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Developing a thermodynamic theory of computation is a challenging task at the interface of
nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with
difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and
restricted initial conditions, features common in real-world computers. Here, we present a framework
which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to
generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute
irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that
provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any
periodic process—in particular, the periodic processes underlying all current digital computation.
Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many
computational machines. We illustrate our results with exhaustive numerical simulations of deterministic
finite automata processing bit strings, one of the fundamental models of computation from theoretical
computer science. We also provide universal equalities and inequalities for the acceptance probability of
words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and
outline connections between computer science and stochastic resetting. Our results, while motivated from

the computational context, are applicable far more broadly.
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I. INTRODUCTION

A. Background and motivation

In the past three decades there has been major progress in
formulating far from equilibrium systems and processes.
Using stochastic thermodynamics, we can now rigorously
formulate the thermodynamic behavior of systems ranging
from biological molecular machines to electronic circuits,
evolving arbitrarily away from equilibrium. Celebrated
results of stochastic thermodynamics include fluctuation
relations that generalize the second law of thermodynamics
[1-3], speed limit theorems [4—6], thermodynamic uncer-
tainty relations [7-10], large deviation approaches [11,12],
martingale fluctuation relations for extrema and stopping
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times [13—-19], and universal bounds on various kinetic and
frenetic properties [20-22].

The past decade also witnessed progress in thermody-
namics of computation. Although many initial studies
on energetic costs of computation have mostly concerned
unit operations such as bit erasure [23-26], which is too
primitive to be pertinent to the formal models of com-
putation in theoretical computer science (TCS), very recent
work started to investigate energetic costs of implemen-
ting computational machines central to TCS, which per-
form tasks such as string matching algorithms (which
are justifiably more complex than bit erasure) [27-29].
Figure 1(a) shows the general model of a computational
machine (henceforth called a computer) which implements
a basic algorithm presented in Fig. 1(b).

An algorithm is a finite procedure for implementing a
given task, which can be executed in various physical ways,
e.g., while modifying the current on electrical wires or the
structure of a DNA origami. Formally, an algorithm
consists of the instructions to be performed (which is
implemented by the dynamics of the computer), the local
variables and the memory arrays (stored by the computer),
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Iustrations of computations with absolute irreversibility, unidirectional transitions, and stochastic computation times. An

algorithm is executed by using a set of instructions, a finite control unit or local variables, a working memory to store the input or
intermediate execution values, an address index, and mechanisms which specify when to loop and when to halt (the latter is of interest to
us in thinking of stopping times). Both in computer science models and physical computers, the finite control unit generally corresponds
to a circuit [as in (a), implementing the algorithm in (b)] or a DFA as in (c), here deciding whether input bit strings are divisible by four.
In physical implementation of such devices which solve a myriad of computational tasks, energetic costs are inevitable.

as well as mechanisms to decide when to repeat steps and
when to halt. A computer executes an algorithm on a given
set of inputs, starting from a certain initial state, potentially
following unidirectional transitions in its state space, and
halting at an arbitrary stochastic time that depends on the
computation. Hence, a general thermodynamic model of
computers which implement arbitrary algorithms should be
able to account for the energetic costs of implementing
computational processes (i) at arbitrary stopping times,
with (ii) unidirectional (possibly deterministic) transitions,
and (iii) “absolute irreversibility” due to the computer being
initialized to a designated start state.

However, most of the central results in stochastic
thermodynamics do not directly apply to processes having
the aforementioned three key ingredients of computational
processes (stopping times, unidirectional transitions, and
absolute irreversibility). In fact, a central assumption in
much of stochastic thermodynamics is the condition of
local detailed balance (LDB), which requires the system to
have only bidirectional transitions; i.e., all transitions
between any two states i — j with their reverse j — i
have a finite, nonzero probability to occur in a finite time.
On the other hand, LDB can be formally avoided by taking
an inclusive Hamiltonian approach [30-33], which has
been applied recently to computational machines [29].
However, in general there may be hidden nonequilibrium
(driven) degrees of freedom which need to be included in
the thermodynamic framework beyond a surrounding
thermal bath. Moreover, even when assuming LDB, the
ratio of transition probabilities between i — j and their
reverse j — i can grow exponentially with the entropy
exchanged with the environment, so that the reverse
transition will not be effectively seen in relevant timescales,
leading to an effective unidirectionality. Until now, little

has been known about the stochastic thermodynamics
of systems with broken LDB reflecting unidirectional
transitions [21,34-38] or athermal and nonequilibrium
environments [39-43]. In addition, the recently establi-
shed martingale theory of thermodynamics (see Ref. [19]
for a review)—which formulates fluctuation theorems and
second-law-like inequalities at generic stopping times—has
not yet been extended to apply to systems with either
unidirectional transitions or absolute irreversibility.

In this paper, we develop a nonequilibrium thermody-
namics theory for computations with stochastic computa-
tional times that may have absolute irreversibility and
unidirectional transitions [44]. Throughout this work, we
focus on the intrinsic thermodynamic costs of computa-
tions, modeled by generic Markovian dynamics, with
minimal or no details about their physical implementation.
We derive fluctuation relations for key thermodynamic
quantities applicable to all computational processes which
can be modeled as discrete-time Markov chains (DTMC),
with both unidirectional and bidirectional transitions,
and restricted initial probability distributions. These rela-
tions hold at both fixed and stopping times, and so
simultaneously extend the martingale theory for stochastic
thermodynamics to the case of DTMCs with absolute
irreversibility and unidirectional transitions.

The thermodynamic meaning of our results is established
by introducing a generic physical implementation of the
computer as a periodically driven process operated over a
set of hidden degrees of freedom. This allows us to link
dissipation from underlying (physical) to visible (computa-
tional) levels and obtain quantifiers for the energetic costs
of computations up to their halting time or between halting
times of consecutive computations and their statistics.
Our results, while emphasized here for computational
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processes, can also describe a wide range of systems,
including, e.g., biochemical processes with irreversible
release of molecules.

We illustrate our results in deterministic finite automata
(DFA). Loosely speaking, a DFA is a system with a finite
state space, initialized to a special start state g at = 0, and a
logical computer by itself, which can solve basic computa-
tional tasks such as string matching. More importantly, it
constitutes the “finite logic” part [see Figs. 1(b) and 1(c)]
of the engineered computers at use today, and formally
corresponds to the finite logic component of Turing
machines (TMs).

B. Summary of our contributions and road map

Consider a discrete-time computational task which is
implemented by iteratively processing an input sequence
of symbols w through a maximum of 7 iterations. We refer to
7 as the limit time of the computation. As an example, 7 could
be the length |w| of a bit string w, and the computation could
involve iteratively processing each of those bits in sequence.

