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1 - Center for Theoretical Biological Physics, Rice University, Houston, TX, USA

2 - Department of Physics & Astronomy, Rice University, Houston, TX, USA

3 - Department of Chemistry, Rice University, Houston, TX, USA

4 - Department of Biosciences, Rice University, Houston, TX, USA
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Abstract

The folding patterns of interphase genomes in higher eukaryotes, as obtained from DNA-proximity-ligation
or Hi-C experiments, are used to classify loci into structural classes called compartments and subcom-
partments. These structurally annotated (sub) compartments are known to exhibit specific epigenomic
characteristics and cell-type-specific variations. To explore the relationship between genome structure
and the epigenome, we present PyMEGABASE (PYMB), a maximum-entropy-based neural network
model that predicts (sub) compartment annotations of a locus based solely on the local epigenome, such
as ChIP-Seq of histone post-translational modifications. PYMB builds upon our previous model while
improving robustness, capability to handle diverse inputs and user-friendly implementation. We employed
PYMB to predict subcompartments for over a hundred human cell types available in ENCODE, shedding
light on the links between subcompartments, cell identity, and epigenomic signals. The fact that PYMB,
trained on data for human cells, can accurately predict compartments in mice suggests that the model
is learning underlying physicochemical principles transferable across cell types and species. Reliable at
higher resolutions (up to 5 kbp), PYMB is used to investigate compartment-specific gene expression.
Not only can PYMB generate (sub) compartment information without Hi-C experiments, but its predictions
are also interpretable. Analyzing PYMB’s trained parameters, we explore the importance of various epige-
nomic marks in each subcompartment prediction. Furthermore, the predictions of the model can be used
as input for OpenMiChroM software, which has been calibrated to generate three-dimensional structures
of the genome. Detailed documentation of PYMB is available at https://pymegabase.readthedocs.io,
including an installation guide using pip or conda, and Jupyter/Colab notebook tutorials.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The three-dimensional organization of the
eukaryotic genome within the cell nucleus is
related to biological-function-determining
td. All rights reserved.
characteristics like gene expression and cell
identity.1–4 Chromosome conformation capture
(3C) techniques have been crucial in our under-
standing of the three-dimensional architecture of
the genome. Observations from these DNA-DNA
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ligation experiments, such as Hi-C maps,5–9 report
the frequency that any pair of chromatin loci are
observed to be in spatial proximity. Hi-C maps
endorse the existence of chromosome territories,
also observed via microscopy.3,9,10 In addition, the
overall genome organization can be described by
two major compartments, A and B. The structural
type, annotated compartment A, is gene-rich and
is related to euchromatin. In contrast, compartment
B is gene-poor and related to inactive
heterochromatin.9

Upon investigation at higher resolution inter-
chromosomal Hi-C maps of human GM12878 cell
line, Rao and coworkers11 proposed that compart-
ments can be further divided into sub-
compartments. A-type contains two subcompart-
ments (A1 and A2), and compartment B has four
(B1, B2, B3, and B4). Each subcompartment exhi-
bits distinct contact patterns in Hi-C maps reflective
of structural signatures of these loci. Interestingly,
each subcompartment can be associated with local
biochemical profiles.11 For example, A1 and A2 cor-
relate positively with histone modification
H3K36me3, while B1 correlates with
H3K27me3.11 Furthermore, B2 shows strong asso-
ciations with the nuclear lamina and the nucleoli. On
the other hand, B3 is mainly present at the nuclear
lamina.11 Recently, tyramide signal amplification
sequencing (TSA-Seq) was employed to measure
distances of chromatin relative to nuclear speckles
and lamina.12 As a result, A1 loci and nuclear
speckles present close spatial proximity. Whereas
B2/B3 loci present short distances to nuclear lam-
ina.12 These measures suggest that subcompart-
ments may be associated with specific positioning
inside the nucleus. Further, subcompartment anno-
tations may indicate preferential loci interactions
with nuclear bodies and transcription activity.12 Cur-
rently, GM12878 (human lymphoblastoid) is the
only cell line in which the subcompartments are
annotated.
Previously, we had developed a neural network

named MEGABASE (Maximum Entropy Genomic
Annotation from Biomarkers Associated to
Structural Ensembles) that predicts structural
annotations based on epigenetic markers (i.e.
biochemical information). This method predicted
subcompartment information from chemical
information represented by ChIP-Seq data.13 Also,
it takes advantage of the fact that ChIP-Seq tracks
are widely available assays for many samples,
including different cell lines and tissues.14 It is
important to notice that, in contrast to other models
to call structural annotations, MEGABASE predicts
structure from biochemical composition of the gen-
ome alone, without relying on input structural infor-
mation like Hi-C maps.13

Various tools for calling compartments and
subcompartments have been developed since
MEGABASE.13,15–22 These methods can be classi-
fied into two main groups: those that call subcom-
2

partments based on Hi-C maps and those that
use an existing set of annotations to predict sub-
compartments in other datasets. The first group
includes methods such as SCI,16 Calder,17 and
the clustering from Rao et al. 2014.11 Each method
proposes a different number of subcompartments
and assigns unique sets of subcompartment labels.
Despite these differences, all report an association
between subcompartments and characteristic epi-
genetic features. The second group contains meth-
ods like SNIPER,15 which predicts
subcompartments from moderate coverage Hi-C
maps based on the annotations from Rao et al.
2014. Other methods in this group, such as
MEGABASE,13 SCI-DNN,16 and CoRNN,18 use bio-
chemical information to infer subcompartment or
compartment annotations. Table S1 presents the
main characteristics of these different methods. It
is essential to recognize that although all these
methodologies provide the same output (subcom-
partment or compartment annotations), their perfor-
mances should not be compared as if they were
equivalent methods. Some methods rely on struc-
tural information to identify/predict the annotations,
while others use the relationship between biochem-
ical information and subcompartment identities to
predict the annotations.
In this work, we introduce PyMEGABASE

