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Variational Approximation-Based Model Selection
for Microbial Network Inference

SHIBU YOOSEPH and SAHAR TAVAKOLI

ABSTRACT

Microbial associations are characterized by both direct and indirect interactions between
the constituent taxa in a microbial community, and play an important role in determining
the structure, organization, and function of the community. Microbial associations can be
represented using a weighted graph (microbial network), whose nodes represent taxa and
edges represent pairwise associations. A microbial network is typically inferred from a
sample–taxa matrix that is obtained by sequencing multiple biological samples and identi-
fying the taxa counts in each sample. However, it is known that microbial associations are
impacted by environmental and/or host factors. Thus, a sample–taxa matrix generated in a
microbiome study involving a wide range of values for the environmental and/or clinical
metadata variables may in fact be associated with more than one microbial network. In
this study, we consider the problem of inferring multiple microbial networks from a given
sample–taxa count matrix.
Each sample is a count vector assumed to be generated by a mixture model consisting of

component distributions that are multivariate Poisson log-normal. We present a variational
expectation maximization algorithm for the model selection problem to infer the correct
number of components of this mixture model. Our approach involves reframing the mix-
ture model as a latent variable model, treating only the mixing coefficients as parameters,
and subsequently approximating the marginal likelihood using an evidence lower bound
framework. Our algorithm is evaluated on a large simulated dataset generated using a
collection of different graph structures (band, hub, cluster, random, and scale-free).

Keywords: microbiome, mixture models, networks, variational approximation.

1. INTRODUCTION

The structure of a microbial community and the organization of its constituent members (taxa) are
determined by a combination of their mutual interactions and other factors such as the availability of

carbon sources, energy, and nutrients, and the characteristics of the surrounding environment (Falkowski
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et al., 2008; Hibbing et al., 2010; Williamson and Yooseph, 2012). These variables determine whether the
community contains only a handful of taxa with very little strain variation [such as in limiting environments
like acid mine drainage (Tyson et al., 2004)] or whether they contain a moderate-to-high number of taxa with
a large number of variants [such as in the human environment (Methe et al., 2012), oligotrophic open oceans
(Rusch et al., 2007), and nutrient-rich soils (Vogel et al., 2009)].

Microbial community composition can be obtained by sequencing the DNA extracted from a biological
sample collected from the environment of interest. Microbiome sequence data are generated either using a
targeted approach, involving the sequencing of a taxonomic marker gene [for instance, the 16S ribosomal
RNA gene, which is found in all bacteria (Woese and Fox, 1977)] or using a whole-genome shotgun
sequencing approach (Venter et al., 2004); the latter approach can be used to deduce both the taxonomic
composition and the functional potential of the community.

Here, we study the computational problem of inferring microbial associations from microbiome data. We
use the term microbial association to capture both influences and interactions between microbial taxa. In a
microbial community, the presence and abundance of one taxonomic group may either directly or indirectly
influence the abundance of another taxonomic group (Hibbing et al., 2010). For instance, two microbial
taxa may directly influence each other through interactions involving exchange of metabolites or other
products, or by competing for the same resources. Alternately, two microbial taxa may not directly
communicate or compete for the same resources, but instead one taxon could interact with other members
of the community, and these interactions could indirectly influence resource availability for the other taxon.
Information about associations between taxa can provide important insights into the ecology of the mi-
crobial community.

Microbial associations can be represented using a weighted graph (microbial network) whose nodes
represent taxa and undirected edges between nodes represent associations. Edge weights capture the
strength of the associations, and the edge weight sign reflects whether the association is positive or negative
(Layeghifard et al., 2017). This graph representation can be used to model a variety of microbial inter-
actions, including competition and cooperation (Loftus et al., 2021). Microbial associations can be inferred
from the underlying covariance structure of the community, which can be calculated using taxa abun-
dances. The covariance matrix is estimated from a sample–taxa count matrix; this count matrix is generated
by sequencing biological samples collected from the environment of interest and identifying the counts of
taxa in each sample.

Typically, the study of a microbial community in a particular environment assumes a single covariance
structure, and computational methods have been developed to address this estimation problem (Layeghifard
et al., 2017), including approaches based on probabilistic graphical models (Kurtz et al., 2015; Biswas
et al., 2016; Loftus et al., 2021) and on latent variable models (Friedman and Alm, 2012; Fang et al., 2015).
However, with the use of high-throughput next-generation DNA sequencing technologies (Quail et al.,
2012) that allow for cost-effectively obtaining data from biological samples, microbiome studies now
routinely collect, and generate data from a large number of samples. In these situations, a microbiome study
involving a large cohort or including a wide range of metadata variables (environmental and/or clinical)
may in fact be sampling from a community where the microbial associations between taxa are not the same
across all intervals of the metadata values. In other words, the microbiome samples in the study may be
associated with more than one underlying covariance structure (and thus, more than one microbial net-
work).

