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Abstract—As low-level embedded systems are vulnerable to
attacks that exploit flaws in either hardware or software, it
is essential to enforce secure policies to protect the system
from malicious instructions that significantly alter program
behavior. To improve efficiency of implementation, high-level
secure policy languages have been defined such that the policies
can be directly synthesized into hardware monitors. However,
the language semantics define policies that are static throughout
the program execution which limits the flexibility. Moreover,
secure policies target processor pipelines and not the network-on-
chip (NoC) connecting several processor where denial-of-service
attacks could originate.

In this paper, we enable dynamically reconfigurable security
policies through a high-level language called D-GUARDthat
target both processor pipeline and NoC architecture in mut-
licore embedded systems. Alongside static policies, D-GUARD’s
semantics support policies that dynamically change behavior
in response to program conditions at runtime. In addition, we
also propose policies to thwart denial-of-service attacks by rate
limiting the packet flow into the network using the same dynamic
policies expressed by D-GUARD. We describe a Verilog compiler
to support realizing policies as hardware monitors for both pro-
cessor pipelines and network interfaces. D-GUARD is developed
using the Coq proof assistant, enabling the formal verification
of policy correctness and other properties. This approach takes
advantage of the abstractions and expressiveness of a higher-level
language while minimizing the overhead that comes with other
general-purpose approaches implemented purely in hardware, as
well as offering the groundwork for a formally verified tool chain.

I. INTRODUCTION

Securing the safety of low-level manycore embedded sys-
tems remains a critical research topic, inspiring diverse ap-
proaches [2]-[4], [7], [8] to circumvent the lack of features
and abstraction layers that provide security in other systems.
At runtime, malicious programs may exploit flaws in software
or hardware behavior to gain control. Hardware monitors
attempt to detect and prevent such attacks at the point of
execution. That is, they monitor data propagated through
the pipeline, using tags, and determine whether preventative
measures should be enacted based on implemented security
policies. For example, a monitor may detect illegal memory
accesses and halt execution of the program on detection.

Hardware monitors provide a compelling solution for se-
curing manycore embedded systems, since they often do
not rely on higher-level abstraction layers, such as operating
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Figure 1: Overview of D-GUARD policy implemented for
multicore architecture. The secure policies are applied to the
multicore pipelines and network interfaces.

system. However, they often come with a trade-off of perfor-
mance versus versatility. Architectures like FlexiTaint [7] and
MemTracker [8] are highly successful at preventing domain-
specific attacks with low overhead, but lack the flexibility to
provide a broader coverage of potential policies. More general
architectures, like PUMP [4] and PHMon [2], allow such
flexibility via programmability. However, as a consequence,
the hardware incurs a much more substantial overhead, such
as an additional pipeline stage or a complete co-processor, as
in the case of Nile [3].

Updating any given secure policy may require a significant
tweaking of the architecture, especially in the case of non-
programmable or static monitors limiting their scalability.
Exploiting high-level language semantics to produce low-level
security solutions has demonstrated promise through designs
like GARUDA [5]. However, thus far, their semantics lack the
expressiveness to design policies suitable to address attacks on
highly interconnected systems, such as network-on-chip (NoC)
platforms. Prior work has addressed denial-of-service attacks
in NoCs in hardware by considering throttling and other rate
control mechanisms [1].

In this paper, we attempt to close the abstraction gap
further by developing a high-level programming language for



designing hardware monitors, named D-GUARDthat targets
both processor pipelines and NoC. We reduce overhead using
a compiler toolchain from D-GUARD to Verilog, allowing
policies to be placed directly into hardware. Moreover, D-
GUARD is implemented in the Coq proof assistant. This
allows D-GUARD to take advantage of Coq as a carrier
language for computations and allows a pathway to formal
verification for policies. As shown in 1, the high-level lan-
guage D-GUARD is used to design policies that ensure safe
execution of instructions and packet flows at the network level
simultaneously in embedded manycore architectures.

