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ABSTRACT DNA-binding response regulators (DBRRs) are a broad class of proteins that operate in tandem with their partner
kinase proteins to form two-component signal transduction systems in bacteria. Typical DBRRs are composed of two domains
where the conserved N-terminal domain accepts transduced signals and the evolutionarily diverse C-terminal domain binds to
DNA. These domains are assumed to be functionally independent, and hence recombination of the two domains should yield
novel DBRRs of arbitrary input/output response, which can be used as biosensors. This idea has been proved to be successful
in some cases; yet, the error rate is not trivial. Improvement of the success rate of this technique requires a deeper understand-
ing of the linker-domain and inter-domain residue interactions, which have not yet been thoroughly examined. Here, we studied
residue coevolution of DBRRs of the two main subfamilies (OmpR and NarL) using large collections of bacterial amino acid se-
quences to extensively investigate the evolutionary signatures of linker-domain and inter-domain residue interactions. Coevo-
lutionary analysis uncovered evolutionarily selected linker-domain and inter-domain residue interactions of known experimental
structures, as well as previously unknown inter-domain residue interactions. We examined the possibility of these inter-domain
residue interactions as contacts that stabilize an inactive conformation of the DBRR where DNA binding is inhibited for both sub-
families. The newly gained insights on linker-domain/inter-domain residue interactions and shared inactivation mechanisms
improve the understanding of the functional mechanism of DBRRs, providing clues to efficiently create functional DBRR-based
biosensors. Additionally, we show the feasibility of applying coevolutionary landscape models to predict the functionality of
domain-swapped DBRR proteins. The presented result demonstrates that sequence information can be used to filter out bio-
engineered DBRR proteins that are predicted to be nonfunctional due to a high negative predictive value.
SIGNIFICANCE We extensively explored amino acid coevolution of the bacterial DNA-binding response regulator
(DBRR) subfamilies at full protein length scale. The full-length coevolutionary analysis revealed the evolutionarily selected
residue interactions between the linker and the domains. The mutational landscape from our coevolutionary analysis can
be applied to predict the functionality of domain-swapped DBRR proteins, particularly for screening nonfunctional DBRR
variants. This result will contribute to streamlining the development of novel biosensors. Additionally, we present the
potential inactivation mechanism of DBRRs and their commonality across the subfamilies. Our result not only addresses
biologically intriguing questions on inter-domain communication but also offers useful insights for effective domain rewiring
of DBRRs.
INTRODUCTION

DNA-binding response regulators (DBRRs) function in tan-
dem with their histidine kinase (HK) partner proteins as the
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primary sensory response mechanism in bacteria, called
two-component system (TCS) (1). DBRRs function down-
stream of their cognate HK partner typically by regulating
transcription through its interactions with the bacterial
genome. A typical DBRR protein is composed of two do-
mains connected by a linker: a conserved N-terminal
receiver (REC) domain and a structurally diverse C-terminal
DNA-binding effector (EFF) domain (2,3). This diversity
further classifies DBRR family into subfamilies, including
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the two most abundant classes: OmpR subfamily (approxi-
mately 48% of DBRRs calculated from https://www.ncbi.
nlm.nih.gov/Complete_Genomes/RRcensus.html (2)) with
winged helix-turn-helix EFF domain and NarL subfamily
(28%) with helix-turn-helix EFF domain (4) (Fig. 1 A).
Despite the variations, the typical functional mechanism
can be summarized as follows. DBRRs assume both active
and inactive states (5) (Fig. 1 B). When the proteins are
not phosphorylated, this equilibrium shifts toward the inac-
tive state where many DBRRs form a closed state through
residue interactions between the REC and EFF domains
(6,7). Upon phosphoryl transfer from the HK, the DBRR
shifts toward the active state typically with an extended
conformation that homodimerizes through the REC domain,
enabling it to then bind to DNA (8).

DBRRs have gained the attention of bioengineering re-
searchers as abundant building blocks for novel biosen-
sors. Theoretically, novel DBRR-based biosensors can be
FIGURE 1 Cartoon illustrating amino acid coevolution within the domi-

nant subfamilies of DBRRs. (A) The domain architectures of OmpR and

NarL subfamilies consist of an REC domain and an EFF domain. The

REC domain (Pfam (28): Response_reg) is common among all DBRR pro-

teins, whereas the EFF domains are distinct for each subfamily: for OmpR

(Pfam: Trans_reg_C) and NarL (Pfam: GerE). The 3D structures of ‘‘PDB:

7LZA’’ (OmpR subfamily) (29) and ‘‘PDB: 4ZMR’’ (NarL subfamily) (30)

are also shown. (B) Basic functional mechanism of DBRRs of the two sub-

families. R, REC domain; E, EFF domain. (C) DCA quantifies amino acid

coevolution. Circles show positions of amino acid residues. Highly co-

evolving residue pairs reflect the maintenance of their interactions over

the course of natural selection.
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made by connecting the REC and EFF domains of
different DBRRs to make the proteins with arbitrary
input/output combinations. In particular, a recent work
has successfully demonstrated a systematic procedure for
creating novel functional DBRRs by domain swapping us-
ing domains from the same DBRR subfamily (9). Howev-
er, the error rate of the swapping experiments is not trivial.
One factor that can improve the efficiency and success
rate of the swapping experiments is the better understand-
ing of residue interactions of DBRRs, specifically linker-
domain and inter-domain interactions, which have not
yet been extensively investigated for these two subfam-
ilies. Knowledge on these interactions would also shed
light on the functional conformational modes of DBRR
proteins, which can uncover more of their functional
mechanisms.

