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Data-Driven Reachability and Support
Estimation with Christoffel Functions

Alex Devonport, Forest Yang, Laurent El Ghaoui, and Murat Arcak

Abstract— We present algorithms for estimating the for-
ward reachable set of a dynamical system using only a
finite collection of independent and identically distributed
samples. The produced estimate is the sublevel set of a
function called an empirical inverse Christoffel function:
empirical inverse Christoffel functions are known to pro-
vide good approximations to the support of probability
distributions. In addition to reachability analysis, the same
approach can be applied to general problems of estimating
the support of a random variable, which has applications
in data science towards detection of novelties and outliers
in data sets. In applications where safety is a concern,
having a guarantee of accuracy that holds on finite data
sets is critical. In this paper, we prove such bounds for
our algorithms under the Probably Approximately Correct
(PAC) framework. In addition to applying classical Vapnik-
Chervonenkis (VC) dimension bound arguments, we apply
the PAC-Bayes theorem by leveraging a formal connection
between kernelized empirical inverse Christoffel functions
and Gaussian process regression models.

Index Terms— Randomized algorithms; Uncertain sys-
tems; Statistical learning; Estimation

I. INTRODUCTION

Reachability analysis is a popular and effective way to
guarantee the safety of a system in the face of uncertainty.
The primary object of study is the reachable set, which
characterizes all possible evolutions of a system under certain
constraints on initial conditions and disturbances. Many algo-
rithms in reachability analysis use detailed system information
to compute a sound approximation to the reachable set, that
is an approximation guaranteed to completely contain (or be
contained in) the reachable set. However, in many important
applications, such as complex cyber-physical systems that
are only accessible through simulations or experiments, this
detailed system information is not available, so these algo-
rithms cannot be applied. Applications such as these motivate
data-driven reachability analysis, which studies algorithms to
estimate reachable sets using the type of data that can be
obtained from experiments and simulations. These algorithms
have the advantage of being able to estimate the reachable sets
of any system whose behavior can be simulated or measured
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experimentally, without requiring any additional mathematical
information about the system. The main disadvantage of data-
driven reachability algorithms is that generally they cannot
provide the same type of soundness guarantees as traditional
reachability analysis algorithms; however, they can still guar-
antee accuracy of the estimates in a probabilistic sense with
high confidence, as this article will show.

Data-driven reachability is a rapidly growing area of re-
search within reachability analysis. Many recent developments
focus on providing probabilistic guarantees of correctness for
data-driven methods that estimate the reachable set directly
from data, for instance using PAC analysis from statistical
learning theory [8, 30] or by using the scenario approach [21,
35, 16, 28, 15, 9]. The work in [30] is particularly unique
in that it provides bounds for a continuum of reachable
sets by randomizing the initial set and time horizon. Other
works incorporate data-driven elements into more traditional
reachability approaches, for instance estimating entities such
as discrepancy functions [14] or differential inclusions [11].
Further developments include incorporating data-driven reach-
ability into verification tools for cyber-physical systems [14,
27].

This paper investigates a data-driven reachability algorithm
that directly estimates the reachable set from data using the
sublevel sets of an empirical inverse Christoffel function,
and provides a probabilistic guarantee of accuracy for the
method using statistical learning-theoretic methods. Christoffel
functions are a class of polynomials defined with respect
to measures on Rn: a single measure defines a family
of Christoffel function polynomials. When the measure in
question is defined by a probability distribution on Rn the
level sets of Christoffel functions are known empirically to
provide tight approximations to the support. This support-
approximating quality has motivated the use of Christoffel
functions in several statistical applications, such as density
estimation [19, 20] and outlier detection [2]. Additionally, the
level sets have been shown, using the plug-in approach [6], to
converge exactly to the support of the distribution (in the sense
of Hausdorff measure) when the degree of the polynomial
approaches infinity and when the true probability distribution
is available [20]. When the true probability distribution is not
known, as is typically the case in data analysis, the Christoffel
function can be empirically estimated using a point cloud of
independent and identically distributed (iid) samples from the
distribution: this empirical Christoffel function still provides
accurate estimates for the support, and some convergence
results in this case are also known [26].
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In contrast to the asymptotic analysis of Christoffel func-
tions reviewed above, our interest is in developing error bounds
that hold with a finite number of samples. This paper is
an extension of a conference paper [10] that reported our
preliminary work on support set estimation with polynomial
Christoffel functions in the context of data-driven reachability.
In [10], we investigated empirical inverse Christoffel functions
constructed from iid trajectory simulation data, and provided a
finite-sample guarantee of the probabilistic accuracy of reach-
able set estimates produced by sublevel sets of this function.
The present paper significantly extends the theory of finite-
sample error bounds for support set estimators derived from
Christoffel functions by applying techniques from Bayesian
PAC analysis, a variation of classical PAC analysis that has
been successfully applied to Gaussian process classifiers [29],
kernel support vector machines [18], and minimum-volume
covering ellipsoids [12]. This extension leverages a formal
connection between the kernel empirical inverse Christoffel
function investigated by Askari et al. [2] and the posterior
variance of a Gaussian process regression model. In conjunc-
tion with the PAC-Bayes theorem, the connection can be used
to derive finite-sample bounds for kernelized empirical inverse
Christoffel functions.

The application of Bayesian PAC analysis to the theory of
Christoffel function support set estimators has two benefits.
First, it allows for the construction of finite-sample guar-
antees for kernelized inverse Christoffel functions, which to
our knowledge have not been proved before. Second, when
applied to polynomial empirical inverse Christoffel function
estimators, Bayesian PAC analysis can provide guarantees
of probabilistic accuracy and confidence with much greater
sample efficiency than the finite-sample bounds provided by
classical VC dimension bound arguments.

II. PRELIMINARIES

A. Probabilistic Reachability and Estimation of Support

Consider a dynamical system with a state transition function
Φ(t1; t0, x0, d) that maps an initial state x(t0) = x0 ∈ Rn at
time t0 to a unique final state at time t1, under a disturbance d :
[t0, t1] → Rw. For instance, when the system state dynamics
ẋ(t) = f(t, x(t), d(t)) are known and have unique solutions
on the interval [t0, t1], then Φ(t1; t0, x0, d) is the solution of
the state dynamics equation at time t1 with initial condition
x(t0) = x0. For the problem of forward reachability analysis,
we are also given an initial set X0 ⊂ Rn, a set D of allowed
disturbances and a time range [t0, t1]. The forward reachable
set is then defined as the set of all states to which the system
can transition in the time range [t0, t1] with initial states in X0

and disturbances in D, that is the set

R[t0,t1] = {Φ(t1; t0, x0, d) : x0 ∈ X0, d ∈ D}. (1)

To tackle the problem of estimating the forward reachable
set by statistical means, we add probabilistic structure to the
reachability problem by taking random variables X0 and D
supported on X0 and D respectively. These random variables
then induce a random variable X = Φ(t1; t0, X0, D), whose
support is precisely R[t0,t1] and whose probability measure we

symbol definition

Reachability Analysis
Φ(t1; t0, x0, d) State transition function, evolving a state x0 at time

t0 under disturbance d to a state at time t1
X0 Set of initial states
D Set of disturbances
t0, t1 Initial and final times
R[t0,t1] Forward reachable set
R̂[t0,t1] Approximation of forward reachable set

Probability, Statistical Learning Theory
E [·] Expected value of a random variable
P (·) Probability of an event defined in terms of random

variables
DKL(P ||Q) Kullback-Leibler (KL) divergence from P to Q
Dber(p||q) KL divergence between Bernoulli distributions with

parameters p and q
X Random variable whose support we wish to estimate
F1 CDF of the chi-square distribution with 1 degree of

freedom
X Domain of X
PX Probability measure of the distribution of X
PNX Probability measure of N iid samples from X
PAC Probably Approximately Correct
iid Independent and Identically Distributed
ε,δ accuracy and confidence parameters in PAC guarantees
C Concept class
c̄Q “central concept” of the posterior measure Q
P ,Q Prior and posterior probability measures on C
WP , WQ Parametric representations of P and Q
CP , CQ Stochastic estimators: random variables on C dis-

tributed according to P , Q
`(c, x) statistical loss function comparing a concept c and a

datum x
r(c) risk: average of `(c, x) for x ∼ X
r̂(c) empirical estimate of r(c) from data x1, . . . , xN
rQ stochastic risk: average of `(c, x) for x ∼ X , c ∼ Q
r̂Q empirical estimate of rQ from data x1, . . . , xN