During such a computation, the state of the computer
evolves in a stochastic manner, tracing a stochastic trajec-
tory on a set of computational variables X[o; = Xo, .-, X;.
The computation finishes either at the limit time or, if it
is earlier, at a stochastic computation time 7, which in
general will be a function of the precise input w. Formally,
computational times 7 are specific examples of stopping
times. A stopping time is the first time that a stochastic
trajectory meets a specific predefined criterion [45]. In this
work, we deal with stopping times which associate to each
specific trajectory Xy ;) = X, ..., X, a stochastic time 7 < 7
that is always smaller than or equal to the limit time. As an
example of stopping time in computation, 7 could be the
first time a DFA reaches a prescribed computational state A.
T could also be defined as the first time a DFA reaches a
state B # A once having left state A. Stopping times thus
provide a flexible yet rigorous mathematical toolbox to
tackle computations that last a stochastic amount of time.

In Sec. II, we provide the elementary concepts of our
framework, including a formal definition of DFAs: the
description of computational processes (such as the running
of a DFA) as Markov chains and the physical implemen-
tation of those Markov chains. We also review the relevant
thermodynamic quantities in this context.

In this paper, we investigate the thermodynamic costs of
computations, paying particular attention to those with such
stochastic durations. As described below, this will lead us to
concentrate on a specific thermodynamic quantity, which we
call the intrinsic mismatch cost. The intrinsic mismatch cost
associated with a stochastic trajectory X|o 7} that takes place

in the interval [0, 7] of stochastic duration 7 is defined as

Pi xt)

Tl|:
=0 f

-nipedl o

In Eq. (1), p,(x) is the probability for the computer to be in
state x at time ¢ during the computation, whereas r(x) is an
arbitrary reference probability distribution. On the other
hand, p,,;(x) and //(x) correspond to the distributions
retrieved applying one iteration of the computer to p,(x)
and r(x), respectively. In particular, when the reference
distribution minimizes the dissipation in the computer, it is
called the prior distribution, and the associated quantity
Eq. (1) is known as the mismatch cost of the computation up
to time 7. This cost provides a lower bound on the entropy
production incurred by any digital synchronous computer
that implements this dynamics over values of the computa-
tional variables x, without any precise assumptions about the
continuous-time process implementing each successive iter-
ation of the computation [46]. Note that while the distribu-
tions p, and p,,; are indexed by the iteration number,
changing as the computation proceeds, the distributions r
and 7’ are the same for every iteration of the computation.

Some of our most important results are fluctuation
relations and inequalities for the statistics of X(7).
These are threefold universal, in that they are valid for
all (i) reference distributions r(x) [although we will make
specific choices for it to give a concrete thermodynamic
meaning to X], (ii) stopping rules 7 that halt before 7 + 1,
(iii) discrete-time Markov chains (DTMCs), even those
with restricted initial conditions, and/or with unidirectional
transitions, and even DTMCs that are implemented by
underlying non-Markovian continuous-time processes.

To illustrate these results we need to first introduce
more definitions. Here and throughout this paper, we use
(A(T)) = EJA(T)] for the expectation of any functional A
of xjo7] over many realizations of the computation, each
ending at the possibly different time 7. In addition, we
introduce the stochastic distinguishability at stopping
times,

pi(x;) (2)

6,(7)=1In ,
( ) Pre t(xt) =T

which quantifies the asymmetry of the computational
process under time reversal through its distribution and
plays a key role for identifying possible reductions in
thermodynamic costs along processes with stochastic
duration [16]. The distribution p,(x) above is the proba-
bility for an auxiliary computation running backward in
time to be in state x at time ¢ during the computation. Such
auxiliary computation evolves with a transition matrix that
is the Bayesian inverse of the original computation with
respect to r, such that it leads to the perfect retrodiction in
time of the distribution r [51]. In Sec. III, we provide a formal
definition for the auxiliary computational process, that
allows us to address the thermodynamics of computations
ending at a fixed time at the fluctuating level, and discuss how
to incorporate explicitly the role of absolute irreversibility
and unidirectional transitions, which is crucial because
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conventionally formulated computational machines have
precisely those features.

In Sec. IV, we present our main results for general
computations starting and ending at stochastic halting
times, which include fluctuation theorems and second-
law inequalities that provide lower bounds to the average
dissipation in a computation. A central result of our work is
the derivation of an integral fluctuation relation at stopping
times which applies to arbitrary computations:

(e =D=5D))y — | _T,. (3)

In this equation, I'; quantifies absolute irreversibility at
stopping times. It equals the functional e=%(7) averaged
over the restricted set of trajectories that can take place in
the auxiliary dynamics but have zero probability in the
original dynamics; see Eq. (36). This contribution intro-
duces an unavoidable source of irreversibility that limits
possible reductions in the dissipation of the computer.
Among other things, Eq. (3) provides a second-law
inequality at stopping times for the intrinsic mismatch cost:

(E(T)) 2 =(6.(T)) = In[1 - T]. 4)

As we show in this paper, the right-hand side of Eq. (4),
which sums up the net effects of time-asymmetry and
absolute irreversibility, gives a universal lower bound not
only for the intrinsic mismatch cost of the computation but
also for the underlying average entropy production incurred
by the computer. Moreover, for the particular case of a
stationary reference distribution (r =z, with 7z’ =)
(X(7)) equals the average (discrete-time) nonadiabatic
entropy production [52,53].

We remark that Eq. (3) follows from a stronger result
that we derive here. In particular, e~=()=%() is a super-
martingale process, i.e., e >)=%() decreases with time
when conditioned on an earlier part of the trajectory of
states: (e =70 |x o) < e =75 where 1> 5 > 0;
see Eq. (31) [54].

Another contribution in this paper arises when we apply
the general martingale theory for thermodynamics [19], to
extend our results to multiple, ordered stopping times. In
particular, for the case of two stopping times 7, and 7,
with 7, > 7, we obtain another central result:

(E(T,) +6.(T)) 2 (X(T1) +6.(T1)), (5)

which provides a powerful second-law inequality appli-
cable to both starting and ending stochastic times of
computations. As an example, in the case of a DFA, 7T
could be the first time that some particular state A is
reached, and 7, could be the first time state B is reached
after state A has been reached. Alternatively, 7, could be
the second time state A is reached after the system has first
reached state A, then left it, and then returned. See Sec. V

for numerical illustrations of these ideas in a specific
minimal model of a DFA processing binary strings.

Moreover, from Eq. (5) a sandwich inequality for (X(7))
can be derived [55],

D(polpe) = (6:(T)) < (X(T)) < (2(z)) = (6:(T)),  (6)

extending recent research in upper bounds and inverse
thermodynamic uncertainty relations in stochastic thermo-
dynamics given in Refs. [56-58].

In addition to the aforementioned fundamental results, in
Sec. VI we also combine the supermartingale property of
e~ =(0=0:() with the fluctuation relation Eq. (3) to derive
universal equalities and inequalities for the probability
that a computation is completed within a certain amount
of time. Such an idea can be applied, e.g., to compute the
probability that a sequence of 7 ordered computational
states visited by a DFA during its evolution reaches an
accept state.

Section VII is then devoted to sketch how our theory can
be applied to investigate the thermodynamics of multiple
concatenations of runs of a DFA, where after each run ends
the system is reset to an initial start state and the next run
begins. We conclude with Sec. VIII, where we present
our main conclusions and further discuss future research
directions motivated by our findings. Mathematical details
of the derivations, proofs, and extra discussions are left to
corresponding appendixes.