Here, we thoroughly examine these residue interactions
by analyzing their amino acid coevolutionary signatures
using direct coupling analysis (DCA). DCA is a statistical
method that is able to quantify the amino acid coevolution
between pairs of residues within a protein (10,11) (Fig. 1
C), i.e., the observed correlations between the amino acid
residue types at different sites developed mainly to main-
tain functionally important interaction over natural selec-
tion. A high degree of coevolutionary coupling between
residue sites is often used as a proxy for inferring their
spatial proximity in a three-dimensional (3D) structure of
a folded protein or complex. This approach has been used
successfully to predict residue contacts within a folded pro-
tein or protein complex (12–16). A number of previous
studies have applied coevolutionary analysis to TCS pro-
teins. The REC domain of RRs is often used as a model
protein system to develop and evaluate coevolution-based
analyses (17,18), many of which take advantage of the sub-
family-specific homodimer interfaces (13,19). The coevo-
lution of dimerization and histidine phosphotransfer
(DHp) domain of the HKs was studied to understand
intra-protein domain association of hybrid HK (20). The
coevolution between HKs and RRs has been investigated
as well to predict the specific HK-RR complex structure
(21) and interacting HK-RR pairs (22), as well as how mu-
tations affect HK-RR interaction specificity (23,24) and the
functional activity of TCS (25) using sequence coevolu-
tionary landscapes. Mutational landscapes inferred using
coevolutionary information have been used to study the ef-
fect of mutations on the fold and function of proteins
outside TCS as well (26,27).

We specifically focus on the sequence diversity of the two
major classes of DBRR proteins, OmpR-like and NarL-like
DBRRs, to identify coevolving residue pairs of DBRRs for
full-length proteins that include REC domain, linker, and
the EFF domains using DCA. We find evolutionarily
selected linker-domain residue interactions, which agree
with residue contacts in known experimental structures.
Additionally, we create a mutational landscape from our
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inferred coevolutionary couplings to predict the function-
ality of bioengineered DBRR proteins that were created
via domain swap. We further explore residue coevolution
between the REC and EFF domains to find the inter-domain
residue interactions. Our analyses identified coevolution in
the REC-EFF residue interactions of known inactive mono-
mer structures. Additionally, integrating molecular dy-
namics (MD) simulation and structural analyses, we find
previously unknown inter-domain residue interactions that
are associated with potential inactive monomer conforma-
tions. In these conformations, DNA recognition helix is
partly covered by REC domain, making the DNA interface
inaccessible in both subfamilies. Our results suggest that
OmpR and NarL subfamily DBRRs are implemented with
the same inactivation mechanism through REC-EFF residue
interactions.
MATERIALS AND METHODS

Multiple sequence alignment

Bacterial proteins of OmpR and NarL subfamilies were collected from the

Pfam database (ver. 35.0) in InterPro (31) as those consist of the following

domain architecture: PF00072 (Response_reg)-PF00486 (Trans_reg_C)

for OmpR subfamily and PF00072 (Response_reg)-PF00196 (GerE) for

NarL subfamily. Full-length Multiple Sequence Alignments (MSAs) and

two-domain MSAs (without the linker) were prepared separately. To

construct full-length MSAs, full-length amino acid sequences were

retrieved from UniProt (32). After removing sequences with nonstandard

amino acids, 1000 sequences were randomly sampled as MSA seeds.

Seed sequences were first aligned by MAFFT (33) then excessively gap-

ped columns (gap fraction >50%) were removed. HMM profiles of the

seed MSAs were computed by HMMER (34). The amino acid sequences

prepared above were aligned to the HMM profile using HMMER. To

improve the quality of the MSAs, largely gapped rows (gap fraction

>10%) and columns (gap fraction >50%) were further removed. REC

domain positions of OmpR and NarL subfamily MSAs were mapped

based on the alignment between amino acid sequences of Protein Data

Bank (PDB) (35) entries ‘‘PDB: 7LZA’’ (OmpR subfamily) and ‘‘PDB:

4ZMR’’ (NarL subfamily) computed by MAFFT. Instead of building

MSAs from UniProt sequences, two-domain MSAs were prepared directly

from the protein domain MSAs provided by Pfam. Amino acid sequences

with the fraction of gaps exceeding 20% as well as sequences with

nonstandard amino acids were removed. Then, sequences of REC

(PF00072) and EFF (PF00196 or PF00486) domains were concatenated

to yield two-domain MSAs.

The sampling bias correction by sequence similarity reweighting

(threshold of 0.8) (36,37) left 35,618.68 (full-length MSA) and 30,728.84

(two-domain MSA) effective sequences in OmpR subfamily, and

25,452.28 (full-length MSA) and 24,302.67 (two-domain MSA) effective

sequences in NarL subfamily.
Structural data, residue contacts, and functional
residues

All the 3D structures in this study were obtained from PDB. Among the

full-domain PDB entries listed by Pfam, structures with resolution worse

than 3.2 Å were discarded. The residue numbers in the following text are

reported using the reindexed residue numbers where the first residue

with coordinates was counted as the first residue. Each residue number

was mapped to an MSA position based on the alignments of protein se-
quences to HMM profiles generated by HMMER. Phosphorylated struc-

tures were identified by the presence of beryllium trifluoride (BeF3
�), a

phosphoryl-group mimic, at the highly conserved aspartic acid site. Res-

idue pairs were identified as contacts when their Ca-Ca distance was

less than 10 Å (full-length DCA) or Ca-Ca distance was no more than

12 Å (two-domain DCA) in at least one 3D structure. A subset of residue

pairs forming contacts in both monomer and dimer structures (not neces-

sarily in the same structure) is referred to as monomeric-and-dimeric

contacts. Chain A of ‘‘PDB: 7LZA’’ (OmpR subfamily) and ‘‘PDB:

4ZMR’’ (NarL subfamily) were used as representative structures of

OmpR and NarL subfamilies, respectively, in the following analyses.