(PYMB), an automated and intuitive software for
calling structural annotations (compartments or
subcompartments) based only on 1D epigenetic
tracks. PYMB derives from the MEGABASE
model,13 while expanding its capabilities and broad-
ening its accessibility. PYMB introduces several
improvements in the computational pipeline. For
example, PYMB runs automatic preprocessing
steps and fast data fetching from the ENCODE
(Encyclopedia of DNA Elements) portal.14 These
implemented functionalities allow the users to pre-
dict subcompartment annotations for any cell line
or sample in the ENCODE portal in minutes. In addi-
tion to the ChIP-Seq tracks of histone modifications
and transcription factors, PYMB also allows the
usage of RNA-Seq experiments to predict subcom-
partments. To demonstrate the capability of PYMB
to call structural annotations, we employed the
methodology in different conditions. We compared
the predictions of compartments and subcompart-
ments in the GM12878 cell line using many data
sets to train and test the model. Further, we present
the accuracy of PYMB predictions at the compart-
ment level on other systems, such as different cell
lines, tissue samples, and other organisms.We pre-
dicted subcompartment annotations for over 150
human cell types, tissue samples, and single donor
samples whose ChIP-Seq or RNA-Seq data were
available on the ENCODE database.14 This mas-
sive generation of annotations shed light on geno-
mic sequence patterns related to cell
differentiation. Further, we evaluate the predictions
of PYMBwhen used at finer resolutions (5 kbp). At 5
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kbp resolution, it allows us to investigate the rela-
tionship between the subcompartments and the epi-
genetic features at the scale relevant to a single
gene. Finally, by analyzing the trained model
parameters, we suggest molecular characteristics
associated with the composition of each
subcompartment.
2. Materials and Methods

Based on the Maximum Entropy (MaxEnt)
approach, MEGABASE predicts compartment and
subcompartment annotations based on genomic
biomarkers.13 We implemented the MEGABASE
model into an intuitive and user-friendly tool called
PyMEGABASE (PYMB). PYMB is a neural network
that decodes the relationship between epigenetic
markers and structural annotations from 1D experi-
mental data tracks. It is worth mentioning that
PYMB receives only 1D data as input, i.e., PYMB
does not require a 2D Hi-C map to call structural
annotations. This is an advantage especially when
there are no Hi-C maps available for that cell line
or tissue sample. PYMB consists of a Potts
model13,23 where one node is associated with the
structural annotations, called S-node. The states
of the S-node correspond to structural annotations
(A1, A2, B1, B2, and B3). We exclude the B4 sub-
compartment from PYMB training since it is only
observed in a segment of chromosome 19.11 The
other nodes, called D-nodes, represent the enrich-
ment of biomarkers signals integrated at loci resolu-
tion. Then, for a given locus l, we construct a state
vector r lð Þ for the Potts model. The state vector
r lð Þ includes the structural annotation of the locus
l and the signal intensity values for each experiment
in the positions l � 2; l � 1; l ; l þ 1, and l þ 2. The
addition of the neighboring loci was demonstrated
to enhance the prediction accuracy by filtering noise
in the data processing.13 As a result, we can repre-
sent the state vector of the Potts model as:

r! lð Þ ¼ C lð Þ;Exp1 l � 2ð Þ; . . . ;ExpL l � 2ð Þ;ð
Exp1 l � 1ð Þ; . . . ;ExpL l � 1ð Þ;Exp1 lð Þ; . . . ;ExpL lð Þ;

ð1Þ Exp1 l þ 1ð Þ; . . . ;ExpL l þ 1ð Þ;Exp1 l þ 2ð Þ; . . . ;ExpL l þ 2ð ÞÞ

where C lð Þ is the structural annotation (S-node). Expi mð Þ
is the data signal intensity of the i-th experiment (ChIP-
Seq or RNA-Seq) at locus m (D-nodes). The
Hamiltonian describing the energy of the system is
defined by:

H r!
� �

¼ �
X
i<j

J ij ri ;rj

� ��
X
i

hi rið Þ; ð2Þ

where the coupling term Jij captures the correlation

between epigenetic marks and chromatin annotations.
hi is the self-activation energy term that correlates with
the frequencies of chromatin annotations and markers
enrichment.
Figure 1 shows PYMB computational pipeline for

predicting subcompartments. The first step uses
the publicly available pyBigWig software24 to fetch
3

data from the ENCODE Portal.14 This step may
include experimental data of histone modifications
(ChIP-Seq), transcription factors (ChIP-Seq), small
RNA-Seq, and total RNA-Seq. The user also has
the option of uploading custom tracks into PYMB
and running the predictions using their data as well.
PYMB supports multiple signal formats for ChIP-
Seq tracks, such as signal p-values and fold
change-over-control of the experiments. In addition,
PYMB receives.bed and.bigwig file formats as input
tracks. This initial step also includes signal process-
ing. Each experimental track is partitioned into 50
kbp loci, followed by a min–max normalization for
each chromosome. The 5th percentile is assigned
as the minimal value, and the 95th percentile as
the maximum. Assigning the min–max value sets
up a data baseline and avoids outliers dominating
the signal integration. When several replicas exist
for each experimental target, we set the average
track as the representative track for the respective
target.
The second step involves neural network

optimization.23,27 PyMEGABASE energy function
is built following the Maximum Entropy principle
(MaxEnt), where the probability of observing the
state r! on the system follows a Boltzmann distribu-
tion, given by P r!

� �
¼ 1

Z
exp �H r!

