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Abstract

We consider the problem of estimating the opti-
mal transport map between two probability dis-
tributions, P and () in R, on the basis of i.i.d.
samples. All existing statistical analyses of this
problem require the assumption that the transport
map is Lipschitz, a strong requirement that, in
particular, excludes any examples where the trans-
port map is discontinuous. As a first step towards
developing estimation procedures for discontinu-
ous maps, we consider the important special case
where the data distribution () is a discrete mea-
sure supported on a finite number of points in
R?. We study a computationally efficient estima-
tor initially proposed by Pooladian & Niles-Weed
(2021), based on entropic optimal transport, and
show in the semi-discrete setting that it converges
at the minimax-optimal rate n~'/2, independent
of dimension. Other standard map estimation
techniques both lack finite-sample guarantees in
this setting and provably suffer from the curse of
dimensionality. We confirm these results in nu-
merical experiments, and provide experiments for
other settings, not covered by our theory, which
indicate that the entropic estimator is a promising
methodology for other discontinuous transport
map estimation problems.

1. Introduction

The theory of optimal transport (OT) defines a natural ge-
ometry on the space of probability measures (Santambrogio,
2015; Villani, 2009) and has become ubiquitous in modern
data-driven tasks. In this area, optimal transport maps are a
central object of study: suppose P and () are two probability
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distributions with finite second moments, with P having a
density with respect to the Lebesegue measure on R, Then,
Brenier’s theorem (see Section 2.1) states that there exists a
convex function ¢y whose gradient defines a unique optimal
transport map between P and (). This map is optimal in the
sense that it minimizes the following objective function:

Vo == argmin /%Hx —T(x)|*dP(z), (1)
TET(P,Q)

where T(P,Q) = {T :RY - R | X ~ P, T(X) ~ Q}

is the set of transport maps between P and (). The optimal

value of the objective function in Equation (1) is called the

(squared) 2-Wasserstein distance, written explicitly as

So(P,Q) = / Lz - Veo(a)|? dP(z),

though a more general formulation is available (see Sec-
tion 2.1). Computing or approximating Sy (P, Q) as well as
Vo has found use in several academic communities, such
as economics (Carlier et al., 2016; Chernozhukov et al.,
2017; Gunsilius & Xu, 2021; Torous et al., 2021), compu-
tational biology (Bunne et al., 2021; 2022; Demetgi et al.,
2022; Liibeck et al., 2022; Moriel et al., 2021; Schiebinger
et al., 2019; Yang et al., 2020), and computer vision (Feydy
et al., 2017; Solomon et al., 2015; 2016), among many oth-
ers.

Practitioners seldom have access to P or @, but instead have
access to i.i.d. samples X1,...,X,, ~ Pand Yy,...,Y, ~
Q. On the basis of these samples, practitioners face both
computational and statistical challenges when estimating
V. From a theoretical perspective, the statistical task
of estimating optimal transport maps has attracted much
interest in the last few years (Deb et al., 2021; Divol et al.,
2022; Ghosal & Sen, 2022; Hiitter & Rigollet, 2021; Manole
et al., 2021; Muzellec et al., 2021; Pooladian & Niles-Weed,
2021).

The first finite-sample analysis of this problem was per-
formed by Hiitter & Rigollet (2021), who proposed an esti-
mator for Vg under the assumption that ¢q is s + 1-times
continuously differentiable, for s > 1. They showed that a
wavelet-based estimator @y satisfies

E|Vow — Veol2e(py S n 7= log?(n),
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and that this rate is minimax optimal up to logarithmic fac-
tors. Their analysis requires that P and () have bounded
densities with compact support Q C R<, and that ¢, be
both strongly convex and smooth. Implementing the esti-
mator pw is computationally challenging even in moderate
dimensions, and is practically infeasible for d > 3. Follow
up work has proposed alternative estimators which improve
upon @y either in computational efficiency or in the gener-
ality in which they apply. Though these subsequent works
go significantly beyond the setting considered by Hiitter &
Rigollet (2021), none has eliminated the crucial assump-
tion that g is smooth, i.e., that the transport map Vy is
Lipschitz.

We highlight two estimators proposed in this line of work
that are particularly practical. Manole et al. (2021) study
the 1-Nearest Neighbor estimator TlNN. This estimator is
obtained by solving the empirical optimal transport problem
between the samples, which is then extended to a function
defined on R? using a projection scheme; see Section 4
for more details. Given n samples from the source and
target measures in R, T xn has a runtime of O(n?) via the
Hungarian Algorithm (see Peyré & Cuturi, 2019, Chapter
3), and, for d > 5, achieves the rate

E|Tinn — Veoollizpy S ni 2

whenever the optimal Brenier potential ¢q is smooth and
strongly convex, and under mild regularity conditions on P.
In another work, Pooladian & Niles-Weed (2021) conducted
a statistical analysis of an estimator originally proposed
by Seguy et al. (2018) based on entropic optimal trans-
port. The efficiency of Sinkhorn’s algorithm for large-scale
problems (Cuturi, 2013; Peyré & Cuturi, 2019) makes this
estimator attractive from a computational perspective, and
Pooladian & Niles-Weed (2021) also give statistical guaran-
tees, though these fall short of being minimax-optimal.

Despite this progress, none of the aforementioned results
can be applied in situations where Vg is not Lipschitz.
And in practice, even requiring the continuity of the trans-
port map can be far too stringent. It is indeed too much to
hope for that an underlying data distribution (e.g. over the
space of images) has one single connected component; this
is supported by recent work that stipulates that the under-
lying data distribution is the union of disjoint manifolds of
varying intrinsic dimension (Brown et al., 2022). In such
a setting, the transport map V¢q will not be continuous,
demonstrating the need of considering the problem of the
statistical estimation of discontinuous transport maps to get
closer to real-world situations.

As a first step, we choose to focus on the case where the
target distribution () = Z}]=1 q;0y, is discrete while the
source measure P has full support, often called the semi-
discrete setting in the optimal transport literature. In this

setting, the optimal transport map V¢ is constant over
regions known as Laguerre cells (each cell corresponding to
a different atom of the discrete measure), while displaying
discontinuities on their boundaries (see Section 2.1.1 for
more details). Figure 1 provides such an example. Semi-
discrete optimal transport therefore provides a natural class
of discontinuous transport maps.

Figure 1. An illustration of a semi-discrete optimal transport map.
The support of P, the whole rectangle, is partitioned into regions,
each of which is transported to one of the atoms of the discrete
target measure (). The resulting map is discontinuous at the bound-
aries of each cell.

We focus on this setting for two reasons. First, it has gar-
nered a lot of attention in recent years, in both computational
and theoretical circles (see, e.g., Altschuler et al., 2022;
Chen et al., 2022; Mérigot et al., 2021), due in particular
to its connection with the quantization problem (Graf &
Luschgy, 2007). Second, the semi-discrete setting is intrigu-
ing from a statistical perspective: existing results show that
statistical estimation problems involving semi-discrete op-
timal transport can escape the curse of dimensionality (del
Barrio & Loubes, 2019; del Barrio et al., 2022a; Forrow
et al., 2019; Hundrieser et al., 2022). For example, Hun-
drieser et al. (2022, Theorem 3.2) show that if P, and Q,,
are empirical measures consisting of i.i.d. samples from P
and @, then the semi-discrete assumption implies

E|SO(P)Q) - SO(Pna Qn)l S n_1/2 .

These results offer the tantalizing possibility that semi-
discrete transport maps can be estimated at the rate n /2,
in sharp contrast to the dimension-dependent rates obtained
in bounds such as (2). However, the optimal rates of estima-
tion for semi-discrete transport maps are not known, and no
estimators with finite-sample convergence guarantees exist.
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MAIN CONTRIBUTIONS

We show that the computationally efficient estimator T.
based on entropically regularized optimal transport, orig-
inally studied in (Pooladian & Niles-Weed, 2021; Seguy
etal., 2018), provably estimates discontinuous semi-discrete
optimal transport maps at the optimal rate. More precisely,
our contributions are the following:

1. For @ discrete and P with full support on a compact,
convex set, we show that TE achieves the following
dimension-independent convergence rate to the optimal
transport map (see Theorem 3.1)

E||T: — Vol 72(p) Sn™'2, 3)

when the regularization parameter ¢ =< n~1/2. We
further show (Proposition 4.1) that this rate is minimax
optimal.

