
SCORCH: Neural Architecture Search and
Hardware Accelerator Co-design with

Reinforcement Learning
Siqin Liu and Avinash Karanth

School of Electrical Engineering and Computer Science
Ohio University Athens, OH, 45701

Email:ls847719@ohio.edu and karanth@ohio.edu

Abstract—The ability to automatically generate a neural net-
work architecture and the corresponding hardware implemen-
tation to optimize both accuracy and performance character-
istics (latency, power) simultaneously for edge-based Artificial
Intelligence (AI) applications is becoming prevalent. As both
neural architecture search (NAS) and hardware implementation
have ample design space, it is very challenging to integrate
with resource-constrained edge computing hardware since the
current co-search frameworks take several hundreds of GPU
hours to converge. In this paper, we propose SCORCH, a novel
neural architecture search and hardware accelerator co-design
framework with reinforcement learning to maximize accuracy,
and increase energy efficiency and throughput while converg-
ing faster. By predicting hyperparameters of neural networks
together with hardware resources, we use a reinforcement-based
multi-phased controller to explore neural architecture to achieve
higher accuracy and hardware performance simultaneously by
applying customized dataflows, voltage/frequency scaling, and
tunable Network-on-Chip (NoC) hardware parameters. Our
simulation results on the CIFAR-10/100 and ImageNet datasets
show that SCORCH achieves identical neural network accuracy
while achieving 2.6% higher accuracy, and 35.6%, 26.2%, and
65.8% reductions in latency, energy, and area compared with
state-of-art co-search frameworks such as DANCE, NANDS, and
NASAIC.

Index Terms—hardware and software codesign, neural archi-
tecture search, reinforcement learning

I. INTRODUCTION

Artificial Intelligence (AI) algorithms have achieved re-
markable improvements in prediction accuracy for a wide
range of deep neural network (DNN) applications [12], [18],
[24], [26], [31], [44]. Ever since AlexNet [18] debuted as the
first successful deep CNN architecture, neural networks have
undergone significant optimizations, such as deeper layers
[29], inception modules [32], residual connections [12], super
nets [36], and more. Such hand-crafted modifications, includ-
ing structural reformulation, regularization, and parameter op-
timization is labor-intensive and requires domain knowledge.
In response, a recent approach called neural architecture search
(NAS) [3], [21], [30], [43], [44] has shown great success
in automatically developing DNNs that outperform human-
crafted designs. Apart from finding improved neural network
architectures, there is tremendous interest to optimize their
implementation on hardware accelerators. The goal of studying
hardware implementation is to improve performance charac-

teristics, such as latency, throughput, and energy efficiency.
When deploying architectures explored by NAS to real-world
platforms, the Hardware-aware Neural Architecture Search
(HNAS) has therefore been drawing a lot of attention to ex-
plore neural architectures by considering hardware efficiency
on a fixed-target hardware platform [2], [9], [14], [36].

Despite the achievements of HNAS and hardware/software
co-design approaches, there are several optimization oppor-
tunities that have not been fully explored. Hardware design
search for general purpose computing (CPUs and GPUs)
will involve optimizing DNN implementations such as kernel
fusion and memory access optimizations whereas for spatial
accelerators, it will involve implementing techniques such as
quantization, loop tiling and parallelization [40]. Hardware
configuration search not only provides more accurate perfor-
mance evaluation of latency and throughput, but more im-
portantly, provides instant guidance to hardware-aware DNN
design during NAS. In HNAS design, the search space (hy-
perparameters) needs to be reduced for quick convergence
while searching through several fine-grain hardware param-
eters (loop tiling, dataflow, link bandwidth, quantization, and
others). Such a co-exploration of NAS search with hardware
implementation that converges quickly is desirable especially
in resource constrained edge devices that typically implement
different DNN models.

In this paper, we propose SCORCH, a novel neural archi-
tecture search and hardware accelerator co-design framework
using reinforcement learning algorithm to explore the optimal
co-design configuration while converging faster as illustrated
in Figure 1. SCORCH aims to identify the best neural net-
work architecture and efficient hardware accelerator design
candidate among the large design space, such that the network
accuracy is maximized while hardware performance satisfies
the constraints of throughput and power budget. Specifically,
we design a reinforcement learning-based controller that si-
multaneously predicts hyperparameters of DNN architectures
as well as hardware implementation. We then integrate the
reinforcement-based controller with a multi-phase manager,
which guides the exploration by simultaneously changing the
hyperparameters to improve network accuracy and hardware
configuration to improve throughput and energy efficiency. We
explore hardware design space (HDS) by applying efficient

20
24

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
09

27
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
60

70
6.

