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IMMUNOLOGY

RACER-m leverages structural features for sparse T cell

specificity prediction

Ailun Wang1'2, Xingcheng Lin>**, Kevin Ng Chau'?, José N. Onuchic®®,

Herbert Levine1'2'7, JasonT. Georges'8>I<

Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the im-
mense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets
for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural in-
formation to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-
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antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging.
Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the
diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially
reduces the required number of training examples and maintains reliable predictions of TCR-recognition specific-
ity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful
point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-
mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both

closely related and structurally diverse TCR-peptide pairs.

INTRODUCTION

T cell immunity is determined by the interaction of a T cell receptor
(TCR) with antigenic peptide (p) presented on the cell surface via
major histocompatibility molecules (MHCs) (1). T cell activation oc-
curs when there is a favorable TCR-pMHC interaction and, for the
case of CD8" effector cells, ultimately results in T cell killing of the
pMHC-presenting cell (2). T cell-mediated antigen recognition con-
fers broad immunity against intracellular pathogens as well as tumor-
associated antigenic signatures (3). Thus, a detailed understanding of
the specificity of individual T cells in a repertoire composed of many
(~10%) unique T cell clones is required for understanding and accu-
rately predicting many important clinical phenomena, including in-
fection, cancer immunogenicity, and autoimmunity.

Because of the immense combinatorial complexity of antigen
(~10") and T cell (~10'®) sequence space, initial conceptual prog-
ress in the field was made by studying simple forms of amino acid
interactions, motivated by either protein folding ideas (4, 5) or ran-
dom energy approaches (6, 7). Recent advances in high-throughput
studies interrogating T cell specificity (8-10) together with the de-
velopment of statistical learning approaches have at last enabled
data-driven modeling as a tractable approach to this problem. Con-
sequently, a number of approaches have been developed to predict
TCR-antigen specificity (11-15). A majority of developed approach-
es input only TCR and pMHC primary sequence information. The
persistent challenge with this lies in limited training data given that
any reasonable sampling of antigens and T cells—or even an entire
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human T cell repertoire—represents a very small fraction of se-
quence space. One persistent and notorious challenge of virtually all
current models involves an inability to make reasonable specificity
predictions on unseen epitopes that are excluded from training. As
a result, many models underperform on sequences that are moder-
ately dissimilar from their nearest neighbor in the training set, an
issue that we refer to as “global sparsity”

While global sparsity complicates inference extension to moder-
ately dissimilar antigens, another distinct challenge exists for reliably
predicting the behavior of closely related TCR-pMHC pairs that dif-
fer by a single-amino acid substitution, which we refer to as “local
resolvability” These “point-mutated” TCR-pMHC pairs require pre-
dictive methods capable of quantifying the effects of single—amino
acid changes on the entire TCR-peptide interaction, a task often lim-
ited by lack of sufficient training examples required for reliable esti-
mation of the necessary pairwise residues. Instead, a modeling
framework aiming to discern such subtle differences between point
mutants may benefit from learning the general rules of amino acid
interactions at the TCR-peptide interface and their varied contribu-
tions to binding affinity. Resolving this very particular problem, dis-
cerning relevant point mutations in self-peptide and viral antigens,
promises to deliver enhanced therapeutic utility in targeting cancer
neoantigens, optimally selecting hematopoietic stem cell transplant
donors, and predicting the immunological consequences of viral
variants. Thus, local resolvability represents a distinct learning task
wherein detailed reliable predictions need to be made on many small
variations around a very specific TCR-pMHC pair.

Several structure-based approaches have also been used to better
understand TCR-pMHC specificity. Detailed structural models that
focus on a comprehensive description of TCR-pMHC interaction, in-
cluding all-atom simulation and structural relaxation, are computa-
tionally limited to describing a few realized structures of interest (16,
17). Another strategy develops an AlphaFold-based pipeline to gener-
ate accurate three-dimensional (3D) structures from primary sequence
information to improve the accuracy of TCR-pMHC binding predic-
tions for hundreds of TCR-pMHC pairs (18). A previous hybrid
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approach (I14) used crystal structural data together with known
binding sequences to train an optimized binding energy model for
describing TCR-pMHC interactions. This approach offered several
advantages, including the ability to perform repertoire-level predic-
tions within a reasonable time, along with a reduced demand for exten-
sive training data. However, this model largely focused on a restricted
set of peptide or TCR pairs using a single MHC class IT (MHC-II) struc-
tural template and performed best at explaining mouse I-EX-restricted
systems. Thus, its ability to make reliable predictions for a structurally
diverse collection of TCR and peptide pairs with a conserved human
leukocyte antigen (HLA) allele restriction remains unknown.

Here, we leverage all available protein crystal structures of the
most common human MHC-TI allele variant, HLA-A*02:01, to de-
velop a combined sequence-structural model of TCR-pMHC speci-
ficity that features biophysical information from a diversity of known
structural templates. The general strategy of our approach is outlined
in Fig. 1. We quantify the structural diversity in available crystal struc-
tures of TCR-pMHC complexes (19-21) and demonstrate that incor-
porating a small subset of available structural information is sufficient
to enable reliable predictions of favorable interactions across a diverse
set of TCR-antigen pairs. We show that, by using structural templates
from closely related amino acid sequences, RACER-m generates rea-
sonable predictions for previously unseen epitopes. Our results fur-
ther suggest that the availability of structural information having close
proximity to the true structure of a TCR-pMHC pair can ameliorate
both global sparsity and local resolvability in discerning the immuno-
genicity of diverse and point-mutated antigenic variants.

El'raining set sequence space]

Training: Maximize 8E/AE

RESULTS

Model development and identification of TCR-peptide pairs
with structural templates

We build on our previous RACER framework developed primar-
ily on the mouse MHC-II I-EF system (14). Our approach, termed
RACER multi-template (RACER-m), represents a comprehensive
pipeline that leverages published crystal structures of known hu-
man TCR-pMHC pairs.