� �� �
. The

energy terms are obtained by maximizing the log-
pseudo-likelihood of a set made of every locus in
the training set (see SI for details). We maximize
the log-pseudo-likelihood function as described
in,23 using publicly available tools implemented in
Python.27 Furthermore, this process allows us to
have a Hamiltonian that correlates the structural
annotations with epigenetic marks.
After training the model parameters, we use the

Hamiltonian presented in Eq. 2 to predict the
chromatin subcompartment annotations of a
particular set of chromosomes (see SI for details).
The prediction is equivalent to finding the
subcompartment annotation that minimizes the
energy function. This step is performed for a given
set of experimental measures for each locus.
PYMB obtains the subcompartment annotations
as the state of the S-node that, when interacting
with the rest of the D-nodes, will lead to the
highest probability in the Boltzmann distribution
(lowest energy value). This process is repeated
for each locus in the target cell genome. In
summary, the prediction pipeline identifies the
intersecting set of experiments (ChIP-Seq targets
and RNA-Seq) between GM12878-hg19 and the
target cell. Next, PYMB is trained on GM12878-
hg19’s structural annotations and the experimental
tracks from GM12878-hg19 within the intersecting
set. Finally, the model uses the target cell’s
experimental 1D tracks to predict structural
annotations for each locus in the target cell’s
genome. For example, if the target cell has the
following experiments: [RNA-Seq, CTCF Chip-
Seq, H3K9me3 Chip-Seq, H4K20me2 Chip-Seq]



Figure 1. PyMEGABASE computational pipeline. The model uses as input 1D data sets such as RNA-Seq, Histone
Modification ChIP-Seq, and Transcription Factor ChIP-Seq experiments. The data is extracted from the ENCODE
portal14 or submitted by the user. Then, the neural network is trained to capture the relationship between structural
annotations and epigenetic marks. Finally, PYMB is used call compartments and subcompartments using only the
RNA-Seq and ChIP-Seq experiments across the genome. These annotations can be then used for further analysis
such as the prediction of 3D simulated structure ensembles using the calibrated force fields of OpenMiChroM.25,26
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and GM12878-hg19 has [RNA-Seq, CTCF Chip-
Seq, H3K9me3 Chip-Seq, ZZZ3 ChIP-Seq, . . .],
then the intersection set consists of [RNA-Seq,
CTCF Chip-Seq, H3K9me3 Chip-Seq]. PYMB will
be trained on GM12878-hg19 structural
annotations and GM12878-hg19’s [RNA-Seq,
CTCF Chip-Seq, H3K9me3 Chip-Seq]; the trained
model would predict the target cell’s annotations
using the target cell’s [RNA-Seq, CTCF Chip-Seq,
H3K9me3 Chip-Seq] tracks.
Then, based on the subcompartment predictions,

we generate compartment predictions by setting A1
and A2 as A and B1, B2, or B3 as B. PYMB outputs
the predictions in.bed file format that can be loaded
into 1D Juicebox Hi-C visualization platform.28 Also,
PYMB subcompartment predictions also serve as
input for OpenMiChroM chromatin dynamics soft-
ware.25,26 OpenMiChroM employs the Minimal
Chromatin Model (MiChroM) polymer physics
energy function to generate an ensemble of 3D
structures that are consistent with 2D Hi-C data
from the 1D structural annotations generated from
PYMB.29,13,22,30,20 To evaluate the prediction effi-
ciency of PYMB we employed several measures
to assess the capability of PYMB to predict struc-
tural annotations correctly. Hi-C-based annotations
and PYMB predictions at the compartment level are
compared as True or False hits. Therefore, we ana-
lyzed the accuracy and the Area Under the Recei-
ver Operating Characteristic Curve (AUCROC)
score to measure the similarity between PYMB
and Hi-C-based annotations.31 We also obtained
information about mispredictions by building a con-
fusion matrix between the experimental annotations
and PYMB predictions. This analysis informs on
PYMB accuracy and shows which subcompart-
ments are prone to mislabeling. Further, we ana-
lyzed the multiclass AUROC using the one-vs-one
comparison to assess the prediction capability of
the model at predicting subcompartments.31 This
4

analysis uses the mean of the binary AUCROC
score for all combination pairs between subcom-
partments and averages over the scores. It is impor-
tant to emphasize that given that the cell GM12878-
hg19 is the only one with (A1, A2, B1, B2 and B3)
subcompartments experimentally annotated, this
is the only system where the model can be tested
for the predictive capability at the subcompartment
level.
3. Results

3.1. PYMB predicts compartment and
subcompartment annotations at 50 kbp
resolution from epigenetic data on Gm12878-
hg19

As mentioned, subcompartment annotations are
determined only for the cell line GM12878 in the
assembly hg19 using a Hi-C-based approach.11