2. As a by-product of our analysis, we give new paramet-
ric rates of convergence to the entropic Brenier map
Te, a result which improves exponentially on prior
work in the dependence on ¢ (see Theorem 3.7 and
Remark 3.8).

3. Our proof technique requires several new results, in-
cluding a novel stability bound for the entropic Brenier
maps (Proposition 3.9), and a new stability result for
the entropic dual Brenier potentials in the semi-discrete
case (Proposition 3.11).

4. We show that, unlike Tg, the 1-Nearest-Neighbor es-
timator is provably suboptimal in the semi-discrete
setting (see Proposition 4.2) by exhibiting a discrete
measure () such that the risk suffers from the curse of
dimensionality:

E||Tinn — VSDOH%%P) Zn e

5. In Section 4, we verify our theoretical findings on
synthetic experiments. We also show by simulation
that the entropic estimator appears to perform well
even outside the semi-discrete setting, suggesting it
as a promising choice for estimating other types of
discontinuous maps.

NOTATION

The Euclidean ball centered at a with radius r > 0 is written
as B(a;r). The symbols C and ¢ denote positive constants
whose value may change from line to line. Write a < b and
a =< b if there exist constants ¢, C' > 0 such that a < Cb
and cb < a < Cb, respectively. For an integer N € N, we
let [N] := {1,..., N}. For a function f and a probability
measure p, we write || f]|72(,) = Ex,|f(X)[*. Simi-
larly, we write Var,(f) = Ex,[(f(X) —Ex~,[f(X)])?]
for the variance of f with respect to p.

2. Background on optimal transport
2.1. Optimal transport

We define P(f2) to be the space of probability measures
whose support lies in a compact subset Q@ C R¢. If a
probability measure P has a density with respect to the
Lebesgue measure on R¢ with support Q C R?, then we
write P € Py ().

For two probability measures P, Q € P(f2), we define the
(squared) 2-Wasserstein distance to be (Kantorovitch, 1942)

S(PQ) = _min [ [ eyl aney). @)

where 7 € I'(P, Q) C P(£ x ) such that for any event A,
P(A), =Q(4).

We call I'( P, Q) the set of couplings between P and Q. In
this work, we focus on the squared-Euclidean cost but Equa-
tion (4) is well-defined for convex, lower-semicontinuous
costs; see (Santambrogio, 2015; Villani, 2009) for more
information on optimal transport under general costs.

m(Ax Q)= m(Q x A)

Equation (4) is a convex optimization problem on the space
of joint measures, and a minimizer, denoted 7y, always
exists; we call g an optimal plan from P to (). Moreover,
Equation (4) possesses the following dual formulation,

So(P,Q) = 3 Ms(P) + 1 M5(Q)
: )
e
where M (P) := [ ||z||* dP(x) (similarly for M>(Q)) and

the functions (p, ) € ® C Ly (P) x L1(Q) satisfy
(z,y) < () +¢(y) forall z,y € 2,

As with the primal formulation, the infimum in Equation (5)
is attained at functions (¢g,%). These minimizers are
called (optimal) Brenier potentials. In particular, at opti-
mality, we have that these Brenier potentials are convex
conjugates of one another, i.e. the Legendre transform of
one of the potentials gives the other:

©o(y) == Slip{@:, y) — o)} = Yo(y), (6)

and vice-versa.

Apart from these two formulations of optimal transport
under the squared-Euclidean cost, there exists a third, known
as the Monge problem:

Ty = argmin /%Has—T(m)HQdP(J;), %
TeT(P,Q)
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where 7 (P, Q) is the set of admissible transport maps, i.e.
for X ~ P, T(X) ~ Q. This optimization problem is
non-convex in 7', and a solution is not always guaranteed to
exist for arbitrary P and Q.

The following theorem unifies these three formulations of
optimal transport under the squared-Euclidean cost:

Theorem 2.1 (Brenier’s theorem; Brenier, 1991). Let P €
Pac(2) and let Q € P(Q), then

1. the solution to Equation (7) exists and is of the form
To = Vg, where g solves Equation (5)

2. mq is also uniquely defined as
dmo(z,y) = dP(2)0rv o (@)} (4) -

When we want to place emphasis on the underlying mea-

sures, we will write @y = @f <, o = ¥t 79 and
_ mP-Q

To =1, .

2.1.1. OT IN THE SEMI-DISCRETE CASE

In optimal transport, the semi-discrete setting refers to the
case where P has as density with respect to the Lebesgue
measure on R%, and ( is a discrete measure supported on
points. The following theorem characterizes the optimal
transport map in this situation, which exhibits a particular
structure compared to the general results in the previous
section. Let [J] = {1,...,J}.

Proposition 2.2 (Aurenhammer et al., 1998). If P € P,.(2)
and @) is a discrete measure supported on the points
Y1, - - ., YJ, then the optimal transport map VYV is given by

Vepo(x) = argmax{(z,y;) —to(y;)},  (8)

JEJ]
where 1)y is the dual to @q in the sense of Equation (6).

Here, the optimal dual Brenier potential vy can be identified
with a vector in R’ defined by the number of atoms, and
the optimal Brenier potential is consequently given by

o = max{(z,y;) — Yo(y;)} -

jelJ]
Although g is not differentiable, only subdifferentiable,
we still use the gradient notation as Vg is well-defined
P-almost everywhere.

The map Vq partitions the space into J convex polytopes
Lj = Vi ({y;}) called Laguerre cells; recall Figure 1.
From this definition, it is clear that for a given z € Lj,
x +— Vyo(x) = y; is the optimal transport mapping. The
difficulty in finding this map lies in determining the cells
L;, or equivalently the dual variables 1) (y; ).

2.2. Entropic optimal transport

Entropic regularization was introduced to both optimal trans-
port and machine learning communities in the seminal paper
by Cuturi (2013), allowing approximate optimal transport
distances to be computed at unprecedented speeds. Entropic
optimal transport (EOT) is defined as the following regular-
ized version of Equation (4): fore > 0

2
S-P.Q) = _min [ bl —ylasen)
+ eKL(7||P ® Q)

where KL(u|lv) = [log 3£ du when p € P(Q) is abso-
lutely continuous with respect to v € P(2). This speedup
is due to the elegant connection of (9) to Sinkhorn’s algo-
rithm; we refer the interested reader to (Peyré & Cuturi,
2019, Chapter 4) for more information. The computational
tractability of S. compared to Sy when dealing with many
samples lends itself to being a central object of study in
its own right (see, e.g., Chizat et al., 2020; Genevay et al.,
2019; Gonzalez-Sanz et al., 2022; Mena & Niles-Weed,
2019; Rigollet & Stromme, 2022).

Equation (9) admits the following dual formulation, which
is now an unconstrained optimization problem (Genevay,
2019; Marino & Gerolin, 2020)

SE(P7Q) =
%MQ(P)"‘%MQ(Q) inf (/godP—i—/?/}dQ (10)

0P

N 5//(€<<x’y>w<x>fw<y>>/a 1) dP(x) dQ(y)>’

where (,1) € L1(P)x L1(Q). When P and @ have finite
second moments, Equation (9) admits a unique minimizer,
m. and we have the existence of minimizers to Equation (10),
which we denote as (¢, 1. ). We call 7. the entropic opti-
mal plan and (¢, 1. ) are called entropic Brenier potentials.
The following optimality relation further relates these primal
and dual solutions (Csiszar, 1975):

elm)—ee(@)=vW))/e qP(2) dQ(y) .

As a consequence, the following relationship holds at opti-
mality:

d?TE(.’L‘, y) =

S.(P.Q) = LM(P) + 1My (Q) —/goedP—/wed@

and, moreover, we can define versions of ¢, and 1. such
that the following relationships hold (see Mena & Niles-
Weed, 2019; Nutz & Wiesel, 2022) over all z € R% and
y € R4, respectively:

o) =l [ et

e (y) = Elog/e(<wxy>_¢5($))/5 dP(z), (12)

W)/edQ(y), 1D
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which are smoothed version of the Legendre transform, see
Appendix A for details. In what follows, we always assume
that we have selected ¢, and 1. so that these identities hold.

