (48). The dashes represent polar contacts established by ANT with
PYL10 and include direct hydrogen bonds, which range in distance from 2.7
to 3.8 Å (see SI Appendix, Fig. S8G for all distances), π–π parallel stacking
(distances 4.1 and 4.2 Å angle 14.07° and 14.19° and offset 1.73 and 1.64 Å),
and π–cation interactions (distances 3.9 and 4.3 Å and offset 0.57 and 1.95 Å)
interactions and salt bridge (2.8 Å). (B) Trp-lock insertion from HAB1 into the
4′ tunnel formed in an activated PYL2–ABA analog–HAB1 ternary complex
(PDB, accession no. 5OR2). (C) ANT’s quinoline ring occupies the 4′ tunnel
that would normally be occupied by the Trp-lock residue, sterically blocking
access of Trp from HAB1. Noted is the solvent-exposed C7 position on the
quinoline ring targeted to create TAMRA–ANT.

kd 1700 pM 400 pM 470 pM
95% C.I. [300;500] [400;500]
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hgiHwoLPolarization
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P

Fig. 4. ANT is a high-affinity ligand. (A) Principle of fluorescence polarization-
based receptor-binding assays with TAMRA–ANT. Unbound probe polarization
is low, due to rapid tumbling in solution; binding of the probe to protein slows
tumbling rates and increases fluorescence polarization. (B) Determination of
equilibrium ABA receptor binding constants for TAMRA–ANT by FP. Delta
millipolarization (mP) values for probe (5 nM) as a function of different
ABA receptor concentrations (0.8 to 50 nM) in FP assay buffer at 25 °C
under equilibrium binding conditions (>4 t1/2). We note that the TAMRA–ANT
concentrations required for sufficient mP signal generation in these assays are
not <<kd; therefore, binding data were fit to the Morrison quadratic equation
for single-site ligand binding, rather than the standard Hill equation (see
Jarmoskaite et al., ref. 49). Nonlinear fits were conducted in GraphPad Prism,
SDs are shown, data are from three independent experiments each conducted
with four or more technical replicates. The inferred binding dissociation con-
stants are Insets under each graph. (C) ANT and PanMe are potent competitors
of TAMRA–ANT/receptor interactions. FP competition experiments with 5 nM
probe, 10 nM receptor protein, and different competitors, incubated in FP
assay buffer at 25 °C for 120 min. Error bars indicate SD (n = 3); IC50 values are
Insets under the graphs and inferred by nonlinear fits in drc; 95% confidence
intervals are shown below.
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it to extend into the 3′ tunnel (Fig. 3C and SI Appendix, Fig. S8H),
forming hydrophobic contacts with L159. Thus, ANT’s reduced se-
lectivity relative to its parent OP is apparently due to subtle changes
in gate conformation that ANT, but not OP, stabilizes.

ANT Is a High-Affinity Ligand. Our biochemical assays show that
ANT is a particularly strong antagonist that can antagonize micro-
molar ABA concentrations with EC50 values in the mid-nanomolar
range (Fig. 2C). This implies that ANT–receptor interactions are
substantially stronger than receptor/ABA/PP2C interactions, which
have been measured in the low-nanomolar range by isothermal ti-
tration calorimetry (ITC) (3, 37–39). Determining binding constants
for high-affinity ligands can be technically challenging; we, therefore,
sought to create a fluorescently tagged ANT derivative for use in
fluorescence polarization (FP)–based measurements (40), which
measure receptor–ligand complex formation by increased po-
larization of bound versus free fluorophore (Fig. 4A). Exploiting
our crystallographic data, we designed a probe with a fluorescent
TAMRA label linked to the solvent-exposed C7 site on ANT’s
quinoline ring (Fig. 3C) and used click chemistry to append a
TAMRA-5-azide, creating a C7-triazole-ANT analog called
TAMRA–ANT (see SI Appendix, Fig. S1C for synthetic details).
To confirm that the attachment of the TAMRA label did not
substantially reduce antagonist activity, we tested TAMRA–

ANT in PP2C recovery assays and observed near equipotency to
ANT against multiple receptor subtypes (SI Appendix, Fig. S9A).
Thus, TAMRA–ANT is a fluorescent ANT derivative that re-
tains tight receptor binding and antagonist activity.
With TAMRA–ANT in hand, we next defined suitable condi-