20
24

.1
05

28
75

6

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

Network-on-Chip (NoC) based accelerator methodologies such
as loop tiling, dataflow, link bandwidth, DVFS, and quan-
tization. A reward function that incorporates accuracy and
accelerator performance characteristics updates the controller
until convergence. The main contributions of this work are:

• We propose SCORCH, a framework that co-explores
NAS and HDS simultaneously. We devise a multi-phase
manager to guide exploration to gradually converge to
optimal solutions with the best accuracy-efficiency trade-
off.

• We propose a fast convergence search algorithm to better
explore HDS space without sacrificing accuracy in neural
network architectures. The faster convergence generalizes
in saving training costs among a wide variety of image
datasets while meeting the rigid timing and power con-
straints in edge computing.

• Our simulation results on CIFAR-10, CIFAR-100, and
ImageNet datasets show that SCORCH achieves compa-
rable network accuracy while achieving 32.4%, 25.7%,
and 63.2% reductions on latency, energy and area com-
pared with state-of-art co-search frameworks such as
DANCE [6], NANDS [38] and NASAIC [39]. With the
same NAS and HDS, SCORCH converges fastest among
other frameworks and generates the optimal configuration
within two GPU hours given a single hardware specifi-
cation constraint.

II. BACKGROUND AND CHALLENGES

As the rapid deployment of various DNN models on edge
devices has gained traction, NAS is becoming more prevalent.
Since the very first work for NAS with reinforcement learning
[44], there has been a tremendous interest to study efficient
neural architecture search [13], [30]. Integrating hardware
awareness into the search loop provides one more dimension
to the research and has attracted efforts on hardware-aware
NAS [36], [2]. Taking one step further, most recently, co-
exploration of neural architecture and hardware design has
been proposed [14]. Unlike the original NAS with a mono-
objective on maximizing accuracy, those hardware-aware NAS
frameworks take inference latency into consideration, and push
forward the deployment of DNNs onto edge devices. Below
we further elaborate on some of the challenges:

It is challenging to effectively co-explore neural architec-
tures and ASIC accelerator designs. The large design space of
ASIC accelerators (dataflows, PE arrays, NoC, etc) makes it
challenging to map NAS designs to ASIC accelerators. Unlike
GPUs or FPGAs with well-structured hardware, ASIC designs
have the potential to provide maximum flexibility to designers
to organize the hardware. While ASIC accelerators provide
maximum flexibility and thereby enable efficient designs,
it also results in significantly enlarging the search space.
Fortunately, there exists prior research in designing ASIC-
based AI accelerators [27], [1], [23], making it possible to
shrink the design space on top of existing designs.

The architectures automatically explored by NAS have more
irregular and complicated structures than the human-invented

ones. Since the neural networks designed with NAS contain
various types of kernels, uniform hardware accelerator designs
may not be efficient solutions. Moreover, all ASIC accelerators
such as Shidiannao [10], NVDLA, and Eyeriss [5], have a
specific dataflow, which determines how input feature maps
and weight kernels move across the PE array from the global
buffer. For instance, NVDLA involves an adder tree to calcu-
late the partial sum of output feature maps. Dataflows have a
direct impact on the overall hardware efficiency and therefore
should be considered as the first search parameter.

Developing AI algorithms and deploying accelerators on
hardware are two crucial but complex tasks. These chal-
lenges are heightened when targeting resource-constrained
edge devices, such as mobile and portable devices, due to
their strict resource, power constraints, and the need for
high performance. Prior approaches, including hardware-aware
Neural Architecture Search (NAS), compact model design,
model compression, and model-aware accelerator design, have
sought to reconcile the demands of hardware limitations
with the goals of high model accuracy and fast inference
speeds. However, these methods face significant challenges.
Firstly, it’s difficult to find a balance between algorithmic
metrics (such as accuracy, complexity, and robustness) and
hardware performance metrics (including throughput, latency,
resource usage, and power consumption). This necessitates
a back-and-forth between algorithm and hardware designers
to meet their respective goals, leading to a time-consuming,
error-prone process without assured outcomes. Secondly, the
lack of comprehensive co-design between tasks can result in
suboptimal AI algorithms that are not hardware-friendly and
accelerators that do not effectively support the models.

