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Abstract—As low-level embedded systems are vulnerable to
attacks that exploit flaws in either hardware or software, it
is essential to enforce secure policies to protect the system
from malicious instructions that significantly alter program
behavior. To improve efficiency of implementation, high-level
secure policy languages have been defined such that the policies
can be directly synthesized into hardware monitors. However,
the language semantics define policies that are static throughout
the program execution which limits the flexibility. Moreover,
secure policies target processor pipelines and not the network-on-
chip (NoC) connecting several processor where denial-of-service
attacks could originate.

In this paper, we enable dynamically reconfigurable security
policies through a high-level language called D-GUARDthat
target both processor pipeline and NoC architecture in mut-
licore embedded systems. Alongside static policies, D-GUARD’s
semantics support policies that dynamically change behavior
in response to program conditions at runtime. In addition, we
also propose policies to thwart denial-of-service attacks by rate
limiting the packet flow into the network using the same dynamic
policies expressed by D-GUARD. We describe a Verilog compiler
to support realizing policies as hardware monitors for both pro-
cessor pipelines and network interfaces. D-GUARD is developed
using the Coq proof assistant, enabling the formal verification
of policy correctness and other properties. This approach takes
advantage of the abstractions and expressiveness of a higher-level
language while minimizing the overhead that comes with other
general-purpose approaches implemented purely in hardware, as
well as offering the groundwork for a formally verified tool chain.

I. INTRODUCTION

Securing the safety of low-level manycore embedded sys-

tems remains a critical research topic, inspiring diverse ap-

proaches [2]–[4], [7], [8] to circumvent the lack of features

and abstraction layers that provide security in other systems.

At runtime, malicious programs may exploit flaws in software

or hardware behavior to gain control. Hardware monitors

attempt to detect and prevent such attacks at the point of

execution. That is, they monitor data propagated through

the pipeline, using tags, and determine whether preventative

measures should be enacted based on implemented security

policies. For example, a monitor may detect illegal memory

accesses and halt execution of the program on detection.

Hardware monitors provide a compelling solution for se-

curing manycore embedded systems, since they often do

not rely on higher-level abstraction layers, such as operating

Figure 1: Overview of D-GUARD policy implemented for

multicore architecture. The secure policies are applied to the

multicore pipelines and network interfaces.

system. However, they often come with a trade-off of perfor-

mance versus versatility. Architectures like FlexiTaint [7] and

MemTracker [8] are highly successful at preventing domain-

specific attacks with low overhead, but lack the flexibility to

provide a broader coverage of potential policies. More general

architectures, like PUMP [4] and PHMon [2], allow such

flexibility via programmability. However, as a consequence,

the hardware incurs a much more substantial overhead, such

as an additional pipeline stage or a complete co-processor, as

in the case of Nile [3].

Updating any given secure policy may require a significant

tweaking of the architecture, especially in the case of non-

programmable or static monitors limiting their scalability.

Exploiting high-level language semantics to produce low-level

security solutions has demonstrated promise through designs

like GARUDA [5]. However, thus far, their semantics lack the

expressiveness to design policies suitable to address attacks on

highly interconnected systems, such as network-on-chip (NoC)

platforms. Prior work has addressed denial-of-service attacks

in NoCs in hardware by considering throttling and other rate

control mechanisms [1].

In this paper, we attempt to close the abstraction gap

further by developing a high-level programming language for



designing hardware monitors, named D-GUARDthat targets

both processor pipelines and NoC. We reduce overhead using

a compiler toolchain from D-GUARD to Verilog, allowing

policies to be placed directly into hardware. Moreover, D-

GUARD is implemented in the Coq proof assistant. This

allows D-GUARD to take advantage of Coq as a carrier

language for computations and allows a pathway to formal

verification for policies. As shown in 1, the high-level lan-

guage D-GUARD is used to design policies that ensure safe

execution of instructions and packet flows at the network level

simultaneously in embedded manycore architectures.

D-GUARD’s semantics are based on the bit-stream pro-

cessing language Ziria [6]. We view monitors as streams that

continuously monitor input and produce some output based

on policy specifications. This formulation allows us to design

polices that can dynamically reconfigure their behavior in

response to conditions at runtime. Additionally, our general

approach to policy design allows the application of policies

outside of an execution pipeline. Given the influence from

the network-oriented language Ziria, we demonstrate that

D-GUARD is able to design flexible policies that monitor

network traffic and program execution simultaneously. We

implement a series of policies aimed at preventing denial-of-

service (DoS) attacks, while simultaneously ensuring that on-

going computations do not violate certain security guarantees.