All 66 HLA-A*02:01-restricted systems with a TCR-pMHC
published structure [Protein Data Bank (PDB)/Immune Epitope
Database (IEDB)] available through www.rcsb.org were used as the
structures of strong binders for training (22-24). Their 66 corre-
sponding peptide and TCR variable CDR3a and CDR3f sequences
were also used, and this list of TCR-pMHC pairs was further aug-
mented by identification of all reported TCR-pMHC pairs in the
publications that referenced the above structures, as part of the “ATLAS
dataset” In addition, the ATLAS database containing affinity infor-
mation (Kg) for related TCR-peptide pairs (19) was used for cases
where either a TCR or a epitope had substantial overlap with that of
the sequences having structures. A threshold of 200 nM was used to
define strong binders to be included in the ATLAS dataset, based on
the reported K. Last, grouping by template was performed using
hierarchical clustering based on structural similarity using an ap-
proach previously developed in the protein folding community
(25, 26) followed by hierarchical clustering. In total, 163 unique
TCR-peptide pairs and 66 structural templates were identified for
training and validation (see the Supplementary Materials).

Training case 3UTT 10GA P
g. Q06 Strong Trained energy model
Strongbinder E|AGIGILTV ALWGPDPAAA  GILGFVFTL- binders s&
c | 3
Decoyweak | MFRHTSMISK KARTTSMIGK — IARGTSMIGE 5 Decoy weak ) 5
oy KEKEGEAKGA AEKEIEATGF  GEIEGEATLT E binders L
binders a /a8 F L 2
(1=1000) | \c1pNLSWDK EEIDALSIDA  AEIDALSIDG 2 /‘\ X ES § Prediction
Binding energy S u . (z score)
PDB TCR-p-MHC complex - 7S ] N
[ crystal structures (n = 66) Structuralthrgadmg of training Y .
TCR & peptide sequences. E
$e e . o |
Identify contact maps and Q | -2
£ residue-specific energy model. & . |Apply 7 test
RKNQDEHYWSTGPAMCFLVI
Constructed
structure

: PDB:3UTT PDB: 10GA 7 = K 4 Target
PDB: 3006 Structure selected by CDR3a/B - a ,(M Thread peptide c| peptide Decoy
B and peptide sequence similarity_* r sequences _ = i
(Testlng set sequence space] Pep d Yy ia : oS v 9 3 peptides
. CDR3a/B & peptide sequence similarity > 2 (Target peptide 3
Vel Peptide CDR3p Low ' High & e —
cases sequence - . Binding energy
sequence €q Entry x 00 ., /1000 randomized
Entry_ 1  ELAGIGILTV AVNFGGGKLI- ASSLSFGTEAF--- 8825¢E §§ ggggesss /_ decoy peptides)
ogrImoldlzrz<<Ngome - ’

Entry_2  ALWGPDPAAA AMRGDSSYKLI ASSLWEKLAKNIQY
Entry_3  NLVPMVATV- ARNTGNQFY-- ASSPVTGGIYGYT-
Entry_ n LLFGPVYV-- AVTTDSWGKLQ ASRPGLAGGRPEQY

Best template

Fig. 1. RACER-m model architecture. Schematic representation of the training (top row) and testing (bottom row) processes in RACER-m. Sixty-six crystal structures of

known strong binders were used as both training set and template structures for the
1E6, NLV, and FLU) and other clusters with smaller size.

Wang et al., Sci. Adv. 10, eadl0161 (2024) 15 May 2024

testing processes, which cover several major clusters of TCR repertoires (MART-1, TAX,
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We next assessed the structural diversity of training templates by
pairwise evaluation of structural similarity using a previously developed
method referred to as mutual Q (25, 26). Mutual Q similarity defines
a structural metric consisting of a sum of transformed pairwise dis-
tances between each residue in two structures normalized within
the range of 0 to 1, which was then used to perform hierarchical
clustering. We found that the identified structural clusters largely
partition TCR-pMHC pairs according to immunological function
(for example, TCR-pMHC pairs sharing a conserved antigen) with a
few exceptions (Fig. 2A). Despite our focus only on a specified

HLA-restricted repertoire, the analysis, nonetheless, revealed clus-
tering heterogeneity across all included structures: In some cases
[e.g., Melanoma-associated antigen recognized by T cells-1 (MART-
1) and TAX], substantial heterogeneity was observed and associated
with enriched pairwise dissimilarity of TCR and peptide sequences.
This, together with cross-cluster structural diversity, is a consequence
of global sparsity given limited observed structures. On the other
hand, we also identified structurally homogeneous clusters com-
posed of TCR-pMHC pairs having near-identical pairwise sequence
similarity (e.g., 1E6), yet these pairs have substantial differences in
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Fig. 2. Performance on ATLAS dataset. (A) Mutual Q calculation results between all crystal structures in training set of RACER-m, which measures the structural similar-
ity between every pair of structures from the training set. The linkage map shows the hierarchical clustering result based on the pairwise mutual Q values. Color blocks
next to the linkage map indicates the corresponding cluster of the crystal structure in the row. (B) Predicted binding energies for ATLAS dataset (open circles and closed
dots) in comparison with the binding energies for corresponding weak binders (box plots). Each open circle represents the predicted binding energy for a structure in the
training set, while each closed dot represents the predicted binding energy for a testing case from ATLAS dataset. Each training or testing case is associated with 1000
decoy weak binders generated by randomizing the peptide sequence and pairing with the TCR in the corresponding training/testing structure. Box plots represent the
distribution of the predicted energies of the decoy weak binders with the box representing the lower (Q1) to upper (Q3) quartiles and a horizontal line representing the
median. The whiskers extended from the box by 1.5 IQR, where IQR indicates the interquartile range.
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binding affinity, consistent with earlier predictions (6, 7). This si-
multaneous manifestation of global sparsity and local resolvability
among TCR-peptide pairs with identical HLA restriction represents
a dual challenge for the development of robust predictive models of
TCR-peptide specificity.