D-GUARD’s semantics are based on the bit-stream pro-
cessing language Ziria [6]. We view monitors as streams that
continuously monitor input and produce some output based
on policy specifications. This formulation allows us to design
polices that can dynamically reconfigure their behavior in
response to conditions at runtime. Additionally, our general
approach to policy design allows the application of policies
outside of an execution pipeline. Given the influence from
the network-oriented language Ziria, we demonstrate that
D-GUARD is able to design flexible policies that monitor
network traffic and program execution simultaneously. We
implement a series of policies aimed at preventing denial-of-
service (DoS) attacks, while simultaneously ensuring that on-
going computations do not violate certain security guarantees.
Our experiments indicated that our selected D-GUARD poli-
cies introduce minimal overhead while successfully catching
policy violations in both the network interface and execution
pipelines.

II. D-GUARD: LOW-LEVEL MONITORS IN HIGH-LEVEL
SOFTWARE

A. The Design of D-GUARD

The high-level D-GUARD programming language is based
on the intuition that hardware monitors can act as bitstream
processors. That is, one can construct hardware monitors that
continuously transform input bit sequences (such as metadata
tags, instructions, or packet data) into output bit sequences
based on its internal logic. D-GUARD’s semantics takes cues
from the bitstream processing language Ziria [6]. Hence, we
denote D-GUARD policies as Stream.

We distinguish two varieties in Stream: transformers (T)
and computers (C r). Transformers are the foundational stream:
they act as a black box that converts input of type ¢ into
output of type o. Such streams are static: once synthesized,
they cannot reconfigure and change their behavior. Hence,
we implement computers, which act as transformers with the
additional option to return a value of type r before halting
execution. Computers allow policies to express conditions
at which to reconfigure behavior during runtime. This is
primarily represented in D-GUARD by the staged stream
syntax, x < Si1;S2, where s is a stream computer whose
return value is saved in z before executing the stream ss.
Stream staging ensures that execution is mutually exclusive:
the stream s, will not be active until s; halts and returns a
value.

Streams s 2 upd (Az.e) (xUpdate stream.x*)
done (A\z.e) (*Return result.x)
ite e then s1 else s (*Branching. x)

|
|
| T <4 s1;82
|
|

(xStream staging.x)
S1 > S2 (xStream composition.x)
loop (Ax.S) (xIterated streams.*)

Listing 1: Selected D-GUARD syntax.

Listing 1 demonstrates the full suite of commands in D-
GUARD. The quintessential stream is the update stream,
upd(Az. ). Given an input value v, the update stream converts
it into an output value according to the expression e: that is,
o = e[r := v]. The done(A\x.e) stream is an extension of
the update stream. This acts as the “return” command for D-
GUARD, in which given an input value v, the done stream
provides e[z := v] as a return value, and its output as a stream
is v unchanged.

We implement control flow in D-GUARD via conditional
branching, looping, sequential execution, and staging. The ite
e then s; else So stream implements conditional branching.
The predicate expression e is used to determine whether stream
s1 or so is executed. The loop(Ax.s) stream implements a
looping construct, where s is a stream computer. In essence,
this stream acts as the stream computer s with an internal
variable x to save the return value when s reaches a halting
condition. The stream s is then run again, indefinitely. The
loop command lifts stream computers to transformers. This
can be analogized with recursion, or with stream staging of
the form x < s; s ad inifinitum.

To allow the composition of streams, we implement se-
quential execution and staging operations. The s; >> s
stream represents sequential execution. That is, the stream s;
converts input of type ¢ into output of type m, which is fed
directly as input to so, who converts it into output of type
o. Either s; or sy may be a transformer or computer, with
their composition considered a computer if either component
is one, and considered a transformer otherwise. The x < s71; S9
stream represents staging. Unlike the >> operator, staging
enforces mutual exclusivity in stream execution, and further
requires s; to be a computer. A staged stream acts as the
stream s; until a halting condition is met, at which point the
return value r is stored in = and the stream reconfigures to
Solx :=r].

To facilitate implementation as hardware monitors, we de-
veloped a toolchain that compiles high-level D-GUARD poli-
cies into synthesizable Verilog code. High-level policies are
compiled into an HDL-esque intermediate representation (IR),
then extracted into equivalent Verilog code, which can be
synthesized and placed into hardware such as an execution
pipeline.

Our IR is a simple imperative programming language
with variable assignment (SAssign) and modularization
(SModule). Most streams in D-GUARD compile directly to
commands in the IR, with loops (1oop(Ax.s)) and stream
staging (x <— s1;S2) being less trivial. Loops implement the
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Figure 2: DoS prevention policy dataflow diagram.

