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Abstract

In this paper, we consider the problem of computing robust controlled invariants for
discrete-time monotone dynamical systems. We consider different classes of mono-
tone systems depending on whether the sets of states, control inputs and disturbances
respect a given partial order. Then, we present set-based and trajectory-based charac-
terizations of robust controlled invariants for the considered class of systems. Based
on these characterizations, we propose algorithmic approaches for the verification and
computation of robust controlled invariants. Finally, illustrative examples are provided
showing the merits of the proposed approach.

Keywords Controlled invariance - Monotone systems - Safety

1 Introduction

The concept of controlled invariance plays an important role in control theory [1, 2],
as it reflects the ability to control the system so that all trajectories initialized in a set
remain there for all future time. This concept is crucial in safety-critical applications
such as vehicle platoons [3-5], air traffic management [6], robotics [7, 8] and power
networks [9] where formal proofs are required to show the ability to maintain the state
in the safe region.
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Different approaches have been proposed in the literature to compute controlled
invariants for different classes of discrete-time systems. In [1], controlled invariants
are obtained as level sets of Lyapunov-like functions. Iterative algorithms are used to
compute controlled invariants in [10] for piecewise affine systems and more recently
in [11] for linear systems. Controlled invariants for polynomial systems have been
explored using linear programming in [12] and semidefinite programming in [13].
For general nonlinear systems, interval controlled invariants have been investigated
recently in [14]. Other approaches have been proposed recently using symbolic control
techniques [15, 16].

In this paper, we study robust controlled invariants for discrete-time monotone
dynamical systems. We consider different classes of monotone systems depending
on whether the sets of states, control inputs and disturbance inputs respect a given
partial order. Moreover, we focus on lower closed constraints. For the considered
classes of systems and constraints, we present characterizations of the structure of
the robust controlled invariants. Then, we present an algorithmic procedure allowing
to compute robust controlled invariants using an appropriately defined concept of
feasibility. Finally, we illustrate the theoretical results on an adaptive cruise control
problem.

Related work The computation of controlled invariants for monotone systems has
been explored for continuous time systems for the particular class of sets given by inter-
vals. The approach in [17] deals with monotone autonomous multi-affine systems and
in [18] the authors present an approach to the computation of robust controlled invari-
ants for monotone systems with inputs. In [19], the authors use formal methods and
symbolic control techniques to compute robust controlled invariants for discrete time
monotone dynamical systems. The closest work to the current paper in the literature
is [20] where the authors introduce a notion of s-sequence to characterize a controlled
invariant for disturbance state monotone systems. Our approach generalizes the one
in [20] by allowing to deal with different classes of monotone systems, by providing
new characterizations of the structure of the robust controlled invariants and by using
a new algorithmic procedure to compute robust controlled invariants based on tools
from multi-dimensional binary search algorithms used in multi-objective optimization
[21].

A preliminary version of this work is currently under review in the IEEE Conference
on Decision and Control (CDC) 2022 [22]. In the current paper we are providing proofs
for different results, which has not been done in the conference version. Moreover,
while in [22], we are only dealing with the computation of the controlled invariants, we
are also presenting here another algorithm for the verification of controlled invariants
together with a new numerical example.

The remainder of this paper is organized as follows. In Sect. 3, we introduce the
class of systems we consider. Section4 introduces the concept of robust controlled
invariants. In Sects.5 and 6, we present different characterizations of robust con-
trolled invariants. Section7 presents algorithms to verify and compute controlled
invariants. Finally, Sect. 5 presents numerical results validating the merits of the pro-
posed approach. To improve the readability of the paper, all the proofs are given in
the appendix.

Notation
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The symbols N, N. ¢, R and R. denote the set of positive integers, non-negative
integers, real and non-negative real numbers, respectively. Given N € N.g and a
set Y € R”, Y¥ denotes the set of infinite sequences of elements of Y. For a map
[ R" - R" domf := {x € R" : f(x)is well defined}. Given a non-empty set
K, Int(K) denotes it interior, cl(K) denotes its closure, d K denotes its boundary and
K its complement. For a set K, the operator Single(K) randomly selects a unique
element from the set K. The Euclidean norm is denoted by ||.||. For x € R" and for
£>0,B:x)={zeR"|||z—x| <e}andforaset K € R", Be(K) = Uyreg Be(x).

2 Preliminaries
2.1 Partial orders

A partially ordered set £ has an associated binary relation <, where for all /1, [, 3 €
L, the binary relation satisfies: (i) I| <p [y, (ii)ifly <g L andly <p [lj thenl| =, 5
and, (iii) if [y <z lp and I, <p I3 then | <, [3. If neither [ <, b norlp, <, [
holds, we say that /1 and /; are incomparable. The set of all incomparable couples in
L is denoted by Inc,. We say that [} <, I iffl] <, Iy and [y # [5. Similarly, a
partial ordering m < w n between a pair of infinite sequences m = mqom; ... and
n =njiny ... holds if and only if my <, nj forall k € Nxy.

For a partially ordered set £, closed intervals are [x, y]y := {z | x <g z <¢ y}.
Given a partially ordered set £, fora € Llet | a := {x € L | x <, a} and
ta:={xeL|a=<gx} When A C L then its lower closure (respectively, upper
closure) is | A := (J,cq | a (respectively, t A := (J,cq 1 @). Asubset A C L
is said to be lower-closed (respectively, upper-closed) if | A = A (respectively,
T A = A). We have the following definitions relative to partially ordered sets.

Definition 1 Let £ be apartially ordered setand A € L. The set A is said to be bounded
below (in L) if there exists a compact set B C L such that A €4 B. Similarly, the set
A is said to be bounded above (in L) if there exists a compact set B € L such that
AC| B.

Definition 2 Let £ be a partially ordered set and consider a closed subset A € L.
If the set A is bounded below, then the set of minimal elements of A is defined as
min(A) ;== {x € A | Vx; € A, x <g xjor (x,x1) € Incz}. Similarly, if the set A is
bounded above, then the set of maximal elements of A is defined as max(A) := {x €
A|Vx; € A, x >, xjor(x,x1) €Incg}.

An illustration of the concepts of lower-closed sets and maximal elements is pro-
vided in Fig.1. It was shown in [23] that lower and upper-closed sets satisfy the
following property.

Proposition 1 Let L be a partially ordered set and consider a collection of subsets
A C L ie{l,2,...,p}). The following holds:

(i) Ifforalli € {1,2,..., p}, A; is lower closed then Uf’zlA,- and ﬂleAi are lower
closed;
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Fig.1 A lower closed set

A C R2>0, with the standard
ordering, in blue. The set of its
maximal elements max(A) is
presented in orange. The lower L
closure of a pointa € A is

presented in dashed gray A

(ii) Ifforalli € {1,2, ..., p}, A; is upper closed then U}DZIA,- and ﬂleA,- are upper
closed.

In the rest of the paper, we will focus on lower-closed sets; analogous results can
be formulated for upper-closed sets.

2.2 Continuity of set-valued maps

In this section, we recall the following continuity notions for set-valued maps [24].

Definition 3 Consider a set-valued map F : X = R”, where X C R™ and F(x) is
compact for all x € &.

e The map F is said to be lower semicontinuous at x € X if for each ¢ > 0 and
vy € F(x), there exists n > 0 such that the following property holds: for each
z € By (x) N X, there exists y, € F(z) such that ||y, — y,|| < €;

e The map F is said to be upper semicontinuous at x € X if, for each € > 0, there
exists n > 0 such that F(B,(x)) N X) C B:(F(x));

e The map F is said to be continuous at x € X if it is both upper and lower
semicontinuous at x.

e The map F is said to be lower, upper semicontinuous, or continuous if, respectively,
it is lower, upper semicontinuous, or continuous for all x € X.

e For L > 0, the set valued map F is said to be L-Lipschitz if for all x1, xy € X,
F(x1) € Brjjx;—x| (F (x2)).