It is worth remarking that all our contributions, while
originally motivated from problems arising in the context of
the kinds of computational machines central to computer
science theory, are applicable to any periodic process
implementing a time-homogeneous DTMC, one that results
in trajectories Xo 7.

II. MARKOVIAN COMPUTATIONS

In the following, we make the assumption that the
implementation of a task on a given computer is realized
through a physical process which induces Markovian
(discrete) dynamics over a set of relevant computational
states. The actual physical process being modeled will be a
generic physical, chemical, or biological system, whose
dynamics can be described at a microscopic level over a
set of hidden degrees of freedom [47,48], here assumed to
be not directly accessible. In particular, it is customary to
model a computation as a continuous-time Markov chain
(CTMC) [48,59-62].

In “synchronous” physical computers—such as all real-
world digital computers—this CTMC is driven externally
following a periodic protocol induced, e.g., by the ac
electric current powering a computer. Such underlying
periodic driving might be ignored in modeling the compu-
tational process, by describing its evolution by coarse
graining it in time, and this results in an effective model
given by a time-homogeneous DTMC. Throughout this
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paper, we will work at such a coarse-grained level, and
consider computational processes as generic DTMCs with
time-independent transition probabilities. In doing so, we
will map the underlying physical process to the DTMC
dynamics of the (symbolic) computational states to for-
mulate the actual physical dissipation in a thermodynami-
cally consistent manner.

A. Stochastic computational processes

We consider computational processes described by a
DTMC that can take values over a discrete set of N > 1
computational states x, € X, with r =0, 1,2, .... For sim-
plicity, we assume that the transition probabilities between
the computational states are time independent (however,
our results can be extended to time-dependent transition
probabilities).

We write P(x,,|x,) for the conditional probability of
jumping to state x,, given that the previous state was x, in
a single time step or iteration of the computational process.
(Note that in a DTMC x, can be the same as x,, |, allowing
for time instances where the system dwells in a given state.)
We write p,(x) for the probability of being in state x at
time ¢, given an ensemble of realizations of the Markovian
process. The associated discrete-time master equation
pir1 = Wp,, where p; is an N x 1 column vector and
[W];; = P(x;41 = i|x, = j) is the transition probability
matrix. The transition matrix W has at least one fixed
point with distribution 7z(x) such that Wz = z, and if
aperiodic and irreducible, 7 becomes the unique stationary
distribution in the long time run, that is, lim,_ . p, = 7.
However, what follows does not require z to be unique.

Throughout the paper we will write 7 for the limit time of
a computation, i.e., the maximum time that can be spent to
execute a computation, and assume it to be fixed. The
probability of a sequence Xy = Xg, Xy, ..., X; 18

7—1

P(x(0.) = po(xo) [ [ P(xis1|x,). (7)

t=0

Here we allow for arbitrary initial distributions pg(xg)
and transition probabilities P(x,,; = jlx, = i) = P(j|i). In
particular, some of the transitions might be bidirectional
(i <> j) and others unidirectional (i — j). Bidirectional
transitions are characterized by conditional probabilities
verifying P(i|j) > 0 whenever P(j|i) > 0, while for uni-
directional transitions we can have P(i|j) =0 with
P(j|i) > 0. We notice that exactly because of the existence
of unidirectional transitions, it is mandatory to relax the
condition of local detailed balance, which is arguably
among the most common assumptions adopted in the
formulation of stochastic thermodynamics [63].

One of the main quantities of interest in stochastic
thermodynamics is stochastic entropy production (EP)
which equals the logarithm of the ratio between forward

and time-reversed path probabilities of a thermodynamic
process [3,64]. This quantity, however, generically depends
on the details of the underlying physical process imple-
menting the computation, hence is not directly accessible
unless certain simplifying assumptions, such as the con-
dition of local detailed balance. Nevertheless, here we aim
to obtain a thermodynamic description of the computa-
tional processes as deduced solely from the (discrete-time)
dynamics of the visible variables defining the computation
x, € X. While our analysis holds for arbitrary DTMCs, we
focus on digital synchronous computers, which undergo a
time-homogeneous dynamics over discrete time, and which
we connect to the underlying physical process generating it
in a simple manner. This allows us to express and bound the
entropy production of the computational task implemented
by the DTMC, alongside the work and heat dissipated into
the environment. For simplicity, we take the continuous-
time physical process that implements the time-stationary
DTMC to be periodic and choose units so that the period of
the physical process is 1.

As an example (and to help ground the reader’s intu-
ition), suppose that our time-homogeneous DTMC is
implemented by a time-inhomogeneous CTMC. It is well
known that, in general, this requires that the CTMC evolves
over an enlarged version of the DTMC’s state space ) D X,
which includes “hidden states” in addition to the “visible”
states of the DTMC [48,65]. In particular, this is true
when the DTMC is the update function of a computational
machine. Therefore, our assumption that the continuous-
time physical process is periodic implies that the time-
inhomogeneous CTMC is periodic. As a result, the
thermodynamics arising in any single iteration of the
physical system [implementing the computational machine
that starts at discrete time ¢ in some state y(z) €] is
independent of . In the following, for further simplicity
(and to ensure a time-homogeneous DTMC) we also
assume that noncomputational degrees of freedom in )
are reinitialized within every single iteration to their
(possibly nonequilibrium) initial states.

B. Mismatch cost

Enlarging our original description over Y to include all
relevant physical variables of the computer is crucial to
define the associated entropy production and other relevant
thermodynamic costs of computation. Here we show that
this can be done in a standard way. In particular, suppose
that we are interested in some generic thermodynamic
average cost function that can be written as

C(r) = S(e:) = S(eo) + F

=S
= 8(Geo) — S(eo) + F, (8)

where S(¢) = =, 0(i) Ing(i) is Shannon entropy, ¢q is
any initial distribution over the (extended set of) states of
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the system, G is the linear map that transforms that
distribution to an associated ending distribution ¢,, and
F is an arbitrary linear functional of the initial state. Note
that C(7) is an implicit function of g,.

As a canonical example, in CTMC-based stochastic
thermodynamics obeying local detailed balance, the EP
generated during a process is given by Eq. (8) by setting F
equal to the average entropy flow to the environment:

F= A dry Y e()HK}()n [gjgg] NG

PR

where K7;(t) is the rate matrix associated to thermal
reservoir v, and the rate matrix of the CTMC is
>, Ki;(1) [66]. For different choices of F, C(z) gives
different thermodynamic quantities besides EP, such as the
drop in nonequilibrium free energy of the system during the
process [49], among many others.

For any cost C of the form in Eq. (8), and any physical
process represented by G, the prior distribution is defined
to be the initial distribution ¢y that minimizes C(z). (It is
called the prior because it is, formally speaking, a prior
distribution for calculating the posterior probability of
an initial state of a thermodynamic process given its final
state [67].) We write the prior as @,. The associated
average mismatch cost is

M(z) = D(@ol|omin) — D(Geo||GOmin)- (10)

where D(¢1[le2) = >y €1(y) In[o1(y)/02(y)] denotes the
Kullback-Leibler (KL) divergence between the distribu-
tions ¢; and @, for the case of a discrete random variable.
Note that M (z) is implicitly a function of @y, ¢ppi, and the
linear function G—but nothing else. It depends on no other
property of the process besides ¢,,;, and G.