Christoffel Functions
Mm, M̂m Matrix of moments of degree ≤ m and its empirical

estimate
M̂m,σ0 Empirical moment matrix with diagonals modified by

σ0
zm(x) vector of monomials with degree ≤ m evaluated at

point x
κ̂−1(x) Polynomial empirical inverse Christoffel function eval-

uated at x
κ̂−1(x) kernelized empirical inverse Christoffel function
C(x) Christoffel-based support set estimator, output of Al-

gorithms 1,2, and 3

Gaussian Processes
m, k prior mean and covariance functions
mq , kq posterior mean and covariance functions
K kernel Gramian matrix, Kij = k(xi, xj)
kD vector of kernel evaluations on data, (kD(x))i =

k(xi, x)
N (µ,Σ) Multivariate normal with mean µ and covariance Σ
GP(m, k) Gaussian process with mean and covariance functions

m, k

TABLE I
SYMBOLS AND ACRONYMS USED IN THIS PAPER.
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denote as PX . A measure-theoretic interpretation PX(A) for a
set A is a measure of overlap between R[t0,t1] and A: PX(A) is
nonzero only if A has nonempty intersection with R[t0,t1], and
PX(A) = 1 only if R[t0,t1] ⊆ A. A probabilistic interpretation
of PX(A) is that if we take samples x0 and d of the random
variables X0 and D, then the vector Φ(t1; t0, x0, d) lies in
A with probability PX(A). These interpretations motivate
PX(A) as a measure of probabilistic accuracy: if a set A ⊆ Rn
has a greater measure PX(A) than a set B ⊆ Rn, then A is a
more accurate approximation of the reachable set than B, in
the sense that it “misses” less of the probability mass than B
does. In the probabilistic version of the forward reachability
problem, our goal is to find reachable set approximations
R̂[t0,t1] such that PX(R̂[t0,t1]) is close to 1. In addition, we
will seek R̂[t0,t1] with low volume, in order to preclude trivial
estimates such as R̂[t0,t1] = Rn and to generally minimize the
conservatism of the approximation.

The probabilistic relaxation of the forward reachability
problem is a statistical problem of support set estimation
based on a finite set of observations. The support of a random
variable is the range of values it can assume: for example, if
X admits a probability density function pX , then the support
of X is the closure of the set {x : pX(x) 6= 0}. In addition
to the control-theoretic application developed above, support
set estimation has several applications in statistics and data
science, such as outlier and novelty detection [26, 25, 2]. It is
therefore useful to consider the problem for general random
variables: we will do so for the theoretical developments in this
paper, returning to the reachability application in the numerical
examples of Section IV. Formally, we address the following
problem.

Problem 1: Given accuracy and confidence parameters
ε, δ ∈ (0, 1) and a random variable X whose support lies
in a compact domain X ⊆ Rn, collect data x1, . . . , xN

i.i.d.∼ X
and use them to find a set c(ε, δ;x1, . . . , xN ) ⊂ X such that
the following bound holds:

PNX ({x1, . . . , xN : PX(c(ε, δ;x1, . . . , xN )) ≥ 1− ε}) ≥ 1−δ.
(2)

The bound (2) is known as a Probably Approximately Correct
(PAC) bound, which appears frequently in statistical learning
theory. The two probability inequalities in (2) are interpreted
as assertions of probabilistic accuracy and confidence:
• accuracy: the inner inequality PX(c(ε, δ;x1, . . . , xN )) ≥

1 − ε asserts that the probabilistic accuracy of the esti-
mator is at least 1− ε.

• confidence: the outer inequality asserts that the accuracy
statement holds with probability 1−δ with respect to PNX .
The probability, and hence the confidence, is with respect
to the data: PNX is the probability measure corresponding
to N iid observations drawn from X , so PNX (A) for
A ⊆ XN denotes the probability that x1, . . . , xN ∈ A.
Thus the inequality PNX ({x1, . . . , xN : · · · }) ≥ 1 − δ
asserts that the observed data set x1, . . . , xN belongs,
with probability at least 1 − δ, to the class of data sets
sufficiently informative to yield an estimator c satisfying
the accuracy assertion.

For brevity, we drop the arguments of the estimator

c(ε, δ;x1, . . . , xN ) from the notation, understanding that an
estimator c is always constructed using a given set of data
x1, . . . , xN , with respect to given parameters ε and δ. The
sample size N is a fixed problem parameter: indeed, finding
a suitable N is part of solving the problem. In addition to
the requirements given in Problem 1, we may also impose
that the estimator c be drawn from a pre-specified class of
admissible estimators. Such a condition allows us to restrict
attention to computationally feasible sets, or sets with certain
properties such as compactness for cases when the reachable
set is known to be compact. In classical PAC analysis, the
structure of the pre-specified class also plays a key role in
determining an appropriate N .

B. Christoffel Functions

Our main tool for constructing estimators of support, and
thereby of forward reachable sets, in this work are empirical
inverse Christoffel functions. These functions are well-suited
to the problem of support set estimation, because they can
functionally encode the statistics of a dataset directly from
a collection of independent samples: in the polynomial case
this encoding is a sum-of-squares polynomial weighted by
an empirical moment matrix, and in the kernel case this
encoding is a positive definite kernel function weighted by a
kernel Gramian matrix. Most other functional representations
of support, such as splines or ellipsoids, follow in a less
straightforward way from the data, typically as the solution to a
minimum-volume covering problem. Additionally, Christoffel
functions are particularly well-suited to Bayesian PAC analysis
in a way that many other estimators are not, due to their formal
relation to Bayesian Gaussian process regression models.

Given a finite measure PX on Rn and a positive integer
m, the Christoffel function of order m is defined as the
ratio κ(x) = 1/zm(x)>M−1

m zm(x), where zm(x) is the
vector of monomials of degree ≤ m, and where Mm is
the matrix of moments Mm =

∫
X zm(x)zm(x)>dPX(x).

We assume throughout that Mm is positive definite, ensur-
ing that M−1

m exists. The Christoffel function has several
important applications in approximation theory [24], where
its asymptotic properties are used to prove the regularity
and consistency of Fourier series of orthogonal polynomi-
als [34]. For our purposes, it is more convenient to use the
inverse Christoffel function κ(x)

−1
= zm(x)>M−1

m zm(x),
which is a polynomial of degree 2m. In Problem 1, and
more generally in the problem of estimating a probability
distribution from samples, PX is unknown. In this case, we
instead use an empirical estimate for the moment matrix Mm,
namely M̂m = 1

N

∑N
i=1 zm(xi)zm(xi)

>. The matrix M̂m is
positive semidefinite: it is additionally positive definite, and
hence nonsingular, if N ≥

(
n+m
n

)
and x1, . . . , xN do not all

belong to the zero set of a single degree m polynomial. It
is useful, both numerically and theoretically, to modify this
empirical estimate adding a scaled identity perturbation: thus
we take M̂m,σ = σ2I + 1

N

∑N
i=1 zm(xi)zm(xi)

>, as our
empirical moment matrix in the sequel, where σ2 > 0 is
a term fixing the magnitude of the perturbation. In addition
to its role in developing the kernel extension, the σ2I term
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generally improves the conditioning of the empirical moment
matrix and ensures nonsingularity in all cases. The empirical
moment matrix M̂m,σ itself defines a Christoffel function,
whose inverse

κ̂−1(x) = zm(x)>M̂−1
m,σzm(x) (3)

is called the empirical inverse Christoffel function.
The dyadic sum 1

N

∑N
i=1 zm(xi)zm(xi)

> can be expressed
as the matrix product 1

NZZ
>, where Z ∈ R(n+m

n )×N is the
matrix Z =

[
zm(xi) . . . zm(xN )

]
of polynomial features.

By expressing the dyadic sum this way, we can apply the
matrix inversion lemma to express the inverse of the empirical
moment matrix as

M̂m,σ =
(
σ2I + 1

NZZ
>)−1

= σ−2
(
I − Z

(
σ2NI + Z>Z

)−1
Z>
)
.