2.3 Discrete-time control systems
In this paper, we consider the class of discrete-time control systems X of the form:
x(k+1) = fx(k), uk), d(k)) ()

where x (k) € X is a state, u(k) € U is a control input and d (k) € D is a disturbance
input. The trajectories of (1) are denoted by ®(., xo, u, d) where ®(k, xg, u, d) is
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the state reached at time k € Ns¢ from the initial state xo under the control input
u : N>o — U and the disturbance inputd : N>g — D.For X € X, U C U and
D C D, we use the notation f(X,U, D) ={f(x,u,d) |x € X, ue U, d € D}.

When the control inputs of system (1) are generated by a state-feedback controller
k : X — U, the dynamics of the closed-loop system is given by

x(k+1) = f(x(k), k(x(k)), d(k)) 2

and its trajectories are denoted by @, (., xg, d). By abuse of notation, in the rest of the
paper we use @, (., xo, D) to denote {D, (., xg,d) |d : R~o — D}.

3 Monotone control systems

In this section, we introduce classes of monotone discrete-time control systems, that
preserve order with respect to states, disturbance inputs and control inputs. Then, we
provide characterizations of the considered classes of systems.

Definition 4 Consider the discrete-time control system X in (1). The system X is said
to be:

e State monotone (SM) if its set of states is equipped with a partial order <y,
and for all x;,xp € X, forall u € U and for all d € D, if x; <y x; then
f,u,d) <x f(x2,u,d);

e Control-state monotone (CSM) if its sets of states and control inputs are equipped
with partial orders <y and <, respectively, and for all x1, x, € X, for all
ui,up € Uandforalld € D, if x; <y x2 and u; <gy up then f(xy,u,d) <y
fx2,uz,d);

e Disturbance-state monotone (DSM) if its sets of states and disturbance inputs are
equipped with partial orders <y and <p, respectively, and for all x1, x, € X, for
allu € Y and for all dy, dr» € D, if x; <y x» and d| <p d; then flxi,u,dy) <x
fx2,u,dr);

e Control-disturbance-state monotone (CDSM) if its sets of states, inputs and dis-
turbances are equipped with partial orders, <y, <z; and <p, respectively, and for
all x;,x2 € X, uy,ur € U and for all dy, d>» € D, if x; <x X2, U1 <y u and
dy <p dy then f(x1,ur,d)) <x f(x2,uz,ds).

Remark 1 In this paper, different types of monotonicity are defined with respect to the
state, control input and disturbance input. The SM, (DSM and CDSM, respectively)
properties defined in this paper correspond to the discrete-time versions of the concept
of monotonicity in [25] ([26] and [27], respectively).

From the definitions above, it can be seen that a CDSM system is a CSM and DSM
system and that a DSM or CSM is a SM system. The notions above can be easily
verified via the Kamke—Muller conditions [25] for continuously differentiable vector
fields as follows: The system X in (1) with x(k) € X € R", u(k) € U € R™ and
dk) e D CR”is
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. SMifg-Tfj_zOforaui,je{l,z,...,n};

e CSM ifg—{; > Oand $4 > O forall i,j € {1,2,....n} and for all h €
(1,2,....m )
e DSM if /- > 0and £/- > O forall i,j € {1,2,...,n} and for all h €
J
(1,2.....p); ) L
. CDSMifo; >0, 2L > 0and 34 > Oforalli,j e {1,2,....n}, forall

> Qup, =

he{l,2,...,m}andforalll € {1,2,..., p}.

\

where > 0 is the usual total order on R.
The following examples illustrate the difference between the different versions of
monotonicity introduced above.

Example 1 We present examples of the considered classes of systems:

e The system described by
x(k 4+ 1) = x(k) + u(k)d(k) sin(u(k)d(k))

with x(k), u(k), d(k) € R, is SM without being DSM nor CDSM for the usual
total order on R.
e The system described by

Arx(k) +dk) if u=1

X+ 1) = {Azx(k)+d(k) )

2 4 8 0
DSM without being CSM nor CDSM for the usual partial order on R?;
e The system described by

with x(k), d(k) € R? and u(k) € {1,2}, A; = (0'8 0'1) and A, = (5 0'2), is

x(k+ 1) = x(k) + u(k) + d(k)

with x (k), u(k), d(k) € R, is CDSM for the usual total order on R.

Remark 2 Monotone systems constitute a broad class of systems that arise in biology
[26], traffic flow models [28], microgrids [29], and other applications. Monotonicity
may appear to be restrictive when judged from the sign conditions for monotonicity
with respect to the positive orthant, but graphical tests exist to detect monotonic-
ity with respect to other orthants and can be modified with changes of variables to
detect monotonicity with respect to broader cones. In addition, physical insights, e.g.,
restricting the dynamics to hyperplanes associated with conservation laws, may reveal
monotonicity that is not apparent; this has been observed in biomolecular signaling
cascades. Finally, algorithms exist to decompose systems into monotone components
[30].

Next we give an auxiliary lemma, which enables us to present equivalent charac-
terizations of the proposed classes of monotone systems.
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Lemma 1 Let L be a partially ordered set and A, B C L. We have A C| B if and
only if for any a € A, there exists b € B such thata < b.

The proof follows immediately from the fact that | B = {z € £ | 3b €
B satisfying z <, b}.

Proposition 2 Consider the discrete-time control system X in (1), the following prop-
erties hold:

(i) The system X is SM if and only if for all x € X, u € U and d € D we have

JU xu,d) Sl flx,u,d)

(ii) The system ¥ is CSM if and only if for all x € X, u € U and d € D we have

S x, Lu,d) Sl f(x,u,d)

(iii) The system X is DSM if and only if for all x € X, u € U and d € D we have

S x,u,ld) Sl f(x,u,d)

(iv) The system X is CDSM if and only if for all x € X, u € U and d € D we have

JfAx, du ld) Sl f(x,u,d)

The following auxiliary result characterizes the monotonicity property of the closed
loop controlled system.

Lemma 2 Consider the system X in (1). If the system X is CDSM and if the controllers
K1, k2 : X — U satisfy

k1(x1) <y k2(x2), Vxi,x2 € X, withx; <y x2, 3)

then for all x?, xg e X, with x? <x xg, and for all di,dy : N>o — D satisfying
d; <pw dy, we have @, (., x),dy) <xw O, (., x9, do).

4 Controlled invariants

We start by recalling the concept of controlled invariant [1]. In simple words, a con-
trolled invariant set is a set for which there exists a controller such that if the state of
the system is initialized in this set, then its solutions remain there for all time.

Definition 5 Consider the system ¥ in (1) andlet X € X, U C U and D C D be the
constraints sets on the states, inputs and disturbances, respectively. The set K € X is
said to be a robust controlled invariant for the system X and constraint set (X, U, D)
if K € X and there exists a controller k : X — U, with dom(x) = K and such that
for all xop € K and for any disturbance inputd : N>o — D the solution of the closed
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loop system @, (., xo, d) : N>og — X satisfies O, (k, xo,d) € K forall k € Nzol. In
this case, « is said to be an invariance controller for the system X and constraint set
(X,U, D).

While the characterization of controlled invariants in Definition 5 is the most com-
monly used in the literature [1, 31], the equivalent characterization below has also
been used in the literature [32].

Proposition 3 Consider the system X in(1)andlet X € X, U C U and D < D be the
constraints sets on the states, inputs and disturbances, respectively. The set K C X
is a robust controlled invariant for the system ¥ and constraint set (X, U, D) if and
only if K € X and the following holds:

Vxe K, JueU st f(x,u,D) CK. 4)

From Proposition 3, one can readily see that the robust controlled invariance prop-
erty is closed under union. Hence, there exists a unique robust controlled invariant that
is maximal, in the sense that it contains all the robust controlled invariants.

Definition 6 Consider the system ¥ in (1) andlet X € X, U C U and D C D be the
constraints sets on the states, inputs and disturbances, respectively. The set K € X
is the maximal robust controlled invariant set for the system X and constraint set
(X,U, D) if:
e K C X is a robust controlled invariant for the system X and constraint set
(X,U, D);
e K contains any robust controlled invariant for the system ¥ and constraint set
(X,U, D).

In this case, any invariance controller ¥ : X — U satisfying dom(x) = K is said to
be a maximal invariance controller for the system ¥ and constraint set (X, U, D).