Our experiments indicated that our selected D-GUARD poli-

cies introduce minimal overhead while successfully catching

policy violations in both the network interface and execution

pipelines.

II. D-GUARD: LOW-LEVEL MONITORS IN HIGH-LEVEL

SOFTWARE

A. The Design of D-GUARD

The high-level D-GUARD programming language is based

on the intuition that hardware monitors can act as bitstream

processors. That is, one can construct hardware monitors that

continuously transform input bit sequences (such as metadata

tags, instructions, or packet data) into output bit sequences

based on its internal logic. D-GUARD’s semantics takes cues

from the bitstream processing language Ziria [6]. Hence, we

denote D-GUARD policies as Stream.

We distinguish two varieties in Stream: transformers (T)

and computers (C r). Transformers are the foundational stream:

they act as a black box that converts input of type i into

output of type o. Such streams are static: once synthesized,

they cannot reconfigure and change their behavior. Hence,

we implement computers, which act as transformers with the

additional option to return a value of type r before halting

execution. Computers allow policies to express conditions

at which to reconfigure behavior during runtime. This is

primarily represented in D-GUARD by the staged stream
syntax, x ← s1; s2, where s1 is a stream computer whose

return value is saved in x before executing the stream s2.

Stream staging ensures that execution is mutually exclusive:

the stream s2 will not be active until s1 halts and returns a

value.

Streams s � upd(λx. e) (*Update stream.*)
| done(λx. e) (*Return result.*)
| ite e then s1 else s2 (*Branching.*)
| x ← s1; s2 (*Stream staging.*)
| s1 >> s2 (*Stream composition.*)
| loop(λx.s) (*Iterated streams.*)

Listing 1: Selected D-GUARD syntax.

Listing 1 demonstrates the full suite of commands in D-

GUARD. The quintessential stream is the update stream,

upd(λx. e). Given an input value v, the update stream converts

it into an output value according to the expression e: that is,

o = e[x := v]. The done(λx. e) stream is an extension of

the update stream. This acts as the “return” command for D-

GUARD, in which given an input value v, the done stream

provides e[x := v] as a return value, and its output as a stream

is v unchanged.

We implement control flow in D-GUARD via conditional

branching, looping, sequential execution, and staging. The ite

e then s1 else s2 stream implements conditional branching.

The predicate expression e is used to determine whether stream

s1 or s2 is executed. The loop(λx. s) stream implements a

looping construct, where s is a stream computer. In essence,

this stream acts as the stream computer s with an internal

variable x to save the return value when s reaches a halting

condition. The stream s is then run again, indefinitely. The

loop command lifts stream computers to transformers. This

can be analogized with recursion, or with stream staging of

the form x ← s; s ad inifinitum.

To allow the composition of streams, we implement se-

quential execution and staging operations. The s1 >> s2
stream represents sequential execution. That is, the stream s1
converts input of type i into output of type m, which is fed

directly as input to s2, who converts it into output of type

o. Either s1 or s2 may be a transformer or computer, with

their composition considered a computer if either component

is one, and considered a transformer otherwise. The x ← s1; s2
stream represents staging. Unlike the >> operator, staging

enforces mutual exclusivity in stream execution, and further

requires s1 to be a computer. A staged stream acts as the

stream s1 until a halting condition is met, at which point the

return value r is stored in x and the stream reconfigures to

s2[x := r].
To facilitate implementation as hardware monitors, we de-

veloped a toolchain that compiles high-level D-GUARD poli-

cies into synthesizable Verilog code. High-level policies are

compiled into an HDL-esque intermediate representation (IR),

then extracted into equivalent Verilog code, which can be

synthesized and placed into hardware such as an execution

pipeline.

Our IR is a simple imperative programming language

with variable assignment (SAssign) and modularization

(SModule). Most streams in D-GUARD compile directly to

commands in the IR, with loops (loop(λx. s)) and stream

staging (x ← s1; s2) being less trivial. Loops implement the



Figure 2: DoS prevention policy dataflow diagram.

Policy Behavior Location

Pipeline

leak Allow only writes to a fixed memory location, preventing all reads. ID / EX

sjsfi Combination of secjmp (Fig. 3) and SFI policy that forces addresses into a
fixed, safe range.