Policy Behavior Location
leak Allow only writes to a fixed memory location, preventing all reads. ID / EX
sjsfi Combination of secjmp (Fig. 3) and SFI policy that forces addresses into a | ID / EX
fixed, safe range.
Pipeline shadow On function calls, push return addresses onto a 32-deep stack. On return, check | ID / EX / MEM
the proposed address against the stack, triggering a violation in the case of
mismatch.
taint Taint memory addresses as write-only. If a read instruction accesses a tainted | ID / EX / MEM
memory address, a violation is triggered.
bucket Maintain a bucket of tokens and halt packet transmission if the bucket reaches | Network Interface (NI)
0. Decrement tokens from the bucket as packets are processed, then determine
refills based on data from counter and refill.
Network . . .
counter | Count clock cycles if reset bit is not active. CPU Clock
refill Read bus data and save incoming values specifying the number of tokens to | Wishbone Bus
refill the bucket with.
Table I: Overview of policies.
A , , commands translate directly to commands and operations in
Stmt ¢ = SAssign x e (*Assignment. x) Veril ith dule introduci t . t t
| SModule m («Module creation.s) Verilog, with SModule introducing extra wires to propagate
| SSeq s1 2 (xSequential execution.*) information about halting and return values. A simple policy

| SITE e s1 S2 (*Branching. %)

Listing 2: Selected IR syntax.

loop body s with a variable z that saves the return values of the
body. In this sense, we consider a loop as a stream that loops
a computer indefinitely. Stream staging splits the contents of
s1 and so into two modules, SModule s; and SModule So,
respectively. A variable x is assigned the return value of s;
before executing so.

Because the design of our IR is modeled after HDLs,
extraction to Verilog is relatively straightforward. All IR

is shown in Figure 3, with its respective representations in
D-GUARD, the IR, and extracted Verilog.

B. Case-Study: Denial-of-Service Prevention Policy

D-GUARD’s bitstream-based semantics allow it to express
any policy where analyzing a continuous stream of data makes
sense. As a substantial case study, we use D-GUARD to write
policies for the execution pipeline, tracking information such
as memory addresses, and for network traffic, tracking the
rates of transferred packets. We detail the latter here, with the
complete list of implemented policies listed in Table I. Figure 2
demonstrates the individual policies as dataflow diagram.



(# Check immediate jump address range.
Definition sec_addr
BFieldRange ImmAddr

(Int.repr 10)

Definition secjmp

ite jump
then (ite sec_addr
then (upd (A e = e))
(» Convert to nop. x*)
else (upd (A _ = 32’h15000000)))
else (upd (A e = e)).

(a) secjmp in D-GUARD. jump checks if the incoming instruc-
tion is a jump instruction. sec_addr checks if the immediate

address of the jump is within a “safe” range.

SITE jump
(SITE sec_addr
(SAssign o 1)
(SAssign o 32"h15000000))
(SAssign o 1)

(b) secjmp compiled to our IR.

stream T tvec32 tvec32

*)

(val 0).

A

module secjmp (
input clk,
input [31:0] i,
output [31:0] o,
)i

always @ (posedge clk) begin
if (jump) begin
if (sec_addr) begin
o +— 1i;

end else begin
o ¢ 32'h15000000;

end

end else begin
o +— 1i;

end

end
endmodule

(c) secjmp extracted to Verilog.

Figure 3: Secure jump policy (secjmp) in D-GUARD, compiled IR, and extracted Verilog. Prevents jump instructions to

“unsafe” addresses.

We implement a token-bucket policy to prevent excessive
influx of packets to a network. In D-GUARD, we express
this as three policies: bucket, counter, and refill. The
primary bucket policy:

Definition bucket

(tb_counter tokens_to_refill tvec32)
stream T tbit tbit £
loop (A bucket_to_tokens tvec32 =
ite (bucket_of_tokens == 0)
then (upd (A _ = IDLE))
else (upd (A x = x))
>> ite ((tb_counter & 32’h00000FFF) == 0)

then (done (A _ = tokens_to_refill))
else (ite (bucket_of_tokens == 0)
then (done (A _ = 0))
else (done
(A _ = Dbucket_of_tokens - 1))))

observes the current state of the device (e.g., ACTIVE or
IDLE), and decrements the number of tokens in the vari-
able bucket_of_tokens for each packet that is successfully
transmitted. When the bucket is empty, the state is forcefully
changed to IDLE. Otherwise, the state is output unchanged.
The remainder of the policy determines when to refill the
bucket based on a certain window of clock cycles.