The secondary structures of the representative structures were assigned

by DSSP (38,39) after missing heavy atoms were modeled by

MODELLER (40). Residues that form homodimeric contacts, HK inter-

face contacts, and DNA interface contacts were identified when at least

one heavy atom of a residue was found within 3.5 Å of its target in at

least one known experimental structure (other DBRR protein, HK part-

ner, and DNA, respectively).
DCA

The strength of the amino acid coevolution (direct couplings) between all

residue pairs were quantified from MSA data using DCA. In DCA, an

amino acid sequence~s of length L from an MSA f ~sðlÞgl¼ 1;:::;M with M se-

quences was assumed as a sample extracted from a probabilistic model of

the MSA. Thus, a probability distribution Pð~sÞ derived from the model

must reproduce empirical observations of the MSA: single-site frequency

fiðsiÞ and pairwise frequency fijðsi; sjÞ of position i and j. The most gener-

alized form of such a probabilistic distribution was given by Potts-model

probability distribution shown as

Pð~sÞ ¼ 1

Z
exp

 X
1& i& L

hiðsiÞ þ
X

1& i < j&L
Jij
�
si; sj

�!
;

(1)

where hi and Jij represent single-site fields and pairwise couplings, respec-

tively. The latter is associated with the direct coevolution between posi-
tions i and j of the MSA. Parameters of the probability distributions

were optimized in a pseudo-likelihood maximization approach using

MATLAB (The MathWorks) codes from Ekeberg et al. (36,37). The

strength of direct couplings between the positions was given in the form

of Frobenius norm

FNij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1%si ;sj % q

Jij
�
si; sj

�2s
; (2)

where 1;.; q denote all the observed states (amino acids and gap) of the

position in the MSA. Average product correction was applied to the raw
Frobenius norms expressed in the following formula:

FNAPC
ij ¼ FNij�FN$jFNi$=FN$$; (3)

where FN$j , FNi$, and FN$$ represent mean over position i, j, and both i and

j, respectively.
The output scores FNAPC
ij were standardized as

ZFN APC
ij ¼

�
FNAPC

ij � FNAPC
�.

s; (4)

where FNAPC and s show the mean and standard deviation of FNAPC
ij for

every i and j considered. ZFN APC
ij is referred as coevolutionary score and
coevolving residue pairs identified by DCA are referred as DCA pairs in

the following text. In the two-domain model (REC and EFF domain

only), intra-domain DCA pairs of which separations were less than five,

i.e., j i � j j < 5, were eliminated to focus on mid- and long-range residue

coevolution.
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Mutational favorability of domain-swapped
proteins

Experimental datasets of domain-swapped proteins were obtained from ref-

erences (9,41,42). In these experiments, domain-swapped DBRR proteins

were created by concatenating the N-terminal region from one DBRR

(DBRR 1) with the C-terminal region of another DBRR (DBRR 2) such

that the resultant protein consisted of an REC domain, linker, and EFF

domain (in that order). However, it should be noted that the MSA positions

of the concatenated DBRR segments may overlap, i.e., sometimes contain

the same MSA positions. Consequently, any computation of the mutational

change with respect to a wild-type reference requires rules for selection of

that reference (discussed further below). The pairwise coevolutionary cou-

plings of a residue pair Jij were computed by DCA. The difference in the

direct couplings of position i (amino acid a) and j (amino acid b) of the

wild-type protein upon domain swapping DJijða/a0 ;b/b0 Þ was computed as

DJijða/a0;b/b0Þ ¼
X
ref

�
Jijða0 ;b0Þ � Jrefijða;bÞ

�,
m; (5)

where a’ and b’ represent amino acids of position i and j of the domain-swap-

ped proteins, respectively, and the sum is taken over the number of wild-type
reference proteinsm. The referencewild-type proteins were determined as fol-

lows with respect to theMSA positions of DBRR 1 and/or DBRR 2: 1) if both

positions i and jof the domain-swappedproteinwere encoded in the samewild-

type protein (DBRR1 and 2), then the respectivewild-type proteinwas used as

the reference (hence, m ¼ 1 and DJijða/a0 ;b/b0Þ ¼ 0); 2) if the resultant

domain-swapped protein is constructed such that the i-th MSA position be-

longs to DBRR 1 and containing the j-th MSA positions of both DBRR 1

and DBRR 2, then the wild-type reference was chosen to be DBRR 1 (hence,

m¼ 1); and 3) if the resultant domain-swapped protein is constructed such that

both the i-th and j-thMSA positions of the concatenated segments were found

in both DBRR 1 and DBRR 2. Then these two proteins were used as the wild-

type reference (hence, m ¼ 2). Mutational favorability

F ¼
X

DJijða/a0;b/b0Þ; (6)

was computed by taking the sum of DJijða/a0 ;b/b0 Þ of all the DCA pairs that

coincided with residue contacts.
MD simulation

Novel monomer structures were generated by MD simulation with

GROMACS (43) 5.0.4 in the Structure-based Model (SBM) approach

(see Supporting Material for more details on the SBM approach), using

the representative structures of the subfamilies as templates. After missing

atoms were filled using MODELLER, the template structures were pro-

cessed using SMOG (44) (ver. 2.1) to generate topology files including

coarse-grained Camodels (45) and potentials. Each DCA pair was incorpo-

rated to the topology files with a potential Vij , which combined Gaussian

potential to r� 12 repulsive term of Lennard-Jones potential (46)