Given the inter-cluster structural diversity for TCR-pMHC com-
plexes as well as the intra-cluster variability, it is necessary to suit-
ably select a list of structures with sufficient coverage of the identified
structural clusters as training data for the model and structural tem-
plates for test cases. In particular, we hypothesized that our hybrid
structural and sequence-based methodology could benefit from the
inclusion of multiple template structures, and the modeling ap-
proach presented here was developed with this motivation in mind.

The flow chart in Fig. 1 illustrates the training (top row) and testing
(bottom row) algorithm in RACER-m. For training, contact interac-
tions between peptide and TCR were calculated for each of the strong
binding pairs with available TCR-pMHC crystal structures. Here, con-
tact interactions were defined by a switching function based on the
distance between structural residues and a characteristic interaction
length (see Methods). For each strong binder, 1000 decoy (weak bind-
er) sequences were generated by pairing the original TCR with a ran-
domized version of the peptide. Contact interactions derived from the
topology of known TCR-pMHC structures, together with a pairwise
20-by-20 symmetric amino acid energy matrix, determine total bind-
ing energy. Each value of the energy matrix corresponds to a particular
contribution by an amino acid combination, with negative numbers
corresponding to attractive contacts. The training objective aims to se-
lect the energy matrix that maximizes separability between the bind-
ing energy distributions of strong and weak binders.

In the testing phase, a sequence threading methods is used to
construct 3D structures for testing cases that lack a solved crystal
structure. Here, constructed structures are based on using a chosen
known template with shortest (CDR3a/p and peptide) sequence dis-
tance to the specific testing case. Using the constructed 3D struc-
ture, a contact interface can be similarly calculated for each testing
case, and 1000 decoy weak binders can be generated by randomizing
the peptide sequence. The optimal energy model is then applied to
assign energies to the testing TCR-pMHC pair and decoy binders,
and the testing pair is identified as a strong binder if its predicted
binding energy is substantially lower than the decoy energy distri-
butions based on a standardized z score. Here, z score calculation
was adopted from the statistical z test applied to the predicted bind-
ing energy of test TCR-pMHC pairs and decoy weak binders, the
latter of which were used as a null distribution to compare against a
given test binder. The z score of binding energies is defined as
z= (EdeCOY = Eiest) / Odecoy> Where Edecoy is the average predicted
binding energy of decoy weak binders, Ei.y is the predicted binding
energy of the testing TCR-pMHC pair, and Ggecoy is the standard
deviation (SD) of the binding energies of decoy weak binders. While
model output is composed of continuous values of energy (or
normalized z score), we consider test TCR-pMHC pairs with z
scores exceeding 1 to be strong binding for categorization purposes.

Structural information enhances recognition specificity of
PMHC-TCR complexes

RACER-m was developed to explicitly leverage the available struc-
tural information obtained from experimentally determined TCR-
pMHC complexes for test predictions. While a prior modeling effort

Wang et al., Sci. Adv. 10, eadl0161 (2024) 15 May 2024

(14) relied on a single structural template for both training and test-
ing and achieved reasonable results given reduced training data,
structural differences became prominent as the testing data expand-
ed to include additional TCR and peptide diversity, which resulted
in reduced predictive utility. Structural variation has been previ-
ously observed and quantified in high molecular detail (22, 27) us-
ing docking angles (28) and interface parameters.

For HLA-A*02:01 TCR-pMHC systems, the docking angles (be-
tween the peptide binding groove on the MHC and the vector be-
tween the TCR domains, which corresponds to the twist of the TCR
over the pMHC) ranged from 29° to 73.1°, while the incident angle
varied from 0.3° to 39.5° (22, 27, 29). The observed structural differ-
ences among different TCR-pMHC complexes suggest that a single
TCR-pMHC complex structure may not accurately represent the
contact interfaces of other TCR-pMHC complexes, particularly
those with substantially different docking orientations. These dis-
tinct docking orientations lead to large variations in the contact in-
terfaces between peptide and CDR3a/fp loops, which can be
observed from the diversity in contact maps as shown in fig. S1.
RACER-m overcomes this limitation by the inclusion of 66 TCR-
PMHC crystal structures, which are distributed over distinct struc-
tural groups, including MART-1, 1E6, TAX, native Cytomegalovirus
(NLV), and influenza (FLU) and serve as both the training dataset
and reference template structures fortesting cases.

In testing TCR-peptide pairs, all corresponding crystal struc-
tures were omitted from predictions. Thus, selecting an appropriate
template from available structures became crucial for accurately re-
constructing the TCR-pMHC interface and estimating the binding
energy. To accomplish this, RACER-m assumed that high sequence
similarity corresponds to high similarities in the structure space,
which is supported by the correlation between mutual Q score and
sequence similarity measured from the 66 solved crystal structures
of TCR-pMHC complexes (fig. S2). This assumption was imple-
mented by calculating sequence similarity scores of the testing pep-
tide and TCR CDR3a/p sequences with those of all 66 reference
templates. In each case, a position-wise uniform hamming distance
on amino acid sequences was calculated to quantify the similarity.
The sum of CDR3a and CDR3 similarities generated the TCR sim-
ilarity score, and a composite score was created by taking the prod-
uct of peptide and TCR scores (see Methods). The template structure
having the highest sequence similarity was then selected as the tem-
plate for threading the sequences of the testing TCR-peptide pair.

