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Abstract
Adaptive random search approaches have been shown to be effective for global optimization
problems, where under certain conditions, the expected performance time increases only
linearly with dimension. However, previous analyses assume that the objective function can
be observed directly. We consider the case where the objective function must be estimated,
often using a noisy function, as in simulation. We present a finite-time analysis of algorithm
performance that combines estimation with a sampling distribution. We present a framework
called Hesitant Adaptive Search with Estimation, and derive an upper bound on function
evaluations that is cubic in dimension, under certain conditions. We extend the framework to
Quantile Adaptive Search with Estimation, which focuses sampling points from a series of
nested quantile level sets. The analyses suggest that computational effort is better expended
on sampling improving points than refining estimates of objective function values during the
progress of an adaptive search algorithm.

1 Introduction

Adaptive random search algorithms for global optimization are often characterized by how
theygenerate pointswithin a feasible region, i.e., their samplingdistribution.Manyalgorithms
attempt to iteratively improve the sampling distribution to focus on promising regions, based
on observations [3, 5, 8, 16–20, 22, 27]. An additional complication is the need to estimate
the objective function value as the algorithm progresses.

This paper provides a finite-time analysis of a class of adaptive random search algorithms
applied to problems that require estimation to account for noise, that is, problems where
the objective function cannot be evaluated directly but must be estimated. We describe an
extension to Hesitant Adaptive Search, we call Hesitant Adaptive Search with Estimation
(HAS-E), and embed a confidence interval on the estimate of the current objective function
value into the algorithm. The analysis relates the number of replications used in the estimation
of the objective function to the overall performance of the algorithm.
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In contrast to asymptotic convergence, a finite-time analysis of performance is available
for a class of adaptive random search algorithmswhen the objective function can be evaluated
directly through an oracle (i.e., a black-box function). Specifically, prior research has derived
a finite-time analysis for Pure Adaptive Search (PAS), Hesitant Adaptive Search (HAS),
Backtracking Adaptive Search (BAS), and Annealing Adaptive Search (AAS) [2, 4, 21, 23,
25–28, 30, 31].

These algorithms provide a framework for analysis, and are not intended to be imple-
mented directly. However, the analyses shed light on the role of the sampling distribution
and probability of generating improving points on performance. Under certain conditions,
the expected number of function evaluations required to sample below a specified objective
function value increases only linearly in dimensionwhen optimizing a functionwithout noise.
We address the question of how estimation of a noisy function impacts the performance.

We first analyze the performance of HAS-E, where the sampling distribution focuses on
nested level sets while allowing for ‘hesitation.’ We also introduce a new adaptive random
search algorithm, called Quantile Adaptive Search with Estimation (QAS-E), which samples
over the entire domain but parametrically modifies the sampling distribution based on a
sequence of quantiles. The motivation for the analysis of QAS-E is to provide finite-time
analyses that can be adapted for use in adaptive random search algorithms that use quantiles
in the adaptive mechanics [6, 7, 9, 29].

The main result of this paper is in Theorem 3, which provides an upper bound on the
expected number of function evaluations (including replications) required to first obtain a
value within a target ε of the global minimum. This is used to show, in Corollary 1, that under
certain conditions the expected number of function evaluations (including replications) to
obtain a value less than ε above the minimum is bounded by a cubic function of the domain
dimension.We then use the analysis of HAS-E to derive analogous bounds for QAS-E, which
resembles quantile-based algorithms in practice.

2 Preliminaries

Consider an optimization problem,

min
x∈S f (x) (P)

where S is a closed and bounded subset of Rn , x ∈ S ⊂ R
n , and f : Rn → R. We assume

a unique minimum, and denote the minimum value and the optimal point in the domain,
respectively, as:

y∗ = min
x∈S f (x) and x∗ = argmin

x∈S
f (x). (1)

Similarly, denote the maximum value and a maximal point as:

y∗ = max
x∈S f (x) and x∗ = argmax

x∈S
f (x). (2)

We only use y∗ in the analysis, and any value associated with an upper confidence bound on
y∗ may be used.

Furthermore, we define the diameter d of S as the greatest distance between any two points
in S.
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We are particularly interested in the situation where the objective function cannot be
evaluated directly but is expressed as

f (x) = E[g(x, χ)] (3)

where g(x, χ) is a “noisy” function of x ∈ S and a random variable χ . Often, g(x, χ) is
evaluated using a discrete-event simulation and is replicated a number of times at each point
x , taking the sample mean as an estimate of f (x) [1, 13]. In this paper, we seek to relate
the number of replications on an iteration to the overall performance of an adaptive random
search algorithm.

The finite-time analysis of PureAdaptive Search establishes that, under certain conditions,
the expected number of iterations (i.e., function evaluations) until PAS achieves a value close
to the minimum increases only linearly in terms of the dimension of the domain [27, 30, 31].
However, the requirement that PAS improves at every iteration makes it difficult to imple-
ment practically. Hesitant Adaptive Search generalizes PAS by relaxing this requirement
and allowing hesitation, thereby extending the class of algorithms it represents [4, 26]. We
summarize HAS and a key result.

HAS is defined by a sampling distribution ζ with support on S and a bettering probability
b(y), 0 < b(y) ≤ 1, defined for y∗ < y ≤ y∗. On any iteration with objective function value
y, HAS generates an improving point with probability b(y) by drawing from the normalized
restriction of ζ on the improving level set. The probability of hesitation is 1 − b(y), where
the current point does not change. HAS is defined as follows.
Hesitant Adaptive Search (HAS), cf. [4]

– Step 0 Sample X0 in S according to the probability distribution ζ on S. Set Ȳ0 = f (X0).
Set k = 0.

– Step 1 Generate Xk+1 from the normalized restriction of ζ on the improving set Sk =
{x ∈ S : f (x) < Ȳk} with probability b(Ȳk), and set Ȳk+1 = f (Xk+1). Otherwise, set
Xk+1 = Xk and Ȳk+1 = Ȳk .

– Step 2 If a stopping criterion is met, stop. Otherwise, increment k and return to Step 1.

Note that Ȳk is non-increasing, and is decreasing on any iteration with probability b(Ȳk).
The finite-time analysis of HAS in [4] provides a closed form expression for the expected

number of iterations until reaching a specified ε > 0 above the minimum function value,
denoted E[N (y∗ + ε)], as,

E[N (y∗ + ε)] = 1 +
∫ ∞

y∗+ε

dρ(t)

b(t) · p(t) (4)

where ρ(y) = ζ( f −1([−∞, y])), and p(y) = ρ((−∞, y]). A complete characterization of
HAS for problems with mixed continuous-integer variables is in [26].

The HAS analysis provides insight into the relationship between the bettering probability
and performance. However, HAS is still difficult to implement because it is impractical to
draw from the normalized restriction of ζ on the improving level set. Another way to define
an adaptive random search algorithm is to always sample from the entire set S, and iteratively
update a parameter controlling the sampling distribution.

Annealing Adaptive Search is an abstraction of simulation annealing, and it always sam-
ples from a Boltzmann distribution on the entire set S. The temperature parameter for the
Bolzmann distribution is iteratively decreased to control the update of the sampling distribu-
tion. The analysis in [23, 24] establishes stochastic dominance between AAS and a special
case of HAS, making use of the finite-time analysis of HAS. The analysis of AAS was used
to derive an analytical cooling schedule for simulated annealing algorithms [24].