Vij ¼ A

��
1þ ð1=AÞ�sNC

�
rij
�12�

�
1 � exp

�
� �

rij � r0
�2.�

2s2
��� � 1

�
; (7)

where r0 (equilibrium distance), s (decay), and A (amplitude) are the pa-

rameters determining the shape of the Gaussian potential well, and sNC de-
fines the exclusion volume. This potential stabilized the residue pairs to be

at the equilibrium distance. The amplitude parameter A was fixed at 300ε,

where ε is the unit of energy of the structure-based model, to constrain the

model to generate structures consistent with the desired DCA pairs as con-

tacts. The structures of the domains were fixed by strengthening dihedral

angle parameters k1d and k3d of the dihedral angle potential Vd
684 Biophysical Journal 123, 681–692, March 19, 2024
Vd ¼ k1dð1 � cosð4 � 40ÞÞ þ k3dð1 � cosð3ð4 � 40ÞÞÞ;
(8)

by a factor of 10 from the given values in the topology files prepared by

SMOG (40 shows the angle between the planes defined by residues i, j,

and k and residues j, k, and l). Moreover, all dihedral and pair constraints

for intra-linker or linker-domain residue interactions were removed to

assure the flexibility of the linker. The simulation consisted of five stages.

In the first four stages, r0 and s of Gaussian potentials of DCA pairs were

progressively altered (Table S1). After confirming that all the incorporated

DCA pairs reached equilibrium distance, the MD simulation was extended

for a longer duration (fifth stage) starting with the final structures of the pre-

vious four-stage simulation under the same condition as the fourth stage.

See Supporting Material for more details on coarse-grained simulation. A

coarse-grained structure was periodically sampled from the trajectory to

create an ensemble of 2000 structures. Side chains were added to the ob-

tained Ca structures using MODELLER for structural analysis.
Structural analysis

Residue contacts and local conformational frustration of the sampled struc-

tures were computed by R package frustratometeR (47). After extracting

the samples satisfying all the incorporated DCA pair constraints, prin-

cipal-component analysis (PCA) was performed on internal positional vec-

tors between the intra-monomer Ca atom pairs. The converted vectors

along the first three principal components were subjected to k-means clus-

tering (nclusters ¼ 3). The residue contacts observed in more than half of the

samples were extracted and compared among the three clusters of each sub-

family. Two clusters were merged when more than 95% of the contacts in

both clusters were shared. Structural similarity search was performed using

Dali server (48) against PDB. Residue flexibility was predicted using

MEDUSA (49) from an amino acid sequence. As references, residue con-

tacts, and local conformational frustration of chain A of structures ‘‘PDB:

7LZ9’’ (29) (inactive monomer) and ‘‘PDB: 7LZA’’ (active monomer) of

OmpR subfamily, and chain A of ‘‘PDB: 4HYE’’ (50) (inactive monomer)

and ‘‘PDB: 4ZMR’’ (active dimer) in NarL subfamily were also computed

after missing residues were filled in using MODELLER. The solvent-acces-

sible surface area (SASA) of the side chain of an amino acid residue was

calculated using GetArea server (51).
RESULTS AND DISCUSSION

Full-length coevolutionary profiles detected
strong residue coevolution of linker-domain
residue interactions

Residue pairs with DCA score ZFN APC
ij > 1.964 (OmpR

subfamily) and 1.487 (NarL subfamily) were identified as
highly coevolving residue pairs (herein referred to as
DCA pairs). These cutoffs were defined such that residue
pairs with a DCA score higher than the cutoff were reliably
observed to be structural contacts, with a positive predictive
value (PPV) greater than 0.95 against union sets of known
residue contacts (Ca-Ca distance <10 Å) for each subfam-
ily (Fig. S1). A PPV of 0.95 was chosen to select the most
strongly coevolving residue pairs in this part of the study.
The DCA score filtering left 711 OmpR DCA subfamily
pairs and 908 NarL subfamily DCA pairs. The top coevolv-
ing residue pairs identified by DCA in fact captured the
unique contacts for each subfamily (Fig. 2 A), in particular



FIGURE 2 Residue contacts, DCA pairs, and overall mutational favorability of the domain-swapped DBRRs. (A) Contact maps of unphosphorylated

(lower triangle) and phosphorylated (upper triangle) state structures with DCA pairs. Dashed lines indicate the domain boundaries. Purple boxes show

DCA pairs successfully capturing subfamily-specific active dimer interfaces. The full-length coevolution profile included linker-domain residue interactions

as well as intra-domain residue interactions. (B) Confusion matrix showing the PPVs of the subfamily-specific DCA pairs for predicting the residue contacts

for the OmpR and NarL subfamilies within the REC domain. (C) Overall mutational favorability F of the domain-swapped DBRRs. Full-length coevolu-

tionary profiles were able to distinguish a subset of the nonfunctional domain-swapped DBRRs computationally.