Also, this cell line has multiple epigenetic marks
experiments available such as RNA-Seq, histone
modification ChIP-Seq, transcription factor ChIP-
Seq, among others. Given that this cell line is the
only cell with both structural annotations and chem-
ical information, we used it as the training set for any
prediction using PYMB. We show the accuracy of
PYMB predicting subcompartment annotations at
50 kbp using odd-numbered chromosomes as train-
ing data and even-numbered chromosomes as the
test data on GM12878-hg19. We also employed
PYMB in different sets of experiments to explore
the prediction capabilities limit as detailed below.
3.1.1. Compartment annotation predictions using
only RNA-seq yield highly accurate results. A/B
compartments have been reported to be
correlated with transcription activity. A-type
compartments have higher gene expression levels
when compared to B-type loci.11,9,15 It is expected
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that the distinction between A/B can be learned
from assays that correlate with transcription activity
of a genomic locus, such as RNA-Seq, ATAC-Seq,
and DNAse-Seq.32–34 To assess PYMB’s capability
to predict compartments using only RNA-seq data,
the model was trained using small and total RNA-
Seq of the odd chromosomes at 50 kb resolution.
Figure 2(A) presents the confusion matrix between
PYMB and ground truth (Hi-C-based). PYMB
demonstrated high compartment-predicting effi-
ciency using only RNA-seq data across even chro-
mosomes. We compare this prediction with a null
model only based on the intensity of the signal of
the RNA-Seq tracks. PYMB outperforms the null
model, regardless of the threshold on either small
or total RNA-Seq (Figure S1). Even though some
Figure 2. PYMB prediction performance on even-numbere
(A) Comparison between compartment annotation predicte
ment annotations. (B) Confusion matrix comparing HistM
predictions from PYMB and the experimental annotations
chromosomes at predicting subcompartment annotations
accuracy (blue). (D-E-F) Prediction performance at the comp
Seq, HistMod, and TF ChIP-Seq data. (G-H) AUROC sco
function of the number of unique experiments used as inpu

5

correlation was expected between transcription
and structural information, this result shows that
PYMB captures the non-trivial relationship between
RNA-Seq and compartment annotations.

3.1.2. PYMB predicts subcompartment annota-
tions using histone post-translational modifica-
tions. Histone Modifications (HistMod) are
considered a useful set of epigenetic marks to
characterize several aspects of genomic loci, such
as transcriptional activity and nuclear
positioning.35 Correlations between HistMod and
the subcompartment annotations have been sug-
gested in the literature.11,12 For example,
H3K4me1 and H3K36me3 are highly enriched on
active subcompartments (A1 and A2).35,36 We used
d chromosomes in GM12878-hg19 at 50 kbp resolution.
d with RNA-Seq, and the experiment-derived compart-
od ChIP-Seq and RNA-Seq based subcompartment

from Rao et al.11 (C) Performance results across even
measured by multiclass AUCROC score (black) and
artment and subcompartment level of PYMB using RNA-
res and accuracy of subcompartment predictions as a
t for PYMB.
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HistMod ChIP-Seq experiments and the RNA-Seq
data for GM12878-hg19 to optimize PYMB parame-
ters, then capturing the relationship between the
chemical composition of the genome with the struc-
tural annotations. PYMB training was performed on
the odd chromosomes and subcompartments pre-
dicted for even chromosomes at 50 kbp resolution.
In this scenario, PYMB used 11 different histone
modification ChIP-Seq, small RNA-Seq, and total
RNA-Seq directly extracted from the ENCODE
database.14 Figure 2(B) shows the accuracy and
confusion matrix of PYMB predictions of each sub-
compartment based on HistMod and RNA-Seq
data. PYMB has higher efficiency when predicting
subcompartments A1 and B2/3 than A2 and B1.
However, the majority of the mislabeled predictions
come from annotating B1 as B2/3, and A1 as A2. In
other words, PYMB mislabeling falls within the
same compartment. This shows the robustness of
this methodology in predicting compartments. Fig-
ure 2 also demonstrates that the accuracy and mul-
ticlass AUCROC for subcompartment prediction is
higher than 0.75 for most chromosomes while
always remaining above 0.70 for all chromosomes.
Therefore, the model achieves significant predictive
efficacy when using chemical information from Hist-
Mod and RNA-Seq.
3.1.3. Incorporating binding profiles of transcrip-
tion factors significantly increases prediction accu-
racy. The binding affinity of transcription factors
(TF) shows the enrichment of certain TFs in
specific regions of the genome. For example,
UBTF colocalizes with the chromatin that is
associated with the nucleolus.37 On the other hand,
ARID3A and STAT1 usually bind on active chro-
matin.38,39 These examples present possibilities of
using TF enrichment as input to call subcompart-
ments. We incorporated HistMod, RNA-Seq, and
TF ChIP-Seq data in the PYMB model. This data
set contains a total of 155 experimental tracks from
the GM12878-hg19 cell line available in ENCODE.
Figure 2(D) shows that including the TF and Hist-
Mod increases the accuracy of the prediction for
the compartment annotations when compared to
PYMB using only RNA-Seq (Figure 2(A)). Figure 2
(E) shows the confusion matrix indicating a signifi-
cant increase in accuracy for all the subcompart-
ments. These results suggest that TF tracks used
in PYMB help to differentiate subcompartments
and compartments. Figure 2(F) presents the multi-
class AUCROC and the accuracy of subcompart-
ment annotations for each even chromosome. As
expected, when PYMB uses additional information
from TF tracks and non-redundant data, both the
accuracy scores are higher than PYMB using only
HistMod and RNA-Seq data.
Interestingly, as shown in,11 the epigenetic profile

of B2 and B3 are highly similar. It was expected that
PYMB would have the lowest performance in
distinguishing between these subcompartments.
6