123



34 Journal of Global Optimization (2023) 87:31–55

The analyses of PAS, HAS, and AAS provide insight into the performance of adaptive
random search algorithms, however, they assume the objective function f (x) can be evaluated
exactly. As random search algorithms are being applied broadly to functions that require
estimation, a major question is how estimation impacts performance.

3 Hesitant adaptive random search with estimation (HAS-E)

Given that the value of f (x), for x ∈ S, cannot be directly observed, we consider estimating
the value by performing a certain number of independent replications and taking the sample
mean. Suppose g(x, χr ) is evaluated at a point x for R replications, r = 1, . . . , R. The
sample mean estimate (dropping the x for notational convenience) is,

ŷest =
∑R

r=1 g(x, χr )

R
. (5)

We assume that ŷest ∼ N ( f (x), σ√
R
), where σ 2 = Var(g(x, χ)), and σ is known. A

standard probability bound is given by

P

(
f (x) − σ · zα/2√

R
≤ ŷest ≤ f (x) + σ · zα/2√

R

)
= 1 − α (6)

for 0 ≤ α ≤ 1 and where zα/2 is the standard normal value at α/2.
We are interested in an upper bound of the estimate and let ŷhigh be the upper confidence

interval value, given by

ŷhigh = ŷest + σ · zα/2√
R

. (7)

Since we want to know how far ŷhigh is from the true value f (x), we note that ŷhigh ∼
N

(
f (x) + σ ·zα/2√

R
, σ√

R

)
and, also from (6), we have,

P

(
f (x) ≤ ŷhigh ≤ f (x) + 2

σ · zα/2√
R

)
= 1 − α. (8)

HAS-E uses the estimate ŷhigh to focus sampling on regions that are likely to be improving.
In contrast to HAS that samples in the improving level set with a bettering probability, HAS-E
samples in the level set associated with ŷhigh with a bettering probability.

On the kth iteration of HAS-E, the sampled point xk ∈ S is evaluated with Rk independent
replications of g(xk, χr ) for r = 1, . . . , Rk , and then the estimate ŷestk is calculated as in (5)

and the upper bound ŷhighk as in (7). We let yk = f (xk) be the true objective function value
at xk , and the improving level set Syk be

Syk = {x ∈ S : f (x) < yk}. (9)

Similarly, we let

S
ŷhighk

= {x ∈ S : f (x) < ŷhighk } (10)

be the level set associated with the upper confidence interval bound and note that

P
(
Syk ⊂ S

ŷhighk

)
≥ 1 − α
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from (8).
We are interested in sampling a point in a target level set Sy∗+ε for some ε > 0. The

general approach of HAS-E is to sample from the normalized restriction of ζ on S
ȳhighk

with

bettering probability b
(
ȳhighk

)
, and hesitate (remain at the same point) with probability

1 − b
(
ȳhighk

)
, where ȳhighk is the estimated upper confidence bound on the kth iteration.

Later, for analysis purposes, we let γ be a minimum bettering probability such that b(y) ≥ γ

for y∗ + ε ≤ y ≤ y∗. See Fig. 1 for an illustration of three iterations of HAS-E.
HAS-E requires input parameters α and σ , along with a sampling distribution ζ with

support on the entire domain S, and the bettering probability b(y). The input parameter α

is used to determine how conservative the user wants to be, as in (8). HAS-E also requires
a sequence of the number of replications on iteration k, i.e., {Rk, k = 0, 1, . . .}, which is
discussed later.

As with HAS, the HAS-E algorithm is a framework for analysis, and not intended to be
implemented directly. However, the framework allows us to analyze the algorithm’s perfor-
mance on any iteration k.
Hesitant Adaptive Search with Estimation (HAS-E)

– Step 0 Sample X0 in S according to the probability distribution ζ on S. Conduct R0

independent replications of the function at the initial selected point, i.e., g(X0, χr ) for
r = 1, . . . , R0. Estimate the value ŷhigh0 as in (7) and set ȳhigh0 = ŷhigh0 . Set Ȳ0 = f (X0).
Set k = 0.

– Step 1Generate Xk+1 from the normalized restriction of ζ on the set S
ȳhighk

with bettering

probability b(ȳhighk ), and estimate ŷhighk+1 as in (7) with Rk independent replications of

g(Xk+1, χr ) for r = 1, . . . , Rk .Otherwise (with probability 1−b(ȳhighk )), set Xk+1 = Xk

and ŷhighk+1 = ŷhighk . Then update

Ȳk+1 =
{
f (Xk+1) if f (Xk+1) < Ȳk
Ȳk otherwise

and its associated upper confidence bound estimate,

ȳhighk+1 =
{
ŷhighk+1 if f (Xk+1) < Ȳk
ȳhighk otherwise.

– Step 2 If a stopping criterion is met, stop. Otherwise, increment k and return to Step 1.

Note that Ȳk is non-increasing, however it is possible for ȳ
high
k to increase and decrease.

The analysis begins with Theorem 1, characterizing the number of replications chosen on
each iteration. Theorem 1 provides the number of replications needed to achieve the degree of
confidence the user desires (α) given problemcharacteristics.Wenext prove inTheorem2 that
under certain assumptions about the replications, HAS-E stochastically dominates a special
case of HAS without estimation. This allows us to provide (in Theorem 3) upper bounds on
the expected number of HAS-E iterations and the expected number of function evaluations,
including replications, to achieve an optimal solution with function value below a specified
threshold.AlthoughHAS-E is not directly implementable, the statement inTheorem3 implies
that, on average, the best observed point after the specified number of function evaluations,
will have a true function value less than y∗ + ε. Finally, Corollary 1 provides bounds on
the expected number of HAS-E iterations and expected number of function evaluations,
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Fig. 1 An illustration of three HAS-E iterations (k = 0, 1, 2) on a one-dimensional problem. The sampled
points are labeled x0, x1, and x2, with true values y0, y1, and y2. The estimated values, ŷestk , and the upper

confidence values, ŷhighk , are shown for k = 0, 1, 2. The best true values, ȳ0, ȳ1, and ȳ2, and their associated

upper confidence values ȳhigh0 , ȳhigh1 , and ȳhigh2 are also illustrated

that, under certain assumptions, increase linearly in dimension and cubic in dimension,
respectively.

For purposes of our analysis, we consider a lower bound on the ratio of volumes of the
true level set to the level set associated with the upper confidence interval bound ŷhighk , i.e.,
ν(Syk )/ν(S

ŷhighk
), where ν(·) is the n-dimensional volume of a set. A trivial lower bound for

this quantity can be based on the desired accuracy value ε, with ε > 0. For yk and ŷhighk such

that y∗ + ε < yk ≤ ŷhighk ≤ y∗, the following lower bound on the ratio

ν(Syk )

ν(S
ŷhighk

)
≥ ν(Sy∗+ε)

ν(S)

holds.
However, this trivial lower boundmay be very small, so we consider another lower bound,

and relate it to the number of replications used in the estimation. We let q denote a lower
bound on the ratio, with 0 < q < 1, such that

ν(Syk )

ν(S
ŷhighk

)
≥ q

for y∗ + ε < yk ≤ ŷhighk ≤ y∗. Figure2 illustrates the level sets Syk and S
ŷhighk

. Notice

that the ratio of the volumes ν(Syk )/ν
(
S
ŷhighk

)
becomes close to 1 as the distance between

the values ŷhighk and yk decreases, which typically occurs as the number of replications
increases. Theorem 1 provides a bound on the number of replications needed such that the
ratio of volumes can be bounded below for a selected value q .
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Fig. 2 An illustration of the values yk and ŷhighk along with their corresponding level sets Syk and S
ŷhighk

for

a one-dimensional problem. The level sets are shown highlighted on the horizontal axis. The ratio between the

volumes of the level sets, ν(Syk )/ν

(
S
ŷhighk

)
, increases and approaches one as the difference between ŷhighk

and yk decreases and ŷhighk approaches yk (which happens with a large number of replications)

For a function f (x) on domain S, we define a quantity Kq , for a given 0 < q < 1, which
can be viewed as the maximum ratio of the change in objective function to the diameter of S

Kq = κq

d
(11)

where κq is the maximum value such that ν(Sz)/ν(Sz+κq ) > q for any z, y∗ < z < y∗. The
quantity Kq depends on characteristics of the problem.