The following auxiliary result characterizes the effect of enlarging the set of control
inputs and shrinking the set of disturbance inputs on the robust controlled invariance
problem. The proof of this result is straightforward and thus omitted.

Lemma 3 Consider the system X in (1) and let X C X, Uy, Uy C U and Dy, D> C
D be constraints sets on the states, inputs and disturbances, respectively, satisfying
U, C Uy and D> C Dq. If K is a robust controlled invariant for the system ¥ and
constraint set (X, Uy, Dy), then K is a robust controlled invariant for the system ¥
and constraint set (X, Uy, D»).

5 Set-based characterization of controlled invariants

First, we have the following general characterization of the topological structure of
controlled invariants for nonlinear systems under more regularity on the dynamics of
the system.

1 The condition @, (, x0,d) € K forall k € N> can be equivalently replaced by the following condition:
Dy (k, xp,d) € X forall k € N>.
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Proposition 4 Consider the system X in (1) and let X € X, U C U and D C D be
constraints sets on the states, inputs and disturbances, respectively. Suppose that the
map f : X x U x D describing the system X is lower semicontinuous on its first
argument and the set of control inputs U and disturbance inputs D are compact. The
following properties hold:

(i) Ifthe set K C X is a robust controlled invariant for the system ¥ and constraint
set (X, U, D), then the set cl(K) is a robust controlled invariant for the system
Y and constraint set (X, U, D);

(ii) Ifthe set K C X is the maximal robust controlled invariant for the system ¥ and
constraint set (X, U, D), then the set K is closed.

In the following, we provide different characterizations of robust controlled
invariants when dealing with monotone dynamical systems and lower-closed safety
specifications (i.e., lower closed set of constraints on the state-space X).

Theorem 5 Consider the system ¥ in (1) and let X € X, U C U and D C D be the
constraints sets on the states, inputs and disturbances, respectively, where the set X
is lower closed. The following properties hold:

(i) Ifthe system X is SM and if a set K is a robust controlled invariant of the system
Y and constraint set (X, U, D), then its lower closure is also a robust controlled
invariant for the system ¥ and constraint set (X, U, D);

(ii) If the system % is SM then the maximal robust controlled invariant K for the
system X and constraint set (X, U, D) is lower closed;

(iii) Ifthe system % is DSM and the set of disturbance inputs D is closed and bounded
above then the maximal robust controlled invariant for the system ¥ and con-
straint set (X, U, D) is the maximal robust controlled invariant for the system
Y and the constraint set (X, U, Dmax), where Dyax = max(D);

(iv) Ifthe system X is CSM, the set of control inputs U is closed and bounded below
then the maximal robust controlled invariant for the system ¥ and constraint set
(X, U, D) is the maximal robust controlled invariant for the system ¥ and the
and constraint set (X, Unin, D), where Upin = min(U);

(v) Ifthe system X is CDSM, the set of control inputs U is closed and bounded below
andthe set of disturbance inputs D is closed and bounded above, then the maximal
robust controlled invariant for the system X and constraint set (X, U, D) is
the maximal robust controlled invariant for the system ¥ and constraint set
(X, Unin, Dmax), where Upin = min(U) and Dyax = max(D).

The result in (ii) states that for SM systems, the maximal robust controlled invariant
can be characterized using only its maximal values (in the sense of the partial order
<x)- The result in (iii) states that to compute the maximal robust controlled invariant
for DSM systems, itis sufficient to use maximal disturbance inputs. Finally, the resultin
(v) states that to compute the maximal robust controlled invariant for CDSM systems,
it is sufficient to use maximal disturbance inputs and minimal control inputs. We also
have the following characterizations of controlled invariants for the considered classes
of systems.
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Proposition 6 Consider the system X in (1) and let X € X, U C U and D C D be
the constraints sets on the states, inputs and disturbances, respectively, where the set
X is lower closed. Consider a closed and lower closed set K < X. The following
properties hold:

(i) Ifthe system X is SM then the set K is a robust controlled invariant of the system
¥ and constraint set (X, U, D), if and only if the following holds:

Vx e max(K), Ju e U s.t f(x,u,D) C K, (@)

(ii) Ifthe system ¥ is DSM and the set of disturbance inputs D is closed and bounded
above, then the set K is a robust controlled invariant of the system ¥ and con-
straint set (X, U, D), if and only if the following holds:

Vx e max(K), Ju e U s.t f(x,u, Dmax) € K, (6)

where Dyax = max(D);

(iii) If the system X is CSM and the set of control inputs U is closed and bounded
below, then the set K is a robust controlled invariant of the system ¥ and con-
straint set (X, U, D), if and only if the following holds:

Vx € max(K), Ju € Unin s.t f(x,u, D) C K, 7

where Upin = min(U);

(iv) Ifthe system X is CDSM, the set of control inputs U is closed and bounded below
and the set of disturbance inputs D is closed and bounded above then the set K
is a robust controlled invariant of the system ¥ and constraint set (X, U, D), if
and only if the following holds:

Vx € max(K), Ju € Upin 5.t f(x,u, Dynax) € K, )

where Upin = min(U) and Dyax = max(D).

Proposition 6 is critical from a computational point of view, when the objective
is to check whether a lower-closed set is a robust controlled invariant. Indeed, while
the invariance condition needs to be checked for all the elements x € K, u € U and
d € D for general nonlinear systems [see Eq. (4)], it has to be checked only for the
elements:

x € max(K),u € U and d € D for SM systems;

x € max(K),u € U and d € Dy, for DSM systems;

x € max(K), u € Upin and d € D for CSM systems;

x € max(K), u € Unin and d € Dpyx for CDSM systems.

Moreover, one can also see that this property is very useful in practice when max(K),
Dinax and Upiy, are finite while K, D and U are infinite.
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4 A

X

\?H(l,x,D)
q)h(37x7D) \@AZ%,D) éoiq)'ﬁ(k’x? D)

Fig. 2 Tllustration of the concept of closed-loop feasibility. Left: the 3-step reachable set from the initial
condition x for a system X. Note that ®, (3, x, D) €| @, (1,x, D){J | D« (2, x, D). Right: The set
5 UOSkSZ ®, (k, xg, D) is a robust controlled invariant of the system X in view of Proposition 7

6 Trajectory-based characterizations of controlled invariants

In this section, we provide trajectory-based characterizations of controlled invari-
ants. We start by introducing the concept of lower feasibility.

Definition 7 Consider the system ¥ in (1) andlet X € X, U C U and D C D be the
constraints sets on the states, inputs and disturbances, respectively. A point xg € X
is said to be closed-loop feasible w.r.t the constraint set (X, U, D) if there exists a
controller k : X — U and N € N. such that

O (k,x0,D) C X, Vke{0,1,...,N—1}, 9)
and
O (N, x0, D) Sl | @ulk, x0, D), (10)
0<k<N-1

Similarly, a point xo € X is said to be open-loop feasible w.r.t the constraint set
(X, U, D) if there exists an input trajectory u : N>g — U/ and N € N, such that

®(k,xp,u,D)C X, Vke{l,2,....,N—1} (11)
and
®(N,x0,u,D) S| | @k xo,u, D). (12)
0<k<N-1

An illustration of the concept of closed-loop feasibility is presented in Fig. 2 (Left).
The following proposition shows the usefulness of feasible points to compute con-
trolled invariants for SM systems. Conclusion (i) of this proposition is illustrated in
Fig.2 (right).
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Proposition 7 Consider the system X in (1) and let X € X, U C U and D C D be
the constraints sets on the states, inputs and disturbances, respectively, where the set
X is lower closed. If the system X is SM, then the following holds:

(i) If xq is closed loop feasible w.r.t the constraint set (X, U, D) then there exists a
controller k - X — U and N € N+ such that the set

K=l |J @tk x0. D) (13)
0<k<N-—1

is a robust controlled invariant for the system ¥ and constraint set (X, U, D).
(ii) Ifxo € X is open-loop feasible w.r.t the constraint set (X, U, D), then there exists
an input trajectory u : N>o — U and N € N. such that the set

k=, |J o®kx.uD (14)
0<k<N-—-1

is a robust controlled invariant for the system ¥ and constraint set (X, U, D).