2.2.1. ENTROPIC BRENIER MAP

If (X,Y) ~ m., we may define the conditional probability
w2 of Y given that X = x, with density

dme — @)/ . (3)

16 ) e (((x)
The barycentric projection of the optimal entropic coupling
e, Or entropic Brenier map, is a central object of study in
several works e.g. (del Barrio et al., 2022b; Goldfeld et al.,
2022; Pooladian & Niles-Weed, 2021; Rigollet & Stromme,
2022), defined as

T.(z) = / ydn?(y) = V. (x). (14)

where 77 is as in Equation (13). Note that this quantity is
well defined for all z € R? as long as the source and target
measures have compact support; in particular, it applies to
both discrete and continuous measures. The second equality
follows from Equation (11) and the dominated convergence
theorem. As in the unregularized case, we will write ¢, =
o=@ . = pP2Q and T. = T =% when we want to
emphasize on the dependency with respect to the underlying
measures.

This particular barycentric projection was proposed as a
tool for large-scale optimal transport by Seguy et al. (2018),
but analyzed statistically for the first time by Pooladian &
Niles-Weed (2021) as an estimator for the optimal transport
map. We mention some of their results to highlight the
differences with our new results for the semi-discrete setting
in Section 3. First, they prove the following approximation
result for 7T,.

Proposition 2.3 (Pooladian & Niles-Weed, 2021, Corollary
1). Let P,Q be compactly supported absolutely continuous
measures on a compact set ) C R? with densities p and
q, that are bounded away from 0 and co. Assume that g
is smooth and strongly convex, and that ¢} is at least C3.
Then,

HTE — VSDOH%Q(P) < 52 . (15)

~

Their main statistical result is the following theorem:

Proposition 2.4 (Pooladian & Niles-Weed, 2021, Theorem
3). Suppose the same assumptions as Proposition 2.3, and
let P,, and Q,, denote the empirical measures of P and )
constructed from i.i.d. samples. Let TE = TEP n=@n denote
the entropic Brenier map from P, to Q,, and let Ty = Vg
be the optimal transport map from P to Q. Then, if ¢ <

1
n d’+3

E|T. — To|3agp) Sn 2@ log(n),  (16)

where d' = 2[d/2].

Note that in particular the the rate of convergence of the en-
tropic estimator critically depends on the ambient dimension
d in the continuous-to-continuous case.

2.2.2. RELATED WORK

Characterizing the convergence of entropic objects (e.g. po-
tentials, cost, plans) to their unregularized counterparts in
the ¢ — 0 regime has been a topic of several works in re-
cent years. Convergence of the costs S, to Sy with precise
rates was investigated in (Chizat et al., 2020; Conforti &
Tamanini, 2021; Pal, 2019). The works (Bernton et al., 2022;
Carlier et al., 2017; Ghosal et al., 2022; Léonard, 2012)
study the convergence of the minimizers 7. to 7o under vary-
ing assumptions. Convergence of the potentials in a very
general setting was established in (Nutz & Wiesel, 2022),
though without a rate of convergence in €. In the semi-
discrete case, this gap was closed in (Altschuler et al., 2022)
followed closely by (Delalande, 2022), which gave non-
asymptotic rates. The Sinkhorn Divergence, a non-negative,
symmetric version of S., was introduced in (Genevay et al.,
2018), was statistically analysed in (Goldfeld et al., 2022)
and also in (del Barrio et al., 2022b; Gonzalez-Sanz et al.,
2022), and was connected to the entropic Brenier map in
(Pooladian et al., 2022). The recent pre-print by (Rigollet &
Stromme, 2022) proved parametric rates of estimation be-
tween the empirical entropic Brenier map and its population
counterpart, though with an exponentially poor dependence
on the regularization parameter (see Remark 3.8). Using
covariance inequalities, the entropic Brenier potentials were
used give a new proof of Caffarelli’s contraction theorem;
see (Chewi & Pooladian, 2022); this approach was recently
generalized in (Conforti, 2022). Entropic optimal transport
has also come into contact with the area of deep generative
modelling through the following works (De Bortoli et al.,
2021; Finlay et al., 2020), among others.

3. Statistical performance of the entropic
estimator in the semi-discrete setting

Let P, and @Q,, be the empirical measures associated with
two n-samples from P and ). We make the following regu-
larity assumptions on P, already introduced by Delalande
(2022).

(A) The measure P has a compact convex support 2 C
B(0; R), with a density p satisfying 0 < ppin < p <
Pmax < 00 for positive constants pin, Pmax and R.

For example, P can be the uniform distribution over €2, or a
truncated Gaussian distribution. Furthermore, we will need
the following assumption on Q).
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(B) The discrete probability measure ) = ijl q;0y; is
such that ¢; > gmin > 0 and y; € B(0; R) for all
jelJl

The goal of this section is to prove the following theorem:

Theorem 3.1. Let P satisfy (A) and let Q) satisfy (B). Let

T. = TP=Qn . Then, for e < n~Y2 and n large enough,
E||T. — Toll72p) Sn™/2. (17)

Remark 3.2. We remark that the hidden constants in The-

orem 3.7 and related results depend on J, Pin, Pmax, Gmin
and R.

Remark 3.3 (Fixing the support via rounding). At present,
the entropic map need not necessarily map exactly to one
of {y1,...,ys}. Infact, 7. : R — conv({Y1,...,Y,}),
where conv(A) is the convex hull for some set A. In turn,
the support of the entropic map does not in general match
that of (. However, this can be readily fixed with a round-
ing scheme. We can replace our estimator by 7. which is
obtained by mapping the output of 7. to its nearest neighbor
in the support of () — this projection step is easy to compute,
given that we essentially know the support of ) via sam-
ples. By viewing this as a projection onto an appropriate set
(namely, the set of transport maps with codomain equal to
the support of (Q), and applying the triangle inequality, it
holds that

E|T. — Toll72(p) < 2E|Te — Toll72(p)

but 7. matches the support of Q.

Let 7. = TX~% denote the entropic Brenier map associated
to P and Q. Our proof relies on the following bias-variance
decomposition:

E|T: — TollZ2(py S BllT: — TellZ2py +1IT: — TollZa(p).

Following the next two results (Theorem 3.4 and Theo-
rem 3.7) and the preceding decomposition, the proof of
Theorem 3.1 is merely a balancing act in the regularization
parameter €.

Theorem 3.4. Let P satisfy (A) and let Q satisfy (B). Then,
for € small enough,

IT. = Toll72(p) Se- (18)

The proof of Theorem 3.4 relies on the following qualitative
picture: if a point  belongs to some Laguerre cell L;, and is
far away from the boundary of L ;, then the entropic optimal
plan 7. will send almost all of its mass towards the point
y; = To(x), sending an exponentially small amount of mass
to the other points y;. Such a picture is correct as long as x
is at distance at least € from the boundary of the Laguerre

cell L;, incurring a total error of order €. A rigorous proof
of Theorem 3.4 can be found in Appendix B.

Note that this rate is slower than the rate appearing in Propo-
sition 2.3 in the continuous-to-continuous case. The fol-
lowing example shows that the dependency in ¢ is optimal
in Theorem 3.4, indicating that the presence of discontinu-
ities necessarily affects the approximation properties of the
entropic Brenier map.

Example 3.5. Let P be a probability measure on R having a
symmetric bounded density p continuous at 0, and let @ =
%(5_1 + 01). Following (Altschuler et al., 2022, Section 3),
one can check that the entropic Brenier map in this setting
is the following scaled sigmoidal function

T.(x) = tanh(2z/e),

whereas the optimal transport map T (x) = sign(z). Then,
performing a computation

I7. = Tolaey =2 | (1 tanh(22/2))*p(z) da
0

—e / (1 — tanh(u))2p(u /2) du
0
= ep(0)(log(4) — 1) + o(e),

where in the last step we invoked the dominated convergence
theorem, and computed the limiting integral.

Remark 3.6. Assumption (A) can be relaxed for Theo-
rem 3.4 to hold. More precisely, it can be replaced by
Assumptions 2.2 and 2.9 of Altschuler et al. (2022), that
hold for unbounded measures such as the normal distribu-
tion.