Motivated by this scenario, we recently developed an extension to the single network inference problem.
In this extension, we treat the inference problem in a mixture model framework based on generative models
(Tavakoli and Yooseph, 2019) and solve the following computational problem: given a sample–taxa count
matrix generated by a mixture model with K component distributions, estimate the mixing coefficients
and the parameters of the K component distributions. The component distributions model taxa count data,
and each component is associated with one precision matrix (and thus, one microbial network). In our
framework, referred to as MixMPLN (Tavakoli and Yooseph, 2019), we assume that the taxa counts are
generated by multivariate Poisson log-normal (MPLN) distributions (Aitchison and Ho, 1989; Inouye et al.,
2017). We estimate the parameters of the MixMPLN model in a maximum likelihood setting using an
optimization technique based on the minorization–maximization principle (Lange, 2016).

We note that the MPLN distribution has been used previously for the single network inference problem
(Biswas et al., 2016; Chiquet et al., 2019). While distributions like the multinomial or the Dirichlet–
Multinomial have been popular choices for modeling microbial count data in certain situations (Holmes
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et al., 2012; La Rosa et al., 2012), these distributions cannot capture both positive and negative associations
between taxa. On the other hand, the MPLN distribution can be used to model multivariate count data and
its covariance matrix can capture both types of microbial associations.

While a mixture model framework can be used to study the multiple network scenario, in practice
however, we do not have a priori knowledge of the value of K, the number of component distributions. In
this article, we propose a variational approximation algorithm to determine the correct value of K for the
MixMPLN framework, and solve the model selection problem in a statistically principled manner. As part
of our approach, we reformulate the mixture model as a latent variable model (Corduneanu and Bishop,
2001), and treat only the mixing coefficients as parameters, while treating all other variables, including the
means and precision matrices of the component distributions, as latent variables. We use suitable factor
distributions involving the latent variables and provide a variational expectation maximization (EM) al-
gorithm to compute the parameters of these factor distributions to approximate the true marginal likelihood.
We evaluate our approach using simulated sample–taxa count matrices generated using different classes of
microbial network graph structures.

2. METHODS

Notation: Given a matrix X, we use X:i to denote its ith column, Xj: to denote its jth row, and xji to denote
its entry in row j and column i. We use n to denote the number of samples, d to denote the number of taxa,
and K to denote the number of mixture components. Unless otherwise specified, all vectors are assumed to
be column vectors. In the equations below, we associate the variables i‚ j‚ and l with samples, taxa, and
mixture components, respectively.

2.1. The MPLN distribution

The MPLN distribution can be used to model count data (Aitchison and Ho, 1989). It has parameters l
and O, where l is the d-dimensional mean vector and Od · d is the precision matrix of the distribution. A
sample A = (a1‚ . . . ‚ ad)T generated by this distribution is a d-dimensional count vector with the following
property:

ajjkj * P(ekj)

(k1‚ . . . ‚ kd)T * Nd(l‚ O)
(1)

where P(c) denotes a Poisson distribution with mean c, and Nd(l‚ O) denotes a d-dimensional multivariate
Gaussian distribution with mean l and precision matrix O. That is, an MPLN distribution has two layers,
with the observed count vector (i.e., sample) being generated by a mixture of independent Poisson dis-
tributions whose means are latent (or hidden), such that the logarithm of the Poisson means follows a
multivariate Gaussian distribution. We use k = (k1‚ k2‚ :: kd)T to denote the latent variable vector re-
presenting the logarithm of the Poisson means that is associated with the sample A.

The probability density function p(Ajl‚ O) of the MPLN distribution with parameters l and O can be
written as (Aitchison and Ho, 1989):

p(Ajl‚ O) =
Z

Rd
p(A‚ kjl‚ O) dk (2)

where,

p(A‚ kjl‚O) =
Yd

j = 1

e - ekj ekjaj

aj!

" #

(2p) - d=2jOj1=2e - 1
2[k -l]

TO[k -l] (3)

and jOj denotes the determinant of O. No simplification of the integral in Equation (2) is known.

2.2. Mixture of MPLN distributions

The probability of a sample A = (a1‚ . . . ‚ ad)
T generated by a mixture model with KMPLN component

distributions and a mixing coefficient vector / = (/1‚ /2‚ ::‚ /K) can be written as
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p(Aj/‚ l(1)‚ O(1)‚ ::‚ l(K)‚ O(K)) =
XK

l = 1
/lp(Ajl(l)‚ O(l))

=
XK

l = 1
/l[

Z
p(A‚ k(l)jl(l)‚ O(l)) dk(l)]

(4)

where
PK

l = 1 /l = 1. In Equation (4), the variables l(l) and O(l) denote the mean vector and precision
matrix, respectively, of the lth component distribution, and k(l) denotes the latent variable vector of sample
A that is associated with the lth component.