(4)

This expression for M̂mσ allows us to rewrite the empirical
inverse Christoffel function as

κ̂−1(x) = Nσ−2
0 zm(x)>zm(x)

−Nσ−2
0 zm(x)>Z

(
σ2

0I + Z>Z
)−1

Z>zm(x),
(5)

where we have made the change of variables σ2 = σ2
0/N .

The vector zm enters (5) only through the inner products
zm(xi)

>zm(xj): The matrix Z>Z ∈ RN×N has elements
(Z>Z)ij = zm(xi)

>zm(xj), and the matrix-vector product
Z>zm(x) has elements (Z>zm(x))i = zm(xi)

>zm(x). By
replacing the inner product zm(xi)

>zm(xj) with an arbitrary
positive definite1 function k : Rn × Rn → R and rescaling
by a factor of σ2

0/N , we obtain the kernelized variant of the
empirical inverse Christoffel function,

κ̂−1(x) = k(x, x)− kD(x)>
(
σ2

0I +K
)−1

kD(x), (6)

where K ∈ RN×N and kD(x) ∈ RN are defined as

Kij = k(xi, xj), (kD(x))i = k(xi, x). (7)

III. CHRISTOFFEL FUNCTION ESTIMATORS OF SUPPORT

Algorithms 1 and 2 are procedures to estimate the support of
a random variable with a sublevel set of an empirical inverse
Christoffel function, where the only information needed from
the random variable is a collection of iid samples. Algorithm 1
is designed to satisfy a classical PAC bound. This has the
advantages of providing an a priori sample bound, and of
admitting a fairly direct proof, which is given in Section III-
A. The essence of the proof is to demonstrate that the sublevel
sets of a polynomial empirical inverse Christoffel function of a
given order inhabit a concept class of known VC dimension.
This argument is valid for polynomial Christoffel functions
of any order, but it is generally not valid for kernelized
Christoffel functions. Indeed, the classes of sublevel sets
of certain kernelized empirical inverse Christoffel functions
can have infinite VC dimension, so a classical PAC bound
is not possible in general for kernelized empirical inverse

1Here, and throughout the paper, we mean positive definite in the sense of
reproducing kernel Hilbert spaces and kernel machines, which is that a square
matrix K with elements (K)ij = k(xi, xj) is a positive definite matrix.

Algorithm 1 To estimate a support set by a polynomial
empirical inverse Christoffel function satisfying a classical
PAC bound, from the authors’ prior work [10]
.

Inputs: random variable X with support in X ; polynomial
order m ∈ N+; PAC parameters ε, δ ∈ (0, 1); noise
parameter σ2

0 ∈ R++;
N ← d 5

ε

(
log 4

δ +
(
n+2m
n

)
log 40

ε

)
e

for i ∈ {1, . . . , N} do
sample xi ∼ X

end for
M̂m,σ0

← σ2
0I + 1

N

N∑
i=1

zm(xi)zm(xi)
>

α← maxi zm(xi)
>M̂−1

m,σ0
zm(xi)

C(x) = zm(x)>M̂−1
m,σ0

zm(x);
return 1{C(x) ≤ α};

Christoffel functions. Algorithm 2 is designed to satisfy a
Bayesian PAC bound which is developed in Section III-B.
Unlike the classical PAC bound provided for Algorithm 1, this
Bayesian PAC bound is applicable to all kernelized empirical
inverse Christoffel functions, including those whose sublevel
sets have infinite VC dimension. When applied to polynomial
empirical inverse Christoffel functions as a special case, we
find that it is more sample-efficient than the classical PAC
bound: in some of the examples in Section IV, the Bayesian
PAC bound requires an order of magnitude fewer samples to
achieve the same accuracy and confidence as that guaranteed
by the classical PAC bound. The disadvantages of the Bayesian
PAC approach is that the required number of samples is not
known a priori, since certain terms in the bound depend on the
data. Algorithm 2 therefore takes an iterative approach, taking
samples in batches and re-evaluating the Bayesian PAC bound
after each batch until it reaches the desired level of accuracy.

Remark 1 (Subsets of state space and output observables):
In some reachability problems, we are only interested in
computing a reachable set for a subset of the state variables.
For example, suppose the state is (x1, . . . , xn) ∈ Rn, and
we wish to verify a safety specification involving only the
states x1, . . . , xs, where s < n: a reachable set for the states
x1, . . . , xs would suffice for this problem. In cases like this,
the algorithms presented in this section can be modified to
use only the first s elements of the samples. The output of
the algorithm is then an empirical inverse Christoffel function
with domain Rs whose sublevel set R̂[t0,t1] estimates the
reachable set for the reduced set of states. Additionally, we
may also be interested solely in some measurable output
of the system such that the space of the output is of lower
dimension than the state space. In this case, we may apply
the algorithms in this section directly to the support of the
observed outputs. In the sequel, we refer to sch variations
of the algorithms in this section as reduced-state variations.
These variations are more data-efficient than the full-state
algorithms since the supports being estimated are confined to
a smaller space.



DEVONPORT et al.: DATA-DRIVEN REACHABILITY AND SUPPORT ESTIMATION WITH CHRISTOFFEL FUNCTIONS 5

Remark 2 (Selecting m and k in practice): The
algorithms that follow require the user to select either a
polynomial order m or a kernel function k. Any choice of
m or k is able to obtain an arbitrarily high probabilistic
accuracy and confidence—that is, satisfying a PAC bound of
the form (2) with ε, δ arbitrarily close to zero)—so the choice
of m or k only affects the geometric fidelity of the estimator
and the amount of data required to provably satisfy (2).

For the polynomial case, the trade-off is clearly defined:
a higher order gives greater fidelity, but requires more data
to be proven probabilistically accurate. A heuristic to select
m in practice is to perform a “trial run” of the computation
with a small pilot dataset: the trial estimator will have no
guarantee, but may give insight into what order of Christoffel
function is appropriate to use when running the full algorithm.
Machine precision also places a practical upper bound on the
order, as the empirical moment matrix becomes increasingly
ill-conditioned: the details depend on the machine and the
choice of σ0, but in our experience, m ≥ 30 is usually where
trouble begins.

For the kernel case, there is generally not a clear relation
between how the choice of kernel affects the fidelity and
sample complexity of the algorithm. However, for kernels
that admit a length-scale parameter, such as the squared-
exponential kernel (26) discussed in Section IV, the length-
scale plays a similar role to the order in the polynomial case,
where a smaller length-scale gives a higher-fidelity estimate
at a greater sample cost. The length-scale can be selected
with a pilot test, similar to the polynomial order. However,
if side information about the rough size of the reachable set is
available, such as from an ellipsoidal or p-norm ball estimate
of the reachable set (as in [9]), then this information can be
incorporated directly into the length-scale.

A. Classical PAC Analysis

PAC bounds originate in study of empirical risk minimiza-
tion problems in statistical learning theory. Our strategy to
prove a PAC bound for Algorithm 1 is to express Problem 1
as an empirical risk minimization problem and to then apply
the tools of statistical learning theory.

In empirical risk minimization, the objective is to match
a concept c ⊆ X from a pre-specified concept class C ⊆
2X to an unknown random variable X supported on X using
only a finite set of iid observations x1, . . . , xN of X . How
well a concept matches X is quantified by the statistical risk
r(c) = E [`(c,X)] defined by a loss function ` : C×X → R+

and the unknown measure PX : a lower risk indicates a better
match. Since we do not know PX , we cannot directly evaluate
the statistical risk. However, we can use the empirical risk
r̂(c) = 1

N

∑N
i=1 `(c, xi) as a proxy for the true risk, and select

a concept to match the data on the basis of minimizing the
empirical risk.

Whether empirical risk minimization actually selects a
concept with low risk depends on how much r̂(c) differs
from r(c). A classical PAC bound provides a bound on the
difference r(c) − r̂(c), or the absolute difference, that holds
with high probability. We use the following result from [1],

which gives a quantitative sample bound that depends on
the Vapnik-Chervonenkis (VC) dimension [32] of the concept
class. The VC dimension of a concept is a combinatorial
measure of its complexity based on the expressiveness of its
concepts.