As shown in Refs. [27,47-49] we have, for all g,

C(r) = M(z) + R(x), (11)

where R(r) is an additive non-negative contribution
independent of ¢, called “residual cost.” In the specific
case in which F is identified with the entropy flow, residual
cost is often called “residual EP” See Appendix A for a
discussion of residual cost and why we ignore it in
this paper.

Expressions analogous to Egs. (8), (10), and (11) hold
for other state spaces, e.g., real-valued states, density
matrices, etc. Moreover, there are no assumptions of
detailed balance or the like in the derivation of Eq. (10);
it holds purely for mathematical reasons. For the trajectory-
level version of mismatch cost in Eq. (10) see Appendix B.

By the data-processing inequality for KL divergence [68],
M(7) is never negative. Moreover, it can be shown that the
prior ¢, in Eq. (10) has full support (see Appendix A in
Ref. [27]), which ensures that the mismatch cost is finite.

Note also that the mismatch cost formula (10) is based on
evaluating ¢ at both the beginning and the end of the time
interval [0, 7. This means this general formula applies to any
physical process that maps g, to ¢,, for any choice of C, i.e.,
any choice of the linear functional F. All the (messy) physical
details of the process and the precise choice of F are buried in
the prior and the residual cost.

In the following, unless explicitly stated otherwise,
we will focus on the case in which the cost function
C(r) in Eq. (11) is the average entropy production of the
continuous-time periodic process implementing the com-
putation. If such a process is moreover Markovian, the
entropy flow F will be given by the canonical CTMC
expression in Eq. (9). However, Markovianity of the
continuous-time periodic process is not a necessary
assumption for our results (see also Appendix C).

C. Strictly positive lower bounds for dissipation
in periodic processes

As described above, in real-world (synchronous, digital)
physical computers, the underlying physical process imple-
menting each iteration of the computer is identical. This is
true whether that physical process is a CTMC, a quantum
operation, and so on. As noted in Ref. [28], this means
that the prior g,,;, for each iteration of the computer is the
same [69]. Using also the fact that noncomputational
variables are reinitialized in every single iteration (period)
of the computational process, we can write the overall
mismatch cost for any computation that takes exactly =
iterations in terms of computational variables as

—_

A
|
—_

—

M(p,) =

I

[D(pilli) = D(prir[lw)]. (12)

i
o
i
=)

t

where p,(x) =) ¢y o/(y) is the (marginal) distribu-
tion over computational states x€X only, wu(x)=
> ygx @min(y) is the prior over computational states at
the beginning of (every) iteration, and x' = Wy the prior
at the end of every iteration (i.e., it is u evolved to the
end of the iteration). More details about the derivation of
Eq. (12) for the DTMC are provided in Appendix C, where
we explicitly elaborate its relation to the underlying EP in
the continuous-time periodic process.

We note that if po =p in Eq. (12), then the first
difference of KL divergences being summed equals O.
However, unless W is degenerate (e.g., the identity matrix),
Wp, # pg, and therefore Wp, # p. This in turn means
that the second difference of KL divergences being
summed in Eq. (12) does not equal 0 (so long as W is
not logically invertible, i.e., not a permutation matrix).
Therefore in this case, the overall sum will be strictly
positive. This argument can be extended to prove that so
long as W is not logically invertible (and p, is not a fixed
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point of the dynamics), the mismatch cost sum in Eq. (12) is
not zero (see Appendix D).

Since the above reasoning is true for all actual u, we can
lower bound the sum Eq. (12) by minimizing over all
distributions A in the unit simplex Ay, whether or not they
are a valid prior in some physical scenario:

7—1 7—1

> Mp) 2 lien;fxz [D(pll2) = D(pr1[|4)] > 0, (13)

=0 t=0

with again A = W/ (see also Ref. [28]). The precise prior u
in Eq. (12) for the EP cost function will depend on the
details of the precise physical process under consideration.
On the other hand, the sum Eq. (13) is independent of
those details. We therefore obtain a strictly positive lower
bound on EP, given in toto by p, and W. This strengthened
second law arises solely from the fact that we have a
periodic process with a nonlogically invertible W.
Moreover, because minimization in Eq. (13) is over all
possible priors, it provides a lower bound on all costs that
can be written as in Eq. (8). We therefore refer to it as the
minimal dissipation.

As an example, suppose that our DTMC is the dynamics
of a noise-free, synchronous, digital computer, with update
function f:X — X. Plugging in Eq. (13), the minimal
possible EP is

Tl e RCH)

The term Q, in Eq. (14) is the set of all states that have
nonzero probability if the update function is applied to the
actual distribution p a total of # times. The term po[f~(x)]
in Eq. (14) is the probability, under p, of the entire set of
those states in X which, after ¢ iterations of (the periodic
processes underlying) the update function f of the digital
computer, are in state x (and similarly for po[f~"=!(x)]).
Suppose that f is not just a permutation of the states of the
computational machine that lie in the support of p,. Then
Eq. (14) provides a strictly positive lower bound on the
dissipation incurred by any physical device that implements
that computation, f.

In the sense that it depends only on the conditional
distribution W and the initial distribution p,, the bound for
periodic processes in Eq. (13) is similar to the generalized
Landauer’s bound. In particular, the thermodynamic uncer-
tainty relations and speed limit theorems are also lower
bounds on EP that depend on the initial distribution over
states and the discrete-time conditional distribution of
the dynamics. However, unlike the lower bound above,
those other bounds depend on other properties of the
process besides the initial distribution and the conditional
distribution giving the dynamics (for example, current

precisions or expected activities). In this sense, the minimal
dissipation given in Eq. (13) is more powerful than those
other lower bounds on EP (a closed form of this result in
terms of Jensen-Shannon divergence has also been reported
very recently in Ref. [70]).

In this paper, we calculate mismatch costs by summing
the cost over single iterations of a computational machine
operating periodically, as in Eq. (12). In general this does
not equal the standard mismatch cost for the entire com-
putation, with an overall prior and a single drop in KL
divergence between initial and final time z. We remark that,
to our knowledge, the necessary and sufficient conditions
for this quantity to be larger than the one we use in this
paper are not known. However, there is a particularly
interesting case in which these two expressions become
the same, namely, when EP is minimized at the stationary
state of the DTMC; i.e., the prior y coincides with z. In
such case we recover from Eq. (11) the well-known
decomposition of EP into adiabatic and nonadiabatic con-
tributions [52,53,71,72], where mismatch cost reduces to
nonadiabatic EP (also called excess EP [19]) and the residual
cost becomes adiabatic EP (housekeeping heat [53,71]).