Coevolution in response regulators
the active dimer interfaces in REC domain, which are
known to vary among the DBRR subfamilies (a4-b5-a5
and a1-a5 interface for OmpR and NarL subfamilies,
respectively (4)). As can be assumed from this result, the
DCA predictions for the OmpR and NarL subfamilies
captured the subfamily specific contacts of the DBRR pro-
teins within the REC domain (Fig. 2 B), despite the high
similarity of the REC domains across the DBRR subfam-
ilies. Further, strong residue coevolution was found between
the linker and domains (linker-REC domain and linker-EFF
domain) additionally to intra-domain residue coevolution in
both subfamilies (Fig. 2 A). This shows that the linker-
domain residue interactions were evolutionarily selected
and hence are important for the function of the DBRR pro-
teins. This is consistent with the previous observations that
the linker and REC domain cooperatively regulate the func-
tion of EFF domain and that the amino acid residues in the
linker play an important role in DBRR function (52,53).
Full-length coevolution models can
computationally predict nonfunctional domain-
swapped proteins

To further test our subfamily-specific coevolutionary
models, we constructed mutational landscapes and applied
them to examine bioengineering experiments where the
C-terminal portion of a DBRR protein is removed and re-
placed with one from a nonnative DBRR protein within
the same subfamily (domain-swapped DBRR proteins)
(9,41,42). We computed the overall mutational favorability
F of these domain-swapped DBRRs relative to our wild-
type reference protein(s), from direct coupling matrices
given by DCA (see section ‘‘materials and methods’’).
Generally, mutations leading to negative couplings reflect
evolutionarily unfavorable amino acid combinations found
in sequence data. Based on this, we hypothesized that there
exists a threshold value for our favorability index F such that
bioengineered proteins below that threshold would not be
expected to be functional. We observed that all domain-
swapped proteins less than a threshold of F ¼ �1.8 were
experimentally nonfunctional (Fig. 2 C). It is possible that
the high similarity between DBRR subfamilies in terms of
structure and function results in a similar degree of tolerance
for the unfavorable interactions. Further studies, however,
are needed to verify this hypothesis. The nonfunctional
domain-swapped proteins predicted by this cutoff value ac-
counted for 31.0% (13 out of 42) of nonfunctional domain-
swapped OmpR subfamily proteins and 25.0% (four out of
16) of nonfunctional domain-swapped NarL subfamily pro-
teins (Fig. S2; Table S2). Our overall mutational favorability
Biophysical Journal 123, 681–692, March 19, 2024 685
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index F can aid efficient domain-swapping experiments by
narrowing down the list of potentially functional domain-
swapped DBRRs. This analysis is also expected to be the
starting point to develop computational prediction model
of DBRR domain-swapping experiments.
Two-domain coevolutionary models predict novel
monomer inter-domain residue interactions in
addition to known inter-domain residue
interactions of inactive monomers

We further examined the inter-domain residue coevolution
between the REC and EFF domains that were expected
from experimental 3D structures. To purely focus on
REC-EFF domain residue coevolution, DCAwas performed
on MSAs where the linker region was removed (referred to
as the two-domain MSAs). Following the same protocol as
for the full-length coevolutionary analysis, residue pairs
with DCA score ZFN APC

ij R 1:2 were identified as DCA
pairs in this part of the study. This Z score cutoff resulted
in PPV >0.96 against the union sets of residue contacts
(Ca-Ca distance <12 Å) from all the PDB structures of
the subfamilies (Fig. S3). This chosen cutoff was selected
to reliably identify strongly coevolving residue pairs.
Although the specific value of the cutoff is an arbitrary
choice, this is a reasonable choice and minor variations do
FIGURE 3 Residue contacts, DCA pairs, and 3D structures. (A) Contact maps

state structures with DCA pairs. Dashed lines indicate the domain boundaries. Pu

phorylated active dimer interfaces. Both subfamilies had inter-domain DCA pa

corresponded to known inactive monomeric contacts. (B) Inter-domain DCA pai

structures of the subfamilies. REC domain residues were located around a1 and

recognition helix.
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not affect the conclusion. This filtering left 450 OmpR sub-
family DCA pairs and 374 NarL subfamily DCA pairs. DCA
pairs overlapped on the subfamily-distinct dimeric inter-
faces (purple box in Fig. 3 A), showing that our two-domain
coevolutionary profiles successfully captured unique char-
acteristics of the two subfamilies.

DCA pairs from the two-domain MSAs included six in-
ter-domain pairs (pairs a–f) in OmpR subfamily and four in-
ter-domain pairs (pairs g–j) in NarL subfamily (Fig. 3 B;
Table S3). Interestingly, those inter-domain pairs lay on
the two separate areas in both subfamilies: A) the area be-
tween position 7 and 17 of REC domain (mostly a1 of the
protein) and DNA recognition helix (a8 for OmpR subfam-
ily and a9 for NarL subfamily), and B) the area between po-
sition 70 and 87 of REC domain (a3-b4-a4) and DNA
recognition helix. We will refer to these areas as area A
and B in the following text (orange boxes in Fig. 3 B). In-
ter-domain DCA pairs f, i, and j (area B) coincided with res-
idue contacts of closed inactive monomer structures,
suggesting that the inactivating mechanism through these
inter-domain residue interactions is shared by the two
subfamilies.

We next explored the possibility that the inter-domainDCA
pairs (pairs a–e, g, and h, mostly from area A) are spatial con-
tacts, despite not being observed in any experimental struc-
tures. The DCA scores of these unverified DCA pairs were
of unphosphorylated (lower triangle) and phosphorylated (upper triangle)

rple boxes show DCA pairs successfully capturing subfamily-specific phos-

irs in two areas, namely areas A and B. Most of the DCA pairs in area B

rs. The Ca atoms of these pairs are shown in black spheres on representative

a region over a3-b4-a4. EFF domain residues were mostly located in DNA
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comparable to those of contacting inter-domain pairs (pairs f,
i, and j from area B) (Table S3); note that all of these pairs
satisfy theDCAscore cutoff for statistical significance.Gener-
ally, the stronger coevolutionary signals indicate stronger
direct couplings between the positions, suggesting higher like-
lihood of having direct residue interactions. Therefore, we
explored the idea of these unverified inter-domain DCA pairs
forming residue contacts, specifically monomer residue con-
tacts, by MD simulation and structural analysis. We focused
on monomeric interactions, because the regulation of DNA-
binding activity through monomeric residue interactions has
been established (7,54). It is plausible that these inter-domain
DCA pairs are involved in the regulation of DBRR activity by
inhibiting DNA binding of the DBRR proteins, for instance.
Simulations reveal alternative monomer
conformations of DBRR proteins