The counter policy tracks clock cycles and a reset, incre-
menting the counter variable tb_counter every clock cycle,
so long as the reset bit is not active:

Definition counter (clk rst tbit)
stream T tbit tbit =
loop (A tb_counter tvec32 =

ite (clk and (not rst))
then (done (A _ = tb_counter + 1))
else (done (A _ = tb_counter)))

Finally, the refill policy saves the number of tokens to
refill the bucket with. As a stream, it reads data coming into
the bus. The policy determines if the data is intended as a
quantity of tokens for refilling the bucket, and if so saves the
amount to the variable tokens_to_refill. As output, the
data passes through the monitor unchanged:

Definition refill (bus_addr
stream T tvec32 tvec32
loop (A tokens_to_refill =
ite ((bus_addr & 32"h0000001C) ==
then (done (A x = X))
else (upd (A x = x)))

tvec32)

L

8)

Both policies counter and refill handle external logic
for the main policy bucket, transmitting data as variables to
the policy as a high-level function.

III. IMPLEMENTATION AND PERFORMANCE EVALUATION
A. Architecture and Implementation

We use OptimSoc [9] as the evaluation platform, simulating
a NoC. The integrated security policies are simultaneously
running in each CPU. The NoC consists of 3 x 3 or 4 x 4
tiles in a mesh topology. A tile consists of two CPU cores
with their own instruction and data caches, usable general
purpose memory (32 MB, shared between the CPUs), as well
as a network interface (NI) to use the NoC. The NI, reachable
by addressing a predefined memory address from either CPU
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Figure 4: Flow completion delay (with 100% delivery ratio) for four different traffic patterns on 3 x 3 and 4 x 4 mesh network-
on-chip. X-axes denote the number of tokens refilled every 32,768 CPU cycles. See text for details.

core, is connected using a Wishbone bus to the memory as
well as both CPUs. There are four cardinal directions at the
NI, which is standard for a 2-D mesh. Flit buffers exist for
ingress and egress on all directions, including a local direction
towards the CPU.

The token-bucket scheduler is implemented in the outgoing
(i.e., towards the NoC) packet buffer of this local direction
network interface that is present in each tile. We have modified
the NI's System Verilog source code to implement a simple
counter that represents the number of available tokens, as
discussed in Section II-B. A packet is transmitted by placing it
in the egress flit buffer (towards the NoC), but only if the token
counter is strictly positive. Upon transmitting, the counter is
decremented; it is refilled to a preset value (configurable in
software, with default value 20) every N clock cycles (N =
32,768). If a token is not available or if the egress buffers
are full, backpressure is applied to the CPU core by not
acknowledging any writes on the memory bus, thus stalling
the CPU pipeline until the memory write completes (i.e., until
the packet is transmitted).

An accompanying compiler and test/debug infrastructure for
OptimSoC enables bare metal applications to run on each CPU
core on each tile during simulation. Cores can access the NoC
through an MPI-like API that is implemented by OptimSoC.
We use this facility to create traffic patterns in the network, to
measure the effect of the token bucket scheduler on end-to-end
performance metrics. Note that no packets are dropped due to
the perfect backpressure mechanism; the packet delivery ratio
is 100% but the latency increases if congestion is present, as
a tradeoff. The reason for using two CPU cores in each tile
can now be understood as follows: each core is dedicated to
sending or receiving packets to or from the NoC, respectively.
The packet transmission delay on a NoC link (a few cycles) is
much lower than the interrupt servicing and context switching
time on the CPU core (hundreds/thousands of cycles). Thus,
it is very hard to saturate all the network buffers and links if a
core has to send and receive. By separating send and receive
functionality, we can load the NoC to a much higher traffic
level.