ID / EX

shadow On function calls, push return addresses onto a 32-deep stack. On return, check
the proposed address against the stack, triggering a violation in the case of
mismatch.

ID / EX / MEM

taint Taint memory addresses as write-only. If a read instruction accesses a tainted
memory address, a violation is triggered.

ID / EX / MEM

Network

bucket Maintain a bucket of tokens and halt packet transmission if the bucket reaches
0. Decrement tokens from the bucket as packets are processed, then determine
refills based on data from counter and refill.

Network Interface (NI)

counter Count clock cycles if reset bit is not active. CPU Clock

refill Read bus data and save incoming values specifying the number of tokens to
refill the bucket with.

Wishbone Bus

Table I: Overview of policies.

Stmt c � SAssign x e (*Assignment.*)
| SModule m (*Module creation.*)
| SSeq s1 s2 (*Sequential execution.*)
| SITE e s1 s2 (*Branching.*)

Listing 2: Selected IR syntax.

loop body s with a variable x that saves the return values of the

body. In this sense, we consider a loop as a stream that loops

a computer indefinitely. Stream staging splits the contents of

s1 and s2 into two modules, SModule s1 and SModule s2,

respectively. A variable x is assigned the return value of s1
before executing s2.

Because the design of our IR is modeled after HDLs,

extraction to Verilog is relatively straightforward. All IR

commands translate directly to commands and operations in

Verilog, with SModule introducing extra wires to propagate

information about halting and return values. A simple policy

is shown in Figure 3, with its respective representations in

D-GUARD, the IR, and extracted Verilog.

B. Case-Study: Denial-of-Service Prevention Policy

D-GUARD’s bitstream-based semantics allow it to express

any policy where analyzing a continuous stream of data makes

sense. As a substantial case study, we use D-GUARD to write

policies for the execution pipeline, tracking information such

as memory addresses, and for network traffic, tracking the

rates of transferred packets. We detail the latter here, with the

complete list of implemented policies listed in Table I. Figure 2

demonstrates the individual policies as dataflow diagram.



(* Check immediate jump address range. *)
Definition sec_addr �

BFieldRange ImmAddr (Int.repr 10) (val 0).

Definition secjmp : stream T tvec32 tvec32 �
ite jump

then (ite sec_addr
then (upd (λ e ⇒ e))
(* Convert to nop. *)
else (upd (λ _ ⇒ 32’h15000000)))

else (upd (λ e ⇒ e)).

(a) secjmp in D-GUARD. jump checks if the incoming instruc-
tion is a jump instruction. sec_addr checks if the immediate
address of the jump is within a “safe” range.

SITE jump
(SITE sec_addr

(SAssign o i)
(SAssign o 32’h15000000))

(SAssign o i)

(b) secjmp compiled to our IR.

module secjmp(
input clk,
input [31:0] i,
output [31:0] o,

);
always @(posedge clk) begin

if (jump) begin
if (sec_addr) begin

o ← i;
end else begin

o ← 32’h15000000;
end

end else begin
o ← i;

end
end

endmodule

(c) secjmp extracted to Verilog.

Figure 3: Secure jump policy (secjmp) in D-GUARD, compiled IR, and extracted Verilog. Prevents jump instructions to

“unsafe” addresses.

We implement a token-bucket policy to prevent excessive

influx of packets to a network. In D-GUARD, we express

this as three policies: bucket, counter, and refill. The

primary bucket policy:

Definition bucket
(tb_counter tokens_to_refill : tvec32)
: stream T tbit tbit �

loop (λ bucket_to_tokens : tvec32 ⇒
ite (bucket_of_tokens == 0)

then (upd (λ _ ⇒ IDLE))
else (upd (λ x ⇒ x))

>> ite ((tb_counter & 32’h00000FFF) == 0)
then (done (λ _ ⇒ tokens_to_refill))
else (ite (bucket_of_tokens == 0)

then (done (λ _ ⇒ 0))
else (done

(λ _ ⇒ bucket_of_tokens - 1))))

observes the current state of the device (e.g., ACTIVE or

IDLE), and decrements the number of tokens in the vari-

able bucket_of_tokens for each packet that is successfully

transmitted. When the bucket is empty, the state is forcefully

changed to IDLE. Otherwise, the state is output unchanged.