Three separate simulations were conducted where the un-
verified inter-domain DCA pairs were treated as spatial con-
tacts between the REC and EFF domains: one on OmpR
subfamily protein with the five inter-domain DCA pairs
(pairs a–e), one on NarL subfamily protein with pair h,
and one on NarL subfamily protein with pair g. Inter-
domain DCA pairs f, i, and j were excluded because they
matched residue contacts of known PDB structures. Pairs
g and h of NarL subfamily were treated separately because
they cannot be satisfied simultaneously without disrupting
the fold of REC domain, which is out of the focus of this
particular work (Fig. S4).

The resulting structures were analyzed using PCA-based
clustering (Table S4). In OmpR subfamily, the clustering
identified two dominant clusters, the models of which will
be referred to as OmpR-A1 and OmpR-A2. The clusters
represented by the former was the predominant one and
comprised 1416 samples (70.9%) (Fig. S5 A). In NarL sub-
family, the clustering left a single cluster in each simulation
case, resulting in two models in total: NarL-A1 with DCA
pair g from area A (2000 samples) and NarL-B1 with DCA
pair h from area B (1989 samples) (Fig. S5 B and C). The
mean pairwise backbone root-mean-square deviation was
2.28, 2.96, 6.37, and 5.87 Å for clusters represented by
OmpR-A1, OmpR-A2, NarL-A1, and NarL-B1, respectively.
The larger root-mean-square deviations of NarL subfamily
models can be explained by the fewer inter-domain DCA
constraints added to the simulation.
OmpR subfamily models: OmpR-A1 and OmpR-
A2

The N-terminal of EFF domain (a b sheet of b6, b7, b8,
and b9) was dissociated from the cognate a6 in our models
(purple boxes in Fig. 4 A). To assess the feasibility of this
dissociation, we examined ‘‘PDB: 6IJU’’ (55), ‘‘PDB:
6IS4’’ (56) and ‘‘PDB: 6KYX’’ of an OmpR subfamily pro-
tein, ‘‘UniProt: Q9KJN4’’. These were identified to be
structurally similar to EFF domain of OmpR-A1 (Dali Z
score S7.3). In these PDB entries, the N terminus of
EFF domain partially unraveled at residues of the b7-b8
loop, splitting apart the contacts between b6 and b7 with
a6 (the number of secondary structure elements here fol-
lows that of OmpR-A1). This unraveling suggests the
increased flexibility of the EFF domain linkers, which
can also enable our model structures to be formed. Further-
more, alanine in the b9-a6 linker of our model protein was
predicted to be flexible based on its amino acid sequence
(Fig. S6 A). This residue is responsible for the different
arrangement of the b sheet and a6 in our models
(Fig. S6 B). These, too, support the notion that the partial
dissociation of EFF domain in our models can occur. To
better assess the feasibility of our models, local conforma-
tional frustration was examined. This quantity reveals the
energetic favorability of the spatial placements of the res-
idue pairs in the given structure compared to decoy struc-
tures where the interacting pairs are moved (57). The
high frustration indicates the energetic unfavorability of
the residues in the given placement. The general pattern
of the local conformational frustration of intra-domain con-
tacts in our OmpR models was consistent with that of the
active monomer PDB structure (Fig. 4 A). This confirms
that a partial dissociation of EFF domain or the newly iden-
tified domain arrangement did not affect energetic stability
of intra-domain contacts, further supporting the feasibility
of our models.

The local conformational frustration can also be used to
understand biological functions of the proteins. The highly
frustrated regions include binding sites where the binding
to the ligands or biomolecular partners resolves the frustra-
tion (57,58). The fewer highly frustrated residue contacts
were observed in two contact patches composing a1 (REC
domain, including HK interface residues) and a8 (EFF
domain, including DNA interface residues) in both models
than reference structure (brown boxes in Fig. 4 A). This
observation was confirmed by c2 goodness-of-fit test, which
compared the fraction of three classes of contacts, i.e., high-
ly frustrated, neutral, and minimally frustrated contacts (sta-
tistical significance, 0.05; Table S5). Less frustration in
these areas suggests our models are less likely to bind to
HK or DNA.

OmpR-A1 and OmpR-A2 exhibited six shared inter-
domain contact patches. The only patch that contained the
noncontacting inter-domain DCA pairs (predicted contacts)
involved residues 8–30 vs. 175–201 (position 5–28 vs.
142–168). Four other contact patches were found between
residue 10–44 and 135–158 (position 7–42 vs. unmapped
125) (Fig. 4 A and B). The contacts in these patches explain
the major difference of OmpR-A1 and OmpR-A2. The last
inter-domain contact patch, patch X, lay between residue
102–106 and 187–192 (position 100–104 vs. 154–159,
mainly b5-a5 loop vs. a8) (Fig. 4 A and B). It should be
Biophysical Journal 123, 681–692, March 19, 2024 687



FIGURE 4 OmpR subfamily models. (A) Contact maps of the model (lower triangle) and the active monomer template structure (upper triangle) colored

by the degree of local conformational frustration. Residue number follows the reindexed template 3D structure. Purple boxes show the EFF domain contacts

lost in our models with the template structure. Two brown patches in a1 and a8 were less frustrated in our models, suggesting less capability of HK and DNA

binding of our models. An inter-domain contact patch, patch X, formed as a consequence of forming contacts at the inter-domain DCA pairs. (B) Model

structures showing DCA pairs and residue contacts in patch X (left) and functional sites (right). HK interface and DNA interface residues in our models

were less exposed than the active monomer reference structure. (C) Boxplots of frustration index of inter-domain residue contacts. Green and red lines

show the threshold frustration index of minimally and highly frustrated contacts, respectively.