Finally, we present the sample-complexity result:
Theorem 3.7. Let P satisfy (A) and let Q) satisfy (B). Then,
for0 < e < 1suchthatlog(1/e) < n/log(n)

E|T. — Te|l32p) S 'n " (19)

Remark 3.8. In (Rigollet & Stromme, 2022), the authors
show that if P and () are merely compactly supported with
supp(P),supp(Q) C B(0; R), then

E|T. — To|22p) S eF /27t (20)
where ¢ > 0 is some absolute positive constant. Thus, under
the additional structural assumptions of the semi-discrete
formulation, we are able to significantly improve the rate of
convergence between the empirical and population entropic
Brenier maps.

The proof of Theorem 3.7 relies on a novel stability result,
reminiscent of (Manole et al., 2021, Theorem 6), which is of
independent interest. We provide the proof in Appendix C.
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Proposition 3.9. Ler u,v, ', v be four probability mea-
sures supported in B(0; R). Then the entropic maps TF Y
and TH =Y satisfy

o T

< [

Remark 3.10. The right side of the bound in Proposition 3.9
is equal to

! ’
-Tr ||%2(u)

M%u) du + /(wéﬂ%ul _ wg%u) dv
+ eKL(v||V)

Se(n,v) — Se(W',v)
/f” V(- p) +/gé‘/_’”/ d(' —v)

+eKL(v||v"),
where f£ 7" = |- ||> — o7 and g = g |* —
wg’*”’. Proposition 3.9 is therefore the entropic analogue
of the stability bounds of Manole et al. (2021, Theorem 6)
and Ghosal & Sen (2022, Lemma 5.1). Unlike those results,
Proposition 3.9 allows both the source and target measure to
be modified, and does not require any smoothness assump-
tions.

Proof sketch of Theorem 3.7

To prove Theorem 3.7, we first consider the one-sample set-
ting, where we assume that we only have access to samples
Y1,...,Y, ~ @, but we have full access to P. We then
consider the one-sample entropic estimator 7X@, We
apply Proposition 3.9 with p = /' = P, v = Q,, and
V' = (@, yielding (see Corollary C.1 for details)

E
@EHTEP_)Q" T:|7-

(k)

<B( [ -0l d(@ - Q) + KLQ. Q)

Let x?(P||Q) denote the x2-divergence between probability
measure. Young’s inequality (see Lemma H.1) and the
inequality KL(Q,||Q) < x?(Q.||Q) yield the following
bound:

E|TF7%n — T¢| 32y

< S (ENarg{ % — vl | EO(QulQy
15 2 2
+8R*E[x*(Qn Q)] -

To complete our proof sketch, we use a new stability result
on the entropic dual Brenier potentials, catered for the semi-
discrete setting.

Proposition 3.11. Let 1 be a measure that satisfies (A).
Let v, V' be two discrete probability measures supported
on{yi,...,ys}, withv' > Av for some \ > 0. Then, for
0<e<l,

Var, (77 — 7)<

C 20,1
2wl e

where C depends on R, pmin and pmax.

Moreover a computation provided in Lemma H.2 shows
that E[x?(Q,||Q)] = , which is enough to conclude
the proof of the one- sample case, see Appendix E for de-
tails. The two-sample setting is tackled using similar rea-
soning, where we ultimately prove in Appendix F that the

risk E||T. — TS =@[|3, p, is upper bounded by
SR?
STE [0 - P a(p - P).

Such a quantity can again be related to the estimation of the
dual potentials )% and ¢)f» =%~ Using the same rea-
soning as before, we expect a parametric rate of convergence
for this term as well. Merging the two results completes
the proof of Theorem 3.7. We refer to Appendix F for full
details.

4. Comparing against the 1NN estimator
4.1. Rate optimality of the entropic Brenier map

The upper bound of Theorem 3.7 shows that our estimator
achieves the n~'/2 rate. In fact, the following simple propo-
sition tells us that this rate is optimal in the semi-discrete
case.

Proposition 4.1. Let P be the uniform distribution on

[—~1/2,1/2]% and for any J > 2, let Q; denote the space

of of probability measures with at most J atoms, supported
n [—1/2,1/2]% Define the minimax rate of estimation

RTL(QJ)

Qs

: a P
- u%f Sup Eon (1T — Ty 213, -

Then, it holds that R,,(Qy) > n~1/2/64.

Proof. Let e be a vector of the canonical basis of R?, scaled
by 1/2. Fix 0 < r < 1/2 and let Qy = 16_. + 34,
and Q1 = (3 —r)é_c + (3 +7)dc. A computation gives
HT&D—@O _ TOP—>Q1 || Py =T Therefore, by Le Cam’s
lemma (see, e.g., Wainwright, 2019, Chapter 15),

Rn(Qur) > 8(1 —drv(Qg, Q7)) (22)

Let dp2(Qo,Q1) denote the (squared) Hellinger dis-
tance between measures. We have drv(QR,Q7)? <
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Figure 2. Left: TE versus TlNN for J = 2 and d = 10. Right: TE versus TINN for J = 10 and d = 50.

dg2(QF, Q1) < ndy2(Qo, @1). Furthermore, a compu-
tation gives

du2(Qo, Q1) = (\/g— \/2)2 + (\/ﬁ_ \/g)z

=2—(V1+2r++1-2r)
< 4r2.

We obtain the conclusion by picking r = n=1/2/4, O

4.2. The INN estimator is proveably suboptimal

The 1-Nearest-Neighbor estimator, henceforth denoted
Tinn, Was proposed by (Manole et al., 2021) as a com-
putational surrogate for estimating optimal transport maps
in the low smoothness regime. Written succinctly, their
estimator is Tinn(z) = Y1 1v; (2) Yz (i), where (V;)7,
are Voronoi regions i.e.

Vi={z eR? : ||z — X;|| < ||z — Xi||,V k #13},

and 7 is the optimal transport plan between the empirical
measures P, and @,, which amounts to a permutation.
Computing the closest X; to a new sample x has runtime
O(nlog(n)), though the complexity of this estimator is
determined by computing the plan 7, which takes O(n?)
time via, e.g., the Hungarian Algorithm (see Peyré & Cuturi,
2019, Chapter 3).

When (g is smooth and strongly convex, Manole et al.
(2021) showed that, for d > 5,

E|Tinn = VeoollZa(py S n /4.

In contrast to the rate optimality of the entropic Brenier
map, we now show that Tinn s proveably suboptimal in the
semi-discrete setting. Not only does it fail to recover the
minimax rate obtained by the entropic Brenier map, but its
performance in fact degrades in comparison to the smooth
case. A proof appears in Appendix G.

Proposition 4.2. There exist a measure P satisfying (A)
and a discrete measure @ satisfying (B) such that for d > 3

E||[ Ty — T(Sp_)Q”%?(P) Zn e

4.3. Experiments

We briefly verify our theoretical findings on synthetic exper-
iments. To create the following plots, we draw two sets of n
i.i.d. points from P, (X;,...,X,) and (X7,...,X]), and
create target points Y; = To(X/), where T is known to us
in advance in order to generate the data. Our estimators are
computed on the data (X1,...,X,) and (Y7,...,Y},), and
we evaluate the Mean-Squared error criterion

MSE(T) = ||T — TO”%?(P)

of a given map estimator T using Monte Carlo integration,
using 50000 newly sampled points from P. We plot the
means across 10 repeated trials, accompanied by their stan-
dard deviations.

4.3.1. SEMI-DISCRETE EXAMPLE #1

First consider P = Unif([0,1]¢) and create atoms
{y1,...,ys} by partitioning the points along the first coor-
dinate for all j € [J]:

it = Y2 i) = = i) = 05,
We choose uniform ¢; = 1/J for j € [J]. In this case, it is
easy to see that the optimal transport map 7y () is uniquely
defined by the first coordinate of x;. Figure 2 illustrates
the rate-optimal performance of the entropic Brenier map,
and the proveably suboptimal performance of the 1-Nearest-

Neighbor estimator.