Lemma 1 ([1], Corollary 4): Let C be a concept class of
sets with VC dimension ≤ d, and let ` : C × X → {0, 1}
denote a {0, 1}-valued loss function. If

N ≥ 5

ε

(
log

4

δ
+ d log

40

ε

)
, (8)

and if r̂(c) = 0, then PNX ({x1, . . . , xN : r(c) ≤ ε}) ≥ 1− δ.
A concept class with higher VC dimension generally provides
greater-fidelity estimates than one with lower VC dimension,
but is also more prone to overfitting: informally, this is the
reason why a concept class with higher VC dimension requires
a larger sample bound for the same accuracy and confidence
than one with lower VC dimension.

To apply Lemma 1, we must show that the sublevel sets
of a polynomial empirical inverse Christoffel function belong
to a concept class of bounded VC dimension. One such class
is the class of superlevel sets of degree 2k polynomials: the
following Lemma from [13], provides a bound on the VC
dimension.

Lemma 2 ([13], Theorem 7.2): Let V be a vector space of
functions g : Rn → R with dimension d. Then the class of
sets Pos(V ) = { {x : g(x) ≥ 0}, g ∈ V } has VC dimension
≤ d.

The PAC bound, and hence the validity of Algorithm 1 fol-
lows from Lemmas 2 and 1 by framing the support estimation
problem as one of empirical risk minimization.

Theorem 1 ([10]): The support set estimate produced by
Algorithm 1, that is the set {x ∈ X : C(x) ≤ α} where
C(x) = zm(x)>M̂−1

m,σ0
zm(x), α = maxi C(xi), satisfies the

PAC bound PNX ({x1, . . . , xN : PX({x ∈ X : C(x) ≤ α}) ≥
1−ε}) ≥ 1−δ, and thereby solves Problem 1 with parameters
ε, δ.

Proof: Let C = Pos(R[x]n2m), and `(c, x) = 1{x /∈ c}.
Note that the set {x ∈ Rn : C(x) ≤ α} is a member of
Pos(R[x]n2m), since it can be expressed as c = {x ∈ Rn :
α − C(x) ≥ 0}. Since the dimension of R[x]n2m is

(
n+2m
n

)
,

the VC dimension of Pos(R[x]n2m) is ≤
(
n+2m
n

)
= d by

Lemma 2. For `(c, x) = 1{x /∈ c}, the statistical risk is r(c) =
E [1{x /∈ c}] = 1 − PX(c), and its empirical counterpart is
r̂(c) =

∑N
i=1 1{xi /∈ c}. The empirical risk is zero for any set

c that encloses x1, . . . , xN . The set {x ∈ Rn : C(x) ≤ α} en-
closes x1, . . . , xN by construction, meaning that r̂({x ∈ Rn :
C(x) ≤ α}) = 0. By applying Lemma 1 for this choice of C,
`, and m, we find that if N ≥ 5

ε

(
log 4

δ +
(
n+2m
n

)
log 40

ε

)
, then

PNX ({x1, . . . , xN} : 1− PX({x ∈ Rn : C(x) ≤ α}) ≤ ε}) ≥
1− δ. Since Algorithm 1 selects N to be the smallest integer
such that N ≥ 5

ε

(
log 4

δ +
(
n+2m
n

)
log 40

ε

)
, it follows that the

stated PAC bound holds for the output of Algorithm 1.

B. Bayesian PAC Analysis
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Algorithm 2 To estimate a support set by a kernelized
empirical inverse Christoffel function satisfying a Bayesian
PAC bound.

Inputs: random variable X with support in X ; positive
definite kernel function k; PAC parameters ε, δ ∈ (0, 1);
noise parameter σ2

0 ∈ R++; initial sample size N0; batch
size Nb; threshold η.
N ← N0

D ← (x1, . . . , xN )
i.i.d.∼ X

i← 0
ε0 ← 1
while εi > ε do
i← i+ 1
append
(xN+1, . . . , xN+Nb)

i.i.d.∼ X to D
N ← N +Nb
Kσ0

← σ2
0I +K

define C : X → R+ to be C(x) = k(x, x) −
kD(x)K−1

σ0
kD(x);

Evaluate r as in (17)

εi ←
r̄+ 2

N log(π
2i2

6δ )

1−F1(1) , F1 as in (16)
end while
return 1{C(x) ≤ η}

Bayesian PAC analysis bounds the deviation of the expected
values of the true and empirical risks with respect to a data-
dependent probability measure. Given a prior measure P over
C and a posterior measure Q derived from the prior and the
observations, we define the expected risk rQ = E [`(c,X)]

and empirical expected risk r̂Q = E
[

1
N

∑N
i=1 `(c, xi)

]
where

c ∼ Q. Equivalently, P and Q define random variables CP ,
CQ supported on C, called the prior and posterior stochastic
estimators: rQ and r̂Q are the true and empirical risks of CQ.
A Bayesian PAC bound is a bound on the deviation between
rQ and r̂Q. Bayesian PAC bounds can be used to provide an
error bound for a single classifier which captures the central
behavior of Q, which we call the central concept and denote
as c̄Q. To verify that Algorithm 2 provides a valid solution to
Problem 1, we show that its output is the central concept of a
posterior stochastic estimator and use a Bayesian PAC bound
to show that a bound of the form (2) holds.

The most common tool to construct Bayesian PAC bounds
is the PAC-Bayes theorem developed by McAllester [22],
Seeger [29], and others [17]. We use the variation due to
Seeger. This theorem assumes that the concept class admits
a parameterization which can be infinite-dimensional.

Theorem 2 (PAC-Bayes Theorem, adapted from [29, 17]):
Consider a concept class C admitting a parametrization by
w ∈ W . Let the loss function be zero-one valued, that is
` : C × X → {0, 1}. The following bound holds for all
measures P , Q over the concept class C defined by measures
WP and WQ over W such that WQ is absolutely continuous

with respect to WP :

PNX ({x1, . . . , xN : Dber(r̂Q||rQ) ≤ γ}) ≥ 1− δ, (9)
where γ = (DKL(WQ||WP ) + log N+1

δ )/N . Here,
DKL(WP ||WQ) denotes the Kullback-Leibler (KL) diver-
gence between WP and WQ, and Dber(q||p) denotes the KL
divergence between two Bernoulli distributions with parame-
ters q and p, given by the formula

Dber(q||p) = q log
q

p
+ (1− q) log

1− q
1− p

. (10)

For a given set of data x1, . . . , xN , confidence parameter δ,
and a prior measure P chosen independently of the data, the
inequality (9) provides a family of Bayesian PAC bounds, one
for each posterior measure Q.

We use the PAC-Bayes theorem in the proof of Theorem 3,
which asserts the validity of Algorithm 2. First, we construct
prior and posterior stochastic estimators CP and CQ, corre-
sponding to measures P , Q over a concept class, which admit
a sublevel set of the empirical inverse Christoffel function as
a central concept; namely c̄Q = {x : κ−1(x) ≤ η} for a
given positive η. Next, we express a formula to compute the
empirical stochastic risk r̂Q of CQ from the data. Then, we
establish a bound on the true stochastic rQ in terms of r̂Q
using the PAC-Bayes theorem. Finally, we prove a bound on
the true risk r(c̄Q) of the central concept in terms of rQ. This
sequence of bounds combines to yield a bound of the form (2)
computable in terms of known data.

Theorem 3: Denote Ci as the inverse Christoffel function
constructed during the ith iteration of Algorithm 3.2. We
have the following PAC bound on all the inverse Christoffel
functions constructed during the algorithm:

P(∀i ≥ 1, PX({x : Ci(x) ≤ η}) ≥ 1− εi) ≥ 1− δ. (11)

Thus, with confidence δ, upon the termination condition of
Algorithm 3.2, we are left with a support set estimate of
probability mass ≥ 1− ε.

In addition to verifying the validity of the terminal output of
Algorithm 2, Theorem 3 justifies the use of Algorithm 2 in an
“any time algorithm” fashion, that is as an algorithm whose
output is verified even if execution is stopped prematurely.
The execution of Algorithm 2 will terminate as long as
the growth of DKL(N

(
0, (σ−1

0 I +K−1)−1
)
||N (0,K)) is

o(N): determining the conditions under which this growth
condition holds is a topic for future research.