D. Deterministic finite automata

An important class of computational machines that can
be described within our framework are the DFA. There are
several different, very similar definitions of DFA, some of
which overlap with common definitions of “finite state
machines.” To fix the discussion, here we adopt the
following definition. A deterministic finite automaton is
a 5-tuple (0,0, g9, A, f), where

(1) Q is a finite set of (logical) states,

(2) 0 is a finite (input) alphabet,

(3) gy € Q is the start state,

(4) A C Q is the set of accept states, and

) f:0x6— Q is the update function, mapping a

current input symbol and the current logical state to a
next logical state.

A finite string of successive input symbols, i.e., an input
string w €6, is sometimes called an (input) word. To
operate a finite automaton on a particular input word,
one begins with the automaton in its start state, and feeds
that state together with the first symbol in the input word
into the update function, to produce a new logical state.
Then one feeds in the next symbol in the input word (if
any), to produce a next logical state. Note that one can
represent any given DFA’s update function as a directed
graph, where each edge (¢, ¢,) taking logical state g, to
state g, is labeled by the input symbols that would cause
that transition [see Figs. 1(c) and 2 for illustrations].

Our analysis of stochastic computational processes
(as introduced above) in DFAs requires assigning proba-
bilities to the input words (or to the symbols inside them)
that are fed into the automaton, as well as identifying the
computational states of the DTMC X, which may coincide
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(a) Original dynamics

Po P P1

(b) Auxiliary dynamics

Po Po P1
(20)-" ﬂh
Po

P1
FIG. 2. (a) Discrete-time Markov chain (DTMC) associated

with the DFA recognizing binary i.i.d. sequences that are multiple
of four [see Fig. 1(c)]. The transition matrix of such DTMC is
given by Eq. (54) where py and p; = 1 — p, denote, respectively,
the probability for a 0 and a 1 in the input string. (b) DTMC
associated with the auxiliary dynamics associated with the
stationary prior, with transition probability matrix obtained from
Eq. (15) and given by Eq. (57).

or not with the set Q of logical states of the DFA (typically,
X may contain more variables as, e.g., previously proc-
essed symbols). An important contribution of our work will
be to show how one can do this analysis even though the
dynamics of a DFA—its update function—is deterministic
and often noninvertible (i.e., unidirectional), and given that
the initial distribution over states of the DFA (though not
over the input words) is a delta function, centered on the
start state (i.e., leading to absolute irreversibility).

Physically, the (probabilistically generated) input word
w may be encoded in a tape whose symbols are read by the
DFA “head” one by one in each cycle of the computation,
but are not modified by the automaton operation [73]. In
this way the input tape behaves as an (energyless) infor-
mation reservoir [74], whose Shannon entropy is kept
constant during the computation. More formally, we can
consider that tape as forming part of the physical states of
the computation in the extended state space ) (a Cartesian-
product factor of Q, w, and other physical variables
depending on the implementation), but we will not generi-
cally include it within the computational states in X" [75].
On the other hand, we will eventually incorporate some
already processed symbols explicitly into X, which are
then assumed to be stored (and modified) in extra physical
variables acting as a memory for the computer.

A typical question of interest in computer science is
whether the DFA is in an accept state of the set A after the

last symbol from the input word is processed. If that is the
case, one says that the automaton accepts that input word.
In this way any given automaton uniquely specifies a
language of all input words that automaton accepts, which
is called a regular language. Importantly, any particular
DFA can process input words of arbitrary length [76], and
in general may enter and exit its set of accepting states
multiple times, before the end of the input word. While the
definition of whether an input word is accepted depends
only on whether the ending logical state is an accepting
state, the statistics of whether, how often, and precisely
when a given DFA enters an accept state (when fed words
generated by some given distribution) can be of indepen-
dent interest.

III. INTRINSIC THERMODYNAMICS OF
COMPUTATIONS AT FIXED TIMES

The mismatch cost sum introduced in Eq. (12) depends
only on the computational degrees of freedom involved
in the original DTMC dynamics and provides a lower
bound on the average entropy production generated by
the machine implementing the computation. It is hence a
particularly useful candidate to assess the intrinsic (min-
imal) thermodynamic costs of computations. The prior u(x)
encodes the specific details of the physical implementation
of the computational process. Concern for such details can
even be avoided by considering the distribution v(x) given
by the infimum of Eq. (13), which still provides a useful
(positive) bound on EP.

To begin, we construct a stochastic description based on
thermodynamic quantities that can be computed by intro-
ducing an auxiliary process. This process is defined in
terms of the “forward” discrete-time dynamics P(j|i),
the initial distribution of that dynamics pg(x), and a
reference distribution r(x) over computational states.
The reference r(x) is arbitrary, and in particular could
be chosen to obtain stochastic versions of the mismatch
cost sum in Eq. (12) [r(x) = u(x)] and the minimum
dissipation in Eq. (13) [r(x) = v(x)].

A. Thermodynamic costs of periodic computations
at the fluctuating level
We start by introducing the discrete-time auxiliary
dynamics of the auxiliary process W;;, with transition

probabilities defined from the transition probabilities
in W by

P(jli)r(i)

rG)
where ¥ = Wr is the reference distribution r evolved
for one iteration; i.e., r'(j)=>_;P(jli)r(i) [77]. This

auxi_liary process is a bona fide MarkO\_/ chain with
> P(ilj) =2 Pl r()]/r' (j)=1and 0<P(i|j) <1 [78].

Pilj) = (15)
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Moreover, r transforms back into r in a single iteration under
W. That is, W corresponds to the Bayesian inverse of W with
respect to the reference distribution r, leading to perfect
retrodiction for the distribution r [62,79-81].

To fully specify the auxiliary dynamics we must specify
its initial distribution; here we will always set it to dis-
tribution of the original actual dynamics at its limit time,
i.e., po(x) = p.(x). So the joint distribution of a trajectory
X[o,;] under the auxiliary dynamics is

1
P(xt—‘rl‘xt)' (16)

T

= Po(x)

t

P(X[O,T])

Il
=}

Note that this choice of the initial distribution of the
auxiliary process is not restricted by the choice of r in
any way. Note as well that P(i|j) does not necessarily
coincide with the transition probabilities induced by the
time-reversed implementation of the underlying physical
process, but it is solely defined from the distribution r(x)
and the original Markov chain transition probabilities.
Using Eqgs. (15) and (16), we can write the probability
of a time-reversed discrete-time trajectory, ©xy, = x.,

X;_1, .-, Xg, under the auxiliary dynamics as
P(Ox(9.) = po(xe) P(xr—1|xo)... P(x0|x1)
7—1
r(x;)
= p.(x; P(x,q|x . 17
( ):tl;([ ( t+l| t)r/(szrl) ( )

The ratio between the path probability to observe a given
trajectory of states and the path probability to observe its
time reversal under the auxiliary dynamics is

2(X[0.1) = In[P(X[o.)/P(OX[ )]

7—1

. pi(x;) _
B ; {ln r(x,) !

nth/rl<xt+l) i (18)
' (xX41)

providing us, for r = yu, a stochastic version of the mis-
match cost sum in Eq. (12), and for r = v, the minimal
dissipation in Eq. (13). The functional X(x|o,) is an
example of a “Z-entropic functional,” as introduced in
Ref. [19].