In the following, we characterize open-loop feasibility for DSM systems. Before
providing the result, we give the following auxiliary lemma.

Lemma 4 Consider the system % in (1). If the system ¥ is DSM and the set of dis-
turbance inputs D is closed and bounded above, then for any point xy € X and any
input trajectoryu : N>o — U, we have ®(k, xo,u, D) €|, ®(k, xo, u, Dmax), for all
k e Nz().

Proposition 8 Consider the system X in(1)andlet X € X, U C U and D < D be the
constraints sets on the states, inputs and disturbances, respectively. If the system X is
DSM, the set of states X is lower closed and the set of disturbance inputs D is closed
and bounded above, then a point xo € X is open-loop feasible w.r.t the constraint set
(X, U, Dmax) if and only if it is open-loop feasible w.r.t the constraint set (X, U, D),
where Dpax = max(D).

We also have the following characterization of open-loop feasibility for a particular
class of CSM systems.

Proposition 9 Consider the system X in (1) and let X € X, U C U and D C D be
the constraints sets on the states, inputs and disturbances, respectively, where X is
lower closed. If the system X is CDSM, the set of states X is lower closed, the set of
control inputs U is closed and bounded below, and for all e € R”,, forall x1,x; € X
and for all u € U, following condition is satisfied:

x1 =z x2+e = Be(f(x2,u, D)) S} f(x1,u, D) 15)

then a point xo € X is open-loop feasible w.r.t the constraint set (X, U, D) if and only
ifit is open-loop feasible w.r.t the constraint set (X, Unin, D), where Upin = min(U).
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In the following result, we provide a comparison between the closed-loop and
open-loop feasibility.

Proposition 10 Consider the system % in (1) and let X C X, U C U and D C D
be the constraints sets on the states, inputs and disturbances, respectively. If a point
xo € X is open-loop feasible w.r.t the constraint set (X, U, D), then it is closed-loop
feasible w.r.t the constraint set (X, U, D). Moreover, the converse holds if one of the
Jfollowing conditions is satisfied:

e The system ¥ is disturbance free, i.e., D = {d}.
e The system X is DSM and card(Dmax) = 1.

Moreover, we have the following result, characterizing a special case of open-loop
feasibility for the particular class of monotone systems with Lipschitz dynamics.

Theorem 11 Consider the SM system X in (1) andlet X C X, U CU and D C D be
the constraints sets on the states, inputs and disturbances, respectively. Assume that
themap f : X xU x D — X defining the system X is continuous on its first and third
arguments, and the sets of control inputs U and disturbance inputs D are compact.
Consider xoy € X. If the following conditions are satisfied:

(i) xo is open-loop feasible w.r.t the constraint set (X, U, D) and there exists u :
N>o — U, N € N. and ey such that

Bey(®(N,xo,u, D)) € | )  ®ck,x0,u, D). (16)
0<k<N-1

(ii) there exists y > 0 such thatBy(CD(k,xo,u, D)ycCcX, Vkef{l,2,...,N—1}

then there exists B > 0 such that for any x1 € {1 xo}NBg(xo), x1 is open-loop feasible
w.r.t the constraint set (X, U, D). Moreover, when the map f is L-Lipschitz on X on
its first argument, then one can explicitly determine the value of B as a function of the
parameters ey and y .

We have analyzed in Theorem 5 the structural properties of the maximal robust
controlled invariant set for monotone systems and lower-closed safety specifications.
In the following, and under more regularity assumptions on the system, we provide a
characterization of the trajectories initiated at the boundaries of the maximal robust
controlled invariant.

Proposition 12 Consider the system ¥ in (1) and let X C X, U C U and D C D be
the constraints sets on the states, inputs and disturbances, respectively, where the set
X is lower closed. Let k be a robust maximal invariance controller for the system ¥
and the constraint set (X, U, D). If the system X is SM, themap [ : X xU XD — X
defining the system X is continuous on its first and third arguments, and the sets of
control inputs U and disturbance inputs D are compact, then for all xo € d(dom(k))
one of the following scenarios hold:

(i) @ (k,x0, D) NI(dom(k)) # O for all k € N>o;
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Fig.3 An illustration of 4
scenario (ii) in Proposition 12

where we have a lower closed

set X (in gray) and the r
corresponding maximal robust T

controlled invariant set K (in %, X, D)

blue). For an initial condition

x € 0K, the reachable set

@y (., x, D) : N>g — X has an N (I)“(Q’ Z, D)
non-empty intersection with the d

boundaries of the set 0 X, before Om(n) \

reaching the interior of the set K @K(3, xz, D)

(ii) There exists p € N. such that

- O (p—1,x09, D) N (d(dom(k))\0X) =0
- D (p—1,x0,D)NOX #0
- @ (p, x0, D) < Int(dom(k)).

The result of Proposition 12 is illustrated in Fig. 3. Intuitively, the result of Propo-
sition 12 states that for any initial condition x in the boundary of the maximal robust
controlled invariant K, either the reachable set @, (., x, D) : N>o — X will always
have an non-empty intersection with the boundaries, which corresponds to case (i),
or it will have an non-empty intersection with the boundaries of the set X (i.e., 9X)
before reaching the interior of the set K, which corresponds to case (ii).

7 Verification and computation of controlled invariants
7.1 Verification of controlled invariants

The result of Proposition 6 shows that robust controlled invariants for monotone
dynamical systems enjoy useful properties, in the sense that the verification of whether
a set is controlled invariant or no boils down to checking only the properties of its
maximal elements. Based on this intuition, in this section, we present an algorithm to
the verification of robust controlled invariants. In the following, we present the main
algorithm for the class of SM systems. Then, we explain how the algorithm can be
improved for CSM and DSM systems.

Algorithm 1 works as follows: it explores all the elements x of the set max(K). If for
each element x € max(K), we have the existence of u € U suchthat f(x,u, D) C K,
then, in view of Proposition 6, the set K is a robust controlled invariant for the system
Y and constraint set (X, U, D); otherwise, if there exists x € max(K) such that for
allu e U, f(x,u, D) g K, then the set K is not a controlled invariant.

Moreover, other properties can be used to improve the proposed algorithm. Indeed,
if the system X is DSM, then the condition f(x,u, D) € K can be replaced by
the simpler condition f(x, u, Dmax) € K, where Dpax = max(D). Similarly, if the
system X is CSM, then only the set of inputs Upi, = min(U) is explored, instead of
the whole set of control inputs U'.
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Algorithm 1 Verification of controlled invariants

Input: A SM system X as in (1), a constraint set (X, U, D), where X a lower closed set, and a lower closed
set K C X

Output: True, if K is a robust controlled invariant for the system X and constraint set (X, U, D).

1 begin,

2 a:=1,

3 for x € max(K)

4 if there exists u € U such that f(x, u, D) € K then
5 a=axl

6 elsea =a x 0.
7

8

9

end if
end for
return True if a == 1.

7.2 Computation of controlled invariants

As shown in Theorem 5 and Proposition 7, controlled invariants for monotone systems
and lower closed safety specifications are lower closed and can be computed using fea-
sible points. This property implies that the boundary of the maximal robust controlled
invariant set has the structure of a Pareto front and can therefore be approximated
arbitrarily close, by resorting to multi-dimensional binary search algorithms used in
multi-objective optimization [21, 33].> Based on such approaches, in the following
we present the main algorithm for the computation of robust controlled invariants for
the class of SM systems. Then, we explain the parts that needs to be modified for the
case of DSM and CSM systems.