4.3.2. SEMI-DISCRETE EXAMPLE #2

We now consider a synthetic experiment with far less sym-
metry. Let P = Unif([0,1]%), and fix J € N. We ran-
domly generate y1,...,Y; € [0,1]¢, and also randomly
generate 109 € R”, and consider the optimal transport
map Tp(z) = argminje[J]{xTyj — (¥0);}. We define
@ = ()4 P, leading to the same setup as before, but with
a less structured optimal transport map. We consider J = 5
and d = 50, and repeat the procedure of the preceding
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section to generate our data, and the resulting estimator. Fig-
ure 3 contains plots the MSE as a function of n, where again
we see a log-linear slope of around —0.5, which agrees with
our theory.

100 4

MSE

101 T, slope=-0.551

— leN slope=-0.030

10°
n
Figure 3. T versus Tinn for with 1o random in d = 50

4.3.3. DISCONTINUOUS EXAMPLE

We turn our attention to a discontinuous transport map,
where for z € R?, all the coordinates are fixed except
for the first one

To(x) = 2sign(z[1]) ® z[2] ® - -- @ z[d] .

We choose P = Unif([—1, 1]¢) to exhibit a discontinuity in
the data. Focusing on d = 10, we see in Figure 4 that the
entropic map estimator avoids the curse of dimensionality
and enjoys a faster convergence rate, with better constants.

6 x10°

4x10°

3x10°

2 x10°

Te slope=-0.294
— 'leN slope=-0.205

T T
102 103
n

Figure 4. T versus Tiny for d = 10

5. Conclusion

Understanding optimal transport maps in the semi-discrete
case is a natural stepping-stone to understanding the case
for general discontinuous transport maps. In this work,

we propose a tractable, minimax optimal estimator of the
Brenier map in the semi-discrete setting, where the rate of
estimation is dimension independent. To prove our result,
we require several new results and techniques, and, as a
by-product of our analysis, give the first parametric rates of
estimation the entropic Brenier map, without exponential
dependence in the regularization parameter. Our synthetic
experiments indicate that the entropic Brenier map might be
useful in estimating other variants of discontinuous transport
maps, which constitutes an interesting direction for future
research.
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A. Reminders on semi-discrete entropic optimal transport

We recall in this section some known results on entropic optimal transport that will be needed later. Let i, v € P(€2), where
2 C B(0; R) is a compact set.

Lemma A.1 (Genevay et al., 2019). The entropic potential (@27, £ have a bounded amplitude, in the sense that

max @t

—mi H=V 23
e g S ol =

for some absolute constant c, and similarly for ¥ =",

Assume now that v = Z}]:1 v;d,, is a discrete measure. In this situation, only the values of the dual potential 1)£~" on the
points y1, . . .,y are relevant. We therefore consider /2" as a vector in R”. The potentials ¢# " and ¥)* " are dual of
one another, in the sense of the e-Legendre transform. Given a finite measure p, the e-Legendre transform of a function h
with respect to p is given by

®P(h)(z) = elog / el@w)=h@)/e qp(z). (24)
Relations (11) and (12) express that " = ®¥(¢p#7") and vice-versa. In the semi-discrete setting, it is also convenient to
introduce the e-Legendre transform with respect to the counting measure o on {y1, ...,y }. For a vector ¢» € R’, we have
() () = I ()(z) = elog Y ellrwa) v/, (25)

The ®. transform and the ®¥ transform are linked through the relation
OL(Y) = @()  where  (y;) = (y;) — elogy;, (26)

where we call ¢ a shifted potential. With this notation, the optimality condition on the potentials can be rephrased. Let
F;HV:z/JEIR{J%/@E(ip)dqu/wdu. 27)

Then, the function F*~" is minimized at 1[)};_’”. For ¢ € R’ and = € R?, we introduce the probability measure supported
on {y1,...,ys} given by

o) WWDE  (ea—e )@ - /e 28)

viel], wle)y) = -
ie[J], wZ[Y](y) ST el b))z

A computation gives VF* () = [ 7%[¢)] du(z) — v, so that at optimality, we have
[t duta) = 29)

In this case, 7 = w*[¢)% "] is the conditional distribution of the second marginal of 7. given that the first is equal to w, as
in Section 2.2.1. More generally, for any potential v, the first order condition implies that ¢ is equal to )Y ", the optimal
dual potential between y an vy, = [ 7% [] dp(x).

B. Bound on the approximation error

Proof of Theorem 3.4. Leti,j € [J]. We define the jth slack at - € L; by

1

58ii() = —(2, ;) + wo(2) + Yo (y;)- (30)

As ¢ is the Legendre transform of v, we have A;;(x) > 0. If the cells L; and L, have a nonempty intersection, the set
H;;j(t) ={x € L; : A;j(z) =t} represents the trace on L; of the hyperplane spanned by the boundary between L; and L,
shifted by ¢. It is stated in (Altschuler et al., 2022) that for every nonnegative measurable function f : R — R,

1 o0
/L IOy e = g / F(0)hi; (1) dt, 31
13
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where h;;(t) f s x) dHg—1(x) and Hq_1 is the (d — 1)-dimensional Hausdorff measure. In particular, w;; = h;;(0)

is the (weighted) surface of the boundary between the i and 5™ Laguerre cells (should it exist). Given x € L;, let
s(x) = min;; 3A;;(z). When the point z is sufficiently inside its Laguerre cell, the conditional probability 72 becomes
extremely concentrated around the point y;, as the next lemma shows. Note that 7§ = d,, when x € L;.

Lemma B.1. Let x € L;. For ¢ small enough, it holds that for every j € [J], |1%(y;) — 7&(y;)| < ce™*®)/, where c

depends on J, the distances ||y; — y;|| and on the quantities w;;.

Such a result was already stated in (Delalande, 2022, Corollary 2.2), although while requiring that the source measure P has
a Holder continuous density. Only assumption (A) is needed here.

Proof. According to (Altschuler et al., 2022, Proposition 4.6), for € small enough,

e e — tolloe < C, (32)

where 1), is the shifted version of . (see (25)) and C' depends on the distances lly: — v, and on the w;;s. Following
(Delalande, 2022, Proof of Corollary 2.2) and (28), we have for j # 4

(@) —Pe(y5)) /¢ eUz,y;)—vo(y;))/e
= < e2¢
Z;-]/:1 ey =ve(y;)) /e — Z;-Ile @y ) =voly;1))/e

Ime (y5) — 76 (yy)| = 72 (ys) = < e /e,

A similar computation yields that 7% (y;) — 7& (y;)| = |7%(yi) — 1| < Je2Ces@)/e, O

We can bound for any = € L;,

J J
|1T= (@) = To(@)| = 1> ws (w2 (y;) = w5 (i)l < ey llyslle /<. (33)
j=1

Jj=1

Therefore, letting C’ denote a constant, which may depend on J, whose value may change from line to line, we obtain

IT= = Toll7,p) = Z/ |IT=(x) — To(2)||* dP(x <C’Z/ 26_25(“)/%13 x) (34)

1]1

<C”Z/ Ais(@)/e QP (x )<C’Zm/ e t/ehii(t)dt, (35)
iy o N0

i#]
where in the second equality, we used the definition of s(x). Assumption (A) ensures that the functions ks are bounded,

which implies that the right-hand side in (35) is of order €. O

C. Stability of entropic transport plans

Proof of Proposition 3.9. Note that we may assume without loss of generality that v < v/ and that KL(v||v') < oo, for
otherwise the bound is vacuous. For notational convenience, we omit the dependence on ¢ in the subscripts.

Write 7" = ~*¥(z,y)du(z)dv(y) for the entropic optimal plan between p and v, where %7 =
exp (é((x, Yy — eh Y () — W‘_w(y)))’ and analogously define *y“/’”/ = exp (é((x, y) — @“,_W,(x) - w“/_”’/ (y)))

Consider the measure v**' (x, ) dpu(z) dv/(y). The first-order optimality condition for (@ =¥, 4# =¥ implies that
/ A (A (y) =1 Ve, (36)

so that v*"*'(z,y)d/(y) is a probability measure. Let us write dn®(y) = ~*(z,y)dv(y) and dp®(y) =
Y (s y) AV (y).