To evaluate the extent to which the RACER-m approach can ad-
dress global sparsity by accurately recapitulating observed specifici-
ty in the setting of limited training data, we trained a model using
42.3% of the total experimentally confirmed strong binders [in ad-
dition to the 66 HLA-A*02:01 TCR-pMHC crystal structures plus
structures with PDB ID 3GSR, 3GSU, and 3GSV for NLV peptide
strong binders (30)] which sparsely cover all the structural groups
involved in the mutual Q analysis shown in Fig. 2A. The remaining
57.7% of TCR-peptide sequences that lack solved structures were
used as testing cases to validate the sensitivity of the trained energy
model. RACER-m effectively recognizes strong binding peptide-
TCR pairs and correctly predicts 98.9% of the testing TCR-pMHC
pairs using the criteria that z score is greater than 1. Among the 94
testing pairs, only one TCR-peptide pair in the TAX structural
group was mis-predicted as a weak binders with a binding energy
deviating from the average binding energies of decoy weak binders
by 0.64c, where o is the SD of the decoy energies. These initial results

40f11

$20T ‘12 ABJA U0 0301(] UBS BIWIOJI[E)) JO ANSIOATU(] J& SI10°00UIIS MMM//:Sd)Y WOLf papeo[umo(



SCIENCE ADVANCES | RESEARCH ARTICLE

(Fig. 2) confirm that the model is effectively able to learn the speci-
ficity rules from TCR-pMHC pairs exhibiting distinct structural
representations. Moreover, RACER-m computes a continuous value
capable of illustrating differences in the relative binding affinities
within functional TCR-peptide clusters (fig. S3).

While the reliable identification of strong-binding TCR-pMHC
pairs is clinically useful and one important measure of model per-
formance, simultaneous evaluation of model specificity is equally
crucial for generating useful predictions on the level of a TCR rep-
ertoire. To evaluate the specificity of a global sparsity task, we next
tested RACER-m’s ability to discern experimentally confirmed
weak-binding TCR-pMHC pairs. We selected peptides or TCRs
from the most abundant structural groups (MART-1 and TAX) in
the training set to create “scrambled” TCR-pMHC pairs by cross-
cluster mismatching of either TCRs or peptides (see Methods for
full details). Proceeding in this manner enables a specificity test on
biologically realized sequences instead of randomly generated ones.
Specifically, every peptide selected from a given structural group
(e.g., peptide EAAGIGILTV in the MART-1 group) was mismatched
with a list of TCRs specific for peptides belonging to other groups
(e.g., TAX, 1E6, and FLU) to form a set of scrambled weak binders.

Following our aforementioned testing protocols, we next calcu-
lated z scores for these mismatched interactions, which were then
compared to correctly matched TCR-pMHC pairs with the same
peptide sequence (e.g., EAAGIGILTV). We also conducted the
complementary test on TCRs using scrambled peptides. The pri-
mary advantages of this approach include (i) the ability to match
amino acid empirical distributions in binding and nonbinding pairs
and (ii) utilization of realized TCR sequences for specificity assess-
ment instead of random sequences that have minimal, if any, over-
lap with physiological sequences.

A representative example of these tests using the MART-1
epitope and MART-1-specific TCRs is given in Fig. 3. First, seven
sets of weak binders were constructed by mismatching 36
MART-1-specific TCRs each with seven non-MART-1 peptides sam-
pled from distinct clusters. We applied RACER-m on each weak
binder to predict its binding energy and then compared this value to
the distribution of decoy binding energies to obtain a binding Z
score. Z scores of mismatched weak binders, together with those of

A Mismatch MART-1 TCRs with B

correctly matched MART-1-TCR strong binders, were used to de-
rive the receiver operating characteristic (ROC) curve (Fig. 3A and
fig. S4). The area under the curve (AUC) was greater than or equal
to 0.98 for five of the seven test sets, while the others had AUCs of
0.80 and 0.75, illustrating RACER-m’s ability to successfully distin-
guish strong binding peptides from mismatched ones in the avail-
able MART-1-specific TCR cases.

An analogous test was performed on the five available peptide
variants from the MART-1 structural group by mismatching them
with 35 TCR sequences contained in the NLV, FLU, 1E6, or TAX
clusters. Relative to the binding energies of correctly matched
MART-1-specific TCRs, RACER-m performs well in discerning
matched versus mismatched TCRs for four of the five tested MART-
1 peptides (Fig. 3B and fig. S5), the one initial exception being pep-
tide ELAGIGILTV. Further inspection of the TCRs in this group
revealed that the TAX-specific TCR A6 (triangle sign in Fig. 3C)
together with several closely associated point mutants had a z score
distribution resembling that of the RD1-MART1"¢" TCR and its as-
sociated point mutants (fig. SSE). This could be explained by the fact
that the RD1-MART1"8" TCR was engineered from the A6 TCR to
achieve MART-1 specificity (31), wherein A6 was selected because
of its similarity with MART-1-specific TCRs in the Va region and
similar docking mode (16, 31). However, the engineered (RD1-
MART1"8") TCR is no longer specific to the TAX peptide (LLF-
GYPVYV), which is consistent with the z scores predicted from
RACER-m. When the A6-specific TAX peptide is paired with RD1-
MART1"8" TCR, a relatively lower z score (cross sign in Fig. 3C)
is predicted in comparison with the z scores from strong binders
(violin shape in Fig. 3C) of the same peptide.