Figure S2 confusion matrix shows that the model
predicts most of the B2 subcompartment as B3.
The introduction of TF tracks increases PYMB’s
ability to predict B2 subcompartments.To further
assess the prediction ability of PYMB, we employed
machine learning approaches to predict subcom-
partments using the same training and test sets
as PYMB. Figure S3 reveals that PYMB outper-
forms all the tested machine-learning approaches.
Although personalized machine learning architec-
tures such as SCI-DNN16 perform similarly to
PYMB in predicting subcompartments from epige-
netic data as shown in Figure S3. In contrast, PYMB
parameters can be further used to analyze the rela-
tionship between structural annotations and their
biochemical profiles. This then suggests that the
complexity of the Potts model implemented within
PYMB captures the interplay between epigenome
composition and structure.
Next, we performed a data reduction test to

investigate how many experiments are necessary
for high-accuracy predictions. In context, there is a
lack of available tracks in some investigated
biosamples. This adds a new challenge of
predicting (sub) compartments in samples with
only a few ChIP-Seq experiments. In this
scenario, the model is trained using the
experiments available for the training (GM12878-
hg19) and the predicted cell line. We generated
the prediction on even chromosomes in
GM12878-hg19 using a different number of
experiments. The experiments were selected
randomly from the 155 set of TF, HistMod, and
RNA-Seq data. Figure 2(G–H) shows the
accuracy scores at predicting subcompartment
annotations across chromosomes using data sets
with the number of experiments ranging between
2 to 20. As expected, there is an increase in the
accuracy score as more data are used to predict
the subcompartments. Both performance
measures show that data sets containing less
than 4 experiments present lower accuracy. To
reach higher accuracy in the predictions, PYMB
should be trained using at least 4 experiments.
However, certain data sets containing less than 8
tracks have similar accuracy/AUCROC scores
than sets with a high number of experiments. This
suggests that some epigenetic marks may carry
information that helps PYMB to differentiate
subcompartments. For example, the best set of 4
experiments consists of EZH2, HDGF, KDM1A,
and TCF7. We include in Table S2 the sets of
experiments that yield the best results for each
number of experiments tested.

3.2. PYMB predicts compartment annotations
with high accuracy on human cells

Given that GM12878-hg19 is the only sample with
subcompartment annotations, comparing the
predictions at that level on other cell types or
samples is not possible. However, using Principal
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Component Analysis (PCA), compartment
annotations are extracted from the experimental
Hi-C maps of various cell lines and tissue samples
lacking subcompartment annotations. These
annotations are generated based on the first
eigenvector of the correlation matrix from Hi-C
maps.9 Now that we have experimentally deter-
mined compartment annotations to compare, we
used PYMB to predict the annotations for the follow-
ing cell lines (GRCh38 assembly): GM12878, IMR-
90, K562, A549, and HepG2.We anticipate that epi-
genetic marks exhibit similar, if not identical, func-
tions across various cell types, such as gene
silencing or activation, enhancement of transcrip-
tion, and other regulatory processes.40 Conse-
quently, we hypothesize that the observed
correlation between local biochemical composition
and structural information in GM12878-hg19 is also
present in other cells. This underlying assumption
enables PYMB to predict structural annotations
effectively by utilizing the respective epigenomes
of different cell types. In order to predict the struc-
tural annotations on these cells, we use all the chro-
mosomes from GM12878-hg19 as the training set
while using the biochemical markers of the target
cell to predict the structural annotations. Figure 3
(A) shows the performance of PYMB at predicting
compartment annotations measured by AUCROC
and accuracy. All cell lines show accuracy scores
higher than 0.80. This suggests that the correlations
between the epigenome (i.e. biochemical composi-
tion of the loci) and the structure learned by PYMB
are transferable across cell lines.
Figure 3(B) shows the comparison between the

predicted and experimental compartments on
chromosome 2. The compartment annotations
extracted from the sign of the principal
eigenvector may present ambiguity whether a
locus corresponding to a value close to zero
should be A or B. This ambiguous label is called
“weak” compartments,18 whereas the ones with a
high value are termed “strong” compartments. Here
we used the definition of strong compartments by
Zheng et al.18 The strong compartment has eigen-
vector values greater than the mean subtracted
one standard deviation of the unsigned eigenvector
values. As a result, PYMB accuracy is significantly
higher for strong compartments than weak ones
(Figure S4). This suggests that correlations
between epigenetics and structure can be learned
for strong compartments. However, these correla-
tions are ambiguous for weak compartments. Fur-
thermore, we tested the accuracy of PYMB in
predicting compartments on tissue samples from
single donors. We employed PYMB to generate
the A/B annotations using the single donor ChIP-
Seq available in the ENCODE database (accession
codes: ENCDO845WKR and ENCDO451RUA).
Predictions were computed for a transverse colon
sample from a 37 year-old male and a gastrocne-
mius medialis sample from a 54 year-old male.
7

The annotations were obtained at 50 kbp and 100
kbp resolution. Figure S5 shows that at 50 kbp
and 100 kbp resolutions, PYMB reaches high
scores on AUCROC and accuracy when predicting
the annotations on both samples, outperforming ML
learning methods such as CORNN18 for single
donor samples at 100kbp resolution. This indicates
that PYMB can be applied to extract compartment
annotations for single donor samples. This also indi-
cates that PYMB is transferable across cell lines,
tissue samples, and different human donors. More-
over, PYMB uses only local information at each
locus to predict subcompartment and compartment
annotations. These results also indicate that struc-
tural annotations correlate to the local biochemical
composition of the epigenome.

3.3. Human epigenetic signatures captured by
PYMB are transferable to other organisms

PYMB can also use epigenetic data and run
structural annotation predictions on other
organisms. Data on HistMod, TF, and RNA-Seq
are widely available for several other systems. It
has been reported that some marks have similar
functions across organisms.41,42 We expanded
PYMB to evaluate whether the model trained on
human cells (GM12878-hg19) would hold predictive
power on other living systems. We predicted the
subcompartment and compartment annotations
for the mouse cell line CH12.LX. CH12.LX cell line
has available Hi-C maps and multiple ChIP-Seq
and RNA-seq experiments. Therefore, it was possi-
ble to compare the accuracy of PYMB at the com-
partment level using the first eigenvector of the
correlation matrix of the Hi-C.9 Subsequently, we
predicted the structural annotations for this mouse
cell, and the distribution of subcompartments
across chromosomes is depicted in Figure S6.
Figure 3(C) shows that PYMB is able to predict