We now develop the constructions used in the proof, starting
with the prior and posterior stochastic estimators for the kernel
case. We take

CP = {x : gp(x)2 ≤ η}, CQ = {x : gq(x)2 ≤ η}, (12)

where gp and gq are the prior and posterior of a general Gaus-
sian process regression model with prior kernel k, conditioned
on the observations x1, . . . , xN , y1 = . . . = yN = 0 with
observation noise level σ2

0 . 2 The corresponding concept class
is the class of η-sublevel sets of functions in the support of

2Appendix I provides background on the theory of Gaussian process
regression models.
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gp, which depends on the choice of kernel. According to (28),
gq has posterior mean mq = 0 and variance

Vargq (x) = k(x, x)−k(X,x)>
(
σ2IN +K(X,X)

)−1
k(X,x).

(13)
We take the posterior central concept to be c̄Q = {x :
E
[
gq(x)2

]
≤ η}. Since E [gq(x)] = mq(x) = 0 for all

x ∈ X , we know E
[
gq(x)2

]
= Vargq (x). This means that

the posterior central concept is

c̄Q = {x : k(x, x)

− k(X,x)>
(
σ2IN +K(X,X)

)−1
k(X,x) ≤ η}

= {x : κ−1(x) ≤ η}
(14)

as desired.
Next, we construct the sequence of bounds, starting with

the formula for the empirical stochastic risk of CQ in terms
of known data.

Lemma 3: For the zero-one membership loss `(c, x) =
1{x /∈ c}, the empirical stochastic risk of the posterior
stochastic estimators CQ defined in (12) is

r̂Q =
1

N

N∑
i=1

1− F1

(
η

κ−1(xi)

)
, (15)

where F1 is the CDF of the chi-square distribution with one
degree of freedom, that is

F1(x) = P
(
Z2 ≤ x

)
where Z ∼ N (0, 1) . (16)

The proofs of this Lemma and the other Lemmas in this section
are deferred to Appendix II.

Next, we use the PAC-Bayes theorem to bound the stochas-
tic risk rQ by the empirical stochastic risk r̂Q.

Lemma 4: Let x1, . . . , xN
i.i.d.∼ X denote a set of observa-

tions used to construct CQ from CP in (12). The stochastic
risk rQ is bounded by r ∈ (0, 1), where

r = sup {β : Dber(r̂Q||β) ≤ γk} (17)

with confidence 1− δ, where

γk =
(DKL(N

(
0, (K−1+σ−2

0 I)−1
)
||N (0,K))+log N+1

δ

N
.

Since Dber(q||p) is convex in (q, p) and equal to zero
for q = p, the set in (17) is an interval containing
r̂Q. Once r̂Q and the right-hand side of the inequality
in (17) are evaluated, the supremum r can be computed
using a scalar root-finding procedure to solve Dber(r̂Q||β) −
(DKL(N

(
0, (K−1 + σ−2

0 I)−1
)
||N (0,K))+log N+1

δ )/N =
0 over the interval β ∈ [r̂Q, 1).

Finally, we relate the statistical risk of r(c̄Q) to rQ.
Lemma 5: The statistical risk r(c̄η) of the posterior central

concept and the stochastic risk rQ of the posterior stochastic
estimator satisfy the bound r(c̄Q) ≤ 1

1−F1(1)rQ ≈ 3.15rQ.
When combined, the sequence of bounds above provide

a bound of the form (2) that holds independently for each
iteration of Algorithm 3. Applying a union bound argument
to provide a guarantee that holds uniformly over iterations
forms the central argument of the proof of Theorem 3.

Proof: [Proof (of Theorem 3)] The bound is trivially satis-
fied at the beginning of execution, since ε0 ← 1. Next, let i >

Algorithm 3 To estimate a support set by a polynomial
empirical inverse Christoffel function satisfying a Bayesian
PAC bound.

Inputs: random variable X with support in X ; Christoffel
function order m; PAC parameters ε, δ ∈ (0, 1); noise
parameter σ2

0 ∈ R++; initial sample size N0; batch size
Nb;
N ← N0

D ← (x1, . . . , xN )
i.i.d.∼ X

i← 0
ε0 ← 1
while εi > ε do
i← i+ 1
append
(xN+1, . . . , xN+Nb)

i.i.d.∼ X to D
N ← N +Nb
define C : X → R+ to be
C(x) = zm(x)>M̂−1

m,σ0
zm(x);

evaluate r as in (20)

εi ←
r̄+ 2

N log(π
2i2

6δ )

1−F1(1) , F1 as in (16)
end while
return 1{C(x) ≤ η}

0, and let CiQ denote the stochastic classifier {giQ(x)2 ≤ η},
where giQ(x) ∼ N (0, k(x, x) − kDi(x)>(σ2

0I + Ki)kDi(x)),
with the i superscripts signifying using the dataset accumu-
lated so far at iteration i. Let riQ denote the risk of CiQ. By
Lemma 3.7, we have ∀i ≥ 1, P(riQ > (1− F1(1))εi) ≤ 6δ

π2i2 .
By a union bound, P(∃i, riQ > (1−F1(1))εi) ≤

∑
i≥1

6δ
π2i2 =

δ. Thus, with probability at least 1 − δ, every riQ ≤ εi. On
this event, by Lemma 3.8, we have ∀i ≥ 1, PX({x : Ci(x) >

η}) ≤ riQ
1−F1(1) = εi as desired.

C. Bayesian PAC Analysis: the Polynomial Case

With the general kernel case settled, we now consider the
polynomial case in particular. Since the kernel case reduces to
the polynomial case by the kernel k(x, y) = zm(x)>zm(y),
we have in a sense already provided a bound for the poly-
nomial empirical inverse Christoffel function by means of
Bayesian PAC analysis. However, we can construct a prior and
posterior stochastic estimator for the polynomial case which
avoids direct use of the N ×N kernel Gramian, which can be
computationally advantageous. The special prior and posterior
stochastic estimators are

CP = {x : (W>P zm(x))2 ≤ η},
CQ = {x : (W>Q zm(x))2 ≤ η},

(18)

where WP ∼ N
(
0, σ−2

0 I
)
, WQ ∼ N

(
0, M̂−1

m,σ0

)
.

Notice that W>P zm and W>Q zm are Gaussian processes:
indeed, they correspond to the prior and posterior of a general
Gaussian process regression model with prior kernel k(x, y) =
zm(x)>zm(y), conditioned on the observations x1, . . . , xN ,
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y1 = . . . = yN = 0 with observation noise level σ2
0 . We take

the central concept c̄Q of CQ to be the η-sublevel set

c̄Q = {x : E
[
(W>Q zm(x))2

]
≤ η}

= {x : zm(x)>M̂−1
m,σ0

zm(x) ≤ η},
(19)

that is the η-sublevel set of the polynomial empirical inverse
Christoffel function. Applying the PAC-Bayes theorem to this
construction yields the following alternative to Lemma 4.

Lemma 6: Let x1, . . . , xN
i.i.d.∼ X denote a set of observa-

tions used to construct CQ from CP in (18). The stochastic
risk rQ is bounded by r ∈ (0, 1), where

r = sup {β : Dber(r̂Q||β) ≤ γp} , (20)

where

γp =
1

N

(
DKL(N

(
0, (σ2

0I + M̂m,σ0
)−1
)
||N

(
0, σ−2

0 I
)
)

+ log
N + 1

δ

)
Using this alternative lemma, we obtain a validation for

Algorithm 3.
Corollary 1: At each stage i of execution, the empirical in-

verse Christoffel function constructed in Algorithms 3 satisfies
the PAC bound (11).

Proof: The argument to verify Algorithm 1 is identical
to that used in the proof of Theorem 3, except that Lemma 6
is used instead of Lemma 4.

Remark 3: Algorithms 2 and 3 require that a threshold
parameter η be selected a priori based on the kernel. For
instance, if a squared exponential kernel k(x, y) = exp(−‖x−
y‖2/(2`)2) is used in Algorithm 2, the resulting empirical
inverse Christoffel function will always have values in [0, 1],
with values generally smaller close to data points: thus choos-
ing a value between 0 and 1 is a suitable choice, with smaller
values yielding finer approximations of the support set. For
Algorithm 3, a reasonable heuristic is to select η =

(
n+2m
n

)
/ε:

one can show that the expected value of the true inverse
Christoffel function of order m is

(
n+2m
n

)
when the input

is distributed according to X , so by Markov’s inequality the
probability mass of the

(
n+2m
n

)
/ε-sublevel set of the true

inverse Christoffel function is at least 1− ε.