For a given x, the command open loop-feasible in Algorithm 2 checks if x is open-
loop feasible, i.e., if it satisfies (12) for some input trajectory u : N — U. If this is the
case, any point in the lower closure of the set Z defined below is feasible, and there is
no need to explore it:

7 = U @ (k, x9, u, D). (17)
0<k<N-1

Hence, all the elements of the set Z are stored in the set F; representing the set of
states belonging to the maximal robust controlled invariant. Similarly, we use the
set J7 to store the elements that do not belongs to the maximal robust controlled
invariant set. The command leads to the unsafe set > U X in Algorithm 2 checks if
for all possible input trajectories u : N — U there exists k € {1,2..., N} such that
®(k, xg,u, D) N F> UX # (. If x leads to the unsafe set, then any state from the
upper closure of the set Y defined below will lead to the unsafe set, and there is no
need to explore it:

Y= |J @k x.uD) (18)
0<k<N-1

2 Similar approaches, based on the approximation of the boundaries of Pareto fronts has been explored for
the computation of timing and safety contracts in [34, 35].
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Algorithm 2 consists of three parts. In the first part (lines 2—11), the elements of the
set max(X) are explored. In the second part (lines 12—-18), the elements of the set
min(X)? are explored. Finally, lines 22—29 describe the main loop of the algorithm.
We start by picking an element from the set of non-explored points and for which
we did not decide yet if they are open-loop feasible, or leading to the unsafe set. The
strategy to pick a new point to explore is adapted from [21]. The algorithm stops
when the Hausdorff distance between the sets F; and > is smaller than the precision
parameter ¢ > 0. In this case, we get that the set K = X N F is a controlled invariant
for the system X and the constraint set (X, U, D), and moreover, we also have that
K C K* C Bg(K), where K* is the maximal robust controlled invariant for the
system X and the constraint set (X, U, D). This last statement follows directly from
the construction of the sets F; and JF, since:

e any element of F| belongs to the maximal robust controlled invariant and which
is due to the fact that it is constructed based on feasible points;

e any elements of J leads to the unsafe set, and do not belong to the maximal robust
controlled invariant.

Let us now explain how other different structural properties of the system allow to
improve the proposed algorithm; these details were removed from the description of
the algorithm to improve its readability.

e DSM systems: For both open loop feasible and leads to unsafe set commands, and
in view of Proposition 8, the trajectories of the system are computed only with
respect to the set of maximal disturbances Dp,x = max(D) when the system is
DSM;

e CSM systems: For both open loop feasible and leads to unsafe set, and in view
of Proposition 9, the trajectories of the system are computed only with respect to
the set of minimal inputs Upi, = min(U) when the system is CSM and condition
(15) is satisfied;

e L-Lipschitz systems: For the open-loop feasible command and if for some xp € X
conditions (i) and (ii) of Theorem 11 are satisfied, with some ey, y > 0, any point
in the set {1 xo} N Bg(xo) is feasible, and there is no need to explore it, where g is
given in the proof of Theorem 11 as a function of Sy, y and the Lipschitz constant
L.

8 Numerical examples

8.1 Verification of robust controlled invariants

Consider the two-dimensional switched system ¥ described by

Ax(k) +d k) if u=1

X+ 1) = {Azx(k) Fdtk) if u=2

3 Let us mention that in general, the set X may not be bounded from below. In this case the set min(X) can
be replaced by any collection of open loop feasible points, and which can be computed before running the
algorithm.
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Algorithm 2 Computation of controlled invariants

Input: A SM system X as in (1), a constraint set (X, U, D), where X a lower closed set, and a precision
e>0

Output: A controlled invariant set K € X .

1 begin, F1 = F> =0

2 for x € max(X)

3 if x is open-loop feasible then

4 F1 =F1U | Z, with Z from (17)
5 else if x leads to the unsafe set 7> U X
6 Fr = FrU 1Y, with Y from (18)
7 end if

8 end for

9 if X =7

10 return K = X

11 end if

12 for x € min(X)

13 if x is open-loop feasible then

14 F1 =F1U | Z, with Z from (17)
15 else if x leads to the unsafe set 7> U X
16 Fr =FpU 4 Y, with Y from (18)
17 end if

18 end for

19 if min(X) € 7,

20 return K =

21 end if

22 while d(F>, Fp) > ¢

23 Pick x" € (X \ F) N (X \ F})

24 if x is open-loop feasible then

25 Fr =FpU 4 Y, with Y from (18)
26 else if x leads to the unsafe set 7> U X
27 F1 =F1U | Z, with Z from (17)
28 end if

29 end while
30 return K = X NFy.

with x (k) € RZZO, d(k) € D €[0,0.2] x [0,0.2] and u(k) € {1, 2}

120.1 0.40.1
Ar= (0.2 0.5) and Az = <0.1 1.1)

One can easily check that if the input u of the switched system is fixed, the trajectory
will grow unbounded. The objective here is to verify that the set K = R>oN{| a1}U{|
ap} U {] a3} is a robust controlled invariant, with a; = [50, 25], a» = [25, 50] and
az = [36, 31].

Using Algorithm 1, and by exploiting the fact that the system X is DSM for the usual
partial order on R2>0’ we only explore the maximal elements of the set K, namely a1,
ap and a3, while using the maximal disturbance input. Indeed, one can readily see in
Fig.4 that Ara; + max(D) = [22.7,35.2] € K, Aja; + max(D) = [35.2,30.1] € K
and Ajaz + max(D) = [35.2,30.1] € K, which shows in view of Proposition 6
that the set K is a robust controlled invariant set for the system X and constraint set
(X, U, D). The computation time to implement Algorithm 1 for this particular example
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0 5 10 15 20 25 30 35 40 45 50

Fig. 4 The light blue region represents set K. The three blue trajectories are initiated from the maximal
points (in red) a1, ap and a3

is given by 0.18 seconds. The resolution of the proposed verification problem using the
classical safety fixed-point algorithm [1, 10, 15] took almost 1 second. The numerical
implementations have been done in MATLAB and a computer with processor Apple
M1 Max and Memory of 64 GB.

8.2 Computation of robust controlled invariants

We consider a vehicle model moving along a straight road. The dynamics of the vehicle
is adapted from [5] and described as:

u—fo— o2 if v>0

max(u — fo,0) if v=0 (19)

mv = o(u,v) = {

where m > 0 is the mass of the vehicle, u is the net engine torque applied to the
wheels, v > 0 represents the velocity of the vehicle, and the term fy + f>v? includes
the rolling resistance and aerodynamics. For this system, « is the control input and
satisfies u € [Unpin, Umax]. Moreover, we include a lead vehicle whole velocity satisfies
d € D, is considered as a disturbance. The dynamics of the system is given by:

(20)

h=d—v
mv = a(u, v).

From this continuous-time system, we generate a discrete-time model using the sam-
pling period T = 0.5s, while conserving the monotonicity property of the system.

Remark 3 The system can be easily transformed to a CDSM system one by using the
following change of coordinates: d’ = —d and z = —h.
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Table 1 Vehicle and safety

parameters Parameter Value Unit
M 1370 Kg
fo 51.0709 N
i 0.4161 NsZ/m?2
Umin —4031.9 mKg/s?
Umax 2687.9 mKg/s2
dmin 10 m
d 70 m
Vmax 15 m/s

v (m\s)

25
h (m)

Fig.5 The light blue region represents the domain of the robust controlled invariant. The blue trajectories
are initiated from two feasible points (in red) x| = [33.75; 13.5] and x = [16.25; 9.75]. The green curve
represents the boundary of the maximal robust controlled invariant. The precision € chosen for Algorithm 2
ise=15

The objective is to compute a controlled invariant for the system in order to ensure
that the velocity remains between 0 and vpax, and the relative distance between the
leader and the follower remains larger than 0, while assuming that the velocity of
the leader d belongs to the set D = [0, vmax]. Moreover, since the constraint v > 0
is directly satisfied from the model description in (19), the constraint set is a lower
closed set. For the computation of a robust controlled invariant, we use Algorithm 2.
The parameters model are taken from [5] and are presented in Table 1. Figures 5 and
6 represent the computed robust controlled invariant set for two different precisions
& = 1.5and ¢ = 0.01. Moreover, we also present in green the boundary of the maximal
robust controlled invariant set, which can be computed analytically for this problem,
following the approach presented in [36]. One can see in Fig. 6 that the domain of the
obtained controller using a precision ¢ = 0.01 is almost the same as the domain of
the maximal safety controller.
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v (m\s)

5 10 15 20 25 30 35 40 45 50
h (m)

Fig. 6 The light blue region represents the domain of the robust controlled invariant. The blue trajectory
is initiated from the feasible point (in red) x = [37.5; 15]. The green curve represents the boundary of the
maximal robust controlled invariant. The precision ¢ chosen for Algorithm 2 is ¢ = 0.01