accurate compartments on this mouse cell line.
PYMB reaches accuracy scores around 0.85 or
higher across chromosomes. The efficient
performance of PYMB in predicting compartment
annotations for both mouse and human cells
underscores the concept that epigenetic marks,
such as transcription factor binding, histone
modifications, and transcription, exhibit
comparable functions across different organisms.
This similarity in function is observed as these
epigenetic marks consistently correlate with
structural annotations, regardless of the organism.
Further, we used OpenMiChroM to generate an
ensemble of 3D chromosomal structures using the
mice compartment annotations.25,26 We used the
set of structures to compute in silico Hi-C maps that
are consistent with the experiments. Figure 3(D)
shows the (in silico) and experimental Hi-C maps,
lower and upper triangle, respectively. These anal-
yses are presented for chromosomes 2 and 8 with
a representative 3D structural configuration. Com-
bining PYMB and OpenMiChrom tools allows gen-



Figure 3. Compartment prediction capability of PYMB across human and mice cells at 50kbp resolution. (A)
AUCROC score and accuracy measures between predicted compartment and compartment derived from
experimental Hi-C for multiple human cell lines. (B) Visual comparison between the eigenvector derived from Hi-C
(EV) and PYMB compartment predictions for the human cell lines: GM12878, IMR-90, K562, A549, and HepG2. (C)
AUCROC score and accuracy measures between predicted and experimental-derived compartments for the mice cell
line CH12.LX. (D) Mice cell line CH12.LX experimental Hi-C (upper triangle) and in silico Hi-C (bottom triangle) from
chromosome 2 and 8 along with a representative structure of each chromosome generated by OpenMiChroM25,26

using as input PYMB compartment annotations predictions.
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erating the ensemble of 3D chromosomal structures
across organisms43 using as input the chemical
composition of the epigenome alone.
3.4. Prediction of subcompartment
annotations on more than a hundred cell types
shows features on cell identity

As presented, PYMB predicts compartment and
subcompartment annotations across different cell
types. Therefore, we massively employed PYMB
to predict subcompartment annotations on all
8

human cell types (tissue samples and cell lines)
available in ENCODE database. The predictions
were performed for samples with ChIP-Seq or
RNA-Seq data using GRCh38 as the reference
genome. In addition, the following analysis was
performed for samples with at least four
experiments. Figure 4(A) shows the
subcompartment predictions on chromosome 2 for
more than 150 human cell types. Each color
represents a different subcompartment, while the
subpanel shows the frequency of
subcompartments at each locus across samples.



Figure 4. Subcompartment predictions for more than hundred human cell types highlight phylogenetic information.
(A) Chromosome 2 subcompartment annotations for cell types with at least 4 unique experiments found in the
ENCODE database (top), and the frequency of each subcompartment at each locus along the chromosome (bottom).
(B) Genomic sequence landscape projected using UMAP method for dimension reduction.44 (C) Normalized
frequency of subcompartment occupied by all human genes and housekeeping genes. Genomic placement of the
GAPDH gene across predicted cells (D) Cell specific genes found on A1 and A2 subcompartments for subset of cells.
CAMK4 gene is mostly found on A-type subcompartments for brain and T-cells. Similarly, CHD19 is mainly found in A
compartments for brain and heart cells. While these genes are in B-type loci for the rest of the cells.
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Interestingly, there are shared patterns between
cells, for example, some regions are annotated as
active subcompartments (A1 or A2) in all cell
lines. Also, there are loci where inactive
subcompartments (B1, B2, or B3) are predominant.
Figure 4(B) shows the genomic sequence space

projected using Uniform Manifold Approximation
and Projection (UMAP).44 Cell types and tissues
are clustered related to their biological sample. This
indicates that those cells have similar subcompart-
ment annotations. Figure 4(C) shows that most
human genes are in A1 or A2 loci in all the predicted
cells. A significant set of genes is located on A-type
loci only in a subset of cells. This is consistent with
cell-specific gene activity observed experimen-
tally.45 Moreover, genes associated with the sur-
vival of cells, i.e., house-keeping genes, are
expected to be active in all cells.45 We identified
the predicted type of loci where house-keeping
9

genes are located. Figure 4(C) shows that house-
keeping genes ubiquitously reside on A-type loci
across all the cells. Also, there is a high likelihood
for this set of genes to occupy the A1 locus. For
example, the house-keeping gene encoding
GAPDH (a protein needed for glycolysis46) is in
the A1 subcompartment across cells.
On the other hand, B compartment loci have a low

density of genes. Furthermore, B compartments
also align with the G-bands showing
heterochromatin (Figure S7). These results
suggest that PYMB may capture the activation
profile of the genome across the cell lines.
Further, we reviewed regions on the genome
active on only a subset of cell types. Therefore,
we expected these regions to be associated with
cell-specific genes. To explore this possibility, we
analyzed the activation of two different genes:
CAMK4 and CHD19. Figure 4(D) shows that the
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region containing CAMK4 has a high frequency of
A-type subcompartments on brain cells and T-
cells, while high B-type subcompartments
frequency on other cell lines. Similarly, the region
with the CDH19 gene was mostly active on brain
and heart cells while often inactive on the rest of
the cell types. This observation is consistent with
the experimental expression profiles for human
tissues found on the Human Protein Atlas
database (proteinatlas.org).47,48 This suggests that
PYMB can also capture cell-specific active and
inactive regions based on the local biochemical
composition. Given that the subcompartment anno-
tation profile was obtained for more than 150 cell
types, we organized all the cells based on the sim-
ilarity of these annotations across the genome. Fig-
ure S8 shows a dendrogram based on the
subcompartment annotation of each cell type.
Together with the cell clustering presented in Fig-
ure 4(B), this indicates that the subcompartment
annotations can assess cell similarity and may
serve as a phylogeny indicator.