To overcome these challenges, algorithms and their hard-
ware accelerators should be designed together, unlocking
significant optimization possibilities. Co-designing ensures the
development of hardware-oriented or specific AI algorithms,
enabling the selection of hardware devices that best match
the algorithms’ needs in terms of computational capability,
memory, and adaptability. This method not only aligns al-
gorithms with the specific features of hardware, enhancing
computational efficiency but also ensures that designs meet
the resource and performance constraints of the hardware.
Additionally, co-design can significantly reduce design cycles.
Unlike traditional iterative methods that require extensive
effort to achieve satisfactory results, an automated co-design
process can simultaneously optimize an AI algorithm and
its deployment on hardware, ensuring efficient and effective
solutions.

Deploying applications on edge devices introduces another
layer of complexity due to the need for multiple tasks to
operate in tandem, often involving several Deep Neural Net-
works (DNNs) running at the same time. These DNNs must be
executed on the accelerator under a single set of design criteria,
including latency, energy use, and space efficiency. Therefore,
optimizing each DNN one after the other using hardware-
aware Neural Architecture Search (NAS) does not yield the
best overall performance. A more efficient method involves

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Our proposed SCORCH co-design methodology with three kernel
components, i.e., neural architecture training, hardware accelerator inference,
and RNN-based reinforcement learning optimizer. Parameters for neural
architecture and accelerator are generated by the co-exploration controller;
then the identified architecture and accelerator will be evaluated; eventually,
a reward combining neural network accuracy with hardware performance will
be computed to update the controller via feedback.

optimizing multiple neural architectures simultaneously, en-
suring they all meet these shared design specifications.

In this work, we will address the above challenges.

III. PRIOR WORK

From the first work that proposed NAS with reinforcement
learning [43], the idea has been to mitigate human interfer-
ence to design more efficient neural architectures [3], [21],
[30], [44]. Integrating hardware awareness into the search
loop provides one more dimension to co-optimize the hard-
ware implementation and has attracted significant efforts on
hardware-aware NAS architectures [2], [9], [13], [14], [19],
[33], [34], [36], [39]. Unlike the original NAS with a single
objective function on maximizing accuracy, these NAS and
HDS co-exploration frameworks take hardware performance
into consideration, and push forward the deployment of DNNs
onto edge devices.

One challenge of the co-exploration is the extensive training
of the massive network architecture candidates and corre-
sponding evaluation. It is laborious to search for each synaptic
weight of the network over case-by-case redesigns since the
search spaces are of extremely high dimension [3]. Existing
NAS methods either formulate the search space as a super-
network (”supernet”) and train only one-shot to approximate
the performance of every architecture in the search space
via weight-sharing [21], or treat the selection as a sequential
decision-making process or utilize evolutionary algorithms
[30]. However, these NAS algorithms suffer from increased
time to converge and consume excessive hardware resources.

On the other hand, ASIC accelerator designs have the max-
imum flexibility to determine the hardware to most efficiently

implement the target workloads. Hardware accelerators are
generally spatial in nature, where a set of PEs are integrated
to provide high throughput and parallelism. Different ways
of arranging the PEs can constitute numerous topologies
and dataflows, thereby increasing the design space. Existing
research works endeavor to avoid the large design space by
starting from a ”hot” state based on a set of existing accelerator
templates [13], [19], [39], or restrain the search space within
sub-components of accelerators, such as the NoC design [38],
arithmetic precision [34], power management [33], dataflows
[6], and many more [25], [41]. No prior work can efficiently
address all these critical design factors of ASIC accelerators
in the co-exploration framework.

Compared to prior neural network hardware/software co-
design frameworks, SCORCH uses the novelty of RNN-based
Reinforcement Learning Optimizer to search for the coarse-
grained hyperparameters of neural network architecture, such
as the number of Inception modules, the type of the modules,
and others which highly reduces the search space for direct
weights and leads to a fast convergence without sacrificing
the accuracy. We conduct an extensive and fine-grained ex-
ploration of hardware implementation, such as loop tiling,
dataflow, link bandwidth, DVFS, and quantization, while prior
works mostly focus on one or a few of them. Instead of
using existing sub-accelerator templates, such as NVADIA
style [42], Shi-diannao [10], Eyeriss [5], we explore the
hardware design search from scratch, which can achieve the
optimal design in terms of throughput and energy consumption
with slightly increase in overall convergence time. Overall,
SCORCH uniquely combines coarse-grain hyperparameter se-
lection along with fine-grain hardware exploration to improve
accuracy and performance over prior work.

IV. SCORCH FRAMEWORK AND
IMPLEMENTATION

Figure 1 demonstrates the overview of SCORCH. It con-
tains three components, including neural network training,
hardware accelerator inference, and RNN-based reinforcement
learning optimizer. In general, the controller samples neural
architectures and hardware configurations in each episode
(or iteration). The predicted sample goes through training
and inference steps to generate the accuracy and hardware
cost. Finally, a reward is generated to update the controller
through a reinforcement learning optimizer. Note that since
the hardware constraints are non-differentiable, differentiable
neural architecture search [6], [20] is not applied.