Shibata et al.
reminded that five contact patches, including patch X,
formed as a consequence of five inter-domain DCA pairs in
contact. Among the inter-domain residue contacts of these
models, a patch X contact of OmpR-A2 coincided with a
known residue contact of inactive monomers. Additionally,
five and six inter-domain contacts from OmpR-A1 and
OmpR-A2 (respectively) were observed to get in proximity
(Ca-Ca & 15 Å) in known inactive monomer PDB struc-
tures. Those inter-domain contacts included ones from con-
tact patch with noncontacting DCA pairs and patch X. This
supports the feasibility of our new inter-domain interface
and implies our models to be inactive monomer structures.
The local conformational frustration of the inter-domain in-
terfaces of OmpR-A1 and OmpR-A2 were comparable to
those of known unphosphorylated inactive monomers
(Fig. 4 C; Mann-Whitney U test comparing the distribution
of the frustration index between the model and the template
at the significant level 0.05; p-value 0.12 for OmpR-A1 and
p-value 0.084 for OmpR-A2). The frustration analysis of
intra- and inter-domain contacts further supports the feasi-
bility of our models. However, monomeric conformations
688 Biophysical Journal 123, 681–692, March 19, 2024
employing our novel inter-domain interface have not yet
been experimentally observed.

Interestingly, the residues of patch X included function-
ally important residues (Table S6). REC domain residues
involved a conserved lysine (KA) and the three cognate res-
idues to the C terminus (KAþ 1, KAþ 2, and KAþ 4). KA is
one of the active site residues (59) and its two neighboring
residues govern mainly the autophosphorylation kinetics of
RRs (60,61). KA þ 4 was reported to cooperatively function
with residues in a1 in single-domain RR through allosteric
interactions (61). In our models, a1 and these functional res-
idues interact with DNA recognition helix simultaneously.
The residue interactions in patch X together with inter-
domain contacts predicted by DCA pairs may be a molecu-
lar mechanism for optimizing the phosphorylation timescale
of OmpR subfamily DBRRs in accordance with the biolog-
ical responses determined by EFF domains in DBRRs.

The SASAs of the functional sites of the models were
compared against those of the activemonomer structurewhere
all the functional sites are assumed to be exposed. More than
35% of SASAs were lost in the DNA interface residues and



TABLE 1 SASA of functional sites in OmpR subfamily models

and the reference structure

Functional

sites

Active

monomer

(Å2)

OmpR-

A1

(Å2)

OmpR-

A1 (%)

OmpR-

A2

(Å2)

OmpR-

A2 (%)

Active site 94.42 163.15 172.8 99.07 104.9

Dimer interface 595.45 632.06 106.1 725.98 121.9

HK interface 553.67 355.53 64.2 313.41 56.6

DNA interface 548.14 327.86 59.8 351.57 64.1

The % symbol denotes the ratio of the SASA of our computational model to

the SASA of the active monomer as a percentage.
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HK interface residues in our models (Table 1; Fig. 4 B). This
suggests DNA and HK are less likely to access their binding
interface inOmpR-A1andOmpR-A2, consistentwith our pre-
vious discussion on less frustration onHKandDNA interfaces
and known inactivemonomer contacts. Integrating the discus-
sions above, the noncontacting inter-domainDCApairs a–e in
area A of OmpR subfamily are associated with the potential
inactive monomer conformation that inhibits DNA-binding
activity of theOmpR subfamily proteins. Additionally, our an-
alyses suggest that these conformations should tune the dura-
tion of DBRR phosphorylation to biological responses
determined by EFF domains.
FIGURE 5 NarL subfamily models. (A) Contact maps of the model (bottom tr

by the level of local conformational frustration. Residue number follows the rei

model. A conserved inter-domain contact patch in OmpR subfamily, patch X, wa

and residues involved in patch X (left) and functional sites (right). DNA interfac

domain residue contacts. Data points above the green line are minimally frustrat

interfaces in NarL-A1 and NarL-B1 were comparable to that of reference inact
NarL subfamily models: NarL-A1 and NarL-B1

Intra-domain residue contacts and their frustration pattern of
our models agreed well with those of the template active
monomer structure (Fig. 4 A). This confirms that the novel
domain arrangements did not result in a drastic change in
the energetics of the intra-domain residue contacts. In NarL-
A1, a1 was less frustrated than the reference, which was sta-
tistically significant (p-value 0.015 at c2 goodness-of-fit test,
significance level 0.05) (Brown box in Fig. 5A). The less frus-
trated a1 indicates that NarL-A1 is less likely to bind to HK.