The specific choice for the transition probability of
the auxiliary dynamics introduced in Eq. (15) is crucial
for avoiding divergences that would be induced by
unidirectional links if we evaluate expressions like
In[P(i|j)/P(j|i)]—expressions that appear in most func-
tionals associated with entropy production. This makes
the functional ¥ given by Eq. (18) suitable to tackle
fluctuations of Markovian processes with unidirectional
transitions, which are precisely the (idealized) dynamics
of many computational processes.

Here and in the following, as shorthand, we will often
write trajectory-level quantities such as Z(x[o_,]) simply as
¥(7), with the precise trajectory left implicit. Following
such shorthand notation, Eq. (18) can be decomposed as

Z(T) = ASsys(T) - A¢(T)’ (19)

where we write the change in stochastic Shannon entropy
of the computer as

7—1
AS sys = lnpt xt) ln/)H—l(xH—l)]
=0
== lnpf(xf) + lnp()(x())’ (20)

and write the change in the nonequilibrium potential as

7—1

Z —In7(x1) +1Inr(x)]. (21

t=0

P(X)0.))

Such nonequilibrium potentials have been fruitfully
employed in steady-state thermodynamics [41,53,82],
and account for the excess of entropy absorbed from the
environment during the computation X[y, whenever the
state of the system p, differs from the distribution r along its
time evolution.

Suppose that the initial distribution po(x) has full
support. Then if we average Eq. (18) over P(xy ) we get
(P(Ox)/P(x)pq)) = 1, which is an integral fluctua-
tion relation [3], (¢7>() = 1. Moreover, (In[P(x[o)/
P(©xy)]) > 0is a KL divergence, which can be rewritten
in an appealing form as

7—1

(Z(2)) = [D(pillr) -

=0

D(piallr)] 2 0. (22)

We notice that for the choice r = p we recover the expression
for mismatch cost sum in Eq. (12), while for r =v we
obtain Eq. (13), as expected. Crucially, for the two choices
r = pand r = v, the quantity (X(z)) provides a lower bound
on the total average entropy production incurred in the
physical implementation of the computational process, and
therefore we may refer to it as the intrinsic mismatch cost
associated to a given computation. We remark that here and
above averages are over trajectories of fixed length z; that
is, (X(7)) = E(Z(7)).

For more general choices of r, the quantity X(z) can still
be defined (as long as the distribution r has full support
over X); however, it cannot be guaranteed in general that
(2(z)) would provide a lower bound on the underlying
entropy production anymore. In particular, by taking r = 7z,
the stationary state of the DTMC, X(z) becomes the
discrete-time nonadiabatic entropy production for a relax-
ation process, whose average reads

(2(z)) = D(pollz) = D(p:||7) = 0; (23)
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thus we recover the expression for EP proposed by
Spohn [83] (see also Ref. [41]). Remarkably, in this case
(X(r)) becomes nonextensive in time, contrary to the
general case [cf. Eq. (22)]. As a consequence, the steady
state z of the DTMC (whenever aperiodic and irreducible)
becomes the natural candidate for the prior v providing the
infimum in Eq. (13) in the large time limit. Therefore we
expect the nonadiabatic entropy production in Eq. (23) to
provide the minimum dissipation of the computation in
many cases of interest. However, it is worth remarking that
for ensuring the average nonadiabatic entropy production
to be a lower bound on the EP would require 7 to share
support with the initial distribution pp—which would often
not be the case in the computational context—and 7z being
also invariant state in the time-reversed (underlying)
physical dynamics of the computer [41].

B. Role of absolute irreversibility

In many models of computation in TCS, the initial
distribution pg(x) over the states of the computational
machine is restricted to a subset of computational states
in X. For instance, almost any automaton—in particular,
not just a DFA but also a TM—starts in a single,
predetermined state x;. Such a system may have a delta
function initial distribution, py(x) = &, . For such an initial
distribution the quantity e=>(*) = P(©x(y)/P(X[) may
become ill defined as there might be trajectories for which
P(x)) =0, but P(®x) ) > 0, e.g., trajectories in the
auxiliary dynamics that do only reach states different from
Xo- This phenomenon has been often referred to as absolute
irreversibility [84,85].

Following the techniques in Refs. [84-86] one can cir-
cumvent the divergence associated with absolute irrevers-
ibility by restricting the averages over sets of trajectories for
which the functional of the intrinsic mismatch cost e>(?) is
well defined. Adopting the language of modern probability
theory [87], we call such sets filtrations (see also Ref. [19]).
In particular, we denote F the filtration containing all
possible trajectories X taking place in [0, z]. Similarly,
we call F 5 the filtration containing all “absolutely irrevers-
ible” trajectories, that is, trajectories for which P(x[o.,]) =0,
but P(@X[O.T]) > 0. On the other hand, we denote the
complementary set of “absolutely continuous” trajectories
as F ac, such that F = F pc U F 51. Using these definitions,
an extended version of the integral fluctuation theorem (IFT)
for the intrinsic mismatch cost follows

() =1 -7, (24)

where 0 < y, < 1 the total probability that the time-reversed
picture of any absolutely irreversible trajectory (i.e., belong-
ing to F 51) occurs in the auxiliary dynamics

Y, = Z P(GX[O,T]) <1 (25)

X[0.] € Far

Applying Jensen’s inequality (e*) > % to the IFT Eq. (24)
we obtain a lower bound on the intrinsic mismatch cost,
implying a minimum dissipation due to the restricted initial
condition:

(£(r)) 2 =In[l =] > 0. (26)

where the second inequality follows from y, > 0 and hence
extends the applicability of Eq. (22) to systems showing
absolute irreversibility. We remark that here absolute
irreversibility arises because of the restricted initial dis-
tribution, but not because of the unidirectional transitions,
since they have been flipped in the auxiliary dynamics
according to Eq. (15). Fluctuation theorems similar to
Eq. (24) have been previously derived within the canonical
framework of stochastic thermodynamics for entropy
production [84] and standard mismatch cost [49], as well
as in the inclusive Hamiltonian framework for entropy
production [29].

IV. THERMODYNAMICS OF COMPUTATIONS
AT STOCHASTIC STOPPING TIMES

We now extend our analysis to investigate the thermody-
namics of computations which first reach a computational
state of interest at a time that varies depending on the random
input provided to the computer. In doing so, we extend the
martingale theory for stochastic thermodynamics [19] to
accommodate unidirectional transitions and arbitrary initial
distributions leading to absolute irreversibility.

Consider a random sequence of 7 bits sequentially fed
into a computer (e.g., a DFA) (see also Fig. 1):

000101..0111, (27)

7 bits

with 7>1 being the word length processed by the
machine. While processing a specific sequence, the com-
puter jumps between its computational states, as described
in Sec. II D. We are interested in the thermodynamics of the
(physical implementation of the) computer during the time
from when it starts to a stopping time T , that is until when a
stopping condition is met. For example, we will often
consider that the stopping condition is simply that the
computer has for the first time reached an accept state. Note
that this stopping time generally takes a different value
when processing different words. Since the words are
generated by sampling a distribution, this means that the
stopping time is a random variable.