Now, let Xd · n denote a sample–taxa count matrix with d taxa and n samples that is generated by mixture
of K MPLN distributions. Also, let L(l) denote the d · n matrix of latent variable vectors of the n samples
that is associated with the lth component. That is, column vector L(l):i is associated with sample X:i. We also
use klji to denote the jth entry in column vector L(l):i. Then, the probability of the observed sample–taxa
count matrix X, given the parameters of the mixture model, can be written as

p(Xj/‚ l(1)‚ O(1)‚ ::‚ l(K)‚ O(K)) =
Yn

i = 1

XK

l = 1
/lp(X:ijl(l)‚ O(l))

=
Yn

i = 1

XK

l = 1
/l

Z
p(X:i‚ L(l):ijl(l)‚ O(l)) dL(l):i

! " (5)

where

p(X:i‚ L(l):ijY(l)) =
Yd

j = 1

e - eklji ekljixji

xji!

" #

(2p) - d=2jO(l)j1=2e - 1
2 L(l):i - l(l)]

TO(l)[L(l):i - l(l)½ " (6)

This mixture model is associated with K microbial networks, where the lth network (1 # l # K) has
adjacency matrix equal to the precision matrix O(l).

2.3. The latent variable model

We reformulate the mixture model given in Equation (5) as a latent variable model (Bishop, 2006), in
which we treat only the mixing coefficients /l’s as parameters while all other variables, including L(l), l(l),
and O(l), where 1 # l # K, are treated as latent variables.

Let Y = L [M[ T [ S denote the set of all latent variables in our model, where
L = fL(l)j1 # l # Kg‚ M = fl(l)j1 # l # Kg‚ T = fO(l)j1 # l # Kg, and S = fSij1 # i # ng. The set S
denotes component membership information for samples, where Si = (si1‚ . . . ‚ siK)T is a K-dimensional
binary vector, also called a 1-of-K binary vector (Bishop, 2006) that is associated with sample X:i. This
vector has the property that if X:i was generated by component r then sir = 1, and that sil = 0, for all l 6¼ r.

We now describe the different parts of the generative model. Each Si is drawn from a multinomial
distribution; that is, Si*Multinomial(1‚/). We have that

p(Sj/) =
Yn

i = 1
p(Sij/) =

Yn

i = 1

YK

l = 1
/sil
l

Conditional on S, each sample is assumed to be independently drawn from an MPLN distribution with
parameters l(l) and O(l). Upon selection of component l, both sample X:i and its associated latent variable
vector L(l):i are generated. Thus,

p(X‚LjM‚ T ‚S) =
Yn

i = 1

YK

l = 1
p(X:i‚ L(l):ijl(l)‚ O(l))

sil

Marginalizing the function p(X‚LjM‚ T ‚S) · p(Sj/) over S and L results in Equation (5). We also
introduce conjugate priors over each l(l) and O(l). We assume that l(l)*Nd(0‚ bI) where I is the d · d
identity matrix, and b is a fixed parameter. We also assume that Ol*W(!‚ V), where W(!‚ V) is the
Wishart distribution (Wishart, 1928) with fixed degrees of distribution ! and fixed scale matrix V. The
density function for the Wishart distribution is given as
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W(Ojv‚ V) = jV jv=2jOj(v- d - 1)=2

2vd=2pd(d - 1)=4
Qd

j = 1 G
v + 1 - j

2

# $ exp ( -
1

2
Tr(VO))

where Tr(:) and G(:) denote the matrix trace function and Gamma function, respectively.
Finally, we set p(M) =

QK
l = 1 p(l(l)) and p(T ) =

QK
l = 1 p(O(l)). Taken together, these specifications

allow us to describe the joint distribution of X and all latent variables, conditioned on the mixing coeffi-
cients, as

p(X‚ Yj/) = p(X‚ L‚ M‚ T ‚ Sj/)
= p(X‚ LjM‚ T ‚ S) · p(Sj/) · p(M) · p(T )

(7)

2.4. The evidence lower bound function

The marginal likelihood function p(Xj/) can be obtained by integrating Equation (7) over all latent
variables in Y. However, the function defined in this manner is not analytically tractable. Instead, we
employ a variational approximation method involving a lower bound on the marginal log-likelihood
function. This lower bound, called the Evidence Lower Bound (ELBO) function (Bishop, 2006; Tzikas
et al., 2008), will then be maximized with respect to the mixing coefficients. The ELBO function Q(Y) is
defined as

ELBO(Q) =
Z

Q(Y) log
p(X‚ Yj/)

Q(Y)

! "
dY

= Æ log p(X‚ Yj/)æY - Æ logQ(Y)æY
(8)

where Æ:æY denotes the expectation over the distribution Q(Y). For any function Q(Y), the following
identity holds (Bishop, 2006):

ELBO(Q) # log

Z
p(X‚ Yj/)dY

% &
= log p(Xj/)