Both models showed two inter-domain contact patches.
The patch with the unverified inter-domain DCA pair was
found at residue 26–30 vs. 174–180 (position 16 unmapped
vs. 142–148: a1 vs. mostly a9) for NarL-A1 and residue
90–92 vs. 174–183 (position 79–81 vs. 142–151: b4-a4
loop vs. mostly a9) in NarL-B1 (Fig. 5 A). The other in-
ter-domain patch was found between residue 110–115 and
174–180 (position 99–104 vs. 142–148), corresponding to
patch X in OmpR subfamily models (patch X in Fig. 5
A). It should be emphasized that contacts in patch X formed
as a consequence of DCA pairs that were constrained to
form contacts. This patch formed the interface between
b5-a5 and DNA recognition helix a9 (patch X in Fig. 5
iangle) and the active monomer template structure (upper triangle) colored

ndexed template structure. The brown patch shows less frustrated a1 in our

s observed in NarL models as well. (B) Model structures showing DCA pairs

e was less exposed in our models. (C) Boxplots of frustration index of inter-

ed and those below the red line are highly frustrated. The new inter-domain

ive monomer structure.
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TABLE 2 SASA of functional sites in NarL subfamily models

Functional

sites

Active

monomer

(Å2)

NarL-

A1

(Å2)

NarL-

A1 (%)

NarL-

B1

(Å2)

NarL-

B1 (%)

Active site 96.75 203.98 210.8 97.56 100.8

Dimer interface 1201.86 949.49 82.3 949.02 79.0

HK interface 689.69 605.84 86.7 480.37 68.8

DNA interface 264.70 163.60 61.8 196.13 74.1

The % symbol denotes the ratio of the SASA of our computational model to

the SASA of the active monomer as a percentage.

Shibata et al.
B). No statistically significant differences were shown at sig-
nificance level of 0.05 by Mann-Whitney U test between the
inter-domain contacts of our models and the reference
closed inactive monomer structure (p-value for NarL-A1,
0.273; p-value for NarL-B1, 0.079; Fig. 5 C). This suggests
that the inter-domain interfaces of our models were energet-
ically comparable to the known inter-domain interface, sup-
porting the feasibility of our NarL subfamily models.

Similar toOmpR subfamilymodels, in bothNarLmodels,
the REC domain residues of patch X included at least one of
KA, KA þ 1, and KA þ 4 (Table S7). In NarL-A1, simulta-
neous inter-domain residue interactions of DNA recognition
helix to a1 and patch X were also observed. Applying the
same discussion on OmpR subfamily models, these inter-
domain residue interactions may be a molecular mechanism
to optimize phosphorylation duration of NarL subfamily
proteins, perhaps through a conserved mechanism that is
shared between OmpR and NarL subfamilies. In NarL-B2,
one of the residue interaction partners of DNA recognition
helix was replaced from a1 to b4-a4 loop. However, the
contact in patch X still involved REC domain residue, which
was reported to regulate reaction kinetics of RR, i.e., a res-
idue next to the conserved threonine/serine (60). These in-
teractions imply that inter-domain contacts in NarL-B1
should be important to regulate reaction kinetics of NarL
subfamily proteins.

More than 30% loss of SASA in NarL-B1 at HK inter-
face suggests that NarL-B1 is less likely to bind to HK (Ta-
ble 2). Likewise, loss of at least 25% of SASA in DNA
interface suggests that the both NarL subfamily models
are less likely to bind to DNA. This tendency was
conserved in OmpR subfamily models as well. The discus-
sions above lead us to consider that the noncontacting inter-
domain DCA pairs in NarL subfamily are involved in po-
tential closed inactive monomer conformations of NarL
subfamily DBRRs.
CONCLUSIONS

We applied DCA on DBRR protein sequence data to thor-
oughly investigate linker-domain and inter-domain residue
interactions for OmpR and NarL subfamilies, the two
main subdivisions of DBRR proteins. Our analysis of the in-
dividual subfamilies further demonstrated that coevolu-
690 Biophysical Journal 123, 681–692, March 19, 2024
tionary analysis can detect subtle evolutionary divergences
within protein families at the multi-domain level, provided
that there are sufficient sequence data to subdivide the fam-
ily (as is the case for DBRRs). Not only did we detect sub-
family-specific contacts within the REC domains but we
also found strong linker-domain and REC-EFF domain res-
idue coevolution. The linker-REC domain residue coevolu-
tion was consistent with the residue contacts that may be
involved in the cooperative functional regulation of the
EFF domain.

To examine the applicability of our coevolutionary
models on the prediction of biological functionality, we
constructed a mutational landscape from our inferred
DCA couplings. We applied these mutational landscapes
to experiments that replaced the native C-terminal portion
of DBRR proteins with one from a nonnative DBRR protein
(via domain swapping). Domain-swapped proteins pose a
significant challenge for our coevolutionary models, which
have previously been used to examine the effects of up to
four mutations (24). Nevertheless, we demonstrate that the
model offers a high negative predictive value, which can
potentially be used to screen out DBRR proteins that are
nonfunctional. Our proof-of-concept prediction model will
provide a basis for the further development of the coevolu-
tion-based prediction models of domain-swapped DBRR
functionality.

Finally, we extensively explored inter-domain residue
coevolution between the REC and EFF domains. Our ana-
lyses detected nontrivial inter-domain residue coevolution
in both subfamilies. Most of the inter-domain DCA pairs be-
tween a3-b4-a4 vs. DNA recognition helix coincided with
residue contacts from known inactive monomer structures.
We additionally identified unverified DCA pairs that were
highly coevolving DBRR residue pairs that were not
observed in any experimental structures between a1 vs.
DNA recognition helix. We explored the possibility that
these unverified DCA pairs made spatial contacts by simu-
lating them as contacts in the structure-based model. Our
findings suggest that these residue pairs potentially capture
inactive monomer conformations where DNA binding is in-
hibited. Interestingly, all of our DCA-guided monomer
models showed additional inter-domain contacts, which
may facilitate optimization of the lifetime of active
DBRRs to the biological output of the DBRRs. Our results
suggest that the same functional mechanism of inactivation
is encoded in OmpR and NarL classes of DBRRs. Although
this particular mechanism of inactivation has not yet been
verified experimentally, this work suggests its existence
through a combination of coevolutionary analysis, molecu-
lar simulation, and frustration analysis.
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