Co-Exploration Controller: Driven by the requirement
of multitask in one application workload, we propose a
novel reinforcement learning-based Recurrent Neural Network
(RNN) controller to simultaneously predict multiple neural ar-
chitectures and the corresponding hardware implementations.
Figure 2 demonstrates the proposed controller. It consists of
six segments, which represent the hyperparameters in DNN
architectures and hardware implementations. For the segment
associated with a DNN, its outputs determine the neural
network’s hyperparameters (NAS function). The remaining

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Implementation from the model zoo to hardware: (top) the given pre-
trained model and design specification; (middle) the proposed design search
space and RL-based parameter controller for both network and hardware
architecture; (bottom) outputting the best network candidate and hardware
design.

segments for the hardware accelerator determine the hardware
design parameters. Specifically, in each episode, the controller
first predicts a design sample and gets its reward R based on
the evaluation results for both algorithm (accuracy) and hard-
ware performance (energy, latency, and area) as formulated
in Eq.1. Then, we employ the Monte Carlo policy gradient
algorithm [35] to update the controller in Eq.2:

Rk(acc, EDAP) = α×Racc + (1− α)

×(Re ×Rl ÷Ra)
(1)

▽Jθ =
1

m

m∑
k=1

T∑
t=1

γT−t▽θlogπθ(at|a(t−1):1)(Rk − b) (2)

where α balances the tradeoff between accuracy and hardware
efficiency. m is the batch size and T is the number of steps
in each episode. Rewards are discounted at every step by an
exponential factor and the baseline b is the average exponential
moving of rewards.

Network Architecture Space: We consider one neural
network layer as composed of multiple Inception modules as

TABLE I
ACCELERATOR HARDWARE SEARCH SPACE WITH 108 POSSIBLE VALUES.

WHEN COMBINED WITH MAPPING AND LOOP TILING SEARCH SPACES,
THE SCORCH TOTAL SEARCH SPACE REACHES 1010 .

Parameter Name Type Potential Values
PEs array size x int 1 to 256, powers of 2
PEs array size y int 1 to 256, powers of 2
NoC lin width enum 1,2,4
DVFS config enum mode 1 to 5

dataflow config enum WS,OS,IS,RS
Scratchpad config enum Private, Shared
Scratchpad size int 128B to 128KB, powers of 2

Input buffer size int 1KB to 1MB, powers of 2
Weight buffer size int 1KB to 1MB, powers of 2
Output buffer size int 1KB to 1MB, powers of 2

DDR3 channels int 1 to 8, powers of 2

adopted in ResNet [12]. For the convolutional operation, the
parameterized exploration space includes the number of filters,
filter height, filter width, stride height, and stride width, which
are grouped into three module types - Inception A, B, and C.
Each of the layers has 7 candidate operations in addition to
a skip connection. Beyond this, the hyperparameters include
the number of filters and the number of skip layers for
each residual block. Quantization gives the trade-off between
accuracy and computation cost, co-optimized in hardware as
arithmetic precision.

Hardware Design Space: As shown in Figure 2. hardware
design space, we target a highly-parameterized and general
ML accelerator template capable of modeling a wide range
of previously proposed architectural designs based on grids
of processing elements (PEs). Given the enormous design
space of hardware accelerators, we explore parameters such
as dataflow, link bandwidth, DVFS, PE array size, buffer size,
etc., as described in Table I. We represent tiling parameters
to exploit spatial and temporal locality of data accesses in
the DNN loop nests. Loop tiling factors determine how to
store data within each memory hierarchy (e.g., DRAM, global
buffer, NoC, and Scrachpad in PE) to effectively accommodate
the data reuse patterns, and can be derived from all possible
choices under the resource budget (e.g., memory and compu-
tation resource budgets).

We consider the design space of dataflow in compliance
with the conventional dataflow taxonomy to take advantage
of the temporal data reuse [31]. For instance, a weight being
reused in the same PE for multiple time window instances
is called weight stationary (WS), which takes advantage of
temporal multicasting. Determine the data reuse patterns. Here
we search from four patterns: row stationary (RS), input
stationary (IS), weight stationary (WS), and output stationary
(OS) for each chunk, and thus have a total of 64 (4*4*4)
choices for reuse pattern of the three sub-accelerators in our
accelerator.

The selection of DVFS configurations is based on the
observed workload in pre-training. Each DVFS model consists
of one inactive state (power-gated) and four active states.