Evaluation on extended datasets highlights the added value
of structural information

Given RACER-m’s performance on the ATLAS data, we then ap-
plied the model to additional datasets to further validate its ability in
the setting of global sparsity. The 10x Genomics (32) dataset details
many TCR-peptide binders collected from five healthy donors.
HLA-A*02:01-restricted samples in this dataset include 23 unique
peptides, and the number of TCRs specific for each peptide varied
from 8365 (e.g., GILGFVFTL) to 1 (e.g., ILKEPVHGV). We remark
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Fig. 3. Prediction performance on weak binders generated by mismatching peptides with TCRs. (A) Receiver operating characteristic (ROC) curves for RACER-m
classification performance on differentiating weak binders generated by mismatching peptides from NLV, TAX, FLU, and 1E6 clusters with MART-1 TCRs from MART-1
strong binders with the same set of TCRs. (B) ROC curves for RACER-m classification performance on distinguishing MART-1 strong binders from mismatched weak binders
generated by pairing MART-1-specific peptides with TCRs from NLV, TAX, FLU, and 1E6 clusters. (C) When TAX A6 TCR is paired with MART-1 peptide ELAGIGILTV, the z score
of the mismatched TCR-pMHC pair (triangle) resembles the values from the strong binders (violin shape) formed by the same peptide and TCR RD1-MART1M9" and its
point mutants, which was engineered from A6. In the reverse scenario, TCR RD1-MART1 High shows lower z score (cross) than TAX strong binders (violin shape) when paired
with TAX specific peptide LLFVYPVYV.
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that the diversity of HLA-A*02:01 samples was substantially re-
duced to 1741 TCR-pMHC pairs having unique CDR3a/p and pep-
tide sequences after removing redundancies. We selected this large
dataset as a reasonable test because 89.26% of the 1741 testing pairs
did not share either the same CDR3a or CDR3p sequence in com-
mon with the list of available TCR-pMHC pairs used in the training
set, and 99.89% of the testing TCR-pMHC pairs did not have the
same CDR3a-CDR3f combination with the training set, although 7
of the 23 peptides were shared with the training set.

Given this relative lack of overlap with our training data, we ap-
plied RACER-m to all unique HLA-A*02:01 pairs. In a majority
(88.9%) of these cases across a large immunological diversity of pep-
tides, RACER-m successfully identifies enriched z scores in the dis-
tribution of binding TCRs (Fig. 4A). The distinction of TCRs
belonging to testing versus training sets, together with the notable
difference in the size of training and testing TCR-pMHC pairs, sug-
gests that shared structural features were able to augment RACER-m’s
predictive power on distinct tests. Thus, the inclusion of structural
information in model training enhances RACER-m’s predictive ability
across distinct TCR-pMHC tests.

There were several cases where RACER-m’s predicted distribu-
tions overlapped substantially with low z scores, indicating a failed

prediction; in these cases, we investigated whether this could be ex-
plained by the lack of an appropriate structural template. A positive
correlation was observed between a testing case’s optimal structural
template similarity and the RACER-m-predicted z scores, consistent
with a decline in model applicability whenever the closest available
template is inadequate for representing the TCR-pMHC pair in ques-
tion (fig. S6). Despite this, the RACER-m approach, trained on 69
cases, was able to predict roughly 90% of strong binders contained in
over 1700 distinct testing cases in the 10x Genomics dataset. A simi-
lar trend was also seen when applying RACER-m to the “global true”
test set curated from the VDJdb (33) that were not included in train-
ing. RACER-m again exhibited optimal predictive performance
when a reasonable structural template was available (figs. S7 and S8).
Overall, RACER-m was able to successfully predict 56.7% of the
strong binders in this set. For groups with high sequence similarities
with our template structures, such as the cases of peptide “GILG-
FVFTL, RACER-m yields a higher success rate of strong binder
prediction (91.1% for cases with peptide “GILGFVFTL).

We then compared RACER-m’s performance to NetTCR-2.0
(11), a well-established convolutional neural network model for pre-
dictions of TCR-peptide binding that is trained on over 16,000
combinations of peptide/CDR3a/f sequences. This comparison was
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Fig. 4. Validate the predictive power of RACER-m with external datasets. (A) Prediction results of RACER-m on the HLA-A*02:01-restricted systems from 10x Genom-
ics dataset collected from five healthy donors. A total of 1741 unique pairs of TCR-peptide sequences were tested, and the prediction results of z score were grouped by
the immunological profile of the test TCR-pMHC pairs and depicted as box plots. (B) Comparison of classification performance between RACER-m and NetTCR-2.0 (17) on
a curated list of public TCR-pMHC repertoires (12, 42) composed of both strong binders and mismatched weak binder. Because of the restriction of NetTCR-2.0 on the
peptide length (9-mer), there are no data from NetTCR-2.0 for the two 10-mer peptides (KLVALGINAV and ELAGIGILTV). (C) The classification performance of RACER-m on
another set of TCR-pMHC test TCR-pMHC pairs (34). AUROC, area under the ROC curve.
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performed on a publicly available list of TCR-pMHC repertoires
curated by Zhang et al. (12), which were mutually independent of
RACER-m or NetTCR-2.0 training data, wherein we included
known strong binders and mismatched weak binders for eight unique
peptides of HLA-A*02:01. Because NetTCR-2.0 has a restricted length
for antigen peptide (no longer than 9-mer), it cannot be applied on
testing TCR-pMHC pairs with 10-mer peptides such as KLVALGINAV
and ELAGIGILTYV, which are absent from the NetTCR-2.0 eval-
uation in Fig. 4B. The area under the ROC curve was used as a
standard measure of classification success. In the majority of cases,
RACER-m outperformed NetTCR-2.0 in diagnostic accuracy with
higher ROC values (Fig. 4B). Last, RACER-m was further evaluated
using an unrelated set of TCR-pMHC data composed of 400 sam-
ples made up of the strong binders and mismatched weak binders
with four peptides and 100 TCRs (34), which also gives us good dis-
tributional performance (Fig.4C). In one of the four peptides includ-
ed in this dataset, RACER-m seems to have difficulty providing correct
classification about strong and weak binders for peptide CVNGSCFTYV,
which could again be explained by the lack of appropriate structure
templates for this pMHC and related strong binding TCRs (fig. S9).