D. Numerical Considerations for Large Datasets
As the sample size N grows, the calculations in Algorithm 2

involving the kernel matrix K can become computation- and
memory-intensive. In particular, evaluating κ−1(x) to compute
the support set estimate and computing the KL divergence that
appears in (17) both require the construction of an N×N ma-
trix and an O(N3) matrix inversion. Computational difficulties
related to the size of the K matrix are well known in the field
of kernel machines; in response, a wealth of approximation
techniques have been developed to reduce compute and mem-
ory requirements at the cost of fidelity. These approximation
techniques can be used to improve the efficiency of evaluating
the kernelized empirical inverse Christoffel function and its
construction via Algorithm 2.

For example, to reduce the speed and memory requirements
of evaluating κ−1(x), we can replace the kernel matrix K with

its rank-r Nyström approximation [33]. The Nyström approx-
imation is a method to construct low-rank approximations of
Gramian matrices, such as the kernel matrix K, which has a
simple expression in terms of block submatrices of the original
matrix. Specifically, the rank-r Nyström approximation of the
kernel matrix K has the form

K̃ = KNrK
−1
rr KNr, (21)

where KNr ∈ RN×r, Krr ∈ Rr×r are submatrices of K
whose i, j elements are k(xi, xj). Making the substitution
K 7→ K̃ and applying the matrix inversion lemma to κ−1(x)
yields

κ̃−1(x) = k(x, x)

− kD(x)>(σ−2
0 I +KNrK

−1
rr KNr)

−1kD(x)

= k(x, x)

− σ−2
0 kD(x)>kD(x)− kD(x, x)>V kX(x),

(22)

where
V = KNr(σ

2
0Krr +KrNKNr)

−1KrN

To numerically compute the final expression, we need only
invert an r × r matrix instead of an N ×N one; indeed, we
do not need to explicitly construct an N ×N matrix at all.

Next, we consider a method to over-approximate the KL
divergence based on the r largest eigenvalues of K. Since the
KL divergence DKL(Z0||Z1) between N -dimensional normal
random variables Z0 ∼ N (µ0,Σ0) and Z1 ∼ N (µ1,Σ1) has
the expression

DKL(Z0||Z1) = 1
2 log det Σ1Σ−1

0

+ 1
2 trΣ−1

1

(
(µ0−µ1)(µ0−µ1)>+ Σ0

)
− N

2 .

(23)

For Σ0 = (σ−2
0 I + K−1)−1, Σ1 = K, µ0 = µ1 = 0, (23)

reduces to
1
2 log det(I + σ−2

0 K) + 1
2 tr
(
(I + σ−2

0 K)−1
)
− N

2 . (24)

Since log(1 + σ−2
0 x) and 1/(1 + σ−2

0 x) are analytic for x ≥
0, we can apply the spectral mapping theorem [4, Sec. 4.7]
to (24) to obtain an expression for the KL divergence in terms
of the eigenvalues λ1, . . . , λN of K, namely

=
1

2

N∑
i=1

(
log(1 + σ−2

0 λi) +
1

1 + σ−2
0 λi

− 1

)
. (25)

Numerically computing the KL divergence with the expres-
sion (24) requires an explicit construction of the K matrix,
and the inverse of an N × N matrix: this requires O(N3)
operations and O(N2) memory. Using (25) instead of (24)
to compute the KL divergence with the full set of eigenvalues
does not generally yield an improvement, since computing the
eigenvalues of K is also O(N3). However, since K is a sym-
metric positive definite matrix, the eigenvalues are all positive,
and the m largest eigenvalues can be computed in less than
O(N3) time, for instance by a Lanczos-type algorithm [31, ch.
9]. Let λp denote the pth largest eigenvalue: Since (25) is a
nondecreasing function in each λi, the approximation λi ≈ λp
for λi such that λi < λp yields an upper bound on the KL
divergence that can be computed in less than O(N3) time.
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Fig. 1. Results of Algorithms 1, 2 and 3 on the Duffing oscillator reach-
ability problem. Black contour: output of Algorithm 1. Green contour:
output of Algorithm 3. Red contour: output of Algorithm 2. Blue contour:
output of Algorithm 2, over-approximated using the Nyström approxima-
tion with 1,000 samples. Blue dots: samples used in Algorithm 3.

IV. EXAMPLES

This section demonstrates how Algorithms 1, 2, and 3
can be used to make accurate estimates of forward reachable
sets. These examples were run on Savio, a high-performance
computing cluster managed by the University of Califor-
nia at Berkeley. Specifically, each experiment used a single
savio2 bigmem node comprising 20 CPUs running at 2.3
GHz and 128 GB of memory. In all experiments, we use the
parameters ε = 0.1, δ = 10−9 for all three algorithms, and in
Algorithm 2, we use the squared exponential kernel

k(x, y) = exp(−‖x− y‖2/(2`)2). (26)

The values for m and ` used in experiments is listed in Table II.
To select thresholds in Algorithms 2 and 3, we follow the
advice of Remark 3, using η = 0.15 for Algorithm 2 and
η =

(
n+2m
n

)
/ε for Algorithm 3. For Algorithm 1, we use

an initial sample size of 20, 000 and a batch size of 5, 000
samples. For Algorithm 3, we use an initial sample size and
batch size of 1, 000 samples.

To validate the accuracy bounds promised by Theorems 1
and 3 and Corollary 1, we performed an a posteriori analysis
of the empirical error of the estimator constructed in each
experiment. To calculate this empirical error, we simulated
an additional Nap = 46,052 samples, and took the empirical
error ε̂ as the fraction of the new samples lying outside of the
estimator. The number Nap was chosen so that the empirical
error estimate satisfies a Chernoff bound ensuring that, with
confidence 0.9999, ε̂ differs from the true error by no more
than 0.01. The computed empirical accuracies are displayed
in Table II: since all are below 0.01, the a posteriori analysis
ensures with high confidence that the guaranteed error bounds
have been met.

A. Chaotic Nonlinear Oscillator
The first example is a reachable set estimation problem for

the nonlinear, time-varying system with dynamics ż = y, ẏ =

−αy + z − z3 + γ cos(ωt), with states x = (z, y) ∈ R2

and parameters α, γ, ω ∈ R. This system is known as the
Duffing oscillator, a nonlinear oscillator which exhibits chaotic
behavior for certain values of α, γ, and ω, for instance
α = 0.05, γ = 0.4, ω = 1.3. The initial set is the interval
such that z(0) ∈ [0.95, 1.05], y(0) ∈ [−0.05, 0.05], and we
take X0 to be uniform over this interval. The time range is
[t0, t1] = [0, 100].

We use Algorithms 1 and 3 to compute reachable set
estimates using an order k = 10 empirical inverse Christoffel
function with accuracy and confidence parameters ε = 0.10,
δ = 10−9. Additionally, we use Algorithm 2 to compute
a kernelized empirical inverse Christoffel function using the
squared exponential kernel k(x, y) = exp(‖x − y‖2/(2`2))
with ` = 0.25. Figure 1 shows the reachable set estimate
for the Duffing oscillator system with the problem data given
above produced by all three algorithms: for Algorithm 2,
both the full kernelized Christoffel function estimator and its
Nyström approximation with r = 2000. The cloud of points
are the 11, 000 samples used in Algorithm 3. The reachable
set estimate is neither convex nor simply connected, closely
following the boundaries of the cloud of points and excluding
an empty region. In particular, all estimates exhibit a hole in
a region of the state space devoid of samples.