3.5. Prediction of annotations at 5 kbp
suggests a relationship between cell identity
and compartments

Initially, PYMB was optimized to run
subcompartment predictions at 50 kbp resolution.
Next, we expanded the PYMB method to run at a
higher resolution of 5 kbp, relevant to single
genes. We generated A/B annotations for
GM12878-hg19 for training. Compartments A and
B are determined using POSSUMM software.49

To assess PYMB prediction accuracy, we used
GM12878-hg19 chromosome 2 as the training set
and ran the prediction to the others. For 5 kbp pre-
dictions, we used only HistMod data. Figure 5(A)
shows the A/B annotation predictions for multiple
chromosomes in GM12878-hg19. PYMB reaches
an accuracy score of 0.80 across chromosomes
at 5 kbp. We also observed that PYMB prediction
on strong compartments is higher, yielding an accu-
racy of 0.84. Further, to test the transferability of the
5 kbpmodel, we used PYMB to predict the compart-
ment annotations for the chromosomes of the K562
cell line (GRCh38 assembly). Figure 5(B) show that
PYMB predictions on K562 reach similar accuracy
to the predictions on GM12878-hg19. This indicates
that the correlations between structural characteris-
tics and the local epigenome are transferable at 5
kbp resolution. Predictions at higher resolution have
the advantage of being at the genomic scale as sin-
gle genes. Therefore, gene quantification from
RNA-seq experiments was used to obtain FPKM
(fragments per kilobase of exon per million mapped
fragments). First, we aligned the predicted compart-
ment annotations at 5 kbp resolution with the genes.
Then, the gene label was assigned to either A or B
based on most predicted compartment annotations
within the gene. Figure 5(B) shows the average of
FPKM for all the genes assigned either A or B.
10
The genes predicted as being A compartment show
an increased expression (higher FPKM). This sug-
gested that structural motifs correlate with the gene
expression level. Moreover, we expect more tran-
scribed genes in a specific sample to reside in com-
partment A. We also extracted roughly 100 genes
with higher and lower relative expression (predicted
sample compared to other cell types) from the
Roadmap Epigenomics Cell and Tissue Gene
Expression Profiles data set.50–52 When each gene
for both lists was mapped to the predictions from
PYMB for GM12878-hg19, we found most of the
high relative expression genes within A-
compartment loci. On the other hand, the low rela-
tive expression genes did not show a strong prefer-
ence for any specific compartment, as shown in
Figure 5. This was also observed on other cell lines
and tissue samples such as K562, A549, HMEC,
and thymus cells (Figure 5(C)). While highly
expressed genes are likely to be associated with
A compartments, genes with low expression are
equally likely to be in either compartment.

3.6. Inferring epigenetic marks enrichment on
subcompartments from PyMEGABASE
parameters

We have demonstrated the capability of PYMB to
predict annotations across chromosomes and cell
types. Here, we explore the information that can
be extracted from the model itself after the
training. During training, PYMB fits the energy-
coupling terms, Jexp Sub; signalvalueð Þ, in the
information space spanned by each
subcompartment and the discrete values of the
signal intensity for each experiment. For example,
the energy term associated with the combination
of the subcompartment A1 and signal intensity of
7 for the ChIP-Seq track of H3K9me3 is denoted
as JH3K9me3 A1; 7ð Þ. We then extracted the coupling
term of each subcompartment with every signal
intensity value (0–9), which depicts the learned
correlation between them. A high J value means a
high likelihood of that signal intensity value being
associated with the respective subcompartment
and vice versa. Figure 6(A) shows the coupling
term between each subcompartment annotation
for every signal intensity value for some
experimental tracks. Starting with H3K36me3, we
noticed that high signal intensity values have high
energy coupling with A1 subcompartments. In
contrast, low signal intensity values have a high
energy coupling term with B2 and B3. This is
interpreted as H3K36me3 being likely enriched on
A1 subcompartments and depleted on B2 and B3
subcompartments. Similarly, Figure 6(A) shows
that SKIL is likely enriched on A2
subcompartments, CEBPB is enriched in B1 and
B2, CBX5 is enriched in B2, and SUZ12 is
enriched in B2 and B3. Finally, E2F8 has high
energy coupling terms on high signal intensity
values with A-type subcompartments. This



Figure 5. PYMB compartment accurate predictions at 5 kbp demonstrate a correlation between gene activation and
expression with structural motifs. (A) Accuracy of PYMB predictions with the first eigenvector derived from the
experimental Hi-C on GM12878-hg19 for all loci and strong-compartment loci. (B) PYMB performance at predicting
compartments in K562 for all loci and strong compartment loci. (C) Gene expression measured by fragments per kilo-
base of exon per million mapped fragments (FPMK) for each compartment in GM12878-hg19, K562, A549, HMEC,
and thymus cells. (D) Predicted compartment localization of 100 genes with higher-relative gene expression and 100
genes with lower-relative expression for GM12878-hg19, K562, A549, HMEC, and thymus cells.
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transcription factor is likely found in active
chromatin while depleted in inactive chromatin.
The predicted enrichment profiles are consistent
11
with experimental observations. For example,
HistMod H3K36me3 is enriched on active
chromatin.53 At the same time, TF CBX5 and TF



Figure 6. Model coupling energy terms demonstrate the relationship between subcompartment and epigenomic
marks enrichment. (A) Energy coupling versus experiment signal intensity, plotted for various subcompartments. The
panels show the curves for different epigenetic marks, including HistMod and TF (H3K36me3, SKIL, CEBPB, CEBX5,
SUZ12, and E2F8), derived from training on GM12878-hg19 at 50 kbp resolution. (B) Subcompartment enrichment
profile of each epigenetic mark. Each row of the heat maps corresponds to an epigenetic factor, each column
represents a subcompartment, and the color depicts the intensity of coupling obtained from the linear slope of the
energy coupling curves. A red hue indicates a strong association, while blue represents anticorrelation.