The remainder of the policy determines when to refill the

bucket based on a certain window of clock cycles.

The counter policy tracks clock cycles and a reset, incre-

menting the counter variable tb_counter every clock cycle,

so long as the reset bit is not active:

Definition counter (clk rst : tbit)
: stream T tbit tbit �

loop (λ tb_counter : tvec32 ⇒

ite (clk and (not rst))
then (done (λ _ ⇒ tb_counter + 1))
else (done (λ _ ⇒ tb_counter)))

Finally, the refill policy saves the number of tokens to

refill the bucket with. As a stream, it reads data coming into

the bus. The policy determines if the data is intended as a

quantity of tokens for refilling the bucket, and if so saves the

amount to the variable tokens_to_refill. As output, the

data passes through the monitor unchanged:

Definition refill (bus_addr : tvec32)
: stream T tvec32 tvec32 �

loop (λ tokens_to_refill ⇒
ite ((bus_addr & 32’h0000001C) == 8)

then (done (λ x ⇒ x))
else (upd (λ x ⇒ x)))

Both policies counter and refill handle external logic

for the main policy bucket, transmitting data as variables to

the policy as a high-level function.

III. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Architecture and Implementation

We use OptimSoc [9] as the evaluation platform, simulating

a NoC. The integrated security policies are simultaneously

running in each CPU. The NoC consists of 3 × 3 or 4 × 4
tiles in a mesh topology. A tile consists of two CPU cores

with their own instruction and data caches, usable general

purpose memory (32 MB, shared between the CPUs), as well

as a network interface (NI) to use the NoC. The NI, reachable

by addressing a predefined memory address from either CPU
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Figure 4: Flow completion delay (with 100% delivery ratio) for four different traffic patterns on 3×3 and 4×4 mesh network-

on-chip. X-axes denote the number of tokens refilled every 32,768 CPU cycles. See text for details.

core, is connected using a Wishbone bus to the memory as

well as both CPUs. There are four cardinal directions at the

NI, which is standard for a 2-D mesh. Flit buffers exist for

ingress and egress on all directions, including a local direction

towards the CPU.

The token-bucket scheduler is implemented in the outgoing

(i.e., towards the NoC) packet buffer of this local direction

network interface that is present in each tile. We have modified

the NI’s System Verilog source code to implement a simple

counter that represents the number of available tokens, as

discussed in Section II-B. A packet is transmitted by placing it

in the egress flit buffer (towards the NoC), but only if the token

counter is strictly positive. Upon transmitting, the counter is

decremented; it is refilled to a preset value (configurable in

software, with default value 20) every N clock cycles (N =

32,768). If a token is not available or if the egress buffers

are full, backpressure is applied to the CPU core by not

acknowledging any writes on the memory bus, thus stalling

the CPU pipeline until the memory write completes (i.e., until

the packet is transmitted).

An accompanying compiler and test/debug infrastructure for

OptimSoC enables bare metal applications to run on each CPU

core on each tile during simulation. Cores can access the NoC

through an MPI-like API that is implemented by OptimSoC.

We use this facility to create traffic patterns in the network, to

measure the effect of the token bucket scheduler on end-to-end

performance metrics. Note that no packets are dropped due to

the perfect backpressure mechanism; the packet delivery ratio

is 100% but the latency increases if congestion is present, as

a tradeoff. The reason for using two CPU cores in each tile

can now be understood as follows: each core is dedicated to

sending or receiving packets to or from the NoC, respectively.

The packet transmission delay on a NoC link (a few cycles) is

much lower than the interrupt servicing and context switching

time on the CPU core (hundreds/thousands of cycles). Thus,

it is very hard to saturate all the network buffers and links if a

core has to send and receive. By separating send and receive

functionality, we can load the NoC to a much higher traffic

level.

B. Evaluation

The existence of a token-bucket scheduler (TBS) on each

tile should affect the time taken to send a fixed number of

packets. For example, if the TBS is configured to allow only

one packet every N cycles, then the time taken to send two

packets should be 2N cycles - but if the TBS is refilled with

100 tokens, then the delay should only be N cycles. This

reasoning applies to a malicious core too; it is backpressured

into stalling its pipeline by the TBS on its tile, should it try

to send too many packets in a fixed time

In our evaluation scenario, we measure the total delay as the

time taken for each tile in the NoC to send a predetermined

number of packets to a predetermined destination tile. We

create four different traffic patterns each of which define a

destination for a given tile, on both 3×3 and 4×4 topologies

as follows:

1) Traffic Pattern 0: the destination for every tile is the tile

in the top left (i.e., one of the corners in a mesh)

2) Traffic Pattern 1: tile i sends all its traffic to tile (i+1)
3) Traffic Pattern 2: tile i chooses a random tile

4) Traffic Pattern 3: only the tile below the top left sends all

its traffic to the tile above it; all other tiles are dormant.