Our goal is to maximize ELBO(Q) using some choice of Q(Y). The difference between ELBO(Q) and
log p(Xj/) can be shown to be the Kullback–Leibler (KL) distance between Q(Y) and the posterior
distribution p(YjX‚ /). Thus, ELBO(Q) is maximum when Q(Y) is equal to the posterior (Bishop, 2006).
Let Y = L [M[ T [ S = fhig. We assume that Q(Y) =

Q
t q(ht), that is, Q(Y) is the product of

independent factor distributions q(ht). With this assumption (Parisi, 1988), the form of the optimal factor
distributions that minimize the KL distance can be computed (Bishop, 2006). For each t, the optimal
distribution q(ht) can be shown to have the form

q(ht) =
exp (Æ log p(X‚ Yj/)æhv 6¼ht )R
exp (Æ log p(X‚ Yj/)æhv 6¼ht )dht

(9)

As will be shown, the optimal distributions q(:) for the latent variables Si, l(l), and O(l) have the same
functional forms as their respective priors p(Sij/), p(l(l)), and p(O(l)). Specifically,

q(Si) =Multinomial(1‚ ai), with parameter ai = (ai1‚ ai2‚ ::‚ aiK) where
PK

l = 1 ail = 1,
q(l(l)) = Nd(m(l)‚ T(l)), a multivariate Gaussian with d-dimensional mean vector m(l) and d · d preci-

sion matrix T(l),
q(O(l)) = W(g(l)‚ C(l)), a Wishart distribution with degrees of freedom g(l) and d · d scale matrix C(l).
For the L(l):i latent variable vectors, the optimal form of q(L(l):i) is quite unwieldy to work with; thus,

instead, we define each q(L(l):i) to be a multivariate Gaussian distribution with a diagonal precision matrix.
Specifically,

q(L(l):i) = Nd(d(l)i‚ D(l)i) =
Yd

j = 1
q(klji) =

Yd

j = 1
N alji‚

1

blji

% &

with d-dimensional mean vector d(l)i and d · d precision matrix D(l)i.
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SinceD(l)i is a diagonal matrix, the multivariate distribution q(L(l):i) can be written as a product of d independent

univariate Gaussian distributions q(klji), 1 # j # d, where d(l)i = (al1i‚ al2i‚ ::‚ aldi)
T and diag(D(l)i) =

1
bl1i

‚ 1
bl2i

‚ ::‚ 1
bldi

' (
. That is, alji and blji denote the mean and variance, respectively, of the random variable klji.

We use Equations (8) and (9) to derive update equations for the parameters of the factor distributions.
These update equations are linked, in the sense that the update equation for a variational parameter is a
function of other variational parameters. Given these equations, our proposed variational EM algorithm
involves maximizing the ELBO function using an iterative procedure. In each iteration, we cycle through
the set of update equations to update the values of the variational parameters. While the variational
parameters ai‚ m(l)‚ T(l)‚ g(l)‚ andC(l) have closed forms for their update equations (in terms of other
parameters), the update values for variational parameters alji and blji are not closed form but are obtained
using the Newton-Raphson method (Press et al., 1992).

Finally, the mixing coefficients are re-estimated to improve the approximation to the marginal log-
likelihood. Convergence of this iterative procedure is guaranteed since the ELBO function increases with
each update, unless it is already at a (local) maximum value (Boyd and Vandenberghe, 2004; Bishop,
2006). The algorithm is run on the input sample–taxa matrix using a reasonably large value of K, and after
convergence, the number of mixing coefficients that are above a preset threshold value denotes the optimal
number of components in the model.

2.5. Parameter update formulas and marginal log-likelihood lower bound using ELBO function

The update equations for the factor distribution parameters ai‚ m(l)‚ T(l)‚ g(l)‚ and C(l) are given in
Table 1. The derivations of the update equations are provided in the Appendix A1. The estimates of the
parameters for each q(L(l):i) are obtained by maximizing the ELBO function restricted to each L(l):i.

Table 1. The Update Formulas for the Parameters ai‚ m(l)‚ T(l)‚ g(l)‚ and C(l)

Parameter ai for q(Si):

ail = filPK

r = 1
fir
, where

fil = expflog/l -
d

2
log (2p) +

1

2
Æ log jO(l)jæ +

Xd

j = 1
- Æeklji æ - log (xji!) + Ækljiæxji

) *

- 1

2
Tr ÆO(l)æ ÆL(l):iLT

(l) iæ - Æl(l)æÆL(l):iæT - ÆL(l):iæÆl(l)æ
T + Æl(l)lT(l)æ

h i' (
g

Parameters m(l) and T(l) for q(l(l)):

T(l) = bI + ÆO(l)æ
Pn

i = 1
Æsilæ‚ m(l) = T - 1

(l) ÆO(l)æ
Pn

i= 1
ÆL(l):iæ Æsilæ

Parameters g(l) and C(l) for q(O(l)):

g(l) = ! +
Xn

i= 1
Æsilæ

C(l) = V +
Xn

i = 1
ÆL(l):iLT

(l):iæ -
Xn

i = 1
ÆL(l):iæÆsilæÆl(l)æ

T - Æl(l)æ
Xn

i = 1
ÆL(l):iæT Æsilæ + Æl(l)lT(l)æ

Xn

i = 1
Æsilæ

Expected values used in the above updates:

Æsilæ = ail‚ ÆL(l):iLT
(l):iæ = D - 1

(l) + d(l)idT(l)i
Æl(l)æ = m(l)‚ Æl(l)lT(l)æ = T - 1

(l) +m(l)m
T
(l)

Ækljiæ = alji‚ ÆO(l)æ = g(l)C
- 1
(l)

Æeklji æ = ealji +
1
2blji‚ Æ log jO(l)jæ = d log 2- log jC(l)j +

Xd

j= 1
w(

g(l) + 1 - j

2
)

ÆL(l):iæ = d(l)i

Notation: Tr(:) and w(:) denote the matrix trace function and the di-gamma function, respectively; ÆF(ht)æ denotes the expectation of
function F(ht) over the factor distribution q(ht)
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The ELBO function given in Equation (8) when restricted to L(l):i has the form

R
q(L(l):i) log p(X:i‚ L(l):ijÆl(l)æ‚ ÆO(l)æ)ÆsilædL(l):i -

R
q(L(l):i) log q(L(l):i)dL(l):i + constant

The above integral can be rewritten as

Æsilæ
Z Yd

j = 1
N(kljijalji‚ 1=blji)

Xd

j = 1
- eklji + kljixji

) *
-
1

2
LT

(l):iÆO(l)æL(l):i + LT
(l):iÆO(l)æÆl(l)æ

" #

dkl1idkl2i::dklji

+
Xd

j = 1
log blji + constant

Let xlrt denote the entry in row r and column t of matrix ÆO(l)æ, and hlt denote the tth entry in vector Æl(l)æ.
Since klji has a univariate Gaussian distribution, it follows that Ækljiæ = alji, Æk2ljiæ = a2lji + blji, and
Æeklji æ = ealji +

1
2blji . We use these observations to simplify the above expression to produce a function

F(al1i‚ bl1i‚ al2i‚ bl2i‚ ::‚ aldi‚ bldi) of 2d variables. We identify the values of the variables al1i‚ bl1i‚ al2i‚
bl2i‚ ::‚ aldi‚ bldi that maximize F(:). This is accomplished by cycling through each of the 2d variables and
maximizing the corresponding univariate function on that variable.

Restricted to variables alji and blji (and excluding constants), the function F(:) reduces to

G(alij‚ blij) = Æsilæ
Xd

j = 1
[ - ealji + 1

2blji + xjialji "

"

-
1

2

Xd

j = 1
xljj[a

2
lji + blji]

-
Xd

t = 1
t 6¼j

xljt alti

2

64

3

75alji + ½
Xd

t = 1
xljtht]alji

#

+ 1

2

Xd

j = 1
log blji

As part of maximizing F(:), we first compute the derivatives of G(:) with respect to alji and blji separately,
and set the two resulting derivatives to 0. The roots of these two equations are then computed using the
Newton-Raphson method. The corresponding equations for alji and blji are, respectively,

H1(alji) = - e(alji + 1
2blji) - xljjalji + xji +

Xd

t = 1
xljthlt -

Xd

t = 1
t 6¼j

xljtalti = 0

H2(blji) = e(
1
2blji + alji) -

1

Æsilæblji
+ xljj = 0

Once we have estimates for the variational parameters, we can compute the ELBO function using an
expansion of Equation (8) as

ELBO(Q) = Æ log p(X‚ LjS‚ M‚ T )æ + Æ log p(Sj/)æ + Æ log p(M)æ + Æ log p(T )æ
- Æ log q(S)æ - Æ log q(M)æ - Æ log q(T )æ - Æ log q(L)æ

The formulas for the expected values in Equation (10) are given in Table 2. Since the ELBO function
approximates the true marginal log-likelihood function log p(Xj/), after we have cycled through and
estimated the variational parameters, we can then maximize the resulting ELBO with respect to the mixing
coefficients. This can be done by taking the derivatives of Equation (10) with respect to the /l’s and using a
Lagrange multiplier to enforce the constraint that

PK
l = 1 /l = 1. It can be shown that /l = 1

n

Pn
i = 1 ail, for

1 # l # K (Bishop, 2006).

2.6. Variational EM algorithm (MS_MixMPLN)

Input: Sample–taxa matrix Xd · n, number of components K, the prior parameters b‚ !‚ and V.
Output: Values of the mixing coefficients and the variational parameters that maximize the ELBO

function, and the maximum ELBO function value.
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Initialization: Initialize the mixing coefficient vector / = (/1‚/2‚ ::‚/K) and the variational parameters
ai, m(l), T(l), g(l), C(l), d(l)i, and D(l)i, for 1 # i # n‚ 1 # l # K.