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

In an inactive state, the voltage supply to the specific PE
and its outgoing interconnection is reduced to 0 V with no
clock applied to the PE. PE in an active state can operate in
any one of the four different voltage levels. The V/F pairs
used in the DVFS models are {0.8V/2.75ns, 1.0V/2.25ns,
1.1V/2ns, 1.2V/1.8ns} which are numbered as V/F modes 2-5
with power-gated state as mode 1. These voltage levels are
commonly configured in accelerators and selected based on
the principle that when they operate in different modes, the
voltage and frequency are proportionally decreased/increased.

Mapping and scheduling. For the hardware accelerator, a
set of hyperparameters identifying the design choice are given
by the controller. We then need to get the hardware metrics
including latency rl, energy re, and area ra. SCORCH incor-
porates the state-of-the-art cost model Timeloop [22], Accel-
ergy [37], and a mapping and scheduling algorithm to obtain
the above metrics. For area ra, we can directly obtain it from
Accelergy with the given hardware accelerator parameters. The
latency rl and energy re are determined by the mapping and
scheduling combined with Timeloop. We integrate the two
hardware evaluation tools in our framework and parameterize
the inputs using the six outputs of the RNN controller. To
simplify the algorithm for mapping and scheduling, we only
explore representative dataflows in a limited space (output,
weight, and row stationary [4]), each dataflow with a fixed
loop execution order. Any existing mapping and scheduling
algorithm can be embedded into the framework.

Quantization Selector: The quantization in DNNs deter-
mines the overall performance and computational complexity
of a network. Therefore, it is imperative to automate the design
of quantization together with the design of the architecture.
The implementation of architecture quantization joint search
may vary by different settings and discretion. In this paper,
we focus on the single-controller method and extend the
RNN-based controller. As displayed in the framework, we
insert an additional step into the controller as the quantization
parameter.

Training and evaluation. For neural network architecture,
the hyperparameters Ai for DNN architecture are obtained
from the RNN controller. For each DNN in the candidate
population, we train it from backbone networks and get its
accuracy acci on a held-out validation dataset. Based on
the accuracy, we compute the weighted accuracy as a batch
process in DNN computation for multiple DNNs evaluation at
a time as follows:

weighted(A) =
∑

i=1,2,...,N

(βi × acci) (3)

where N is the total number of DNNs evaluated at a time,
and βi is a weight ranging from 0 to 1.

Hardware Performance Estimation: For the hardware
accelerator, a set of hyperparameters identifying the design
choice are given by the RNN-based controller. We need to get
the hardware metrics including latency Rl, energy Re, and area
Ra. SCORCH incorporates the state-of-the-art cost estimators,

Timeloop [22], Accelergy [37], and mapping algorithm [15]
to obtain the above metrics. For area Ra, we can directly
obtain it from Accelergy with the given hardware accelerator
parameters. The latency Rl and energy Re are determined by
the mapping and scheduling combined with Timeloop.

Recurrent Neural Network based Controller: In
SCORCH, we use a controller to generate architectural hy-
perparameters of neural networks and hardware accelerators.
To be flexible, the controller is implemented as a recurrent
neural network. Given the network accuracy and hardware
constraints, we can then use the controller to generate their
hyperparameters as a sequence of tokens.

In our experiments, the process of generating an architecture
stops if the number of layers exceeds the threshold or the cost
of the hardware exceeds the specification. Once the controller
RNN finishes generating an architecture, a neural network with
this architecture is built and trained. A hardware configuration
is generated simultaneously and evaluated with the network
inference task to obtain the hardware cost, i.e., energy, latency,
and area. At convergence, the accuracy of the network on
a held-out validation set is recorded. The parameters of the
RNN-based controller, θ, are then optimized in order to
maximize the expected accuracy of the proposed architectures
and the hardware performance. In the next section, we will
describe a policy gradient method that we use to update
parameters θ so that the RNN-based controller generates better
architectures over time.

Training with reinforce: The list of tokens that the con-
troller predicts can be viewed as a list of actions a1:T to
design an architecture for a child network and the hardware.
At convergence, this child network will achieve an accuracy
Racc on a held-out dataset and the hardware latency, energy,
and area cost Rl, Re, and Ra. We combine these scores as
the joint reward Rk and use reinforcement learning to train
the controller. More concretely, to find the optimal design
point, we ask our controller to maximize its expected reward,
represented by J(θc) in Eq. 2. Since the reward signal R is
non-differentiable, we need to use a policy gradient method to
iteratively update θc. As formulated in Eq. 2, the conjugated
validation accuracy and hardware metrics that the k-th design
point achieves after being trained on a training dataset is Rk.
In order to reduce the variance of this estimate we employ a
baseline function b. As long as the baseline function b does
not depend on the current action, then this is still an unbiased
gradient estimate.