tions for measuring equilibrium binding constants and conducted
titration experiments in the intermediate-binding regime with fixed
TAMRA–ANT (5 nM) and varying receptor concentrations
(Fig. 4B and SI Appendix, Fig. S9B). Nonlinear fits of these data to
the Morrison quadratic binding equation reveal that TAMRA–
ANT possesses mid-picomolar to low-nanomolar kd values for
ABA receptors selected from the three angiosperm subfamilies
(PYR1 kd = 1,700 pM; PYL5 kd = 400 pM; PYL8 kd = 470 pM;
Fig. 4B). We further used TAMRA–ANT in competitive dis-
placement assays and observed that ANT displaces TAMRA–ANT
from ABA receptors with low nanomolar IC50 values and show that
it is ∼10 to 100-fold more potent than PanMe under these assay
conditions (Fig. 4C), comparable to what we observe in PP2C re-
covery assays (Fig. 2B). We note that AA1 does not displace
TAMRA–ANT binding, providing further evidence that it is not a
high-affinity ABA receptor binder. We independently confirmed
this by ITC measurements with AA1 and PYL5, which revealed
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Fig. 5. ANT potently blocks ABA signaling in planta. (A) ANT increases
transpiration in multiple species. Infrared images of 6-wk-old tomato seed-
lings (UC82), 3-wk-old wheat seedlings (Patwin 515), and 3-wk-old wild-type
Arabidopsis (Col-0) plants treated with ANT (100 μM) and imaged by ther-
mography either 2 h (tomato and wheat) or 48 h (Arabidopsis) post-
application. Statistical analyses were performed using unpaired t tests (n = 8
for tomato, n = 9 for wheat, and n = 10 for Arabidopsis). Error bars indicate
SD. *** indicates P < 0.0001. (B) ANT treatments phenocopy abi1-1 mutant
phenotypes. Infrared images of wild-type Arabidopsis plants continuously
exposed to ANT (100 μM) or mock compared to mock-treated abi1-1. Images
were collected 3 wk after continuous exposure. Dunnett tests were used to
obtain multiplicity-adjusted P values for treatment effects relative to mock
treatments (n = 12). (C and D) ns indicates not statistically significant. ANT
blocks osmotic stress–induced gene expression. (C) Five-day-old marker line
seedlings were treated with 400 mM mannitol for 6 h, with coapplication of
either 2.5 μM ANT, PanME, AA1, or mock treatment. (Scale bars, 0.5 mm.)
The full dataset for this experiment is presented in SI Appendix, Fig. S11. (D)
Comparison of transcript levels of RD29B and MAPKKK18 (normalized to
PEX4) measured by qRT-PCR of 8-d-old Arabidopsis seedlings pretreated
with either dimethyl sulfoxide (DMSO) or 25 μM ANT for 4 h and then ex-
posed to either DMSO (−) or 25 μM ANT(+) in the presence (+) or absence (−)
of 20% PEG for another 6 h. * indicates P < 0.05 for indicated comparisons.

(E) ANT accelerates seed germination. Seed germination was monitored for
seeds plated on 1/2 Murashige & Skoog (MS), 0.7% agar plates containing
DMSO (mock treated) or 100 μM ANT (barley) or 25 μM ANT (tomato). Time-
response data were fit to a log-logistic model using the drc package to infer
ET50 values; however, barley under mock treatment never reached 50% ger-
mination. ET50 significantly differs between ANT and mock tomato treat-
ments (two-sample t test, P < 0.01, n = 3) and the percent germination
after 4 d significantly differs between ANT and mock-treated Palmella land-
race (two-sample t test, P = 0.001, n = 3 for ANT, n = 6 for mock). Data for
both landraces tested (Morex and Palmella) are shown in SI Appendix, Fig.
S13. (F) ANT alleviates the effects of thermoinhibition in Arabidopsis. The
ET50 values inferred from this experiment are shown in SI Appendix, Fig. S13
and were generated by quantifying germination over time for seeds plated
on 1/2 MS, 0.7% agar plates containing DMSO (mock treated) or 30 μM test
chemicals either at 22 °C or after exposure to heat stress (37 °C for 48 h).
Error bars indicate the SEM. Under heat stress, ANT and fluridone ET50 values
differ from mock (pairwise two-sample t test with Bonferroni correction, P <
0.001, n = 5 for ANT and fluridone, n = 4 for mock), and under control
conditions ANT ET50 significantly differs from fluridone and mock treat-
ments (pairwise two-sample t test with Bonferroni correction, P < 0.001,
n = 5 for ANT and fluridone, n = 4 for mock).
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negligible enthalpy changes in titrations (SI Appendix, Fig. S10);
thus, AA1’s mechanism of action is unlikely to involve direct
ABA receptor binding. Collectively, these data indicate that the
ANT scaffold provides unusually high-affinity ABA–receptor
binding activity and show that TAMRA–ANT provides a con-
venient reagent for measuring ligand–receptor interactions by
fluorescence polarization. We also note that TAMRA–ANT
enables facile and direct titration of active receptor concentrations,
which is technically quite valuable since recombinant receptor
preparations often contain a significant fraction of inactive recep-
tors, and precise active concentrations are required to calculate
accurate kds and obtain reproducible IC50s (SI Appendix, Supple-
mentary Materials and Methods and Fig. S9C).