RACER-m specificity of point-mutated variants and
preservation of local resolvability

Encouraged by model handling of global sparsity in tests of dispa-
rate binding TCR-pMHC pairs having high sequence diversity, we
next evaluated RACER-ms ability in maintaining local resolvability
of point-mutated peptides with near-identical sequence similarity to
a known strong binder, which represents a distinct and usually more
difficult computational problem. Understanding in detail which
available point mutants enhance or break immunogenicity is direct-
ly relevant for assessing the efficacy of tumor neoantigens and T cell
responses to viral evolution. In addition, the performance of struc-
tural models in accomplishing this task are a direct readout on their
utility over sequence-based methods because the latter case will
struggle to accurately cluster and, therefore, resolve TCR-pMHC
pairs having single-amino acid differences. To evaluate RACER-m’s
ability to recognize point mutants, we performed an additional test
on an independent comprehensive dataset of TCR 1E6 containing a
point mutagenic screening of the peptide displayed on MHC. This
testing set includes 20 strong binders and 73 weak binders (21),
wherein strong binding to the 1E6 TCR was confirmed by tumor
necrosis factor-a activity. RACER-m demonstrates enrichment of

the distribution of binding energies for strong binders versus con-
firmed weak cases (Fig. 5A). ROC analysis of the RACER-m’s ability
to resolve these groups gives an AUC of 0.78. Note that only two
strong binders of this group were included in the training of RACER-ms
energy model.

Inspired by these initial results on the 1E6 mutagenic screen, we
extended this analysis to all point-mutated weak binding TCR-
PMHC pairs in the ATLAS dataset, specifically those with K4 values
greater than 200 pM. Our results, presented template-wise for each
structure in the point-mutant data, demonstrate that RACER-m im-
proves in this recognition task when compared to NetTCR-2.0
(Fig. 5C). Last, to explicitly explore the value of structural modeling
for predicting the impact of immunologically important single-
amino acid differences, we quantified the predicted z scores for both
strong and weak binders based on a measure of total sequence simi-
larity (fig. S10). This measure was obtained by taking the maximum
product of CDR3a, CDR3f, and peptide Hamming similarity be-
tween a test TCR-peptide pair and each of the training TCR-peptide
pairs with an available structure. The results demonstrate that the
inclusion of information from correctly identified structural tem-
plates enhances RACER-m’s predictive power. Collectively, our re-
sults suggest that RACER-m offers a unique computational advantage
over traditional, sequence-only methods of prediction by leveraging
substantially fewer training sequences with key structural informa-
tion to efficiently identify the contribution of each amino acid change.

DISCUSSION

Reliable and efficient estimation of TCR-pMHC interactions is of
central importance in understanding and thus optimizing the adap-
tive immune response. The field has experienced considerable re-
cent research activity in the development of inference-based
computational methods to predict TCR-pMHC specificity (35). De-
coding the predictive rules of TCR-pMHC specificity is a formida-
ble challenge, largely owing to the extreme sparsity of available
training data relative to the diversity of sequences that need to be
interrogated in meaningful investigation. A majority of approaches
(11, 36, 37) take a complementary approach to RACER-m by train-
ing on TCR and/or peptide primary sequence data alone. One re-
cent method achieves training by relaxing a common requirement
of having paired CDR3a/p sequences (36). We developed RACER-m
to augment the predictive power of a relatively small number of

A 1E6 TCR B 1E6 TCR C ATLAS weak binders
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Fig. 5. RACER-m’s performance on differentiating strong binders from point-mutant weak binders. (A) Distribution of z scores from strong binders of 1E6 TCR and
weak binders from point mutagenic screen. (B) ROC curve for RACER-m classification performance using the strong and point-mutant weak binders for 1E6 TCR. (C) Com-
parison of RACER-m and NetTCR-2.0 in classification of strong and point-mutant weak binders from ATLAS dataset. Here, RACER-m predictions used the known crystal
structure selected by the sequence similarity calculation results as a representative template for threading each test case.
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TCR and epitope sequences by leveraging the structural informa-
tion contained in solved TCR-pMHC crystal structures. Our analy-
sis focused on the most common human MHC allele variant, due to
the abundance of sequence and structural data. Despite this restric-
tion, we observed structural heterogeneity underpinning the speci-
ficity of various TCR-pMHC pairs in distinct immunological contexts.
Enhancement in predictive accuracy was largely driven by the avail-
ability of a small list of structural templates, which included 66 crys-
tal structures of TCR-pMHC complexes from the PDB.

Using our minimal list, together with mutually independent test-
ing TCR-pMHC pairs for RACER-m and NetTCR-2.0, we find that
our model is able to outperform NetTCR-2.0 on both detection of
strong binders as well as avoidance of weak binders, both represent-
ing distinct but equally important tasks. We advocate for the inclu-
sion of such mixed performative tests for rigorous validation as a
necessary and standardized component in model evaluation, in ad-
dition to model comparisons using testing data that are equally dis-
similar from the training data included in competing models.

Intriguingly, incorporation of structural information into the
training approach enables the development of a model that main-
tains predictive accuracy while dealing with both global sparsity and
local resolvability, all while requiring substantially reduced training
sequence data. Because of RACER-m’s ability to deal with both glob-
al sparsity and local resolvability, we anticipate that this approach
may be applicable to future applications that require reliable predic-
tions on TCR responses against disparate and closely related collec-
tions of antigens. Such an approach may provide a useful theoretical
tool to design, for example, tumor antigen vaccines. Our results sug-
gest that a wealth of information is contained in the structural tem-
plates pertaining to key contributors of a favorable TCR-peptide
interaction, wherein conserved features across distinct TCR-pMHC
pairs can be learned to mitigate global sparsity. Conversely, struc-
tural encoding of information pertinent to residues whose amino
acid substitutions either preserve or break immunogenicity also as-
sists RACER-m trained on only a small subset of all possible point
mutations by identifying key contributing positions and residues,
thereby preserving local resolvability.