V. SIMULATION EVALUATION

A. Simulation Setup

Three image classification datasets are employed (CIFAR-
10, CIFAR-100 [17], and ImageNet [7]) to verify the efficacy
of SCORCH. During the search process, we only use the
training images, and randomly select 10% of them to build
a validated set. Test images are used to test the accuracy of
the resultant architectures. All images undergo data augmen-
tation, including upsampling, random cropping, and random
horizontal flip.

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

B. Simulation Results

Figure 3 demonstrates the exploration results of
SCORCH on three application workloads. In this figure,
the x-axis, y-axis, and z-axis represent latency, energy, and
area, respectively. The black diamond indicates the design
specs (upper bound); each green diamond is a solution (neural
architecture-ASIC design pair) explored by SCORCH; each
blue cross is a solution based on the smallest neural network
in the search space combined with different ASIC designs
(lower bound); and the red star refers to the best solution in
terms of the average accuracy explored by SCORCH. The
numbers in the rectangles with blue, green, and red colors
represent the accuracy of the smallest network, the inferior
solutions, and our best solutions, respectively.

Table II shows the performance of SCORCH on CIFAR-10
dataset. For the baseline, we have performed the architecture
search using ProxylessNAS [2] (w/ or w/o Flops penalty
term), and conducted hardware generation on the searched
network using the exhaustive-search tool. It represents the typ-
ical separate design performed in practice. Using SCORCH,
we have performed co-exploration with the cost functions
described in Section III. Overall, SCORCH was able to obtain
a neural network accelerator design superior to the baseline.
For SCORCH, we report two designs, one with high accuracy
(-A) and the other towards efficient hardware design (-B).
For the high accuracy design (-A), SCORCH achieves almost
the same accuracy as the baseline network architecture that
was searched without any hardware cost penalty on the loss
function. On the other hand, with the associated optimal hard-
ware accelerators, SCORCH yields much better cost metrics
than the baseline (w/ or w/o Flops penalty). For the efficient
hardware design (-B), we select the design which shows the
best cost function within at most 1% accuracy drop. It shows
that SCORCH achieves up to 4× better EDAP, or almost 4×
better latency by performing an efficient co-exploration. In
addition, SCORCH supports flexible hardware exploration by
redefining the hardware cost as a weighted linear combination
of latency, energy consumption, and area as shown in the two
major rows.

Comparisons with state-of-the-art frameworks: Table III
reports the experimental results of SCORCH against three
state-of-art neural architecture and hardware co-exploring
frameworks, DANCE [6], NANDS [38] and NASAIC [39]
over three datasets, including CIFAR-10, CIFAR-100, and
ImageNet. We report solutions by NANDS with the maximum
throughput (“Opt TP”) and the maximum accuracy (“Op-
tAcc.”). For NAS [43] and HW-aware NAS [2], we report
the finally identified architectures. SCORCH can make bet-
ter accuracy-throughput tradeoffs against state-of-the-art NAS
frameworks. Specifically, NAS generates solutions beyond the
real-time constraint, while SCORCH can find valid solutions
with marginal loss. In addition, SCORCH achieves 3.09×,
and 3.14× speedup over NAS, respectively, on two different
datasets. Compared with HW-aware NAS, SCORCH takes
less time in searching, even though HW-aware NAS does not

thoroughly explore the hardware design space. On CIFAR-10
datasets, SCORCH(-A) can achieve 42.99% higher through-
put and 1.58% improvement in accuracy compared with
NANDS(Opt TP).

Since the CIFAR dataset only covers limited image classes
(10) with 32x32 resolution, we further expand the evalua-
tion of SCORCH on ImageNet dataset, which contains over
10,000,000 labeled images of 1000 object categories for
classification. To accelerate the search convergence of our
framework on this larger dataset, we use critical sampling [16]
to reduce the multi-dimensional correlation. We used 5000
samples for training and 1000 samples for evaluation. The
model was trained with 50 iterations using an Adam optimizer
until the target throughput was achieved. As seen in Fig. 3(c),
the best design point for latency and energy models are only
0.06 ms and 0.018 W. Therefore, the proposed SCORCH can
converge to the optimal design point over a larger dataset.