14
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We make the following observations: first, 7% (z) = [ ydr”(y) and T =V () = [ ydp“(y). Second, the support
of p” lies inside B(0; R); since any Lipschitz function f on B(0; R) satisfies sup,, f(z) — inf, f(z) < 2R, Hoeffding’s
lemma (see Boucheron et al., 2013, Lemma 2.2) implies that if f is Lipschitz and f fdp® =0, then

/etf dp® < 62R2t2 vVt e R.
This implies (Bobkov & Gotze, 1999, Theorem 3.1) that

Wi (7%, p”)?* < 8R*KL(7"||p") . (37)
Third, Jensen’s inequality implies that for any coupling v between 7 and p®,

JATRLAGE H Jo- y’)dv(y,y’)H T (@) — T (@) 38)

so that in particular, |7+~ (z) — T* =" (z)|| < Wy (x®, p*). Combining these facts, we obtain

]' v ! l// X X ’}/Mﬂ/ dl/ 1%
ST () = T ()P < KL %) = [ log (Vu y)dy,<y>) Py ). G9)
Integrating both sides of this equation with respect to p yields
1 14 ! l/l VHJ/ dV v
@HT’H () =T ()72 < /log <W(I’y)du’(y)> dm" (2, y) . (40)

Expanding the definition of v/** and v*"*" and using that [ log A (y)drv (2, y) = [log &% (y) dv(y) = KL(v||V)
yields the claim. O

‘We now record two corollaries of this bound, which apply when either the source or the target measures of the entropic
maps agree.

Corollary C.1. For any u, v,V supported in B(0; R),

1

ST =T gy <70 @ = wr ) A - ) + KLY @

Proof. We apply Proposition 3.9 with ;1 = p/, which yields (once again omitting the dependency in ¢)
1 v V/ - U/ v 1// v
s ITe ™ =T ey < &7 (/(s@‘” — ) du /(w“* — ) du) +KLV). @2)

By definition, (¢~ 4#~*") minimizes the expression [ ¢ du+ [ dv/ + ¢ [[ el@¥) =@ =vW)/e qu(z) d/ (y) — e,
S0, recalhng that ff e(<x7y>_<p,u~>u (@)= (y)) /e d/,[/(l') dl//(y) = 1, we have in parthular

/(p”_w, du+/wu—>u’ dv < /@u—w dM‘F/T/)#—W dv’ +5// Uz ) =" 7 (@) ="M (y)) /e du(z)dv' (y) — ¢

:/@uﬁudu_k/\w,u*)udyl,

where we have wused that the first-order optimality condition for (p*7¥ ¢*7Y) implies that
[[ eWmwd =" @) =" W)/ qpy(2) dv/ (y) = 1 as well (see (11)). This implies

/ (¢ =) dp < — / (= =) dv' (43)
Applying this inequality to (42) yields
1 / /
ST = T gy <7 [ )l - ) 4 KL ) =

15
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Corollary C.2. For any u, i, v supported in B(0; R),

1 : ~ . ,
ST =T gy <70 [ (@ = ). @)
Proof. We apply Proposition 3.9 with v = 1/, yielding (dropping the dependency on ¢)

1

WHTH_W _ T“/_WH%Q(M) < ot (/(@/ﬂ_w _ LPM—W) dp + /(w/u_w _ ,(/}u—n/) du) ) (45)

An argument analogous to the one used in the proof of Corollary C.1 gives the inequality

/QOH,*)V d,Uz/ + ‘/’IZ)'U'/*)U dl/ S /(pﬂ%u d/J/ _|_ /w,u%ll dl/, (46)

or, equivalently,
/ (7 —ph ) dy < — / (P =)y (47)
and combining this inequality with (45) proves the claim. O

D. Strong convexity of the entropic semi-dual problem

Proposition D.1 (Strong convexity of F/7"). Let v = ijl v;j0y, be a measure supported on {y1,...,y;} € B(0; R)
and let p supported on a compact convex set Q C B(0; R) with a density p satisfying pmin < P < Dmax fOr some
Pmax > Pmin > 0. For ¢ € RY, define vy = [ 7%y du(x) and assume that vy, > \v for some 0 < X < 1. Then, we have
fore € (0,1)

Fr=v(y) — mdi}n FE=Y > COX-Var, (v — 7Y, (48)

1
2 .
where C = (€2R Pmax | 5) Bmin

Pmin Pmax

Proof. As pand ¢ are fixed, we will simply write ¢, instead of 12", and write similarly F;,, = F#~". Recall the definition
(25) of the shifted potential ¢, (y;) = 1, (y;) — € log ;. According to (Delalande, 2022, Theorem 3.2), the functional F,, is
minimized at the vector v,,, with

Vo € RY, Var, (v) < (62R2pmax + 8) UTVQF,,(’(Z)V>U. (49)

Pmin

Fort € [0,1], let ¢y = 1, + (1) — 1b,) and let v, = J 72| dpu(z). The potential 1, is the (shifted) entropic Brenier
potential between p and 4, so that it minimizes the functional F),, (see Appendix A). Also, note that V2F,, does not depend
on v, so that

-1
VTV e = 0TV R0 (52 ) v, o), 50)
Pmin
Let v = 1 — ¥, A Taylor expansion of F,, gives
~ 1 2p -1 .1
F,(v)—F,(¢,) = UTVQF,, P)vdt > Q2T mAX |y o Var,, (v) dt. (@28
p t
0 min 0

Lemma D.2. Write v, = ijl Vt,j0y,;. Then, forallt € [0,1] and j € [J], we have v ; > ;’:ﬁy&;tufd.

This lemma is enough to conclude the proof. Indeed, 1 = vy, > Av, so that it implies that Var,, (v) > 2= A\Var,(v). O

Pmax
Proof of Lemma D.2. According to (Delalande, 2022, Proof of Proposition 4.1),
- () (o + (1 t)y) < D7) () + (1~ ) e(4) (y)- (52)
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Therefore, if we let h;(z) = e((#¥i)—¥e(;)=®=(¥0)(2))/2  then we have hy(tx + (1 — t)y) > ho(z)'hi(y)'~t. By the
Prékopa-Leindler inequality,

t 1—t
Vi = /ht(a:) dp() > Pmin /X hi(z)dz > pmin (/X ho(x) dx) (/X hi(x) dx) > ﬁmm I/(t))]»V%’;t.

Proof of Proposition 3.11. As in the previous proof, we drop the ¢ and p dependency in our notation. Write v, =
Z}Izl Vk,;0y, for k = 0,1, and define as before the shifted potentials v, (y;) = ¥y, (y;) — elogvy ;. Let > 0 be a

parameter to fix. According to Proposition D.1, Lemma H.1, and using the inequality F), (¢,,) < F,, (¢, ), we have
CAVar,, (1;1/1 - 1/;1/0) < Fy (1/3:/1) —Fy (7;1/0) < Fy (1[)1/1) - F, (&m) + F, (1/3:/0) —Fy (7;1,0)
= [ = ) = )

O

0 ~ ~ 1
< ivarl/o(wl/l - 1l)l/o) + 270X2(V1HV0)'
We pick 8 = C\ to conclude that
S 1
Vary, (¥, = ) < 773y X (). (53)
Therefore, using the inequality |log(a/b)| < |a — b|/ min{a, b} for a,b > 0,
141 2
Var,, (1 — o) < 2Var,, (Y1 — o) + 2 Z 10, (log (Vo J ))
j=1 J
2 J Vi — 1, 2
< 2 92 N G T B VI
R(E Gallo) + ZVO’J <min{Vo,ij1,j}>
2 2 < 2 2
< @oex vl + TZ R (o) R O

E. Control of the fluctuations in the one-sample case

Lemma E.1 (Sample complexity in the one-sample case). Assume that P satisfy (A) and that Q) satisfy (B). Then, it holds
that E||TF—=@n — T€||%2(P) Selnh

Proof. To ease notation, we write 1, , = TEP —Qn and Ve = wf —Qn_ As explained in Section 3, the stability result
Proposition 3.9 implies that

+

8R2 Var (we,n_we
BT~ Ty < o (B0 = Vo)

]E[x2(622n||Q)]) + SRZE[(Qn]Q)]. (34

Write () = Z;.]:l q;0y; and Q,, = ijl {;0y,, and introduce the event E = {Vj € [J], ¢; > q;/2}. If E is satisfied, we
have Q,, > Q/2, so that Proposition 3.11 yields