E. Dodero-Rojas, M.F. Mello, S. Brahmachari, et al. Journal of Molecular Biology 435 (2023) 168180
SUZ12 are likely to be found on inactive chro-
matin.54,55 A linear fit was performed on the energy
coupling curves for each subcompartment to better
visualize the relationship between the enrichment of
epigenetic marks and subcompartments. The posi-
tive slope of the fit indicates enrichment of the epi-
genetic mark on that subcompartment. In contrast,
a negative slope is associated with depletion. Fig-
ure 6(B) presents the slopes for all the possible
marks found in ENCODE for GM12878-hg19. Most
of the Histone Modifications are enriched in A-type
subcompartments while depleted in B-type regions,
except for H3K27me3 and H3K9me3.56 On the
other hand, the transcription factors have diverse
profiles of enrichment for different subcompart-
ments. For example, CUX1 is predicted to be
enriched in A1 and B2 subcompartments, while
12
SIX5 is only expected in the B3 subcompartments.
This enrichment analysis becomes highly relevant
when characteristics of the subcompartments are
incorporated into the discussion. For example, B2
and B3 subcompartments are correlated with
lamina-associated domains.11,12 Suppose an epi-
genetic mark is enriched exclusively on those sub-
compartments. In that case, we expect it to be
located close to the nuclear envelope. Hence, from
Figure 6(B) we expect that transcription factors
such as EGR1, CBX5, USF1, and ZNF592 would
be close to lamina due to enrichment on B2 and
B3 compartments. In contrast, marks enriched on
A1 and B1, such as H3K36me3, SMARCA5,
BACH1, and H3K27me3, would be positioned
towards the interior of the nucleus, as these sub-
compartments lack strong association with the
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nuclear lamina.11,12 Similarly, B2 is found close to
nucleolus-associated domains,11 which is consis-
tent with the high slope found on two nucleolar tran-
scription factors: UBF1 and ZZZ3.47,48 Together,
these results show how the parameters of PYMB
may be interpreted to elucidate the correlations
between epigenomic factors and the structural
aspects, including features like nuclear positioning.

4. Conclusions

We present a neural-network model called
PyMEGABASE (PYMB), capable of predicting
subcompartment and compartment annotations
from 1D epigenomic data, which reflects the
biochemical composition of the epigenome. PYMB
encodes the relationship between structural
annotations and biochemical signals at a locus,
enabling interpretable and transferable
predictions. Building upon our previous work,
MEGABASE,13 we have significantly improved pre-
processing and integrating multi-modal data, result-
ing in more reliable predictions.
Implemented in Python, PYMB software is user-

friendly and includes automated steps for
downloading user-defined data, processing, de
novo training, and making predictions based on
available data. PYMB can predict (sub)
compartment annotations across cell lines and
species (Figs. 2 and 3). This suggests that PYMB,
in decoding the relationship between epigenetic
enrichment and structural annotations, learns
physicochemical rules transferable across cell
types and organisms.
PYMB-predicted subcompartment sequences for

a wide variety of human cell types and samples
available in ENCODE, when projected in lower
dimensions (two UMAP dimensions), show
clustering consistent with their cellular identities
(Figure 3). These predictions, yet to be tested
experimentally, suggest that subcompartment
annotation sequences may serve as markers of
cellular identity. This work paves the way for
investigating cell differentiation through the lens of
changing subcompartments, raising questions
about the relationship between these structural
changes and cell-fate transitions.
Analyzing the chromosomal positioning of genes,

we found that most human genes lie in A-type
subcompartments, while B-type regions have low
gene density across all cells (Figure 3).
Furthermore, housekeeping genes are highly
enriched in A1-type loci, indicating a strong
correlation between gene density and
subcompartment annotations. By using PYMB to
predict compartment annotations (A and B) at
finer resolutions (5 kbp) relevant to single genes,
we observed higher average gene expression
levels in the A compartment (Figure 4). Genes
with high relative expression in a particular cell
13
type are more likely to reside in the A
compartment of that cell type. However, the
subset of genes with low relative expression does
not show a preference for any compartment,
warranting future investigation.
PYMB’s interpretability is one of its advantages.

By investigating the trained parameters, we can
elucidate the underlying rules that PYMB learns
from the correlations between the epigenome and
structural annotations (Figure 5). For example,
PYMB suggests that most Histone Modifications
are enriched in A-type compartments and
depleted in B-type compartments, while the
enrichment profile across subcompartments is
highly diverse for Transcription Factors.
Additionally, using the enrichment profile derived
from the model’s parameters, we can discover
specific characteristics of epigenetic marks, such
as nuclear positioning or activation levels of the
regions where these motifs are bound or located.
In conclusion, PYMB serves as proof of principle

that the epigenome contains enough information
to predict the structural motif of a chromosomal
locus. We explored the relationship across cell
types, tissues, and species. However, much
remains to be discovered about chromatin
structural motifs at the compartment and
subcompartment levels. Further research on the
connection between gene expression, typically
associated with biological function, and structural
compartments present an intriguing future
endeavor. The user-friendly nature of PYMB,
combined with its high predictive power, will
enable researchers to incorporate structural
aspects of chromosomes into their investigations.
Our software is publicly available at https://
github.com/ed29rice/PyMEGABASE, including
examples and tutorials written on Colab Jupyter
Notebooks to facilitate easy access to annotation
prediction using PyMEGABASE for the scientific
community.
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