VI. CONCLUSIONS

In this work, we have proposed a framework, namely
SCORCH, to co-explore the neural architecture and hardware
accelerator designs targeting search efficiency and superior
performance on edge devices. SCORCH was able to co-design
the search space with efficient hardware implementation and
marginal accuracy loss. The search space can be extended with
the same framework to scale up for higher accuracy and more
restricted hardware specification. In addition, an extensive and
fine-grained exploration of hardware implementation has been
developed to simultaneously determine the neural architectures
under preset design specification. The efficacy of SCORCH is
finally verified through a set of comparisons with state-of-
the-art network and hardware co-design frameworks [8], [11],
[28].

ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-
1703013, CCF-1901192, CCF-1936794, CCF-2324645 and
CCF-2311544. We sincerely thank the anonymous reviewers
for their excellent feedback.

REFERENCES

[1] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Al-
rescha: A lightweight reconfigurable sparse-computation accelerator,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 249–260.

[2] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[3] W. Chen, X. Gong, and Z. Wang, “Neural architecture search on
imagenet in four gpu hours: A theoretically inspired perspective,” arXiv
preprint arXiv:2102.11535, 2021.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[5] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Visualization of the search process by SCORCH for two different datasets: (a) CIFAR-10 (b) CIFAR-100 (c) ImageNet. Green diamonds represent
the intermediate results of the search, randomly distributing among the bounds (blue cross and black diamond). The red diamond shows the final optimal
solution with the highest score considering architecture accuracy and hardware performance.

TABLE II
PERFORMANCE OF SCORCH ON CIFAR-10. HARDWARE COST IS MEASURED IN TWO METHODS, I.E., EDAP AND LINEAR COMBINATION OF LATENCY,

ENERGY, AND AREA AS PROPOSED IN [6]. THE HYPERPARAMETER λ IS FINE-TUNED TO ACHIEVE THE OPTIMAL EDAP SOLUTION FOR SCORCH.

HWCost Hyperparam. Method Acc (%) Latency (ms) Energy (mJ) EDAP (norm.)

CostHWEDAP

λL λE λA Baseline + HW 93.4 9.1 3.5 133.1

NA NA NA

SCORCH (scratch) 91.9 2.8 6.8 93.8

SCORCH (hot start)-A 93.2 2.6 6.5 74.4

SCORCH (hot start)-B 92.3 1.4 3.6 19.7

CostHWLinear 3.8 4.8 1.2

Baseline + HW 93.2 3.5 9.8 162.2

SCORCH (scratch) 92.2 2.8 1.1 21.8

SCORCH (hot start)-A 93.1 1 1.2 15.7

SCORCH (hot start)-B 92.3 0.9 1.2 13.2

[6] K. Choi, D. Hong, H. Yoon, J. Yu, Y. Kim, and J. Lee, “Dance:
Differentiable accelerator/network co-exploration,” arXiv preprint
arXiv:2009.06237, 2020.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[8] D. F. DiTomaso, “Reactive and proactive fault-tolerant network-on-
chip architectures using machine learning,” Ph.D. dissertation, Ohio
University, 2015.

[9] Z. Dong, Y. Gao, Q. Huang, J. Wawrzynek, H. K. So, and K. Keutzer,
“Hao: Hardware-aware neural architecture optimization for efficient
inference,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,
2021, pp. 50–59.

[10] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 92–104.

[11] R. Guirado Liñan, “Wireless chip-scale communications for neural
network accelerators,” B.S. thesis, Universitat Politècnica de Catalunya,
2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[13] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the
shoulders of giants: Hardware and neural architecture co-search with
hot start,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 4154–4165, 2020.

[14] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
“Accuracy vs. efficiency: Achieving both through fpga-implementation

aware neural architecture search,” in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1–6.

[15] S.-C. Kao and T. Krishna, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2020, pp. 1–9.

[16] Y.-K. Kim and K.-S. Na, “Application of machine learning classification
for structural brain mri in mood disorders: Critical review from a clinical
perspective,” Progress in Neuro-Psychopharmacology and Biological
Psychiatry, vol. 80, pp. 71–80, 2018.

[17] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[19] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chan-
dra, “Heterogeneous dataflow accelerators for multi-dnn workloads,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 71–83.