Repeat until convergence (i.e., the ELBO function does not increase any further):
E-step:
Cycle through the variational parameters and update their estimates.
M-step:
Set /l = 1

n

Pn
i = 1 ail, for 1 # l # K.

We implemented MS_MixMPLN in the R programming language (R Development Core Team,
2013). The program is available at https://github.com/syooseph/YoosephLab/tree/master/MixtureMicrobial
Networks/MS_MixMPLN

3. RESULTS

The performance of the model selection algorithm MS_MixMPLN was evaluated using a collection of
synthetic sample–taxa count matrices with d taxa and n samples. The samples (count vectors) in each
sample–taxa matrix were generated from a mixture model consisting of K MPLN component distributions
and with mixing coefficient vector /. The precision matrices of the component distributions were generated
from an underlying graph structure. Five different types of graph structures were considered and these were
band, cluster, hub, random, and scale free. The R huge package (Zhao et al., 2012) was used to generate the
precision matrices associated with each graph structure. Sample–taxa matrices were generated with number
of taxa d = 50, number of components K = 2‚ 3‚ 4, and number of samples n = sK, where s is the number of
samples per component (s = 200‚ 1000). The mixing coefficient vectors for K = 2‚ 3 and 4 were /= 1

2 ‚
1
2

# $
‚

/ = 1
3 ‚

1
3 ‚

1
3

# $
‚ and / = 1

4 ‚
1
4 ‚

1
4 ‚

1
4

# $
, respectively. For each graph type and combination of parameter values,

20 replicates were generated. Thus, 600 synthetic sample–taxa matrices were generated in total.

Table 2. The Equations to Compute the Expected Values of the Different
Constituents of the Evidence Lower Bound Function

Æ log p(X‚LjS‚M‚ T )æ =
XK

l= 1

Xn

i = 1
Æsilæ - d

2
log (2p) + 1

2
Æ log jO(l)jæ +

Xd

j = 1

"

- Æeklji æ - log (xji!) + Ækljiæxji
) *

-
1

2
Tr ÆO(l)æ ÆL(l):iLT

(l):iæ - Æl(l)æ ÆL(l):iæT - ÆL(l):iæ Æl(l)æ
T + Æl(l) lT(l)æ

h i' ("

Æ log p(Sj/)æ =
PK

l = 1
Pn

i = 1 Æsilæ log/l

Æ log p(M)æ = Kd
2 log ( b

2p ) -
b
2

PK
l= 1 Tr(Æl(l)lT(l)æ)

Æ log p(T )æ = K[ - !d

2
log 2- d[d - 1]

4
log p -

Xd

j = 1
logG(

! + 1 - j

2
) + !

2
log jV j]

+
! - d - 1

2
[
XK

l = 1
Æ log jO(l)jæ] -

1

2
Tr(V

XK

l = 1
ÆO(l)æ)

Æ log q(S)æ =
Pn

i = 1
PK

l= 1 Æsilæ log Æsilæ

Æ log q(M)æ =
PK

l = 1 Æ log q(l(l))æ =
PK

l = 1 [ - d
2 [1 + log 2p] + 1

2 log jT(l)j]

Æ log q(T )æ =
XK

l = 1
Æ log q(O(l))æ =

XK

l = 1
-

dg(l)
2

log 2 -
d[d - 1]

4
log p -

Xd

j= 1
logG(

g(l) + 1 - j

2
)

"

+
g(l)
2

log jC(l)j +
g(l) - d - 1

2
Æ log jO(l)jæ -

1

2
Tr(C(l)ÆO(l)æ)

"

Æ log q(L)æ =
Pn

i= 1
PK

l= 1 Æ log q(L(l):i)æ =
Pn

i = 1
PK

l = 1
1
2

Pd
j = 1 log blji

h i
- d

2 [1 + log 2p]
h i

Notation: G(:) denotes the gamma function.
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https://github.com/syooseph/YoosephLab/tree/master/MixtureMicrobialNetworks/MS_MixMPLN
https://github.com/syooseph/YoosephLab/tree/master/MixtureMicrobialNetworks/MS_MixMPLN


For each input sample–taxa matrix, MS_MixMPLN was run with a larger value for the number of
components (5, 6, and 7, respectively, for ground-truth K = 2, 3, and 4). The values for the priors were as
follows: b = 10 - 6, ! = 50, and V set to a diagonal matrix with all entries equal to 51. MS_MixMPLN was
run using 26 different starting points on each input, where 25 starting points were generated using random
partitions of the samples in the sample–taxa matrix and one starting point was generated using the K-means
algorithm (MacQueen, 1967) to partition the samples. Each partition was used to initialize the estimates for
the mixing coefficients and the variational parameters. For each starting point, the algorithm was allowed to
run for 30 iterations (or less, if it reached convergence). The output with the maximum ELBO value was
selected.