Furthermore, we define By as the largest ball centered at x∗ that can be inscribed inside a
level set Sy for y∗ < y < y∗, and let ry be its radius. Using these two defined concepts, we
now relate the number of replications to a selected q .

Theorem 1 Consider problem (P) and the kth iteration of HAS-E with xk ∈ S, yk = f (xk),
y∗ + ε < yk ≤ y∗ for ε > 0, and with ŷhighk estimated with R replications, as in (7). Also,

suppose that yk ≤ ŷhighk ≤ yk + 2·σ ·zα/2√
R

(which occurs with probability (1 − α)). For any

given value 0 < q < 1 and associated Kq , if

R ≥
(

n
√
q · 2 · σ · zα/2

(1 − n
√
q) · ry∗+ε · Kq

)2

(12)

then

ν(Syk )

ν(S
ŷhighk

)
≥ q. (13)

Proof See the proof in Appendix A. ��
Theorem 1 provides an expression for the number of replications needed to achieve a

lower bound of q . When the value of q is close to one, indicating a relatively tight upper
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confidence bound, more replications are needed than the number of replications when q has
a small value. The difference becomes more pronounced as the dimension of the problem
increases. Setting the number of replications equal to the expression in (12), we use Lemma 1
to show that the number of replications is on the order of n2,

(
n
√
q · 2 · σ · zα/2

(1 − n
√
q) · ry∗+ε · Kq

)2

≤
(

q

1 − q
− (n − 1)

ln(q)

(1 − q)2

)2 (
2 · σ · zα/2

ry∗+ε · Kq

)2

. (14)

This suggests that the number of replications should increase quadratically in dimension
to achieve a tight estimate. We ask the question whether a tight estimate is worthwhile for
overall performance.

We next develop an upper bound on the expected number of iterations of HAS-E to achieve
a function value of y∗ + ε or better.

The analysis of HAS-E proceeds in Theorem 2 by showing that HAS-E stochastically
dominates a special case of the HAS algorithm, that we call HAS1. Then, using HAS1,
Theorem 3 provides an upper bound on the expected number of iterations of HAS-E and
expected number of function evaluations (including replications) to achieve y∗ + ε or better.

The special case HAS1 has a uniform sampling distribution, i.e., ζ H AS1 ∼ Uniform, and
the bettering probability is chosen to be constant for all y,

bH AS1(y) = γ · (1 − α) · q (15)

where 0 < γ ≤ 1, 0 < α < 1, and 0 < q < 1.
Let Ȳ H ASE

k be the best sampled value on the kth iteration of the HAS-E algorithm. Let
Ȳ H AS1
k be the best sampled value of HAS1 on the kth iteration.
For the performance analysis of HAS-E in Theorems 2, 3, and Corollary 1, we make the

following assumptions.

Assumption 1 (i) The sampling distribution ζ dominates the uniform distribution on S, that
is,

P
(
Ȳ H ASE
0 ≤ y

)
≥ P

(
Ȳ H AS1
0 ≤ y

)
for y∗ < y ≤ y∗.

(ii) The bettering probability in HAS-E is bounded below by a positive constant, that is, for
some positive γ , 0 < γ ≤ 1,

b(y) ≥ γ for y∗ < y ≤ y∗.

Theorem 2 proves stochastic dominance of HAS-E over HAS1.

Theorem 2 Given the conditions in Assumption 1 and setting Rk = R for all k as,

R =
(

n
√
q · 2 · σ · zα/2

(1 − n
√
q) · ry∗+ε · Kq

)2

(16)

then Ȳ H ASE
k stochastically dominates Ȳ H AS1

k , that is,

P(Ȳ H ASE
k ≤ y) ≥ P(Ȳ H AS1

k ≤ y) for k = 0, 1, . . .

where y∗ < y ≤ y∗.

Proof The proof is provided in Appendix A. ��
Since Ȳ H ASE

k stochastically dominates Ȳ H AS1
k , and the finite-time performance of HAS1

is captured in [4, 26], we can bound the finite-time behavior of HAS-E.
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We are particularly interested in the expected behavior. We next derive an upper bound on
the expected number of HAS-E iterations to achieve a sample point within a target level set
Sy∗+ε for ε > 0, denoted E[NHASE

I (y∗ + ε)]. The proof relies on the stochastic dominance
of HAS-E over HAS1 in Theorem 2, and uses an upper bound on HAS1 iterations, as in (4).
Theorem3also expresses the expectednumber of function evaluations, including replications,
needed to achieve a sample pointwithin the target level set Sy∗+ε , denoted E[NHASE

R (y∗+ε)].
Theorem 3 An upper bound on the expected number of HAS-E iterations until reaching a
value of y∗ + ε or better, for ε > 0, is given by,

E[NHASE
I (y∗ + ε)] ≤ 1 +

(
1

γ · (1 − α) · q
)
ln

(
ν(S)

ν(Sy∗+ε)

)
(17)

and an upper bound on the expected number of HAS-E function evaluations including repli-
cations is

E[NHASE
R (y∗ + ε)] ≤

(
n
√
q · 2 · σ · zα/2

(1 − n
√
q) · ry∗+ε · Kq

)2

E[NHASE
I (y∗ + ε)]. (18)

Proof See the proof in Appendix A. ��
The expressions in (17) and (18) provide insight into the value of replications. Focusing on

the impact of q in (17), we see that the expected number of iterations decreases as q increases,
indicating some benefit to a large value of q with a relatively tight upper confidence bound.
However, the expected number of replications in (18) indicates that the large number of
replications needed for a large value of q overshadows the benefit. This can be interpreted as
a tradeoff between sampling from a larger than needed level set (with loose upper confidence
bound and fewer replications) and sampling from a more accurate estimate of the current
level set (with tight upper confidence bound and more replications). The expected number
of replications also reflects the desired tightness of the upper confidence bound, through
zα/2. This leads us to consider algorithms that use few replications as long as the estimation
approaches the true function value as the algorithm approaches the global minimum.

To illustrate these results,wepresent a one-dimensional sample problem, f (x), in Fig. 3(a).
Details are provided inAppendixC.Weplot the number of replications R, expected number of
iterations E[NHASE

I (y∗ +ε)], and expected number of function evaluations E[NHASE
R (y∗ +

ε)] for a range of q values for the sample problem. Figure3(b) illustrates that the number
of replications increases with q , whereas Fig. 3(c) illustrates that the number of iterations
decreases with q . Combined, the total number of function evaluations including replications
increases with q , as shown in Fig. 3(d). This illustrates that fewer replications with a loose
upper confidence bound is effective for overall performance.