[20] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and
D. Chen, “Edd: Efficient differentiable dnn architecture and implemen-
tation co-search for embedded ai solutions,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[21] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[22] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in 2019 IEEE inter-
national symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISON OF PERFORMANCE BETWEEN NAS, HW-AWARE NAS, NANDS, NASAIC, AND DANCE. THE CONFIGURATION AND PERFORMANCE

OF NAS AND HW-AWARE NAS ARE BOTH INHERITED FROM [38]

Dataset Spec.(Gbps) Models Arch. Property Accuracy Throughput (Gbps) HW EDP Elapsed Time impr.Depth Para. (x106) MACs(GOP) (%) degr. (norm.) (minute)

CIFAR-10 0.5

NAS 9 0.89 0.7 94.72 0 0.22 133.1 1115 1x
HW-Aware NAS 8 0.19 0.05 90.95 -3.46 0.66 65.9 164 6.8x

NANDS (Opt TP) 8 0.2 0.06 91.58 -2.83 2.4 52.5 361 3.1x
NANDS (Opt Acc.) 10 0.4 0.21 93.59 -0.82 0.9 55.1 361 3.1x

NASAIC 10 0.6 0.35 93.14 -1.58 0.62 159.8 960 1.2x
DANCE 9 0.77 1.21 94.41 -0.74 1.1 71.8 827 1.4x

SCORCH-A 8 0.91 0.75 93.02 -1.31 1.3 34.5 126 8.9x
SCORCH-B 9 1.13 0.82 93.33 -0.91 0.85 36.9 148 7.5x

CIFAR-100 0.45

NAS 12 1.04 1.02 76.58 0 0.45 238.5 2928 1x
HW-Aware NAS 8 0.35 0.07 71.43 -5.15 0.28 \ 246 11x

NANDS (Opt TP) 8 0.25 0.15 72.22 -4.36 0.9 \ 594 4.9x
NANDS (Opt Acc.) 12 0.63 0.46 75.58 -1 0.45 55.1 361 9.1x

NASAIC 9 0.94 0.83 71.1 -3.51 1.1 65.5 641 4.6x
DANCE 9 0.81 1.75 75.1 -1.48 0.53 167.3 980 3.0x

SCORCH-A 9 1.25 0.88 74.58 -2 0.97 38.3 155 19x
SCORCH-B 10 1.47 0.96 75.44 -1.14 1.45 42.9 171 17x

ImageNet 0.5

NAS 9 1.56 0.97 93.51 0 0.18 198 1728 1
NANDS (retrain) 10 0.85 0.85 90.55 -2.96 0.55 59.7 242 7.1x
NASAIC (retrain) 11 1.13 1.33 90.13 -3.38 1.9 49.3 320 5.4x

SCORCH-A 10 0.95 0.83 91.1 -2.41 1.95 39.5 165 10.5x
SCORCH-B 11 1.32 1.21 91.9 -1.61 0.91 41.4 180 9.6x

[23] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention, 2015, pp.
234–241.

[25] A. Samajdar, P. Mannan, K. Garg, and T. Krishna, “Genesys: Enabling
continuous learning through neural network evolution in hardware,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2018, pp. 855–866.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[27] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al., “Simba: Scaling
deep-learning inference with multi-chip-module-based architecture,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 14–27.

[28] K. D. Shiflett, “Photonic deep neural network accelerators for scaling to
the next generation of high-performance processing,” Ph.D. dissertation,
Ohio University, 2022.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[31] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[33] F. Tu, W. Wu, Y. Wang, H. Chen, F. Xiong, M. Shi, N. Li, J. Deng,
T. Chen, L. Liu et al., “Evolver: A deep learning processor with on-
device quantization–voltage–frequency tuning,” IEEE Journal of Solid-
State Circuits, vol. 56, no. 2, pp. 658–673, 2020.

[34] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8612–8620.

[35] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[36] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 734–10 742.

[37] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2019, pp. 1–8.

[38] L. Yang, W. Jiang, W. Liu, H. Edwin, Y. Shi, and J. Hu, “Co-exploring
neural architecture and network-on-chip design for real-time artificial
intelligence,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2020, pp. 85–90.

[39] L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishna, V. Chandra,
W. Jiang, and Y. Shi, “Co-exploration of neural architectures and
heterogeneous asic accelerator designs targeting multiple tasks,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020,
pp. 1–6.

[40] D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and
A. Mirhoseini, “A full-stack search technique for domain optimized deep
learning accelerators,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 27–42.

[41] X. Zhang, W. Jiang, Y. Shi, and J. Hu, “When neural architecture
search meets hardware implementation: from hardware awareness to co-
design,” in 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2019, pp. 25–30.

[42] G. Zhou, J. Zhou, and H. Lin, “Research on nvidia deep learning
accelerator,” in 2018 12th IEEE International Conference on Anti-
counterfeiting, Security, and Identification (ASID). IEEE, 2018, pp.
192–195.

[43] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[44] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

Authorized licensed use limited to: The George Washington University. Downloaded on May 22,2024 at 18:11:14 UTC from IEEE Xplore. Restrictions apply.