Varg (ven — ) < OX*(QnllQ)- (55)
If E is not satisfied, we use the fact that the entropic potentials have a bounded amplitude (see Lemma A.1), to obtain that
VarQ ("A&‘,n - 1/)5) < C,- (56)

Lemma E.2. Let E be the event that Q,, > Q/2. Then P(E€) < Je~“Imin™ for some ¢ > 0.
Proof. By (Vershynin, 2018, Exercise 2.3.2), we have P(E°) < Ejzl P(¢; < q;/2) < Je~min™ for some ¢ > 0. O
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We obtain
7 R* R? ; 1, -1
BT — Tel|72(py S ?E[X (@nllQ)] + ?Je_cqm'“” Sens (57)

by Lemma H.2. O

F. Control of the fluctuations in the two-sample case

The goal of this section is to prove Theorem 3.7. We will actually prove a more general result, and show that for any discrete

measure v = Z;I:l V6, supported on {y1, ...,y s} withv; > vy, > Oforall j € [J], we have forlog(1/¢) < n/log(n),
BT/ = T3, Se'inh (58)

Theorem 3.7 follows from (58) by conditioning on @,,. Let E be the event that @, > (/2. Then, by Lemma E.2,

BN, - TP~ |2, oy < E[EII. — TP |2, )| QuI1{E}] + R*P(E®)
< Ce'nt 4 R?Je Ctmin < 7 1p~h

We obtain Theorem 3.7 by combining this bound with Lemma E.1.

To prove (58), we first use Corollary C.2 which yields

BT~ T5 |y < 8RB (o1 = f ) (P~ P)
(59)

= 8R%'E /(@E( pEn=vy — @ () d(P, — P),

€

where we recall that for a potential v, the shifted potential 1/3 is given by 1[)]' = 1; — elogv;. The remainder of the proof
consists in bounding this integral by using localization arguments and standard bounds on suprema of empirical processes.
Our first goal is to show that the potential /2 =" is close to to the potential /2"~ for the co-norm. It will be convenient to
work with the “L,-variance”

. 2
Varoo(¥) = inf maxy(y;) - cf? = <W> : (60)
As the measure v is lower bounded, it holds that
Var, (1) > Vmin Varoo (¥). 61)
Lemma F.1 (Supremum of e-Legendre transforms). Let ¢ be a fixed potential and let 7 > 0. Then, for all j € [J],
B [ swp | [ (520); ~ w2 00)) 4P~ P ] < oy Lmdlos(r/2).1] 6
Vareo (1 —0) <72 n

< CT\F (63)
n

E sup
Vareo (—1po) <72

/ (1) (x) — B2 () (x) A(P — Py)(z)

for some absolute constant C.

Proof. For a metric space (A, d) and u > 0, we let N (u, A, d) be the covering number of A at scale u, that is the smallest
number of balls of radius u needed to cover A. Let B be the L.-ball of radius 7 in R”, centered at v, and let || - || o denote
the co-norm. For 0 < u < 7, we have log N (u, B, || - [leo) < J log(7/u).

We start with the second inequality. Note that 1) — ®.(¢) is 1-Lipschitz continuous, and that the functional ®. satisfies
(1 +c) = ®.(¢p) +cforall c € R. Then the set {1 : Vary, () —tpg) < 72} is equal to the set {1) +c: ¥ € B, ¢ € R}.
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As [cd(P — P,) = 0, we can therefore restrict the supremum to vectors 1) € B. Furthermore, an envelope function of the
class {®. (1)) — ®-(vho) : ¥ € B} is the constant function equal to 7. Therefore, by Lemma H.3, we obtain

E sup

lo—tollc <7

/ (.(1) — B () (dP — dP,)

Co ar . . u
< / V/T1082N (4, {o-(¢) : ¥ € B, |- o) d

c3JT

. O
n

We repeat the same argument for the first inequality. The functional 77 is invariant by translation: 72 (¢ + ¢) = wZ(¢) for
all ¢ € R. This implies that

sup
Varo (—1o) <12

= sup
I —olloc <7

/ (1) (x) — D2 () (x) A(P — Py)(z)

/ ((1)(x) — Be (o)) (x) AP — Po) ().

As the function ¢ — wZ(1); is €~ 1-Lipschitz continuous for every = € R%, we have for 0 < u < 7/e,

log N(u,{z = ml(¢); : ¥ € B}, ||+ [loc) < Jlog(r/(ue)).

Remarking furthermore that 0 < 7Z7(¢); < 1 (so that the class of functions {z — 7Z(¢)); : ¢ € B} admits the constant
function 1 as an envelope function), we obtain the following control using Lemma H.3:

E sup
1 —olloo <7

@), = mzw)ap - ap) @)

1 <5 [\ og2N(u e o w2 (0); v € BLI o) du

<

)

\/CQJ max{log(7/¢e),1}

n

where ¢, ¢1 and ¢y are absolute constants, and the last line follows from arguing whether ¢; < 7/¢ or not.

Proposition F.2. Assume that P satisfies (A) and let v = Z;’Zl vy, be a measure supported on {y1,...,y;} C B(0; R),
with vj > Gmin for all j € [J]. Then, for all 0 < ¢ < 1 withlog(1/¢) < n/log(n), it holds that

EVars (=7 — pF=vy <n =L, (64)

~

Proof. To alleviate notation, we will write 1, = ¥ =" and ¥y = I . Similarly, we write F,, = F»~" and
Foy = FP=Y. Letv, = [7%(¢I»~") dP(z). Under the event E = {v,, > 1//2}, we have according to Proposition D.1
and the fact that v,, minimizes F},,

Cvmin Vares (Y, — o) < OVar, (¥, — o) < Fo(n) — Fo(to) < Fo(thn) — Fu(¥n) + Fu(to) — Fo(to)

. . (65)
- /(‘I’a(wn) = P=(v0)) d(P — Fy)

Let us bound P(E€). As 1y, is the minimum of F,,, we have v = [ mz (1;11) ; AP, (z) (see Appendix A). Therefore, we may
write vy, j = [ 72 () APy (z) + [ 7E(n); A(P — P,)(z) = vj + Z;, where

Zj = /W?(i@n)j d(P = Pp)(z) = /(W?(iﬁn)y’ — 72 (o)) (P = Py)(x).

Note that Var,, (@Zn — 1[)0) < R? (see Lemma A.1), so that by Lemma F.1 and Lemma H.3,

J
c \/ﬁqmin —1
P(E) < S P(Zi| > v;/2) < J - <nl 66
( )_; (1Z;] > v;/2) < exp( C( Jlog(l/a)—l—logn) SN (66)

under the condition log(1/e) < n/log(n).
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For k > 0, let ay = 2" /y/n and fix some p > 2. Let By = SUpy,, _(y_joy<az | [ (Pc(¥) — D (1)) d(P — P,)|. Assume

that E is satisfied and that Var. (g — ¢,) € [a2, b%]. Then, according to (65), it holds that B, > ca?. Using Markov’s
inequality, Lemma F.1 and Lemma H.3, we bound

EV&I‘OO(’lZ)n — 1/;0) < a% + Z ]P’(Varoo(zzjn — 1/;0) e [ai, aiﬂ} and E)aﬁ+1 + CP(E°)

k>0
n_l + ZP (Bak+1 > Calc) ak+1 ~ + Z ak+1 Ic+1
k>0 k>0 k
Qk/n P 4k+l 22k ;Dk
,1 71 -1
O
sy @ +2
k>0 k>0
Proposition F.3. Under the same assumptions than Proposition F.2, it holds that
EHTEPH—W TP—>1/H2 < E_ln_l (67)

Proof. Let Z = Varoo(@" - 1;0). Let once again a;, = 2¥/\/n for k > 1, with ag = 0. Fix some p > 2, with ¢ = 1%.