9 Conclusion

In this paper, we have presented different characterizations of robust controlled invari-
ants for discrete-time monotone dynamical systems, together with an algorithmic
procedure to compute the invariants for the considered class of systems. An illustra-
tive example is presented showing the merits of the proposed approach. In future work,
we will develop more general algorithms allowing to extend the approach from safety
to other types of specifications, such as stability or more general properties described
by signal temporal logic formulas.
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Appendix A: Proofs

Proof of Proposition 2 We only show (iv), the proofs of (i), (ii) and (iii) can be derived
similarly. Let us start with the sufficient condition. Assume that ¥ is a CDSM system
and consider x’, x € X,u’,u € Uandd’, d € D satisfying x" € (| x),u’ € (| u) and
d' € ({ d). Using the fact that ¥ is a CDSM system, we have that f(x", u’, d") <y
f(x,u,d), which in turn implies that f(| x, | u, | d) S| f(x,u,d). Let us now
show the necessary condition. Let x;,x2 € &, uj,up € U and dy,d>» € D with
X1 <x x2,u1 <y up and di <p d, and let us show that ¥ is CDSM. We have that
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x1 € ({ x2),u1 € (J up) and dy € (| da). Then, from our assumption, we have that
fxt,ur,dy) € f(d x2,) ua, § d2) €| f(x2,us2,ds), which in turn implies that
fxt,ur,dr) <x f(x2,u2,d>). Hence, X is a CDSM system and (iv) holds. O

Proofof Lemma2 Consider x), x) € X, with x) <y xJ and dy,d> : N>g - D
satisfying d; <pw d>. To show the result, we proceed by induction. First, we have
that @, (0,x9,d)) = x) <y x) = @,,(0,x9, d2). Now, consider k € N>¢ and
assume that @, (k, x?, d)) <x &k, xg, d»). Since the system ¥ is CDSM and
using (3) and the fact that d; <pw d; we have that

Dy k+ 1,00, d)) = f( Dy ke, xV, d)), 01 (@, (K, 27, dy)), dy (K))
<x f( @y (k, XY, d2), k2 (s (K, 13, d2)), da (k)
= Dy, (k+ 1,29, dp)

Hence, @, (., x), dy) <xw @, (., x, d2). o

Proof of Proposition 3 Sufficient condition: Consider a controller k : X — U defined
as

k(x) := Single(fu e U | f(x,u,d) € K foralld € D})

Let us show that « is a robust invariance controller for the system X and constraint
set (X, U, D). Consider xo € K andd : N>9 — D and let us show by induction
that &, (k, xo, d) € K for all k € N>¢. First, we have that ®, (0, xo,d) = xo € K.
Now assume that ®, (k, xog, d) € K and let us show that ®, (k + 1, xg, d) € K. Since
®, (k, xg,d) € K, we have the existence of u = k(P (k, x9, d)) € U such that for
d(k) € D, O (k+ 1,x0,d) = f(Dy(k, x0,d), k(D (k, x0,d)), d(k)) € K. Hence,
K is a robust invariance controller for the system X and constraint set (X, U, D).
Necessary condition: Assume the existence of a controller x : X — U, with
dom(x) = K and such that for all xo € K and for any disturbance inputd : N>g — D
the solution of the closed loop system @, (., xp, d) : N>o — X' satisfies ®, (k, xo, d) €
K for all k € Nxo. Consider x € K, we have the existence of u = x(x) € U such
that f(xo, k(x),d) = ®,(1,x0,d) € K foralld € D, whered : N>9 — D is any
disturbance input trajectory satisfying d(0) = d € D, which ends the proof. O

Proof of Proposition 4 We provide a proof for each item separately.

Proofof (i): Let K be arobust controlled invariant for the system X and constraint set
(X, U, D) and let us show, by contradiction, that cl(K) is a robust controlled invariant
for the system ¥ and constraint set (X, U, D). Consider x € cl(K)\K and assume
that for all u € U we have that f(x, u, D) Ncl(K) # @. Consider u € U, since the set
cl(K) is open, we have the existence of ¢, > 0 and y, , € f(x,u, D) N cl(K) such
that B, (yx,u) € cl(K). Since, the set D is compact and f is lower semicontinuous on
its first argument, one has that the set valued map F : X x Y == X defined forx € X
and u € U by F(x,u) := f(x,u, D) is lower semicontinuous on its first argument.
Hence, for ¢, > 0 and yy , € F(x, u), we have the existence of n, > 0 such that for
all z € By, (x), there exists y, , € F(z, u) satisfying y, , € Be, (Yx,u) S cl(K). Now
consider n = minyey 1. Since the set U is compact, we have that n > 0. Hence,
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it follows from above that for any z € Int(K) N B,(x) and for any u € U, we have
the existence of y, , € F(z, u) satisfying y, , € cl(K), which contradicts the robust
controlled invariance of the set K. Hence, the set cl(K) is a robust controlled invariant
for the system X and constraint set (X, U, D).

Proof of (ii): Let K be the maximal robust controlled invariant for the system ¥ and
constraint set (X, U, D). From (i) it follows that cI(K) is a robust controlled invariant
for the system X and constraint set (X, U, D). Hence, it follows from maximality of
the set K that cl(K) = K. O

Proof of Theorem 5 We provide a proof for each item separately.

proof of (i): To show the result, we use the characterization of robust controlled
invariance from Proposition 3. Let K be a robust controlled invariant for the system
Y and constraint set (X, U, D). Consider the set H =] K and let us show that the
set H is a robust controlled invariant for the system X and constraint set (X, U, D).
Consider x € H =] K, we have the existence of x’ € K such that x <y x'.
Since x” € K, which is a robust controlled invariant, we have from Proposition 3 the
existence of u € U such that f(x’, u,d) € K forall d € D. Using the fact that X is a
SM system we have that f(x,u,d) <y f(x',u,d) forall d € D. Hence, it follows
that f(x,u,d) €l K = H, for all d € D, which implies that H =] K is a robust
controlled invariant for the system ¥ and constraint set (X, U, D).

proof of (ii): To show the result, we use the characterization of robust controlled
invariance from Proposition 3. Let K be the maximal robust controlled invariant for the
system X and constraint set (X, U, D) and consider the set H =] K. First, we have
from (i) that the set H is a robust controlled invariant for the system X and constraint
set (X, U, D). Moreover, since K is the maximal robust controlled invariant for the
system ¥ and constraint set (X, U, D), one has H =] K C K. Finally, using the fact
that K €| K = H, one gets K = K which implies that K is a lower closed set.

proof of (iii): Let K be the maximal robust controlled invariant for the system X
and constraint set (X, U, D) and let K be the maximal robust controlled invariant for
the system X and the and constraint set (X, U, Dmax). First, since Dpax € D, we have
from Lemma 3 that K € K. In order to show that K € K, and from the maximality
of the set K it is sufficient to show that the set K is a controlled invariant of the system
¥ and constraint set (X, U, D), and which is equivalent, from Proposition 3 to the
following condition:

Vxe K, uelU st f(x,u,D)CK. (A1)

Consider x € K, we have the existence of u € U such that f(x,u, Dpax) € K.
Moreover, since the set of disturbance inputs D is closed and bounded above and using
the fact that ¥ is DSM, one has from (iii) in Proposition 2 that f (x, u, D) = f(x,u, |
Dmax) S| f(x, u, Dmax). Hence, one gets that f(x,u, D) €] f(x,u, Dmax) S|
K = K, where the last equality follows from (i). Hence K C K and (iii) holds.
proof of (iv): Let K be the maximal robust controlled invariant for the system X
and constraint set (X, U, D) and let K be the maximal robust controlled invariant for
the system X and the constraint set (X, Unin, D). First, since Unin, € U, we have
from Lemma 3 that K C K. In order to show that K € K, from the maximality of
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the set K, it is sufficient to show that the set K is a controlled invariant of the system
¥ and constraint set (X, Unin, D), and which is equivalent, from Proposition 3 to the
following condition:

Vx € K, Ju € Unin st f(x,u, D) C K. (A2)