Generalizing from this case to give a fully formal
definition, a stopping time is the earliest instance when a
particular condition concerning the entire trajectory gene-
rated by a stochastic process is met:

T(X[OJ]) = inf{t S [0, T]|X[0J] (S Q}, (28)
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where Q C F denotes the set of trajectories satisfying the
stopping condition. For example, 2 might be the set of
trajectories of a given DFA that have reached an accept
state at least once.

Note that its definition in Eq. (28) involves a limit time 7.
So the stopping time associated with each stochastic trajec-
tory is a bounded random variable that obeys 0 < 7 < 7. As
shorthand, from now on we will typically just write “7°,”
leaving the precise trajectory X|o 7] implicit. It is also worth
remarking that the computational machine does not neces-
sarily stop functioning at 7', but this variable can just signal to
us the time at which a specific computation is processed (e.g.,
accepting a word). We will therefore sometimes refer to 7 in
this context as the computation time, which is a particular
instance of a (bounded) stopping time.

A. Martingale theory with absolute irreversibility

Inspired by Ref. [16], we now introduce the stochastic
distinguishability between the computational process and
the auxiliary process. Stochastic distinguishability (with
respect to time 7) evaluated at time ¢ < 7 is defined as

pi(x;)

p‘r—t(-xt) 7

5.(1) ==1n (29)
where p,_,(x) is the probability distribution of the auxiliary
process defined in Eq. (15), evaluated at the conjugate time
7 — t for the state x,. [Recall that the auxiliary dynamics has
initial distribution py(x) = p.(x); i.e., it is the distribution
of the original dynamics at the limit time 7.] Stochastic
distinguishability is a measure of the asymmetry between
the original and the auxiliary dynamics and plays a crucial
role in martingale theory for stochastic thermodynamics of
nonstationary processes [19].

It will be useful to consider an associated process
involving the stochastic distinguishability,

MT ([) = e_z(l)_ér([)

<Pl ]

r(xs) ps+l(~xs+1)
S:()ps(xs) r/(xs+1) :| (30)

In the second line of Eq. (30) we used the first equality in
Eq. (18) together with Eq. (29) and the second line in Eq. (18).
Note that M,(z) = ¢ =9 because 6,(z) = 0. In general
though &,(¢) # 0 for ¢t < 7, and so M (t) # e~ for such t.

An important property of M, is that the expectation of
M (7) conditioned on a fixed trajectory ending at a time
0 <t < 7 satisfies

(M (7)[xpp.g) = M (D[] = a:(1)], (31)

where we introduced the quantity defined by

wi= Y

X141 € F ar '[_)T—t(xt)

P(®
POX) o 3

and a,(7) := 0 (see Appendix E for details). Combining
Eq. (31) with the fact that a.(¢) <1, we establish that
M, (t) = e >(0=%() is a supermartingale,

(M (7)|xp0,9) < M(1); (33)

i.e., its conditional expectation given a fixed trajectory of
length ¢ < 7 monotonically decreases over time. Note that
for t = 0 one has £(0) = 0 and, hence, Eq. (31) yields the
IFT with absolute irreversibility [cf. Eq. (24)]:

(€=0) = (M.(z)) = Y _po(x0) (M (7) o)
= ZPO(XO)MT(O)[l - 0,'.[(0)] =1- Vo (34)

where we have used Eq. (25) in the last equality. In
addition, in the absence of absolute irreversibility, F4; is
the empty set and ,(7) = 0 for all 7€ [0, z]. In such a case
M (1) in Eq. (31) becomes a martingale. Therefore, in that
limit we would be able to use the analysis in Refs. [16,19]
on the thermodynamics of systems with stochastic stopping
times. However, that analysis does not directly apply for
generic initial states py(x) without full support.

B. Integral fluctuation relations with absolute
irreversibility at stopping times

Fortunately, the fact that M (¢) is a supermartingale
rather than a martingale when our system has absolute
irreversibility does not prevent us from analyzing its
thermodynamics at stopping times. To carry out such
analysis, here we closely follow the derivation of Doob’s
optimal stopping theorem for martingales, generalizing it to
apply to supermartingales that are written as in Eq. (31).

As elaborated in Appendix F, this generalized form of the
optimal stopping theorem provides a fluctuation theorem at
stopping times, which is valid even in the presence of
absolute irreversibility:

(e = (M(T)) =1 -T, (35)

where 7 < 7 is the (stochastic) stopping time, I", € [0, 1] is
a contribution from absolute irreversibility, and therefore
(e7™T)=3(T)) < 1. Since (-) is an average over trajectories,
and different trajectories have different stopping times,
(e=>(T)=%(T)) inyolves averaging over (stochastic) values
of 7. This introduces statistical coupling between the time
7T and the value (7).

The quantity I', appearing in Eq. (35) is an average of
the functional e¢~%(7) evaluated at stopping times 7~ for
trajectories leading to absolute irreversibility:

Foe=> Y p(GX[O.’T])/_)T_

— Pr\XT
T=Oxpre 7y

T —’f((x’f) . (36)

021026-11



MANZANO, KARDES, ROLDAN, and WOLPERT

PHYS. REV. X 14, 021026 (2024)

To understand its meaning intuitively, first note that the
second summation in I'; is done over trajectories Xy 7] that

belong to F g), that is, trajectories verifying the stopping
condition for the first time at 7, but that have zero pro-
bability to occur in the original process P(x7]) = 0, due
to the restricted shape of the initial distribution py(x). We
notice also the presence of the distribution p,_(x), which
is due to 5,(7). That is, I'; consists of the total probability
of trajectories starting at the stopped point x; according to
distribution p,_,(x), and not turning back to the set of states
with po(x) > 0 under the auxiliary dynamics. Recall also
that the reference distribution r determining the precise
meaning of X(7") appears in Eq. (36) only implicitly, due to
the definitions of P and p,.

The inequality I', <1 is saturated when all trajec-
tories are in the set Fo; = F, for which the sum over
all trajectories in Eq. (36) is obtained; that is, I', =

20 Zx[o_,]e]-‘(’) P(®X[0.t])ﬁ‘r—t(xl)/pt(xt) = 1. Moreover,

we also have I', > 0, since it is a sum of probabilities.
Whenever the initial distribution py(x) is not restricted in
the state space, we obtain [, = 0, and recover the standard
form of the fluctuation theorem at stopping times for
nonstationary processes [16,19].

It is worth remarking here that our previous results for
fixed times [Eqgs. (24) and (25)] can be directly obtained from
Egs. (35) and (39) by letting 7 = 7, i.e., when all trajectories
are stopped at the final time 7, as we also discuss below in
more detail. Our results thus provide an extension of
martingale theory to cover different versions of mismatch
costs in physical scenarios with absolute irreversibility,
where martingales can be transformed into supermartingales
via the correction term a,(7) in Eq. (32), and stopping-time
fluctuation relations can be derived from them.