Our current approach has been successfully applied to resolve un-
known strong and weak binding TCR-pMHC pairs given those iden-
tified as such in the previously published test datasets under
consideration. We note that perfect resolvability in the setting of
repertoire-level studies that assess large numbers of randomly sam-
pled TCR and peptide pairs would require larger z scores for distin-
guishing strong binders. In several test cases, our model does assign
strong binders a larger score (z = 4; Fig. 4A; FLU and MART-1),
especially when sufficient positive training data exist. We also note
that some tasks (for example, picking out single-amino acid mu-
tants that retain strong binding) do not require competing against a
large number of possible choices, and so the needed z score should
be much lower.

Moreover, model accuracy correlated directly with the availabil-
ity of a template having sufficient proximity to the sequences of test-
ing TCR-pMHC pairs. As a result, we anticipate that RACER-m will
improve as more structures become readily available for inclusion.
Existing computational methods for identifying structural models
from primary sequence data (18) may provide an efficient method
of adding highly informative structures into the candidate pool for
testing. This task, together with identifying the minimal sufficient
number of distinct structural classes within a given MHC allele

Wang et al., Sci. Adv. 10, eadl0161 (2024) 15 May 2024

restriction, remains for subsequent investigation. Our current re-
sults suggest that this is doable given the small number of structures
available for explaining the diverse TCR-pMHC pairs studied here-
in. Notably, the inclusion of only 66 template structure augmented
RACER-ms ability to accurately differentiate strong and weak bind-
ers when evaluated with hundreds and even thousands of testing
TCR-pMHC pairs. This structural advantage was enhanced both by
the approach of hybridizing sequence and structural information into
the training and testing protocols and the availability of templates
that shared sufficient sequence-based similarity to testing cases so
that an adequate threading template was available.

METHODS

RACER-m model

To predict the binding affinity between a given TCR-peptide pair,
we used a pairwise energy model to assess the TCR-peptide binding
energy (14). The CDR3a and CDR3p regions were used to differen-
tiate between different TCRs because CDR3 loops primarily interact
with the antigen peptides, while CDR1 and CDR2 interact with
MHC (38). However, the binding energy was evaluated on the basis
of the entire binding interface between TCR and peptide. As illus-
trated in Fig. 1, we included 66 experimentally determined TCR-
PMHC complex structures and three additional TCR-pMHC complex
structures composed of experimentally determined pMHC com-
plexes with corresponding TCR structures as strong binders for
training an energy model (details in Supporting Methods), which
was subsequently used to evaluate binding energies of other TCR-
peptide pairs based on their CDR3 and peptide sequences. In addi-
tion, for each strong binder, we generated 1000 decoy binders by
randomizing the peptide sequence. These 69,000 decoys constitute
an ensemble of weak binders within our training set.

To parameterize this energy model, we optimized the parameters by
maximizing the gap of binding energies between the strong and weak
TCR-peptide binders, represented by SE in Fig. 1. The resulting opti-
mized energy model will be used for predicting the binding specificity of
a peptide toward a given TCR based on their sequences. Further details
regarding the calculation of binding energy are provided below.

Detailed calculation of TCR-peptide binding energies

To evaluate the binding affinity between a TCR and a peptide,
RACER-m used the framework of the AWSEM force field (39), which is
aresidue-resolution protein force field widely used for studying pro-
tein folding and binding (39, 40). To adapt the AWSEM force field
for predicting TCR-peptide binding energy, we used its direct protein-
protein interaction component to calculate the inter-residue contacting
interactions at the TCR-peptide interface. Specifically, we used the CB
atoms (except for glycine, where Ca atom was used instead) of each resi-
due to calculate the contacting energy using the following expression

)

i€ TCR,j € peptide

= 1
Vdirect = vij(a; “j)Gi,j

1
In Eq. 1, ©;; represents a switching function that defines the ef-

fective range of interactions between each amino acid from the pep-
tide and the TCR

1
®f’j = Z{l + tanh[5.0 X (r;; — rIInm)]}{l + tanh[5.0 X (r{nax - rz-,j)]}
(2)

8of 11

$20T ‘12 ABJA U0 0301(] UBS BIWIOJI[E)) JO ANSIOATU(] J& SI10°00UIIS MMM//:Sd)Y WOLf papeo[umo(



SCIENCE ADVANCES | RESEARCH ARTICLE

where rfnin =6.5A and r{nax = 8.5 A. The coefficients vij(a; a;) define
the strength of interactions based on the types of amino acids (a;, a;).
The v;j(a;, a;) coefficients are also the parameters that are trained in
the optimization protocols described as follows.

Optimization of energy model for predicting the
TCR-peptide binding specificity

To predict the binding specificity between a given TCR and peptide,
the energy model is trained using interactions gathered from the
known strong binders and their corresponding randomly generated
decoy binders.

Following the protocol specified in our previous paper (14), the
energy model of RACER-m was trained to maximize the gap be-
tween the binding energies of strong and weak binders. In addition,
a larger training set was used to achieve a more comprehensive cov-
erage of the structural and sequence space. Specifically, the binding
energies were calculated from individual strong binders (Ejtrong) and
their corresponding decoy weak binders (Egecoy) as described in
Eq. 1. We then calculated the average binding energy of the strong
({Estrong))> the average binding energy of the decoy weak binders
({Edecoy))» and the SD of the energies of the decoy weak binders (AE).

To train the model, the parameters v;(a;, a;) were optimized to
maximize OE/AE, where 8E = (Edecoy) — {Estrong)> resulting in the
maximal separation between strong and weak binders. Mathemati-
cally, SE can be represented as Ay, where

A= <¢dec0y) - ((bstrong )

Furthermore, the SD of the decoy binding energies AE can be
calculated as AE* = y' By, where

3)

B= <¢’dec0y¢:jrecoy > - <¢’dec0y > (d)decoy)T (4)
here, ¢ takes the functional form of Vit and summarizes interac-
tions between different types of amino acids. Therefore, the vector A
specifies the difference in interaction strengths for each pair of ami-
no acid types between the strong and decoy binders, with a dimen-
sion of (1, 210), while the matrix B is a covariance matrix with a
dimension of (210, 210).