We also explore the impact of dimension n on function evaluations in Corollary 1. The
upper bound on the number of replications in (14) indicate that the number of replications
is quadratic in dimension. The bound on expected number of iterations in (19) is linear in
dimension, for problems satisfying the conditions in Corollary 1. Together, the expected num-
ber of total function evaluations including replications in Corollary 1 is cubic in dimension.
An interpretation is that sampling on the level set associated with the upper confidence bound
as opposed to the true level set increases the number of function evaluations quadratically
in dimension as opposed to the number needed if the function were able to be evaluated
exactly. Also, the dimension n magnifies the difference comparing values of q , reinforcing
the intuition that fewer replications are better.

The following corollary couples this with a bound on ν(S)/ν(Sy∗+ε) in terms of dimension
n for a class of problems satisfying a Lipschitz constant.
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Fig. 3 A one-dimensional sample problem f (x), illustrating that the number of replications R, as in (16),
increase as q increases, while the expected number of iterations E[NH ASE

I (y∗ + ε)], as in (17), decrease as q
increases. The bound on expected number of total function evaluations including replications, E[NH ASE

R (y∗+
ε)], as in (18), increase as q increases

Corollary 1 When S in (P) is a convex feasible region in n dimensions with a diameter d and
f (x) satisfies the Lipschitz condition with Lipschitz constant at most L, then the expected
number of iterations for HAS-E to reach a value y∗ + ε, ε > 0, is bounded by,

E[NHASE
I (y∗ + ε)] ≤ 1 +

(
n

γ · (1 − α) · q
)
ln

(L · d
ε

)
(19)

and the expected number of function evaluations (including replications) to achieve a value
of y∗ + ε or better is upper-bounded by a cubic function of domain dimension,

E
[
NHASE
R (y∗ + ε)

]

≤
((

q

1 − q
−(n − 1)

ln(q)

(1 − q)2

) (
2 · σ · zα/2

ry∗+ε · Kq

))2 (
1 +

(
n

γ · (1 − α) · q
)
ln

(L · d
ε

))

∼ O
(
n3

)
.
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Proof The expression in (17), combined with the bounds on
(
ν(S)/ν(Sy∗+ε)

)
in [26, 27, 30],

produce the linear number of iterations. Coupling this with the upper bound on replications
that is quadratic in dimension, as in (14), provides anupper boundon total function evaluations
that is cubic in dimension. ��

This corollary provides a bound on the expected number of function evaluations including
replications needed to obtain a value of y∗ + ε or less that is a polynomial function of the
dimension, holding all other parameters constant. This result generally extends the finite-time
results of the HAS framework for problems with estimation. In the next section, we examine
a framework based on an adaptive search framework that samples from a series of nested
quantile level sets.

4 Quantile adaptive search with estimation (QAS-E)

We now define a Quantile Adaptive Search with Estimation (QAS-E) which conceptualizes
an optimization algorithm that samples according to a probability distribution parameterized
by quantile. QAS-E utilizes a series of sampling distributions defined by density function ζk
associated with quantile δk on iteration k.

The motivation for incorporating a quantile as a parameter in the sampling distribution is
to provide a finite-time analysis to aid in the development of algorithms that use quantiles
in their adaptive mechanics [6, 7, 9, 22, 29]. QAS-E differs from HAS-E in its sampling
distribution; instead of sampling Xk+1 from the normalized restriction of ζ on S

ȳhighk
as in

HAS-E, QAS-E always samples from S however, the distribution ζk depends on a quantile
parameter δk . The intuition is that it is relatively easy to sample a point in a level set associated
with a high quantile, but it is challenging to sample a point from a level set associated with
a low quantile. Instead of attempting to hit a target level set associated with a low quantile
on the first iteration, QAS-E allows the quantile to be reduced iteratively, thereby modifying
the parameterized sampling distribution. The hope is that small changes in the reduction of
the quantile parameter will aid in implementation.

We draw an analogy to the use of a temperature parameter in the Boltzmann distribution.
When the temperature is high, it is relatively easy to sample from the Boltzmann distribution,
butwhen the temperature is low, it is difficult to efficiently generate a sample point. The idea is
that it is computationally easier to approximate a Boltzmann distribution with a small change
in temperature, gradually reducing the temperature. The analysis of Annealing Adaptive
Search provided insight that led to the development of an adaptive cooling schedule for
simulated annealing [23, 24].

The following analysis of QAS-E provides insight into the computational potential for
algorithms that focus on sampling from level sets with quantile estimators. A general
challenge with implementation is selecting the δk-quantile values and associated sampling
distributions ζk for which an adaptive algorithm has desirable performance. We parameterize
the sampling distribution by a quantile value, denoted ζk(δk). This is analogous to the way
the Boltzmann distribution is parameterized by temperature. In the following analysis, the
Boltzmann distribution is a possible family for QAS-E.

There is a relationship between a quantile value δ and the associated objective function
value yδ . For a quantile value, 0 < δ < 1, let the associated level set be denoted

Sδ = {x ∈ S : f (x) < yδ} (20)
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Fig. 4 An illustration of three nested quantile level sets with δk > δk+1 > δk+2. Quantile Adaptive Search
seeks to sample from the level set Sδk on the kth iteration

where yδ is the δ-quantile of the domain S, or explicitly,

yδ = argmin
y∗<y≤y∗

P( f (X) ≤ y) ≥ δ (21)

when X is uniformly sampled on S.
When sampling according to the probability distribution ζk(δk) on S, we relate the probability
of landing inside of a level set Sδ to the probability of achieving an objective function value
of yδ or better through an integral, as

P (Yk ≤ yδ) = P(Xk ∈ Sδ) =
∫
Sδ

ζk(δk)(x) · dx

where Xk is drawn from ζk(δk) and Yk = f (Xk).
To illustrate the general form of QAS-E, see Fig. 4 with three level sets associated with

decreasing quantile levels δk+2 < δk+1 < δk so that Sδk+2 ⊂ Sδk+1 ⊂ Sδk . The sampling
distribution ζk(δk) is chosen to maintain some minimum probability of sampling within the
associated level set Sδk at each iteration k. Therefore, the iterative selection of a quantile δk
can be seen as a mechanism for focusing the sampling distribution on nested quantile level
sets.

QAS-E requires input parameters α and σ , as in HAS-E, and a sequence of parameterized
sampling distributions {ζk(δk), k = 0, 1, . . .}. It also requires a sequence of the number of
replications on iteration k, i.e., {Rk, k = 0, 1, . . .}. The analysis of QAS-E requires several
conditions on the sampling distributions stated in Assumption 2, and discussed later. We
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formally write the algorithm based on the selection of parameterized sampling distributions
ζk(δk).
Quantile Adaptive Search with Estimation (QAS-E)

– Step 0 Sample X0 in S according to the probability distribution ζ0(δ0) on S. Conduct R0

independent replications of the function at the initial selected point, i.e., g(X0, χr ) for
r = 1, . . . , R0. Estimate the value ŷhigh0 as in (7) and set ȳhigh0 = ŷhigh0 . Set Ȳ0 = f (X0).
Set k = 0.