The results are shown in Figure 4 for 20 packets per flow,

for each of the above patterns and evaluated on 3 × 3 and

4 × 4 NoCs. We vary the number of tokens refilled every N

cycles over a range [1,24]. As expected, we observe that the

total delay reduces as more tokens become available, which

means that more packets can be transmitted per cycle. Traffic

Pattern 0, a concentrator topology, incurs the highest delay

as there is heavy congestion in the corners of the mesh. In

contrast, Pattern 1 (Figure 4b) requires most of the tiles to

talk to their immediate neighbors, which evenly distributes

most of the traffic, relieving congestion and reducing the total

delay. Congestion is exacerbated as the total number of tiles in

the topology increases (Figure 4a), but only for concentrated

traffic patterns.

Pattern 2 (Figure 4c) randomizes the destination, which in

general results in uneven load on the NoC. Therefore, we

observe that delay for 4 × 4 is higher than the delay for a

3× 3 mesh. Pattern 3 (Figure 4d) is a special test case where

only one link in the NoC is active (independent of the size

of the NoC). Thus, we expect the delay to be identical for all

topologies, which we observe to be true. In conclusion, we

have empirically observed the effect of the TBS on the total

delay.

In order to compare the hardware overhead of implementing
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Figure 5: Comparison of total area and total power consumption of a single NoC tile (2 CPU cores and 1 NoC interface) with

and without D-GUARD policies with Synopsys 14nm (a, b) and Nangate 45nm (c, d).

the scheduler, we synthesized a single NoC tile (D-GUARD in

Figure 5) using Synopsys Design Compiler R-2020.09-SP5-5

at two different synthetic techology nodes of 14nm (Synopsys)

and 45nm (Nangate FreePDK). The mflowgen framework

is used to automate the compilation and EDA workflow. For

comparison we have also synthesized an unmodified NoC tile

without any of the policies mentioned in this paper (“Base”

in Figure 5).

We note again that each NoC tile consists of two OpenRISC

1000 CPU cores (with a modified pipeline for D-GUARDand

no modifications for Base) and a NoC interface (with just one

token bucket scheduler for D-GUARD and no modifications

for Base. The results are shown in Fig. 5 and demonstrate a

negligible overhead for D-GUARD. The clock period (speed)

was varied over a range from 1 ns (1 GHz) to 10 ns (100 MHz).

In both 14nm and 45nm nodes, the total area decreases very

slightly as clock speed decreases. A clock period of 1 ns is

too low for the 45 nm node; the EDA optimizer was unable

to synthesize the circuit without incurring timing violations.

However this is possible for 14nm as the dimensions of the

cell decreases significantly, allowing for lower propagation

delay. Overall, we note the almost negligible overhead of

D-GUARD compared to a base implementation without any

additional functionality. We can conclude that the hardware

overhead of D-GUARD is negligible compared to bulky com-

ponents of a CPU core such as the instruction and data caches,

the packet/flit buffers of the NoC interface, as well as the

general purpose memory on each tile.

IV. FUTURE WORK & CONCLUSION

As the design of embedded systems continues to become

more complex with multiple cores, they open themselves to

new security threats and vulnerabilities that have traditionally

targeted desktops and workstations. Low-power embedded

systems without the isolation abstractions supported by oper-

ating systems are especially vulnerable to exploits targeted at

the low-level hardware. We are hopeful that the application of

high-level languages for designing low-level security solutions

will help close the abstraction gap while maintaining the

low overhead necessary to remain practical. Given the high

interconnectivity of these systems, flexible and highly general

approaches are needed. With D-GUARD, we demonstrate

the possibility of interconnected and parallel policies on a

NoC, opening the way to more applications targeting other

attacks on similar systems. Additionally, since D-GUARD is

developed using the Coq proof assistant, policies can be

formally verified. This extends to the compilation from high-

level programs to low-level Verilog, promising a formally

verifiable path from source code to integrated hardware.
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