Considerx € K, we have the existence of u € U suchthat f(x, u, D) C K.Moreover,
since the set of control inputs U is closed and bounded bellow we have the existence
of u’ € Upin such that u’ <z u. Since the system X is CSM, one has from (iii) in
Proposition 2 that f(x,u’, D) €| f(x,| u,D) | f(x,u, D) €| K = K, where
the last equality follows from (i). Hence K € K and (v) holds.

proof of (v): The proof is a direct conclusion from (iii), (iv) and the fact that any
CDSM system is a CSM and DSM system. O

Proof of Proposition 6 We provide a proof for each item separately.

proof of (i): First, it can be easily seen that if the set K is arobust controlled invariant
for the system ¥ and constraint set (X, U, D) then from Proposition 3 and using the
fact that max(K) C K one gets (5). Now assume that (5) holds and let us show that
(4) holds. Consider x € K, we have the existence of x’ € max(K) such that x <y x'.
Then, from (5) we have the existence of u € U such that f(x’, u, D) € K. Hence,
one gets f(x,u, D) C f({ x’,u, D) C| f(x',u, D) C| K C K, where the second
inclusion comes from (i) in Proposition 2 and the last inclusion comes from (ii) in
Theorem 5. Hence, condition (4) holds, and the set K is a robust controlled invariant
for the system X and the constraint set (X, U, D).

proof of (ii): From (i) and since the system X is DSM, to show (ii), it is sufficient
to show the equivalence between conditions (5) and (6). Since Dpax S D, one gets
directly that (5) implies (6). Let us show the converse result, consider x € max(K),
from (6) one has the existence of u € U such that f(x, u, Dnax) € K. Hence, one
gets that f(x,u, D) C f(x,u, | Dmax) S| f(x,u, Dmax) S} K C K, where the
first inclusion comes from the fact that D C| Dy,ax, the second inclusion comes from
(iii) in Proposition 2 and the last inclusion comes from (iii) in Theorem 5. Hence,
condition (5) holds.

proof of (iii): From (i) and since the system X is CSM, to show (iii), it is sufficient
to show the equivalence between conditions (5) and (7). Since Upin, € U, one gets
directly that (7) implies (5). Let us show the converse result, consider x € max(K),
from (5) one has the existence of u € U such that f(x,u, D) C K. Moreover, we
have the existence of u’ € Upip such that u’ <z u. Hence, one gets that f (x, u’, D) C
fx,d u,D) S} f(x,u, D) €| K C K, where the second inclusion comes from
(i1) in Proposition 2 and the last inclusion comes from (iv) in Theorem 5. Hence,
condition (5) holds.

proof of (iv): The proof is a direct conclusion from (ii), (iii) and the fact that any
CDSM system is a CSM and DSM system. O

Proof of Proposition 7 We only provide a proof of (i), the proof of (ii) can be derived

similarly. Assume that x¢ is closed loop lower feasible w.r.t the constraint set
(X, U, D); hence, then there exist a controller « : X — U and N € N.( such
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that conditions (9) and (10) are satisfied. To show the result we use the charac-
terization of controlled invariants in Proposition 3. Consider x € K, we have the
existence of p € {0,1,..., N — 1} such that x €| ®,(p,xo, D). Hence, there
exists d : N>g — D such that x <y ®,(p, xg, d). Consider u = k(P (p, xo, d))
and any d = d(p) € D, using the fact that the system ¥ is SM we have
fxu,d) €l f(@r(p, x0, d), k(P (p, x0, d)), d(p)) =] Pr(p+1,x0,d). Hence,
we have two cases

e If p e {0,1,..., N — 2}, then one has f(x,u,d) €] & (p + 1,x9,d) CJ
e If p = N — 1, then one has from (10) that f(x,u,d) €} ®.(p +1,x9,d) S|
(DK(Nv-xOs D) gi’ UOSkSN*] q)l((kyx()’ D) =K

Hence, it follows from Proposition 3 that the set K is a controlled invariant for the
system X and constraint set (X, U, D). O

Proof of Lemma 4 Consider x € ®(k, xo, u, D), we have the existence of d : N>og —
D such that x = ®(k, xp, u, d). Moreover, we have the existence of dmax : N>o —
Dpax such that d <pw dpax. Then, using the fact that the system X is DSM, one has
x = Pk, xp,u,d) < P(k, x0, 0, dmax) € P (k, x0, W, Dmax), for all k € N>, which
implies from Lemma 1 that ® (k, xo, u, D) €| ®(k, xo, u, Dmax), forall k € N>o. O

Proof of Proposition 8 Necessary condition: From the open-loop feasibility of xo w.r.t
the constraint set (X, U, D) we have the existence of a control input u : N>g — U
and N € N, such that (11) and (12) hold. Using (11) and the fact that Dy,x € D,
we have that ® (k, xo, u, Dyax) € O (k, xp,u, D) C X forall0 <k <N — 1. Letus
show that the second condition holds, we have

D (N, x0, 0, Dmax) € ©(N, x0, 1, D)
<l |J @k.xu D

0<k<N-1

g\l’ U (D(er()’u’ Dmax)
0<k<N-1

where the first inclusion follows from the fact that Dy,,x € D, the second inclusion
comes from (12) and the last inclusion comes from Lemma 4.

Sufficient condition: From the feasibility of xo w.r.t the constraint set (X, U, Dpax)
we have the existence of a control input u : N>g — U and N € N. such that the
following conditions are satisfied

&k, xo,u, Dmax) € X, Vke{l,2,...,N—1} (A3)
and
(N, x0,u, Dma) €1 ) @k, x0, 0, Dinay) (A4)
0<k<N-1
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First, we have ®(k, xo, u, D) € ®(k, xg,u, | Dmax) 4 Pk, x0, 0, Dmax) €} X =
X,forall 0 < k < N — 1, where the first inequality comes from Lemma 4, the second
inequality follows from (A3) and the last inequality comes from the lower closedness
of the set X. To show that (12) holds, we have the following

D(N, x0,u, D) €| ©(N, xp, w, Dmax)

<l U @k.x0.u, Dnay)
0<k<N-1

<l J @k xo.u D

0<k<N-1

where the first inclusion comes from Lemma 4, the second inclusion comes from
the fact that xq is feasible w.r.t the constraint set (X, U, Dnyax) and the last inclusion
follows from the fact that Dy,x € D. O

Proof of Proposition 9 Consider xg € X, first since Upin, € U one directly has that
xo is open-loop feasible w.r.t the constraint set (X, U, D) if xq is open-loop feasible
w.r.t the constraint set (X, Unin, D). Let us show the second implication. Since xg
is open-loop feasible w.r.t the constraint set (X, U, D), one gets the existence of an
input trajectory u : N>og — U and N € N. ¢ such that

®(k,x0,u, D) C X, Vke{l,2,...,N—1} (AS)
and
®(N,xo.u,D) S} ] @k x0.u, D) (A6)
0<k<N-1

Now consider any input trajectory u : N>o — Umpin such thatu <z u. Using the fact
that the system ¥ is CDSM and since the set X is lower closed, it follows from (A5)
that forall k € {1,2,..., N — 1}

@ (k, x0,u, D) € ®(k, x0, { u, D) S| ®(k,xo,u, D) S| X S X (A7)

and condition (9) in Definition 7 is satisfied.

Now consider x € ®(N, xp, u, D) and let us show that there existsk € {0, ..., N—
1} and x € ®(k, xg, u, D) such that x < x.