The predicted number of components was determined by applying a threshold s to the mixing coefficient
values; that is, any component with mixing coefficient value < s was not counted toward the predicted
number of components. Table 3 shows the accuracy of MS_MixMPLN on the simulated datasets at
different values for the threshold s. Here, accuracy for a particular s value is measured as the proportion of
times the predicted number of components at that threshold is equal to the ground-truth K.

We see from Table 3 that, for each combination of n‚K, and s values, MS_MixMPLN shows fairly
similar accuracy levels for all graph structures. While the accuracy is highest for K = 2, in the region of 0.75
to 0.95 (at s = 0:01), it decreases for K = 3 and 4, to smaller values in the region of 0.05 to 0.25 (at s = 0:01).
The accuracy also generally increases with an increase in the number of samples per component (from 200
to 1000). At a higher threshold value (s = 0:06), even for K = 4, the accuracy estimates are moderately high
(in the region of 0.5 to 0.75) for the sample sizes explored.

Table 3. Accuracy of MS_MixMPLN on the Simulated Dataset for Different Values of Threshold s

Graph
type

No. of
components

No. of
samples per
component

Threshold
s= 0:01

Threshold
s = 0:02

Threshold
s= 0:03

Threshold
s = 0:04

Threshold
s= 0:05

Threshold
s = 0:06

Band K = 2 200 0.95 0.95 0.95 0.95 0.95 0.95
1000 0.65 0.75 0.75 0.75 0.75 0.8

K = 3 200 0.15 0.3 0.4 0.45 0.5 0.55
1000 0.2 0.25 0.3 0.5 0.55 0.6

K = 4 200 0.05 0.2 0.35 0.45 0.55 0.6
1000 0.05 0.05 0.3 0.5 0.5 0.55

Cluster K = 2 200 0.8 0.9 0.9 0.95 0.95 0.95
1000 0.85 0.9 0.95 0.95 1 1

K = 3 200 0.4 0.5 0.5 0.55 0.65 0.7
1000 0.35 0.45 0.55 0.6 0.7 0.7

K = 4 200 0.2 0.25 0.25 0.25 0.35 0.4
1000 0.05 0.05 0.15 0.25 0.4 0.6

Hub K = 2 200 0.8 0.9 0.9 0.9 0.9 0.85
1000 0.75 0.9 0.95 0.95 0.95 0.95

K = 3 200 0.55 0.5 0.55 0.6 0.6 0.65
1000 0.45 0.6 0.65 0.7 0.7 0.75

K = 4 200 0.3 0.25 0.25 0.35 0.35 0.45
1000 0.4 0.45 0.45 0.6 0.75 0.75

Random K = 2 200 0.85 0.9 0.9 0.9 0.9 0.95
1000 0.65 0.65 0.7 0.75 0.75 0.8

K = 3 200 0.25 0.25 0.35 0.4 0.5 0.5
1000 0.25 0.4 0.45 0.5 0.6 0.6

K = 4 200 0.15 0.15 0.2 0.2 0.3 0.4
1000 0.15 0.2 0.35 0.4 0.4 0.5

Scale-free K = 2 200 0.75 0.75 0.75 0.75 0.85 0.85
1000 0.65 0.8 0.8 0.85 0.85 0.9

K = 3 200 0.3 0.35 0.4 0.45 0.55 0.6
1000 0.4 0.45 0.5 0.5 0.5 0.6

K = 4 200 0.05 0.15 0.3 0.4 0.45 0.5
1000 0.15 0.25 0.4 0.45 0.55 0.6

MPLN, multivariate Poisson log-normal.
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As an alternate strategy, we evaluated the AIC, BIC, and EBIC criteria (Epskamp and Fried, 2018; Zhu
and Cribben, 2018) for model selection. As part of this assessment, we ran the MixMPLN algorithm
(Tavakoli and Yooseph, 2019) with different values for K (from 1 through 6) on each sample–taxa matrix,
and used the minimum values of Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), and Extended BIC (EBIC) (Appendix A1) to predict the number of components. We observed that
none of the three criteria returned the correct answer on any of the input datasets.

4. DISCUSSION

In this study, we presented a variational EM algorithm for selecting the number of component distributions
for the MixMPLN framework. The proposed algorithm was evaluated using a large simulated dataset. For the
sample sizes evaluated, the prediction accuracy decreased as the number of components increased. Future
work will explore further the relationship between the number of components and the number of samples in
the context of improving approximation of the marginal log-likelihood estimate and the accuracy of the
algorithm. It will also include a more comprehensive examination of the parameter space and their effect on
model selection accuracy. This will include exploring additional values for the prior parameters and the
mixing coefficients. Finally, we will explore the ELBO function landscape further, including the use of local
maxima solutions to inform the model selection process. We will also evaluate the proximity of the varia-
tional approximation to the true posterior distribution (Yao et al., 2018; Huggins et al., 2020).
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Appendix