Fora > 0,let D, = SUD\ar _ (1h— o) <a2

. By Holder inequality and Markov inequality,
we obtain,

]E/(@s(d?n) — ®.(¢0)) d(P — Pu) < Y E | {Z € [a}, ai ]} sup /(%(d}) — . () d(P — P)

E>0 Vareo (h—tho)<a?
1/q 1/p
Dul+ 3 (#(Z2a))"E D]
E>1
E[Z] 1/q ok 2k(172/q)
<p1 Z < 4 <1
$n +z(ai> e
k>0 k>0
where we use Proposition F.2, Lemma F.1 and Lemma H.3 at the last line. Equation (59) then gives the conclusion. O

G. A lower bound for the performance of the 1NN estimator

In this section, we prove Proposition 4.2. We let P be the Lebesgue measure on 2 = [0, 1]¢, and let yo = (0,1/2,...,1/2)
and y; = (1,1/2,...,1/2). We denote by P,, an empirical measure consisting of i.i.d. samples from P. As in Appendix F,
we work in a general setting of a generic discrete target measure v, which may either be fixed or may be a random measure
independent of P,,. Weletv = ) j=0,1Yj by, for vg,v1 > i; this latter condition will hold with overwhelming probability
if v is an empirical measure (,, corresponding to n i.i.d. samples from @) = %63,,0 + %5?,1. Following Manole et al. (2021),
we define the one-nearest neighbor estimator Ty in this general context by

Tinn (@ Z D 1y (2) (07 (X))
=1 57=0,1

where 7 is the empirical optimal coupling between P,, and v.

We first examine the structure of the Brenier map Ty = Vg. The considerations in Section 2.1.1 imply that

Ty(z) = {yo (e1, ) < 1

y1 {e1,x) >,

where e; is the first elementary basis vector. The potential oy is not differentiable on the separating hyperplane (e1, ) = vy,
which has measure 0 under P, but we may arbitrarily assign points on this hyperplane to .
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Similar arguments imply that the empirical transport plan 7 between P,, and v has the following property: there exists a
(random) threshold 7 € (0, 1) such that

R 1 (e1,x)<T

(o) = { tes, )

0 (er,x)>r.
The set (e1, ) = 7 may not have measure 0 under P, and 7 (z, yo) may take values strictly between 0 and 1 on this set.

The following lemma shows that 7 is close to v with high probability.

Lemma G.1. Foranyt > 0,
P{r >y +t} < e~ 2t

Proof. If T > vy + t, this implies that P, ({z : (e1, ) < vy +t}) < 1. On the other hand, nP, ({z : {e1,x) < vy +t} is
a Bin(n, vy + t) random variable. The result then follows from Hoeffding’s inequality (Boucheron et al., 2013, Theorem
2.8). O

Let us write H for the halfspace {z : (e1,2) < 14}, and H for the halfspace {x : (e1,2) < 7}. Let 2 be any point in Q
such that z € H. We are interested in the event that there exists an element X; € {{( 1,...,Xp} such that a) z € V; and b)
X; € H¢. Call this event £(z). On this event, Tinn(7) = y1 and Tp(x) = yo, so | Tinn(z) — To(z)[|? = 1.

We therefore obtain
E|fi ~ Tolliar) = E [ [Tow(@) - Tofa) [ dP(z)
>E [ [T (o) = Toa) P1{E@)} AP ()
2B [ 1e@)}aP@)
- [ Ble@) ap).

where the final equality follows from the Fubini—Tonelli theorem.

We now lower bound the probability of £(x). Let us write A; for the event that 7 < v + ¢, for t > 0 to be specified, and
write H for the halfspace {z : (e1,z) < vy + t}. Given any x € H, write A = d(z, H), and let B be a ball of radius 2A
around z, intersected with ().

Denote by JF(z) the event that there are no samples in V' = B N H, but there is at least one point in B N Hy. Then
F(z)n Ay C E(x), since on F(x) the nearest neighbor to 2 must be a sample in Hf, and on A; we have H C H®.

Lemma G.2.
P{F(z) N A} > (1 vol(V))" — (1 —vol(B))" — e~"t" |

Proof. We first compute P { F () }. The probability that there are no samples in V' is (1 — vol(V'))", and this event may be
written as the disjoint union of F(z) and the event that all of B is empty. The latter event has probability (1 — vol(B))™.
Therefore

(1= vol(V))" = P{F(2)} + (1 — vol(B))".

Since P{A¢} < 27" the claim follows. O

We need the following lemma.

Lemma G.3. Assume that A > 0 and that d(z, 0QY) > 2A. There exist positive constants cqo < 1 and cq 1 such that
vol(V) < ¢q,0 vol(B) (68)

and
vol(B) > cq41AY (69)
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Proof. This is immediate from a scaling argument: since d(x,9€2) > 2A, the set B is a Euclidean ball of radius 2A, and
the set V' is a Euclidean ball of radius 2A minus a spherical dome cut off by a hyperlane at distance A from the center.
When A = 1, it is clear that the claimed inequalities hold, and the general case is obtained by dilation. O

We assume in what follows that d(x, 92) > 2A. The inequalities (1 + z)™ > 1 + nz and e® < 1 + z + 22, valid for all
x € [—1,0] and n > 1, imply that for any ¢ > 0 there exists a constant cq s > 0 such that if A < Cd,gn_l/d, then we will
have

(I =vol(V))" > 1 —neqvol(B) (70)
(1 —vol(B))" < e "vB) < 1 — (1 —§)nvol(B) (71)

Choosing 4§ sufficiently small, we obtain the existence of a small ¢4 3 > 0 such that if A < cd,3n_1/ 4 then
(1 —vol(V))" — (1 — vol(B))™ > CynA?.
Define A,, = cd’4n_1/ d, Putting it all together, consider the set
S={xe HNQ:A,/2 <d(z,H;) < A,,d(z,00) >2A,}.

The above considerations imply that P {€(z)} > Cyn(A,,/2)? — e=2nt’ > Cl - e=2n" forall z € S. Choosing ¢ to be a
sufficiently large constant multiple of n~'/2, we obtain

/H P{£(x)} dP(x) > [S P {£(x)} dP(x) 2 vol(S).

Since t < n~1/2

contains the set

, we will have that ¢ < A,, for n sufficiently large (as d > 3). Therefore, for n large enough, the set .S

S'={reQ:ivg—A,+t<(er,z) <wvy—An/2+12A, <(ej,x) <1-2A, Vj=2,...,d}.

Since vol(S’) >4 A, = n~'/4, the claim follows.

H. Auxiliary lemmas

Lemma H.1 (Young’s inequality). Let Qq, Q1 be probability measures with Q1 < Qo and let f be a function. Then, for

6 >0,

OVarg, (f) n X*(Q1]Qo)
2 20

/f(on —d@Q) < (72)

Proof. Recall Young’s inequality: for a,b € R, ab < % + %. As the left-hand side is invariant by translation, we may
assume without loss of generality that [ f dQo = 0, so that Varg, (f) = [ f? dQo. We write

2
<5 [Py [(1-92) e

[ #taqo - dQ1>=/(ff>( 7

_ Warg,(f) | x (Ql”Qo)'

2 20 =

Lemma H.2 (Expectation of empirical x2-divergence). Let Q = ijl q;0y,; be a discrete measure supported on J atoms,
and let QQ,, denote its empirical measure, consisting of n i.i.d. samples. Then,

E[*(Qn]Q)) = % : (73)
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Proof. We can write Q,, = Z}]:1 q;0y,;, where §; is a binomial random variable with parameters n and g;. We obtain

J A
X (QnllQ) = Z
j=1

Taking expectations, our bound reads

. Var(¢ T og(l—q) J—1
ED (@] = 3 = arlg Z;%(nqj%) L
J= J]=

O

Lemma H.3 (Control of suprema of empirical processes). Let X1,..., X, be an i.i.d. sample from some probability
measure P on RY, with P, the associated empirical measure. Consider F a class of functions R? — R with || f||ec < A for
all f € F. Foru > 0, let N(u) be the u-covering numbers of F, that is the minimal number of balls of radius u for the
| - ||oo-metric required to cover F. Then,

= sp| rae, - |

for two positive absolute constants Cy and C. Furthermore, for all t > 0,

‘ Cy/nt
P(;gg’/fd(Pn—P)‘ >t> Sexp( I+Alogn> (75)

for some positive absolute constant Cy. Eventually, for all p > 2,

o _. L
<f ; \/logQN(u)dU—.\/ﬁ (74)

1/p
I+ A
sup /fd P,—-P) <C . (76)
fer ‘ Pyn
Proof. See (Vaart & Wellner, 1996, Theorem 2.14.2 and Theorem 2.14.5). O
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