For x € ®(N, xp,u, D), we have the existence of a trajectory d : N>g — D
such that x = ®(N, xg, u, d). Moreover, from (A6) we have for ® (N, x¢, u, d) the

existence of a trajectory d : N>g — D withd <pw dandk € {1,..., N — 1} such
that

®(N, x0,u,d) < Dk, xo, u, d). (A8)
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Moreover, since the system X is CDSM, one has that
@ (k, x0,u,d) < Ok, xo, u, d). (A9)
Define € € R’éo as ¢ := ®(k, xo, u, (_l) — Ok, xp, 1, d_). We have that

X =®(N3 X0, H, d) S q)(N - kv qD(kv-xOs u, d)s Hs d) —¢&
<®(N, xg,u,d) —e < Dk, x0,u,d) — & = D(k, x0, u, d)

where the first follow from the application of (15) to the inequality in (A9) N — k
times, the second inequality comes from the fact that the system X is CDSM, the third
inequality comes from (A8) and the last equality comes from the definition of ¢. Hence,
we have the existence of k € {0, ..., N—1}and x = ®(k, xo, u, d_) € ®(k, xo,u, D)

such that x < x. Hence, condition (10) is satisfied and xq is open-loop feasible w.r.t
the constraint set (X, Upin, D). m]

Proof of Proposition 10 Assume that xo € X is open-loop feasible w.r.t the constraint
set (X, U, D). We have the existence of a control inputu : N>g — ¢/ and N € N,
such that (11) and (12) are satisfied. Consider the controller k : X — U defined as fol-
lows:fork € {1,2,..., N—1},k(®(k, x9,u, D)) = u(k),andk ((k, xo,u, D)) € U
for all k > N. Using the controller «, one can easily check that (9) and (10) hold.
Hence, x is closed-loop feasible w.r.t the constraint set (X, U, D).

Let us now show the converse result under the assumption that D = {d}. Assume
that xo € X is closed-loop feasible w.r.t the constraint set (X, U, D). We have the
existence of a controllerx : X — U and N € N ¢ such that (9) and (10). Consider the
control input trajectory u : N>o — f defined as follows: for k € {1,2,..., N — 1},
uk) = (P, xp,u,d)) and u(k) € U for all k > N. Using the control input
trajectory u, one can easily check that (11) and (12) hold. Hence, x¢ is open-loop
feasible w.r.t the constraint set (X, U, D). The converse result can also be obtained
when the system ¥ is DSM and card(Dpax) = 1, by using the equivalence between
open-loop feasibility w.r.t the constraint sets (X, U, D) and (X, U, Dpax) for the case
of DSM systems, as shown in Proposition 8. O

Proof of Theorem 11 Since the set D is compact and f is upper semicontinuous on its
first and third arguments, one has that the set valued map F : X x U = X defined by
F(x,u) :== f(x,u, D) is upper semicontinuous on x and for any u € U. Moreover,
from continuity of f and compactness of D we have that ®(N — 1, xp, u, D) is
compact. Hence, for By = min(ey, y) > 0, where y > 0 is defined in (ii), we have
from Lemma 5 the existence of exy_1 > 0 such that

F(Bey_(P(N — 1, x0,u, D), u(N — 1))
C Bgy (F(®(N —1,x0,u, D), u(N —1)))
C Bgy (®(N, xo,u, D)).

Letus definethe sequencese; > 0,k € {I,..., N—2}and B > 0,k € {1,..., N—1},
iteratively as follows: fork € {N—1, N—2, ..., 1}, Br = min{e, y}, where y > 0is
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definedin (ii), and &1 is such that F (B, _, (®(k—1, x0, w))) S Bg, (F (P (k, xo, w)).
The existence of such g1,k € {N — 1, N — 2, ..., 1} is guaranteed from Lemma 5
using the upper semicontinuity of the map F and the fact that ® (k, x, u, D) is compact
forall k € {1,2,..., N}. Hence, one gets

D (N, Bgy(x0), u) € ®(N, Bey(x0), w)
C O(N —1,Bg, (®(1, xp,u), u)
C O(N — 1,8 (P, x0, u), u)
C O(N —2, B, (P(2, xo,w), w)
C O(N —2, B, (P(2, x0,u), 1)

NN

CD(I’ BﬁN,I(Q(N - 17x0’u)’u)
g CI)(I, BSN,1(¢(N - 1s X0, ll), ll)
g BEN(CD(N,XO,U))

<t |J ®kxou D) (A10)
0<k<N-1
where the last inclusion comes from (i). Now let 8 = ming;, i ={1,2,..., N — 1}

consider x1 € {1 xo} N Bg(xp). We have

(N, x1,u) € ®(N, Bg(xp), u)
S ®(N, Bg, (x0), w)

<l |J @ck.xo.u. D
0<k<N-1

<l |J @ck.xiu D).

0<k<N-1

Where the second inclusion comes from (A10) and the last inclusion follows from the
fact that ¥ is a SM system. Hence, condition (12) of Definition 7 is satisfied.
Moreover, we have from (ii) that for all k € {0, 1,..., N — 1}

Dk, x1,u) € D(k, Bgy_, (x0), w)
- By(¢>(k, xi,u, D)) C X.

Hence, condition (12) of Definition 7 is satisfied, and any x| € {1 xo} N Bg(xo) is
feasible. Now, for the case when the map f is L-Lipschitz on its first argument, it
follows that the set valued map F : X x U = X defined by F(x, u) := f(x,u, D) is
L-Lipschitz on its first argument. Hence, the sequences e > 0,k € {1,..., N — 1}
and B > 0,k € {1, ..., N}, can be constructed according to Lemma 5 iteratively as
follows: fork e {N — 1, N — 2, ..., 1}, Bx = min{g, y}, where y > 0 is defined in
(ii) and g1 = % hence, the result holds with 8 = min §;,i € {1,..., N}. m|
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Proof of Proposition 12 First, since the map f : X x U x D describing the system
Y is lower semicontinuous on its first argument and the set of control inputs U and
disturbance inputs D are compact, one has from Proposition 4 that dom(x) is closed
and d(dom(x)) € dom(k).

Since « is a maximal invariance controller, it follows directly that ®, (k, xg, D) €
dom(x) for all k € Nsq. The latter property implies that either @, (k, xo, D) N
d(dom(k)) # @ for all k € Nso, which is consistent with (i), or there exists
p € Nyg such that ®,(p, xo, D) C Int(dom(K)). Assume w.l.0o.g that p is the
minimal integer such that ®, (p, xo, D) C Int(dom(k)). Let us show, by contradic-
tion, that (ii) holds. Assume that ®,(p — 1, xo, D) N (d(dom(x))\dX) #~ ¥ and let
z € &(p —1,x9, D) N (d(dom(x))\dX). Since Int(dom(k)) is open, we have the
existence of ¢ > 0 such that B, (D, (p, x9, D)) C Int(dom(x)). Moreover, since the
set D is compact and f is upper semicontinuous on its first and third arguments, one
has that the set valued map F : X x U = X defined by F(x,u) := f(x,u, D) is
upper semicontinuous on x. Since z € d(dom(k)), for ¢ > 0 and from the upper
semicontinuity of F' we have the existence of an > 0 such that

F(By(2), k(2)) € Bs(F(z,k(2)))
C Be(F(®«(p — 1, x0, D), k(2)))
=B (f(®ic(p — 1, x0, D), k(2), D))
= B (P« (p, x0, D)) < Int(dom(x)).

Hence, there exists z’ € (X\dom(k)) N B,(z) and u" = k(z) € U such that
F(Z',u") = f(Z,k(2), D) C F(By(2),«(2)) € Int(dom(k)). (A11)

The last property contradicts the maximality of the set dom(x ). Hence, we have neces-
sarily that ®, (p—1, xo, D)N(3d(dom(x))\dX) = @. Finally, since &, (p—1, xo, D) <
dom(x) and &, (p — 1, xo, D) SZ Int(dom(k)), one gets O, (p — 1, x9, D) NIX # @,
which implies (ii). O

Auxiliary result:

Lemma5 Consider an upper semicontinuous set-valued map F : X = R" and
consider a compact set Z C X. Forall ¢ > 0, there exists n > 0 such that F (B,(Z) N
X) C B.(F(Z)). Moreover, when the map F is L-Lipschitz on X, for L > 0, the
property holds for any n < e/L.

Proof Consider ¢ > 0 and x € Z. Since F is upper semicontinuous, we have the
existence of 1, > 0 such that F(B, (x)) N X) C B:(F(x)). Let n = min,ecz ny. It
follows from the compactness of the set Z that n > 0. Hence, one gets:

F(B,(Z)NX) = U F(B,(x) N X)

xeZ

< | JF®B,x)nx)

xeZ
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< (JB:(F(x))

xeZ

= B:(F(2)).

The last result follows immediately from the fact that the map F is L-Lipschitz, since

F(B:(Z)NX) € B:(F(2)).
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