APPENDIX A1

UPDATE EQUATIONS FOR THE VARIATIONAL PARAMETERS

1. For q(Si):
The optimal form for q(Si) = exp (Æ log p(X‚Yj/)æh 6¼Si

)P
Si
exp (Æ log p(X‚Yj/)æh 6¼Si

)
, where h 2 Y and the summation in the denominator is

overall possible 1-of-K binary vectors.
This quantity can be shown to be equal to

exp
PK

l = 1 log (fil)
sil

# $
P
Si

exp
PK

l = 1 log (fil)
sil

# $ =
QK

l = 1 [fil]
sil

PK
r = 1 fir

=
YK

l = 1
asilil

where ail = filPK

r = 1
fir
, and

fil = exp log/l - d
2 log (2p) + 1

2 Æ log jO(l)jæ +
Pd

j = 1
- Æeklji æ - log (xji!) + Ækljiæxji

) *
(

- 1
2 Tr ÆO(l)æ ÆL(l):iLT

(l):iæ - Æl(l)æÆL(l):iæT - ÆL(l):iæÆl(l)æ
T + Æl(l)lT(l)æ

h i' (o

2. For q(ll):
We first observe that for a multivariate Gaussian distribution N(yjm‚ P), where m and P are the mean

vector and precision matrix, respectively,

log (N(yjm‚ P)) = - 1

2
yTPy + yTPm + constant (11)
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where the constant is independent of y.
The form of the optimal distribution for q(l(l)) =

exp (Æ log p(X‚ Yj/)æh 6¼l(l)
)R

exp (Æ log p(X‚ Yj/)æh 6¼l(l)
) dl(l)

.

The above equation can be expanded and the numerator can be shown to be equal to

- 1

2
[lT(l)ÆO(l)æ

Xn

i = 1
Æsilæl(l) + lT(l)bIl(l)] + lT(l)

Xn

i = 1
ÆL(l):iæÆsilæ + constant

where the constant term is independent of l(l).
Comparing this quantity to Equation (11), we can deduce that the optimal q(l(l)) is a multivariate

Gaussian distribution with mean vector m(l) and precision matrix T(l) such that

m(l) = T - 1
(l) ÆO(l)æ

Xn

i = 1
ÆL(l):iæÆsilæ

T(l) = bI + ÆO(l)æ
Xn

i = 1
Æsilæ

Thus, Æl(l)æ =m(l). Also, since q(ll) is a multivariate Gaussian distribution, we have that
Æl(l)lT(l)æ = T - 1

(l) +m(l)m
T
(l).

3. For q(O(l)):
A similar approach can be used to show that q(O(l)) is a Wishart distribution. We note that for a Wishart

distribution W(Yd · djv‚ Vd · d)

log (W(Yjv‚ V)) =
v - d - 1

2
log jYj - 1

2
Tr(VY) + constant

where the constant term is independent of matrix Y.
The numerator of the optimal form for q(O(l)) is exp (Æ log p(X‚Yj/)æh6¼O(l)

) and this can be shown to be
equal to

exp (Æ log p(X‚ Yj/)æh6¼O(l)
) = 1

2

Xn

i = 1
Æsilæ log jO(l)j -

1

2
Tr([

Xn

i = 1
ÆL(l):iLT

(l):iæ -
Xn

i = 1
ÆL(l):iæÆsilæÆl(l)æ

T

- Æl(l)æ
Xn

i = 1
ÆL(l):iæT Æsilæ + Æl(l)lT(l)æ

Xn

i = 1
Æsilæ]O(l))

+
v - d - 1

2
log jO(l)j -

1

2
Tr(VO(l)) + constant

where the constant is independent of O(l).

From the above equation, we can deduce that q(O(l)) is a Wishart distribution with degrees of freedom
g(l) and scale matrix C(l) defined as

g(l) = ! +
Pn

i = 1
Æsilæ

C(l) =V +
Pn

i = 1
ÆL(l):iLT

(l):iæ -
Pn

i = 1
ÆL(l):iæÆsilæÆl(l)æ

T - Æl(l)æ
Pn

i = 1
ÆL(l):iæT Æsilæ + Æl(l)lT(l)æ

Pn

i = 1
Æsilæ

Thus, ÆO(l)æ = g(l)C - 1
(l) . Also, Æ log jO(l)jæ = d log 2 - log jC(l)j +

Pd
j = 1 w(

g(l) + 1 - j
2 ).
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MODEL SELECTION USING BIC, AIC, AND EBIC

MixMPLN was run with different values of K. The K value with minimum BIC, AIC, or EBIC score
(Epskamp and Fried, 2018; Zhu and Cribben, 2018) was selected as the predicted number of components.
Here,

AIC = 2k - 2 log L
BIC = k log n - 2 logL

EBIC = k log n - 2 log L+ 4ck log (Kd)

where log L is the log-likelihood score, K is the number of components, k is the total number of non-
zero elements in the precision matrices of the K components, d is the number of taxa, c is a constant (set to
0:5), and n is the number of samples.

14 YOOSEPH AND TAVAKOLI
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