B. Planar Quadrotor
The next example is a reachable set estimation problem for

horizontal position and altitude in a nonlinear model of the
planar dynamics of a quadrotor used as an example in [23,
3]. The dynamics for this model are p̈x = u1K sin(θ), p̈h =
−g + u1L cos(θ), θ̈ = −d0θ − d1θ̇ + n0u2, where px and
ph denote the quadrotor’s horizontal position and altitude in
meters, respectively, and θ denotes its angular displacement
(so that the quadrotor is level with the ground at θ = 0) in
radians. The system has 6 states, which we take to be x, h,
θ, and their first derivatives. The two system inputs u1 and
u2 (treated as disturbances for this example) represent the
motor thrust and the desired angle, respectively. The parameter
values used (following [3]) are g = 9.81, L = 0.64, d0 = 70,
d1 = 17, and n0 = 55. The set of initial states is the interval
such that px(0) ∈ [−1.7, 1.7], ṗx(0) ∈ [−0.8, 0.8], ph(0) ∈
[0.3, 2.0], ṗh(0) ∈ [−1.0, 1.0], θ(0) ∈ [−π/12, π/12], θ̇(0) ∈
[−π/2, π/2], the set of inputs is the set of constant functions
u1(t) = u1, u2(t) = u2 ∀t ∈ [t0, t1], whose values lie in
the interval u1 ∈ [−1.5 + g/L, 1.5 + g/L], u2 ∈ [−π/4, π/4],
and we take X0 and D to be the uniform random variables
defined over these intervals. The time range is [t0, t1] = [0, 5].
We take probabilistic parameters ε = 0.10, δ = 10−9. Since
the goal of this example is to estimate a reachable set for the
horizontal position and altitude only, we are interested in a
reachable set for a subset of the state variables, namely px and
ph. Following Remark 1, we use the reduced-state variations of
Algorithms 1, 2, to compute reachable set estimates using only
data for the (px, ph) states, effectively reducing the dimension
of the problem from 6 to 2. Figure 2 shows the reachable set
estimate for the planar quadrotor system with the problem data
given above produced by all three algorithms and the Nyström-
approximated Algorithm 2 with r = 2000. The reachable set
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Example Alg. 1 Alg. 3 Alg. 2

m time N ε̂ m time N ε̂ ` time N ε̂

Oscillator 10 60 70307 0 10 13 11000 0 1/4 506 30000 0
Quadrotor 4 3 14587 0 4 4 6000 10−3 1/4 788 35000 0
Traffic 10 16 70307 0 10 11 10000 2× 10−4 1/4 504 30000 0

TABLE II
COMPUTATION TIMES, SAMPLE SIZES, PARAMETERS, AND a posteriori EMPIRICAL ERRORS FOR NUMERICAL EXPERIMENTS. ALL TIMES IN

SECONDS. ALGORITHMS 1 AND 3 USED POLYNOMIAL ORDER m, AND ALGORITHM 2 USED k(x, y) = exp(−‖x− y‖2/(2`)2), WITH m, ` AS

GIVEN IN THE TABLE. ALL EXPERIMENTS USE ε = 0.1, δ = 10−9 .

Fig. 2. Results of Algorithms 1, 2, and 3 on the planar quadrotor
reachability problem, restricting the reachability analysis to the (px, ph)
plane. Black contour: output of Algorithm 1. Green contour: polynomial
Christoffel function of order k = 10. Blue contour: kernelized in-
verse Christoffel function with squared exponential kernel. Red contour:
Nyström approximation (m = 10, 000) of the kernelized inverse
Christoffel function with squared exponential kernel.

estimates displayed in Figure 2, and the computation times
reported in Table II, use the reduced-state variation.

C. Monotone Traffic

This example is a special case of a continuous-time road
traffic analysis problem used as a reachability benchmark
in [5]. This problem investigates the density of traffic on a
single lane over a time range over four periods of duration
T using the Cell Transmission Model [7] that divides the
road into n equal segments. The spatially discretized model
is an n-dimensional dynamical system with states x1, . . . , xn,
where xi represents the density of traffic in the ith segment.
Traffic enters segment through x1 and flows through each
successive segment before leaving through segment n. The
system dynamics (27) are monotone, i.e. order-preserving:
this property allows us to compute an interval containing
the reachable set by evaluating the dynamics at the extreme
points of the intervals defining the initial set and the set of
disturbances. While this interval over-approximation is easy
to compute, and is the best possible over-approximation by
an interval, it is in general a conservative over-approximation
because the reachable set may only occupy a small volume of
the interval. Since the empirical Inverse Christoffel function

method can accurately detect the geometry of the reachable
set, we use this method to compare the shape of the reachable
set to the best interval over-approximation.

The state dynamics are

ẋ1 =
1

T
(d−min(c, vx1, w(x− x2)))

ẋi =
1

T

(
min(c, vxi−1, w(x− xi))

−min(c, vxi, w(x− xi+1))
)
, (i = 2, . . . , n− 1)

ẋn =
1

T
(min(c, vxn−1, w(x− xn)/β)−min(c, vxn))) ,

(27)

where v represents the free-flow speed of traffic, c the max-
imum flow between neighboring segments, x̄ the maximum
occupancy of a segment, and w the congestion wave speed.
The input u represents the influx of traffic into the first node.
For the reachable set estimation problem, we use a model with
n = 6 states, and take T = 30, v = 0.5, w = 1/6, and x̄ =
320. The initial set is the interval such that xi(0) ∈ [100, 200],
i = 1, . . . , n, the set of disturbances is the set of constant
disturbances with values in the range d ∈ [40/T, 60/T ], and
X0 and D are the uniform random variables over these sets.
The time range is [t0, t1] = [0, 4T ].

We use the reduced-state variant of Algorithms 1, 2, and 3
to compute a reachable set for the traffic densities x5 and
x6 at the end of the road, using an order k = 10 empirical
inverse Christoffel function with accuracy and confidence
parameters ε = 0.10, δ = 10−9. Figure 3 compares the
reachable set estimates for the traffic system produced by all
three algorithms, and the Nyström-approximated Algorithm 2
with r = 2000, with the projection of the tight interval over-
approximation computed using the monotonicity property of
the traffic system. The figure indicates that the tight inter-
val over-approximation of the reachable set is a somewhat
conservative over-approximation, since the reachable set has
approximately the shape of a parallelotope whose sides are
not axis-aligned.

V. CONCLUSION

This paper advances the non-asymptotic theory of support
set estimation by empirical Christoffel functions by applying
the formal connection between Christoffel functions and Gaus-
sian process regression models to a Bayesian PAC analysis of
the estimator. The numerical examples demonstrate that the
Bayesian PAC give a large improvement in sample efficiency
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Fig. 3. Results of Algorithms 1, 2, and 3 on the six-state monotone
traffic reachability problem, restricting the reachability analysis to the
(x5, x6) plane. Black contour: output of Algorithm 1. Green contour:
polynomial Christoffel function of order k = 10. Blue contour: kernel-
ized inverse Christoffel function with squared exponential kernel. Red
contour: Nyström approximation (m = 10, 000) of the kernelized
inverse Christoffel function with squared exponential kernel.

over classical PAC bounds. Additionally, Bayesian PAC argu-
ments endow the kernelized inverse Christoffel function with
PAC bounds, a development not possible with classical VC
dimension bounds.

Improvements to the general theory can advance in step
with advances in Bayesian PAC analysis. For instance, there
are new results in theory of derandomizing Bayesian PAC
bounds, which could offer sample efficiency improvements
over the argument used in Lemma 5 to apply the Bayesian
PAC bound to the central concept. Furthermore, domain-
specific knowledge could be applied to the GP prior used to
construct the Christoffel functions. For instance, in reachability
problems and estimate of the system sensitivity matrix could
be used to intelligently select length-scales in the kernel,
along with other algorithm hyper-parameters such as the initial
sample size and batch size.

There are also several numerical improvements to make in
certain aspects of Algorithm 2, namely in the computation of
the KL divergence. The implementation used in the examples
of this paper requires the full kernel Gramian to be stored
in memory to compute the KL divergence. For large datasets
this becomes a prohibitive memory bottleneck. This bottleneck
can be overcome with by computing the eigenvalues with
a method that requires only an implicit representation, such
as a Lanczos algorithm: an efficient implementation of this
approach remains as future work.
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APPENDIX I
BACKGROUND ON GAUSSIAN PROCESS MODELS

A Gaussian process g is a stochastic process such that vec-
tors (g(x1), . . . , g(xm)) of point evaluations are multivariate
Gaussian distributions. Similar to how a Gaussian random
variable is completely characterized by its mean and variance,
a Gaussian process is completely characterized by a mean
function m, defined pointwise as m(x) = E [g(x)], and a
positive semidefinite covariance function k, defined on all pairs
of points x, y ∈ X as k(x, y) = E [g(x)g(y)].