– Step 1 Update the parameter quantile δk+1 and its sampling probability distribution
ζk+1(δk+1). Generate Xk+1 from the probability distribution ζk+1(δk+1) on S. Perform
Rk independent replications of g(Xk+1, χr ) for r = 1, . . . , Rk (if Xk+1 
= Xk) and
estimate ŷhighk+1 as in (7). Then update

Ȳk+1 =
{
f (Xk+1) if f (Xk+1) < Ȳk
Ȳk otherwise

and its associated upper confidence bound estimate,

ȳhighk+1 =
{
ŷhighk+1 if f (Xk+1) < Ȳk
ȳhighk otherwise.

– Step 2 If a stopping criterion is met, stop. Otherwise, increment k and return to Step 1.

Note that when there is no noise in the objective function, then no replications are needed
and ŷhighk can be replaced with the true function value yk in the algorithm.

The QAS-E algorithm iteratively samples from a sequence of distributions parameterized
by a quantile value. The intent is for the distributions to increase the chances of generating
improving sets, much in the same way that the Boltzmann distribution with a temperature
parameter increases its focus on improving level sets. At each iteration, the upper confidence
bound estimate ȳhighk has an associated quantile value (denoted δ̄

high
k ) through (20) and (21),

that may help inform the choice of quantile parameter. The sampling distribution ζk(δk)

is parameterized by quantile value to aid in adaptively varying δk . Exploratory numerical
results in [14] adapted δk ad hoc, with implicit consequences on the sampling distribution.
The numerical results suggest that adapting δk improves performance, however there was
previously no theory to guide the adaptation to achieve desired performance. The relation-
ship between quantile as a parameter of the sampling distribution in QAS-E may guide the
implementation of adaptive random search methods in an analogous way that AAS aided in
developing a cooling schedule for simulated annealing.

For the performance analysis of QAS-E, we make the following assumptions regarding
the sampling distribution with quantile parameter, ζk(δk) on iteration k. The conditions in
Assumption 2 ensure that each sampling distribution does no worse than the previous one at
generating improving points. Assumptions 2(i)-(ii) are similar to Assumptions 1(i)-(ii) for
HAS-E.

Assumption 2 (i) The sampling distribution ζk(δk) dominates the uniform distribution, that
is,

P
(
Ȳ QASE
k ≤ y

)
≥

(
Ȳ H AS2
0 ≤ y

)
(22)

for any iteration k and y∗ < y ≤ y∗. This requirement forces each sampling distribution
to be more focused on improvement than the uniform distribution. In effect this excludes
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distributions that are not able to sample fromnested level sets better than uniform, perhaps
due to local behavior.

(ii) The probability of improving on the current upper bound estimate ȳhighk when sam-
pling from the probability distribution ζk+1(δk+1) is bounded below by some minimum
probability γ ,

P
(
Ȳk+1 ≤ ȳhighk |Ȳk = ȳk

)
≥ γ (23)

where 0 < γ ≤ 1. We require that the sampling distribution has a minimum probability
of improvement. This requirement forces each updated sampling distribution to maintain
some probability of sampling within the improving quantile level set associated with the
upper bound estimate.

(iii) The conditional probability that the distribution ζk+1(δk+1) samples within a lower level
set given that the previous sampled value was yk , is non-increasing in ȳk for all k. This
condition can be written as

P
(
Ȳk+1 ≤ y|Ȳk = ȳk

) ≥ P
(
Ȳk+1 ≤ y|Ȳk = ȳ′

k

)
(24)

where ȳk < ȳ′
k . The sampling distributions cannot perform worse having observed a

better point, e.g., ȳk < ȳ′
k . This prevents the sampling distribution from getting “stuck”

at local minima by arriving at some small value that makes the sampling of further
improvement almost impossible.

We now present an analysis of the performance of QAS-E that parallels that of HAS-E.
First, in Theorem 4, we show that the iterates of QAS-E stochastically dominate those of a
special case of the standard HAS algorithm (called HAS2). Then, we use the special case
HAS2 in Theorem 5 to provide an upper bound on the expected number of QAS-E iterations
and expected number of function evaluations including replications to achieve an optimal
point with a function value within ε of the optimal value y∗.

The special case HAS2 uses uniform sampling, i.e., ζ H AS2 ∼ Uniform, and the bettering
probability is chosen to be constant for all y,

bH AS2(y) = γ · (1 − α) · q (25)

where 0 < γ ≤ 1, 0 < α < 1, and 0 < q < 1.
Let Ȳ QASE

k be the best sampled value by QAS-E on the kth iteration, and let Ȳ H AS2
k be

the best sampled value on the kth iteration of HAS2. We show that QAS-E stochastically
dominates HAS2 in Theorem 4.

Theorem 4 Given the three conditions in Assumption 2 and setting Rk = R for all k as in
(16), then Ȳ QASE

k stochastically dominates Ȳ H AS2
k , that is:

P(Ȳ QASE
k ≤ y) ≥ P(Ȳ H AS2

k ≤ y) for k = 0, 1, . . . ,

where y∗ < y ≤ y∗.

Proof The proof is similar to the proof of Theorem 2, but is provided in Appendix B for
completeness. ��

Theorem 5 provides upper bounds on the expected number of QAS-E iterations and
expected number of function evaluations including replications to achieve a point within
a target level set Sy∗+ε . Notice the bounds in Theorem 5 are the same as in Theorem 3,
suggesting the importance of an effective sampling distribution.
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Theorem 5 An upper bound on the expected number of QAS-E iterations until the value of
y∗ + ε or better is sampled, for ε > 0, is given by,

E[NQASE
I (y∗ + ε)] ≤ 1 +

(
1

γ · (1 − α) · q
)
ln

(
ν(S)

ν(Sy∗+ε)

)
. (26)

and an upper bound on the expected number of QAS-E function evaluations including repli-
cations is

E[NQASE
R (y∗ + ε)] ≤

(
n
√
q · 2 · σ · zα/2

(1 − n
√
q) · ry∗+ε · Kq

)2

E[NQASE
I (y∗ + ε)]. (27)

Proof The proof is similar to that of Theorem 3. ��
The final corollary is analogous to Corollary 1, and states that, when the problem (P)

satisfies certain conditions, the expected number of QAS-E iterations is bounded by a linear
function in dimension, and the expected number of QAS-E function evaluations including
replications is cubic in dimension.

Corollary 2 When S in (P) is a convex feasible region in n dimensions with a diameter d and
f (x) satisfies the Lipschitz condition with Lipschitz constant at most L, then the expected
number of iterations for QAS-E to reach a value y∗ + ε, ε > 0, is bounded by,

E[NQASE
I (y∗ + ε)] ≤ 1 +

(
n

γ · (1 − α) · q
)
ln

(L · d
ε

)
(28)

and the expected number of function evaluations (including replications) to achieve a value
of y∗ + ε or better is bounded by a cubic function of domain dimension,

E
[
NQASE
R (y∗ + ε)

]

≤
((

q

1 − q
−(n − 1)

ln(q)

(1 − q)2

) (
2 · σ · zα/2

ry∗+ε · Kq

))2 (
1 +

(
n

γ · (1 − α) · q
)
ln

(L · d
ε

))

∼ O
(
n3

)
.

Proof The proof is similar to that of Corollary 1. ��
The analysis of QAS-E parallels that for HAS-E, and highlights the result relating the

estimation with a confidence bound and the performance related to the sampling distribution.
By making assumptions on the consistency of a sequence of sampling distributions, it is
clear that there is flexibility in choosing a parameterized sampling distribution, however, the
assumptions must be satisfied. In this paper we emphasize using quantiles as parameters,
however, the Boltzmann distribution parameterized by temperature satisfies the assumptions
too. Thus, a version of AAS with estimation is captured in the analytical results.