With the definition above, maximizing the objective function of
8E/AE can be reformulated as maximization of ATy /1/yT By. This
maximization can be effectively achieved through maximizing the
functional objective R(y) = ATy — A, /YT By. By setting OR(Y)/oy"
to 0, the optimization process leads to y « B™'A, where y is a (210,
1) vector encoding the trained strength of each type of amino acid-
amino acid interactions. For visualization purposes, the vector v is
reshaped into a symmetric 20-by-20 matrix, as shown in Fig. 1. In
addition, a filter is applied to reduce the noise caused by the finite
sampling of decoy binders. In this filter, the first 50 eigenvalues of
the B matrix are retained, and the remaining eigenvalues are re-
placed with the 50th eigenvalue.

Construction of target TCR-pMHC complex structures

from sequences

Because RACER-m calculates the binding energy based on the in-
teraction contacts between a given peptide and a TCR, it relies on
the 3D structure of the TCR-pMHC complex for contact calcula-
tion. Although the training data include a 3D structure for each of
the TCR-peptide strong binders, we usually lack 3D structures for

Wang et al., Sci. Adv. 10, eadl0161 (2024) 15 May 2024

most of the testing cases. To address this limitation, we used the
software MODELLER (41) to construct a structure based on the tar-
get peptide/ CDR3 sequences in the test TCR-pMHC pair and a tem-
plate crystal structure selected from the training set.

Specifically, for each testing TCR-pMHC pair, a position-wise
uniform Hamming distance was computed between the target se-
quence and each of the sequences from the 66 training strong bind-
ers with complete TCR-pMHC complex structures, separately for
peptide, CDR3a, and CDR3f regions. Then, sequence similarity scores
were assigned to peptide, CDR3a, and CDR3, respectively, with the
number of amino acids that remain the same between target and
template sequences. To calculate a composite similarity score for the
target TCR-peptide complex, we summed the similarity scores of
the CDR3a and CDR3 regions and multiplied this sum by the pep-
tide similarity score. The template structure with the highest simi-
larity score was selected as the template for the subsequent sequence
replacement using MODELLER (Fig. 1, bottom).

To perform the sequence replacement, the peptide, CDR3a, and
CDR3p sequences in the template structure were replaced with the
corresponding target sequences in the testing TCR-peptide pair. The
location of the target sequence in the template structure was deter-
mined by aligning the first amino acid of the target sequence with
the original template sequence. If the two sequences had different
lengths, then the remaining locations were patched with gaps. This
sequence alignment and the selected template structure were then
used as input for MODELLER to generate a new structure. The con-
structed structure was then used for the estimation of the binding
energy of the testing TCR-pMHC pair.

Generation of weak binders by mismatching sequences of
known TCR-peptide pairs

To test the performance of RACER-m in distinguishing strongly
bound TCR-peptide pairs from weak binders, we generated a set of
weak binders by introducing sequence mismatches between the pep-
tides and TCRs from the known strongly bound TCR-peptide pairs.
As shown in Fig. 2, the strong binders were grouped on the basis of
their immunological systems, such as MART-1 and TAX. Note
that pairs within the same group also share similar TCR-peptide
structural interfaces.

To generate the weak binders, we mismatched the sequences of
peptides and the CDR3a/p pairs from different groups. For exam-
ple, 36 pairs of MART-1-specific CDR3a/fp sequences were mis-
matched with seven non-MART-1 peptides to form weak binders
for Fig. 3A, while five MART-1-specific peptides were mismatched
with 35 pairs of non-MART-1 CDR3a/p sequences to form weak
binders in Fig. 3B. The newly generated combinations of sequences
were then used to create 3D structures of the TCR-pMHC complex-
es, following the protocol specified in the “Construction of target
TCR-pMHC complex structures from sequences” section.

Mutual Q calculation

To quantify the structural distances between the 66 crystal struc-
tures of TCR-pMHC complexes, a pairwise mutual Q score was used
to calculate the structural similarity between every pair of the 66
structures. Because our focus is on the contact interface between the
peptide and the CDR3a/CDR3p loops of the TCR, the mutual Q
score was computed between these regions. We adopted a similar
protocol used in (25) and calculated the mutual Q score between
structures A and B with the following expression
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A By2
(rij _rl])

QA’B =c exp| — (5)

2

2
i € peptide,j € CDR3 20

where i and j are indices of atoms from the peptide and CDR3 loops,
respectively. r,-? and r,? denote the contact distances between atom i
and j in structure A and B, respectively. For simplicity, ¢ was set as 1
A instead of using the sequence distance between i and j as done in
(25). The coeflicient ¢ normalizes the value of Q to fall within the
range of 0 and 1. This definition ensures that a larger value of Q in-
dicates a greater structural similarity between the two TCR-pMHC pairs.

Prediction protocols with NetTCR-2.0

To test the predictive performance of RACER-m, we compared the
prediction accuracy of RACER-m with NetTCR-2.0, another widely
used computational tool trained with a convolutional neural network
model, as described by Montemurro et al. (11). To ensure a fair com-
parison, we retrained the NetTCR-2.0 model with the dataset with
paired o/ p TCR CDR3 regions and a 95% partitioning threshold (file
train_ab_95_alphabeta.csv, provided in https://github.com/mnielLab/
NetTCR-2.0). The trained model was then used to classify the strong
and weak binders, as shown in Fig. 5C. Because of the peptide length
restriction in the application of NetTCR-2.0, we excluded peptides
longer than nine residues from our testing prediction.
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Supporting Methods

Figs.S1to S10
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