Gaussian processes can also be defined according to a finite
set of basis functions, admitting a direct construction as a
finite weighted sum. For an m-dimensional space of functions
with basis b1, . . . , bm : X → R, we form the stochastic
weighted average

∑m
i=1 wibi, where w = (w1, . . . , wm) ∼

N (0,Σ). This weighted average is a Gaussian process whose
support is the span of b1, . . . , bm, with mean m(x) = 0
and covariance k(x, y) =

∑m
i=1 b(x)>Σb(y), where b(·) =

(b1(·), . . . , bm(·))>.
The Gaussian process regression model is Bayesian regres-

sion model that uses a Gaussian process as the prior over
regression functions. In our case, we take the mean of the
prior process to be zero. The data is assumed to be of the
form g(xi) = hi + ε, where ε is a Gaussian noise term
with variance σ2. Under these conditions, the posterior for the
unknown function is also a Gaussian process, whose mean and
covariance are given by the formulas

mq(x) = kD(x)>
(
σ2IN +K

)−1
h, (28)

kq(x, y) = k(x, y)− kD(x)>
(
σ2IN +K

)−1
kD(y). (29)

From the expression for the posterior covariance, we get the
posterior variance

Vargq (x) = kq(x, x)

= kp(x, x)

− kD(x)>
(
σ2IN +K

)−1
kD(X,x),

(30)

which is precisely the kernelized empirical inverse Christoffel
function with kernel k for the data D = (x1, . . . , xN )
evaluated at the point x. In the finite-dimensional case, the
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posterior process has mean and covariance functions

mq(x) = σ−2b(x)>
(
Σ−1 + σ2BB>

)−1
By (31)

kq(x, y) = b(x)
>

(Σ−1 + σ−2BB>)
−1
b(x), (32)

where B ∈ Rm×N is the matrix formed by eval-
uating the basis functions on the data, that is B =
[b(x1) · · · b(xN )]. Taking b = zk, Σ = σ−2

0 I ,
σ = N−1/2, yields the posterior variance Vargq (x) =

zm(x)
>
(
σ2

0I + 1
N

∑N
i=1 zm(xi)zm(xi)>

)−1

zm(x), which is
precisely the polynomial empirical inverse Christoffel function
of order k for the data x1, . . . , xn evaluated at the point x.

APPENDIX II
PROOFS OF LEMMAS IN SECTION III-B

A. Proof of some Lemma 3
We consider the kernel case, since the polynomial case fol-

lows by the appropriate choice of kernel function. Recall that
κ−1(x) is the variance of gp by construction. Evaluating gp at
a single point x yields the normal random variable gp(x) ∼
N
(
0, κ−1(x)

)
. It follows that gp(x)/

√
κ−1(x) ∼ N (0, 1),

and that gp(x)2/κ−1(x) ∼ χ2
1, that is that gp(x)2/κ−1(x), is

a chi-square random variable with one degree of freedom. The
average loss over CP for a fixed point x is then

E [`(CQ, x)] = E [1{x ∈ CQ}]
= 1− P

(
gp(x)2 ≤ η

)
= 1− P

(
gp(x)2

κ−1(x)
≤ η

κ−1(x)

)
= 1− F1

(
η

κ−1(x)

)
.

(33)

Averaging this expression over the data points yields (15).

B. Proof of Lemma 6
We apply the Seeger PAC-Bayes Theorem 2 to the prior

and posterior measures P and Q induced by CP and CQ as
defined in (18). Recall that these prior and posterior measures
are defined by the random vectors WP ∼ N

(
0, σ−2

0 I
)
,

WQ ∼ N
(

0, (σ−2
0 I + M̂m,σ0)−1

)
, which act as parameters.

Applying this choice of Wp and Wq to equation (9) of
Theorem 2 yields the inequality

PNX ({x1, . . . , xN : Dber(r̂Q||rQ) ≤ γ}) ≥ 1− δ, (34)

where

γ =
DKL(N

(
0,(σ2

0I+M̂m,σ0
)−1
)
||N

(
0, σ−2

0 I
)
)+log N+1

δ

N
Suppose the data set x1, . . . , xN is one such that the inner
inequality Dber(r̂Q||rQ) ≤ γ holds: then rQ, the true stochastic
risk, lies in the set {β : Dber(r̂Q||β) ≤ γ}. The function
Dber(r̂Q||β) is convex in β and covers the range [0,∞),
attaining 0 for β = r̂Q and approaching ∞ for β → 0 and
β → 1. By these properties, {β : Dber(r̂Q||β) ≤ γ} is a
closed convex subset of (0, 1) for any positive γ. As such,
it attains a supremum, meaning that r as defined in (20) is
well-defined. Thus we have, with confidence 1 − δ, that r is
an upper bound on the stochastic risk rQ.

C. Proof of Lemma 4

As in the proof of Lemma 6 we apply the Seeger PAC-
Bayes Theorem 2, this time to the prior and posterior measures
P and Q induced by CP and CQ as defined in (12). These
measures are defined by the Gaussian processes gp and gq
which act as the concept class parameters WP and WQ

respectively in the statement of Theorem 2. To compute the KL
divergence between WP and WQ, we use another result due
to Seeger, described in Section 2.2 of [29], which states that
the KL divergence between a prior Gaussian process gp and
the posterior Gaussian processes gq obtained after conditioning
on data x1, . . . , xN is equal to the KL divergence between the
restriction of the two Gaussian processes to the data points,
that is the KL divergence between the multivariate normal ran-
dom vectors (gp(x1), . . . , gp(xN )) and (gq(x1), . . . , gq(xN )).
The mean and covariance of these random variables are
simply the restrictions of the mean and covariance functions of
their defining processes to (x1, . . . , xN ). Both random vectors
have mean zero. The covariance matrix of the prior random
vector (gp(x1), . . . , gp(xN )) is Kp(X,X) = K(X,X) as
discussed in Section I. By (28) and an application of the matrix
inversion lemma, the covariance of the posterior random vector
(gq(x1), . . . , gq(xN )) is

Kq(X,X) = K(X,X)

−K(X,X)
(
σ2

0I +K(X,X)
)−1

K(X,X)

=
(
K(X,X)−1 + σ−2

0 I
)−1

.
(35)

D. Proof of Lemma 5

Consider a point x ∈ X outside of the central concept, that
is such that c̄η(x) = E

[
(g(x)2

]
> η. The probability that

W>Q zm(x) also exceeds η is bounded as

P
(
(g(x)2 ≥ η

)
≤ P

(
(g(x)2 ≥ E

[
(g(x)2

])
(36)

= P
(

(g(x)2

E [(g(x)2]
> 1

)
(37)

= 1− F1(1). (38)

Next, let us consider the risk of the stochastic estimator, that is
rQ = P

(
(g(X)2 > η

)
. Applying the law of total probability

with respect to the random variable X , we divide rQ into two
integrals according to whether the central concept exceeds η:

P
(
(g(X)2 > η

)
=

∫
X
P
(
(g(x)2 > η

)
dPx(x) (39)

=

∫
X
P
(
(g(x)2 > η

)
1{E

[
(g(x)2

]
> η}dPx(x) (40)

+

∫
X
P
(
(g(x)2 > η

)
1{E

[
(g(x)2

]
≤ η}dPx(x). (41)

We have that P
(
(g(X)2 > η

)
≥∫

X P
(
(g(x)2 > η

)
1{E

[
(g(x)2

]
> η}dPx(x), since

all three integrands are nonnegative. To find an upper bound
on this probability in terms of the empirical classifier, we
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combine the two inequalities above to find

P
(
(g(X)2 > η

)
=

∫
X
P
(
(g(x)2 > η

)
dPx(x) (42)

≥
∫
X
P
(
(g(x)2 > η

)
1{E

[
(g(x)2

]
> η}dPx(x) (43)

≥ (1− F1(1))

∫
X
1{E

[
(g(x)2

]
> η}dPx(x) (44)

= (1− F1(1))P
(
E
[
(g(x)2

]
> η

)
(45)

= (1− F1(1))r(ĉη), (46)

which we rearrange to yield r(c̄η) ≤ 1
1−F1(1)rQη .
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