5 Discussion and conclusion

We provide a framework for modeling adaptive random search for problems that require
estimation of an objective function. Hesitant Adaptive Search with Estimation has a provable
finite-time bound on the expected number of function evaluations until a specified ε above
the minimum value is reached. Under certain conditions, the expected number of function
evaluations including replications is bounded by a cubic function of the domain’s dimension.
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Furthermore, we introduce an additional adaptive search algorithm, Quantile Adaptive
Search with Estimation, that extends HAS-E to a search that adapts the sampling distribution
on the domain S based on the quantiles of an objective function. A difference between HAS-
E and QAS-E is that HAS-E samples according to a normalized distribution restricted to
nested level sets defined by the estimated function values, whereas QAS-E samples on the
entire feasible region but parameterizes the sampling distribution to focus on nested level
sets defined by quantiles. QAS-E has similar finite-time results as HAS-E controlling the
number of replications and iterations.

Using the level of the quantile as a parameter, QAS-E’s parameterized sampling distri-
bution is analogous to use of the Boltzmann distribution with a temperature parameter in
Annealing Adaptive Search. The analysis of QAS-E can be used to add estimation to AAS
for stochastic problems.

An insight that the analysis of HAS-E and QAS-E provides is that the value of consistent
improvement in the sampling distribution is more important than the number of replications
needed to achieve a close estimate of the objective function at points evaluated during the
process. The bounds on expected function evaluations lead us to consider algorithms that use
a few replications at the expense of sampling from a larger than needed level set. However,
it is still important that the algorithm converges to the true global minimum. Future research
will consider the Single Observation Stochastic Algorithm (SOSA) [11, 12, 15] to combine
estimation using a shrinking ball with the sampling distribution.

Another avenue for future research would be to use the analysis of QAS-E to develop
a means for adaptively setting quantile parameters in a sampling distribution, as was done
using AAS to derive an analytical cooling schedule for simulated annealing. Our analysis
may help to improve algorithms like Probabilistic Branch and Bound [29], Cross Entropy
[22], or reinforcement learning [9] which either explicitly or implicitly attempt to sample
from within quantiles of an objective function.

Acknowledgements This research has been supported in part by the National Science Foundation, Grant
CMMI-1935403.

Data Availibility Data sharing is not applicable to this article as no datasets were generated or analyzed during
the current study.

Appendix A Proofs of Theorems for HAS-E Analysis

A.1 Proof of Theorem 1

Proof of Theorem 1 For any value yk such that y∗ + ε < yk ≤ y∗, we start by defining an
n-ball Byk as the largest n-ball centered at x∗ such that Byk ⊆ Syk and let ryk be its radius. We

note that 0 < ν(Byk ) ≤ ν(Syk ). For any value ŷhighk , we define B
ŷhighk

as the smallest n-ball

centered at x∗ such that S
ŷhighk

⊆ B
ŷhighk

and let r
ŷhighk

be the radius of B
ŷhighk

.

We examine two cases. First, if ŷhighk − yk ≤ κq then
ν(Syk )

ν(S
ŷ
high
k

)
> q by definition in (11),

and the theorem is proved.
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Fig. 5 An illustration of the largestn-ball inscribed in Syk (Byk ), the smallestn-ball inscribing S
ŷhighk

(B
ŷhighk

),

and a larger ball defined by the slope Kq (Blarge)

Second, consider ŷhighk − yk > κq . We defineKcone = ŷhighk −yk
r
ŷ
high
k

−ryk
, which can be interpreted

as the slope that connects the two balls, see Fig. 5. We also write

r
ŷhighk

= ryk + (ŷhighk − yk)/Kcone.

Since ŷhighk − yk > κq , the numerator of Kcone is greater than the numerator of Kq as in
(11), and, since d > r

ŷhighk
− ryk by definition of the diameter, we have Kcone > Kq . Note

that Kq is independent of the value yk .
We define Blarge as an n-ball centered at x∗ with radius rlarge, where rlarge = ryk +

(ŷhighk − yk)/Kq . Here we see that r
ŷhighk

≤ rlarge since Kq ≤ Kcone. Therefore S
ŷhighk

⊂
B
ŷhighk

⊂ Blarge, as illustrated in Fig. 5.

A lower bound on the ratios of volumes is constructed in terms of the dimension n, using
multi-dimensional geometry theorems [10],

ν(Syk )

ν(S
ŷhighk

)
≥ ν(Byk )

ν(B
ŷhighk

)
≥ ν(Byk )

ν(Blarge)
=

⎛
⎜⎝ ryk

ryk + ŷhighk −yk
Kq

⎞
⎟⎠

n

.

Since ŷhighk − yk ≤ 2·σ ·zα/2√
R

, as given in the theorem statement, we have the following lower
bound,

ν(Syk )

ν(S
ŷhighk

)
≥

⎛
⎝ ryk

ryk + 2·σ ·zα/2

Kq
√
R

⎞
⎠

n

.
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We want to determine R, such that⎛
⎝ ryk

ryk + 2·σ ·zα/2

Kq
√
R

⎞
⎠

n

≥ q.

Through several algebraic manipulations to isolate R, we determine that (13) holds if R ≥(
n√q·2·σ ·zα/2

(1− n√q)·ryk ·Kq

)2
.

Finally, since yk ≥ y∗ + ε, then ryk ≥ ry∗+ε , and therefore (13) holds if

R ≥
(

n
√
q · 2 · σ · zα/2

(1 − n
√
q) · ry∗+ε · Kq

)2

which proves Theorem 1. �

A.2 Lemmas

The bound on replications, which is quadratic in dimension given in (14), uses a bound stated
in Lemma 1. Theorems 2 and 4 make use of Lemma 30 from [23], which is repeated here for
convenience as Lemma 2.

Lemma 1 For a given constant a such that 0 < a < 1, and a variable n ≥ 1, then the

function f (n) = a1/n

1−a1/n
is bounded by a linear function of n, that is,

f (n) = a1/n

1 − a1/n
≤ a

1 − a
− (n − 1)

ln(a)

(1 − a)2
. (29)

A proof of Lemma 1 is omitted. Other bounds are possible that are still linear in n.
The following lemma is used in the proof of Theorem 3.

Lemma 2 (cf. [23]) Let Ȳ A
k , k = 0, 1, 2, . . . and Ȳ B

k , k = 0, 1, 2, . . . be two sequences of
objective function values generated by algorithms A and B respectively for solving a mini-
mization problem, such that Ȳ A

k+1 ≤ Ȳ A
k and Ȳ B

k+1 ≤ Ȳ B
k for k = 0, 1, . . .. For y∗ < y, z ≤ y∗

and k = 0, 1, . . ., if

1. P(Ȳ A
k+1 ≤ y|Ȳ A

k = z) ≥ P(Ȳ B
k+1 ≤ y|Ȳ B

k = z)
2. P(Ȳ A

k+1 ≤ y|Ȳ A
k = z) is non-increasing in z, and

3. P(Ȳ A
0 ≤ y) ≥ P(Ȳ B

0 ≤ y)

then P(Y A
k ≤ y) ≥ P(Y B

k ≤ y) for k = 0, 1, . . . and y∗ < y ≤ y∗.

A proof of Lemma 2 can be found in [23].