ANT Blocks ABA Signaling In Vivo. Encouraged by the promising
activity of ANT in reversing the effects of exogenous ABA in
seedling establishment assays (Fig. 1E and SI Appendix, Fig. S6 A
and B), we investigated the effects of ANT in Arabidopsis, wheat,
and tomato using quantitative thermal imaging. ANT treatments
elicited a decrease in leaf temperature in all three species after a
single chemical application (Fig. 5A), suggestive of increased tran-
spiration and probable antagonism of guard cell ABA receptors. In
addition, continuous ANT treatments mimic the reduced stature
and increased leaf temperature phenotypes of the ABA insensitive
mutant abi1-1 (Fig. 5B). We next compared the antagonistic effects
of ANT, PanMe, and AA1 in vegetative tissues using a reporter line
in which β-glucuronidase (GUS) is driven by the promoter of the
ABA-responsive gene MAPKKK18 (Mitogen-Activated Protein
Kinase Kinase Kinase 18) (24). Using this reporter line, we observed
that ANT cotreatments block both exogenous ABA-induced expres-
sion and osmotic stress–induced expression of the pMAPKKK18::GUS
reporter gene and were more active in blocking ABA responses than
PanMe or AA1 at the concentration tested (Fig. 5C and SI Appendix,
Fig. S11). Consistent with this conclusion, we observe that ANT pre-
treatments antagonize osmotic stress (20% polyetheylene glycol-8000
[PEG-8000]) induced gene expression of MAPKKK18 and RD29B tran-
script levels (Fig. 5D). We also examined ANT’s effects on ABA-mediated
gene expression in wheat seedlings and observe that ANT coapplication
with ABA reduces expression of the ABA-responsive genes TaLea and
TaPP2C6 (SI Appendix, Fig. S12). Collectively, these data show that
ANT antagonizes ABA effects in vivo in Arabidopsis, wheat, and tomato.
Next, we investigated whether ANT could act as a germination

stimulant and measured ANT’s effects on seed germination in
barley and tomato in the absence of stratification (a dormancy-
breaking treatment). These experiments show that ANT treatment
lowers the ET50 (time to 50% germination) in both species, although
in barley the results depended on landrace, suggesting potential ge-
netic variation in seed ABA sensitivity (Fig. 5E and SI Appendix, Fig.
S13). We also examined ANT treatments inArabidopsis to determine
whether ANT would similarly accelerate seed germination or prevent
the ABA-mediated disruption of seed germination induced by heat
stress (thermoinhibition) (41). These experiments included control
treatments with fluridone, a carotenoid biosynthetic inhibitor that
acts early in the pathway (phytoene desaturation) (42) and disrupts
de novo stress-induced ABA biosynthesis (41, 43). Under control
germination conditions using nondormant (after ripened) Arabidopsis

seeds, ANT treatments (but not fluridone treatments) accelerated
germination by about 10% (ET50 mock= 33 h, ET50 ANT= 30 h; P<
0.001), suggesting that preexisting ABA pools restrict germination in
nondormant Arabidopsis seeds, in addition to the well-known role of
newly synthesized ABA in restricting germination in imbibed, dormant
seeds (44). In seeds exposed to heat stress (37 °C), both ANT and
fluridone treatments accelerated seed germination by 9 and 12 h, re-
spectively (Fig. 5F and SI Appendix, Fig. S13), consistent with the known
role of stress-induced ABA in thermoinhibition. Thus, disruption of
ABA signaling by ANT disrupts both basal and stress-induced ABA
effects, resulting in accelerated seed germination. Collectively, our data
show that ANT is effective at disabling ABA signaling in vivo, and that it
may be useful in combination with biosynthetic inhibitors to discriminate
processes that require de novo biosynthesis from those that do not.
Synthetic modulators of ABA receptors are being actively

explored as probes for not only studying ABA dependence in a
variety of plant physiological processes but also useful tools in
agriculture. We used click chemistry to modify and build upon
the scaffold of a potent ABA agonist, OP, to identify a pepti-
dotriazole motif that was subsequently optimized to create,
ANT, a pan-ABA receptor antagonist with high bioactivity and
receptor binding affinity. Our ANT:PYL10 structure reveals that
ANT sterically blocks access to the 4′ tunnel, an important site of
binding of a conserved tryptophan from PP2Cs by stabilizing the
receptor with multiple contacts in a noncanonical closed con-
formation. Furthermore, our development of a triazole-based
scaffold broadens the chemical space available for manipulat-
ing ABA receptor function. ANT is demonstrably more potent
and bioactive than PanMe and AA1 in antagonizing multiple
ABA-mediated responses in Arabidopsis and exhibits bioactivity
in multiple crop species such as wheat, barley, and tomato. In
particular, ANT’s effects as a germination enhancer in barley
and tomato may be beneficial agriculturally; however, further
toxicological characterization would be required before ANT (or
any other antagonist) is suited for agricultural purposes. The
pan-antagonistic profile of ANT, though useful in disabling ABA
signaling in vivo, limits its use as a tool for dissecting the indi-
vidual roles of different subfamilies of ABA receptors; the de-
velopment of selective antagonists for different subfamilies may
aid in this endeavor. Nevertheless, ANT is an unusually potent
chemical probe for blocking ABA signaling in planta and may
have potential applications in research and agriculture. Our
development of TAMRA–ANT will also facilitate future bio-
physical studies of ligand–receptor interactions.

Data Availability. The atomic coordinates and structure factors
reported in this article have been deposited in the Protein Data Bank,
https://www.wwpdb.org/ [PDB ID codes 7MLC (45) and 7MLD (46)].
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