B. Evaluation

The existence of a token-bucket scheduler (TBS) on each
tile should affect the time taken to send a fixed number of

packets. For example, if the TBS is configured to allow only
one packet every N cycles, then the time taken to send two
packets should be 2N cycles - but if the TBS is refilled with
100 tokens, then the delay should only be N cycles. This
reasoning applies to a malicious core too; it is backpressured
into stalling its pipeline by the TBS on its tile, should it try
to send too many packets in a fixed time

In our evaluation scenario, we measure the total delay as the
time taken for each tile in the NoC to send a predetermined
number of packets to a predetermined destination tile. We
create four different traffic patterns each of which define a
destination for a given tile, on both 3 x 3 and 4 x 4 topologies
as follows:

1) Traffic Pattern O: the destination for every tile is the tile
in the top left (i.e., one of the corners in a mesh)

2) Traffic Pattern 1: tile ¢ sends all its traffic to tile (i + 1)

3) Traffic Pattern 2: tile 7 chooses a random tile

4) Traffic Pattern 3: only the tile below the top left sends all
its traffic to the tile above it; all other tiles are dormant.

The results are shown in Figure 4 for 20 packets per flow,
for each of the above patterns and evaluated on 3 x 3 and
4 x 4 NoCs. We vary the number of tokens refilled every N
cycles over a range [1,24]. As expected, we observe that the
total delay reduces as more tokens become available, which
means that more packets can be transmitted per cycle. Traffic
Pattern 0, a concentrator topology, incurs the highest delay
as there is heavy congestion in the corners of the mesh. In
contrast, Pattern 1 (Figure 4b) requires most of the tiles to
talk to their immediate neighbors, which evenly distributes
most of the traffic, relieving congestion and reducing the total
delay. Congestion is exacerbated as the total number of tiles in
the topology increases (Figure 4a), but only for concentrated
traffic patterns.

Pattern 2 (Figure 4c) randomizes the destination, which in
general results in uneven load on the NoC. Therefore, we
observe that delay for 4 x 4 is higher than the delay for a
3 x 3 mesh. Pattern 3 (Figure 4d) is a special test case where
only one link in the NoC is active (independent of the size
of the NoC). Thus, we expect the delay to be identical for all
topologies, which we observe to be true. In conclusion, we
have empirically observed the effect of the TBS on the total
delay.

In order to compare the hardware overhead of implementing
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the scheduler, we synthesized a single NoC tile (D-GUARD in
Figure 5) using Synopsys Design Compiler R-2020.09-SP5-5
at two different synthetic techology nodes of 14nm (Synopsys)
and 45nm (Nangate FreePDK). The mflowgen framework
is used to automate the compilation and EDA workflow. For
comparison we have also synthesized an unmodified NoC tile
without any of the policies mentioned in this paper (“Base”
in Figure 5).

We note again that each NoC tile consists of two OpenRISC
1000 CPU cores (with a modified pipeline for D-GUARDand
no modifications for Base) and a NoC interface (with just one
token bucket scheduler for D-GUARD and no modifications
for Base. The results are shown in Fig. 5 and demonstrate a
negligible overhead for D-GUARD. The clock period (speed)
was varied over a range from 1 ns (1 GHz) to 10 ns (100 MHz).
In both 14nm and 45nm nodes, the total area decreases very
slightly as clock speed decreases. A clock period of 1 ns is
too low for the 45 nm node; the EDA optimizer was unable
to synthesize the circuit without incurring timing violations.
However this is possible for 14nm as the dimensions of the
cell decreases significantly, allowing for lower propagation
delay. Overall, we note the almost negligible overhead of
D-GUARD compared to a base implementation without any
additional functionality. We can conclude that the hardware
overhead of D-GUARD is negligible compared to bulky com-
ponents of a CPU core such as the instruction and data caches,
the packet/flit buffers of the NoC interface, as well as the
general purpose memory on each tile.

IV. FUTURE WORK & CONCLUSION

As the design of embedded systems continues to become
more complex with multiple cores, they open themselves to
new security threats and vulnerabilities that have traditionally
targeted desktops and workstations. Low-power embedded
systems without the isolation abstractions supported by oper-
ating systems are especially vulnerable to exploits targeted at
the low-level hardware. We are hopeful that the application of
high-level languages for designing low-level security solutions
will help close the abstraction gap while maintaining the
low overhead necessary to remain practical. Given the high
interconnectivity of these systems, flexible and highly general
approaches are needed. With D-GUARD, we demonstrate
the possibility of interconnected and parallel policies on a

NoC, opening the way to more applications targeting other
attacks on similar systems. Additionally, since D-GUARD is
developed using the Coq proof assistant, policies can be
formally verified. This extends to the compilation from high-
level programs to low-level Verilog, promising a formally
verifiable path from source code to integrated hardware.
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