A.3 Proof of Theorem 2

Proof of Theorem 2: Using the notation inHAS-E on the kth iteration, and based on Lemma 2,
as in [23], if the following conditions hold for y∗ < y, ȳk ≤ y∗ and k = 0, 1, . . .,

(I) P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk) ≥ P(Ȳ H AS1
k+1 ≤ y|Ȳ H AS1

k = ȳk)

(II) P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk) is non-increasing in ȳk , and
(III) P(Ȳ H ASE

0 ≤ y) ≥ P(Ȳ H AS1
0 ≤ y)
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then P(Ȳ H ASE
k ≤ y) ≥ P(Ȳ H AS1

k ≤ y) for k = 0, 1, . . . and for y∗ < y ≤ y∗.
The first step is to prove (I). When y ≥ ȳk , (I) is true trivially (since the conditional

probability equals one on both sides). Now, when y < ȳk , we bound the left-hand side of the
expression in (I), as,

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk) ≥ γ · P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k+1 ≤ ȳhighk , Ȳ H ASE
k = ȳk) (30)

where we condition on the event that HASE “betters”, that is, that HASE samples from the
normalized restriction of ζ on S

ȳhighk
, and consequently Ȳ H ASE

k+1 ≤ ȳhighk , which occurs with

probability at least γ by the bound on the bettering probability in Assumption 1 (ii).
We next consider the event {ȳk ≤ ȳhighk }, which occurs with probability at least 1− α by

(8). We rewrite (30) as,

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk)

≥ γ · (1 − α) · P(Ȳ H ASE
k+1 ≤ y|{ȳk ≤ ȳhighk }, Ȳ H ASE

k+1 ≤ ȳhighk )
(31)

dropping the condition Ȳ H ASE
k = ȳk because it is captured in the other conditions.

To further develop the bound in terms of HAS1, we note that P(Ȳ H ASE
k+1 ≤ y) ≥

P(Ȳ H ASE
0 ≤ y) ≥ P(Ȳ H AS1

0 ≤ y) by Assumption 1 (i), and since P(Ȳ H ASE
k+1 ≤ y) =

P(Ȳ H ASE
k+1 ≤ y

⋂
Ȳ H ASE
k+1 ≤ ȳhighk ) and P(Ȳ H AS1

0 ≤ y) = P(Ȳ H AS1
0 ≤ y

⋂
Ȳ H AS1
0 ≤

ȳhighk ) we can write

P(Ȳ H ASE
k+1 ≤ y

⋂
Ȳ H ASE
k+1 ≤ ȳhighk )

(
P(Ȳ H ASE

k+1 ≤ ȳhighk )

P(Ȳ H ASE
k+1 ≤ ȳhighk )

)

≥ P(Ȳ H AS1
0 ≤ y

⋂
Ȳ H AS1
0 ≤ ȳhighk )

(
P(Ȳ H AS1

0 ≤ ȳhighk )

P(Ȳ H AS1
0 ≤ ȳhighk )

)

implying

P(Ȳ H ASE
k+1 ≤ y

⋂
Ȳ H ASE
k+1 ≤ ȳhighk )

P(Ȳ H ASE
k+1 ≤ ȳhighk )

≥ P(Ȳ H AS1
0 ≤ y

⋂
Ȳ H AS1
0 ≤ ȳhighk )

P(Ȳ H AS1
0 ≤ ȳhighk )

and

P(Ȳ H ASE
k+1 ≤ y|{ȳk ≤ ȳhighk }, Ȳ H ASE

k+1 ≤ ȳhighk ) ≥ P(Ȳ H AS1
0 ≤ y|{ȳk ≤ ȳhighk }, Ȳ H AS1

0 ≤ ȳhighk ).

We now rewrite (31) as

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk)

≥ γ · (1 − α) · P(Ȳ H AS1
0 ≤ y|{ȳk ≤ ȳhighk }, Ȳ H AS1

0 ≤ ȳhighk ).
(32)

Therefore, we can create a lower bound for (32):

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk) ≥ γ · (1 − α) · P(Ȳ H AS1
0 ≤ y|Ȳ H AS1

0 ≤ ȳhighk , {ȳk ≤ ȳhighk })

= γ · (1 − α) · P(Ȳ H AS1
0 ≤ y)

P(Ȳ H AS1
0 ≤ ȳhighk )

= γ · (1 − α) · P(Ȳ H AS1
0 ≤ y)

P(Ȳ H AS1
0 ≤ ȳk)

· P(Ȳ H AS1
0 ≤ ȳk)

P(Ȳ H AS1
0 ≤ ȳhighk )
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≥ γ · (1 − α) · ν(Sy)

ν(Sȳk )
· ν(Sȳk )

ν(S
ȳhighk

)

≥ γ · (1 − α) · ν(Sy)

ν(Sȳk )
· q. (33)

The last inequality makes use of the lower bound developed in Theorem 1,
ν(Sȳk )

ν(S
ȳ
high
k

)
≥ q .

We similarly expand the expression for HAS1 in the right-hand side of (I), noting that HAS1
either improves or stays where it is, yielding,

P(Ȳ H AS1
k+1 ≤ y|Ȳ H AS1

k = ȳk) = bH AS1(ȳk)P
(
Ȳ H AS1
k+1 ≤ y|Ȳ H AS1

k = ȳk
)

where XH AS1
k+1 is sampled according to the normalized restriction of the uniform distribution

on the improving level set. Combining this with the bettering probability of HAS1, b(y) =
γ · (1 − α) · q , and when HAS1 “betters”, we have,

P(Ȳ H AS1
k+1 ≤ y|Ȳ H AS1

k = ȳk) = γ · (1 − α) · q · ν(Sy)

ν(Sȳk )
. (34)

Combining (33) and (34) proves condition (I).
We go on to prove (II), that P(Ȳ H ASE

k+1 ≤ y|Ȳ H ASE
k = ȳk) is non-increasing in ȳk . Suppose

that ȳk and ȳ′
k are such that ȳk < ȳ′

k . To show (II) we want to show that:

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk) ≥ P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳ′
k).

The approach is to condition on the value of ȳhighk , and since HAS-E samples on S
ȳhighk

in Step

2 of the algorithm, we know that P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = u) is non-increasing,

therefore, we have,

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk)

=
∫ ∞

−∞
P(Ȳ H ASE

k+1 ≤ y|Ȳ H ASE
k = ȳk, ȳ

high
k = z) · dP(ȳhighk ≤ z|Ȳ H ASE

k = ȳk)

and because
∫ z
−∞ dP

(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = u

)
=

P
(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = z

)
− P

(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = −∞

)
,

and since P
(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = −∞

)
= 1 (trivially), we substitute

P
(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = z

)
as follows,

=
∫ ∞
−∞

(
1 +

∫ z

−∞
dP

(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = u

))
· dP

(
ȳhighk ≤ z|Ȳ H ASE

k = ȳk
)

and reversing the order of integration, we get

= 1 +
∫ ∞
−∞

∫ ∞
u

d P
(
ȳhighk ≤ z|Ȳ H ASE

k = ȳk
)

· dP
(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = u

)

= 1 +
∫ ∞
−∞

(
1 − P

(
ȳhighk ≤ u|Ȳ H ASE

k = ȳk
))

· dP(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = u).

Now to show a lower bound in terms of ȳ′
k . However, since dP

(
Ȳ H ASE
k+1

≤ y|Ȳ H ASE
k = ȳk, ȳ

high
k = u

)
≤ 0, and since P

(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = u

)
is
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non-increasing in ȳhighk , and since, P
(
ȳhighk ≤ u|Ȳ H ASE

k = ȳk
)

≥ P
(
ȳhighk ≤ u|Ȳ H ASE

k = ȳ′
k

)
,

the probability that ȳhighk is lower than u is always greater for ȳk < ȳ′
k , then

1 +
∫ ∞
−∞

(
1 − P

(
ȳhighk ≤ u|Ȳ H ASE

k = ȳk
))

· dP
(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = u

)

≥ 1 +
∫ ∞
−∞

(
1 − P

(
ȳhighk ≤ u|Ȳ H ASE

k = ȳ′
k

))
· dP

(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = u

)

which is equivalent to

= 1 +
∫ ∞
−∞

∫ ∞
u

(
dP

(
ȳhighk ≤ z|Ȳ H ASE

k = ȳ′
k

))
· dP(Ȳ H ASE

k+1 ≤ y|Ȳ H ASE
k = ȳk , ȳ

high
k = u)

and reversing the order of integration:

= 1 +
∫ ∞
−∞

∫ z

−∞
dP

(
Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = u

)
·
(
dP

(
ȳhighk ≤ z|Ȳ H ASE

k = ȳ′
k

))

=
∫ ∞
−∞

P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk , ȳ
high
k = z) · dP(ȳhighk ≤ z|Ȳ H ASE

k = ȳ′
k )

therefore, since P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳk, ȳ
high
k = z) = P(Ȳ H ASE

k+1 ≤ y|Ȳ H ASE
k =

ȳ′
k, ȳ

high
k = z), we write:

=
∫ ∞

−∞
P(Ȳ H ASE

k+1 ≤ y|Ȳ H ASE
k = ȳ′

k, ȳ
high
k = z) · dP(ȳhighk ≤ z|Ȳ H ASE

k = ȳ′
k)

= P(Ȳ H ASE
k+1 ≤ y|Ȳ H ASE

k = ȳ′
k)

which proves (II).
Lastly, condition (III) from Lemma 2 is true by Assumption 1 (i) that P(Ȳ H ASE

0 ≤ y) ≥
P(Ȳ H AS1

0 ≤ y). This proves the theorem through reference to Lemma 2. �

A.4 Proof of Theorem 3

Proof of Theorem 3: Bystochastic dominance inTheorem2, the expected number of iterations
to achieve a value within Sy∗+ε for HAS-E is less than or equal to the number for HAS1.
Since the bettering probability for HAS1 is b(y) = γ · (1− α) · q for all y∗ < y ≤ y∗, using
(4), we have

E[NHASE
I (y∗ + ε)] ≤ 1 +

∫ ∞

y∗+ε

dρ(t)

γ · (1 − α) · q · p(t)

and since HAS1 uses uniform sampling, i.e., p(y) = ν(Sy )
ν(S)

, we have

= 1 + 1

γ · (1 − α) · q · ln
(

ν(S)

ν(Sy∗+ε)

)
.

Using a constant number of replications R for each iteration, yields

E[NHASE
R (y∗ + ε)] = R · E[NHASE

I (y∗ + ε)].
Setting Rk = R as in (16) yields the result in (18). �
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Appendix B Proofs of Theorems for QAS-E Analysis

The proofs of the theorems for QAS-E are similar to the proofs for HAS-E. The proof of
Theorem 4 for QAS-E is provided for completeness.

Proof of Theorem 4 Similar to the proof of Theorem 2, if the three conditions listed in
Lemma 2 hold, then P(Ȳ QASE

k ≤ y) ≥ P(Ȳ H AS2
k ≤ y) for k = 0, 1, . . . and for

y∗ < y ≤ y∗.
We start by proving the first condition in Lemma 2, that is, we show that

P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k = ȳk) ≥ P(Ȳ H AS2
k+1 ≤ y|Ȳ H AS2

k = ȳk)

for y∗ < y, ȳk ≤ y∗ and k = 0, 1, . . .. When y ≥ ȳk , P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k = ȳk) =
P(Ȳ H AS2

k+1 ≤ y|Ȳ QASE
k = ȳk) = 1, and the first condition holds.

Now, when y < ȳk , we bound the left-hand side of the expression in (I) by conditioning
on the event that XQASE

k+1 “betters”, that is, the event that Ȳ QASE
k+1 ≤ ȳhighk , yielding

P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k = ȳk) ≥ γ · P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k+1 ≤ ȳhighk , Ȳ QASE
k = ȳk) (35)

by Assumption 2 (ii).
We next consider the event {ȳk ≤ ȳhighk }, which occurs with probability at least 1− α, by

(8). We rewrite (35) as,

P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k = ȳk)

≥ γ · (1 − α) · P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k+1 ≤ ȳhighk , {ȳk ≤ ȳhighk }, Ȳ QASE
k = ȳk).

(36)

From Assumption 2 (i), we have

P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k = ȳk) ≥ γ · (1 − α) · P(Ȳ H AS2
0 ≤ y|Ȳ H AS2

0 ≤ ȳhighk ).

Making use of the lower bound developed in Theorem 1,
ν(Sȳk )

ν(S
ȳ
high
k

)
≥ q , we have,

P(Ȳ QASE
k+1 ≤ y|Ȳ QASE

k = ȳk) ≥ γ · (1 − α) · P(Ȳ H AS2
0 ≤ y|Ȳ H AS2

0 ≤ ȳhighk )

= γ · (1 − α) · P(Ȳ H AS2
0 ≤ y)

P(Ȳ H AS2
0 ≤ ȳhighk )

= γ · (1 − α) · P(Ȳ H AS2
0 ≤ y)

P(Ȳ H AS2
0 ≤ ȳk)

· P(Ȳ H AS2
0 ≤ ȳk)

P(Ȳ H AS2
0 ≤ ȳhighk )

≥ γ · (1 − α) · ν(Sy)

ν(Sȳk )
· ν(Sȳk )

ν(S
ȳhighk

)

≥ γ · (1 − α) · ν(Sy)

ν(Sȳk )
· q. (37)

We similarly expand the expression for HAS2 in the right-hand side of (I), noting that
HAS2 either improves or stays where it is, yielding,

P(Ȳ H AS2
k+1 ≤ y|Ȳ H AS2

k = ȳk) = bH AS2(ȳk)P
(
Ȳ H AS2
k+1 ≤ y|Ȳ H AS2

k = ȳk
)

123



Journal of Global Optimization (2023) 87:31–55 53

Fig. 6 Values for Kq for the one-dimensional sample problem for q ∈ [0.3, 0.7]

and since the bettering probability of HAS2 equals γ · (1−α) ·q , and when HAS2 “betters”,
it samples uniformly on the improving level set, we have,

P(Ȳ H AS2
k+1 ≤ y|Ȳ H AS2

k = ȳk) = γ · (1 − α) · q · ν(Sy)

ν(Sȳk )
. (38)

Combining (37) and (38) proves condition (I).
The second condition in Lemma 2 is satisfied directly by Assumption 2 (iii). The third con-
dition in Lemma 2 is satisfied by Assumption 2 (i). This proves the theorem by Lemma 2.

�

Appendix C Details for Sample Problem

The one-dimensional sample problem f (x), illustrated in Fig. 3, is defined for x ∈ [−4, 4].
The calculations use the following parameter settings: σ = 1, α = 0.05, γ = 0.5, and
ε = 0.3. The values for Kq are calculated numerically for a range of values of q , and are
shown in Fig. 6.
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