Moreover, using the fact that M_(¢) is a supermartingale
[cf. Eq. (33)], we can also readily apply Doob’s optional
sampling theorem [88] for supermartingales to obtain (see
Appendix G)

<e_2(72>_67<72>> S <€_2(T1)_5T(Tl)>’ (37)

where 7', and 7, are two stopping times, ordered such that
P(T, >7,) =1, but otherwise arbitrary. Taking 7| = T
and 7, = 7, the above Eq. (37), together with the fluc-
tuation theorem for stopping times [Eq. (35)] and fixed
times [Eq. (34)] implies

r =1- <e_2(7-2)_5r(7-2>>

T

1= () =7, (38)

where we have used &,(zr) =0. The above inequality
implies that the absolute irreversibility term at stopping
times I', is always smaller than its fixed-time counterpart
7. that is, absolute irreversibility implies always greater
dissipation at fixed times than at stopping times.

C. Second-law inequalities at stopping times:
Universal lower and upper bounds

If we apply Jensen’s inequality (e*) >e™ to the
fluctuation theorem of Eq. (35) we derive a second-law
inequality at stopping times:

(E(T)) 2 =(6.(T)) —In[1 = T]. (39)

This sets a strict lower bound on the average dissipation
incurred by a given computation up to an arbitrary stopping
time 7, from its time-reversal symmetry breaking [as
quantified by (5,(7))] and the absolute irreversibility
(as quantified by I';).

Moreover, I, >0 implies that —In[l —T7]>0.
Therefore, Eq. (39) also implies the simpler bound:

(E(T)) 2 =(6:(T))- (40)

These inequalities suggest that (X(7)) might be negative
whenever (6,(7)) > —In[l —T,] >0, as we discuss in
detail below.

Any concave function [such as In(x)] of a supermartin-
gale yields another supermartingale by Jensen’s inequality.
Therefore, the supermartingale property of M () also
implies that In[M,(¢)] = —X(¢) — 6,(¢) is supermartingale.
So X(t) +6.(r) is a submartingale; i.e., it conditionally
increases with time. If we now invoke Doob’s optional
sampling theorem for submartingales, we get the inequality

(X(T,) +6.(T,)) 2 (X(T) +6.(T)), (41

where again 7| and 7, are two ordered stopping times
with P(7, > T) = 1. This inequality has several impli-
cations, the most immediate one being a second law for
intervals between two ordered stopping times 7 ; and 7 ,:

(AX(T,T,)) 2 —[(6:(T>)) = (6:(T 1)),  (42)

where (AX(71,7,)) = (X(7,)) — (£(7)). This inequal-
ity provides a result applicable to both stochastic stopping
and starting times, bounding the entropy production
incurred for computations that both start and end at
stochastic times.

As an example, inequality (42) provides a bound con-
cerning the stochastic interval between the first time that a
DFA enters an accept state and the earliest subsequent time
that it again enters an accept state, after having left the set of
accept states in between. Then the time up to 7 can be
interpreted as the time it took for the DFA to accept a first
substring of the full input word, and the time between 7,
and 7, can be interpreted as the time it took for the DFA to
accept a second substring of the full input word, a sub-
string which follows the first one. Again, the inequa-
lity in Eq. (42) suggests that (AX(7 {,7,)) might even-
tually become negative for such a case, whenever
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there is an increasing time-reversal asymmetry, i.e., for
<6T(T2)> > <6T(Tl)>

Moreover, for the choice 7, =7 and 7, =1, the
inequality (41) gives us the following upper bound for
the intrinsic mismatch cost at stopping times:

(E(T)) < (2(2)) = (6:(T)).- (43)

The inequality (43) implies that whenever (5,(7)) > 0, the
intrinsic mismatch cost at stopping times will be upper
bounded by its fixed-time counterpart, suggesting a drop in
the thermodynamic costs of the computation at stopping
times. On the other hand by taking 7; = 0and 7, = 7 in
Eq. (41), we obtain an alternative second law at stopping
times, namely,

(E(T)) 2 D(pollpe) = (6:(T)), (44)

to be compared with Egs. (39) and (40). Here we have used
that £(0) = 0 and

.0) = Solo) 2% = Dlpal). (49

This inequality provides us an alternative lower bound
on the intrinsic cost of the computation. We notice that,
while we expect it to be less tight in general than Eq. (39), it
has the advantage of relying on the KL divergence between
initial distribution p, and the final distribution in the
auxiliary dynamics p,, which we expect to be more easily
computable than I', in Eq. (36). Remarkably, combining
Egs. (43) and (44) we find a sandwich inequality for the
intrinsic mismatch cost at stochastic times,

D(pollpe) = (6:(T)) < (X(T)) < (2(z)) = (6:(T)),  (46)

which provides both upper and lower bounds on (X(7)).

The stopping-time fluctuation relation in Eq. (35) and the
inequalities (39)—(44) for the intrinsic thermodynamic costs
in computational processes with stochastic stopping times
provide our main results. In the following we further
discuss their interpretation and some of their implications,
while in Sec. V we investigate their applications to
computer science setups with some illustrative examples.

D. Thermodynamic interpretation and implications

The second-law inequality (40), (£(7)) > —(6.(7)) [as
well the stronger versions Eqgs. (39) and (44)], suggests
that both the intrinsic mismatch cost and the underlying
entropy production incurred in a given computation may be
negative on average when evaluated at stopping times. To
understand how this is possible in light of the data-
processing inequality, we write (£(7)) explicitly as the
functional Eq. (18) averaged over many trajectories that are
stopped each at a stochastic time 7:

- Sl D] )

ﬂ/(xt+1)

Here, p(7) denotes the probability that the stopping
time takes value 7. Similarly, p,(x|7) denotes the con-
ditional probability that the process takes the value x
at time ¢ given that the stopping condition is met at
time 7. Because p,(x|7) < p,(x) in general, the terms
Zx, pi(x|T) lnwt(xz)//"(xt)] and ZX,H Pr1 (X1 |T) X
In[p, (x4 1)/1 (x,41)] are not KL divergences in general,
and thus not necessarily greater than or equal to zero (see
also Chap. 8.3 in Ref. [19]). This implies that (X(7")) can in
principle be negative. The second law at stopping times
Eq. (40) permits (X(7)) < 0 whenever (6,(7)) > 0; yet it
is not clear when this would actually be the case.

The explicit expression for the stochastic distinguish-
ability at stopping times reads

6T =33 p(Thor (xrlT)n p’”(—” (48)

T=0 x1 T—T(XT)

Equation (48) also reveals that (6,(7)) is not a KL
divergence in general, and thus can in principle take any
sign, yet so far only examples where (5.(7)) >0 have
been reported in the literature. We remark that (6,(7)) is
not a KL divergence unless 7 = 7, for which the process
“stops” at the deterministic limit time 7, and one has that the
joint stopping-time probability distribution

0 if7T <t

pe(x,) T =1 )

P(T)o(x|T) = {

ie., it takes the value, at time 7, of the solution of
the master equation. Plugging in Eq. (49) in Eq. (48)
one gets (5,(7 =17)) = D(p,||py) =0 because py = p,.
Analogously for 7 =1, intrinsic mismatch cost (£(7 = 7))
takes the expression Eq. (22), thus retrieving non-negativity
(X(7)) > 0. Note that other examples of negative entropy
production at stopping times based on threshold criteria for
work were first reported in Ref. [16] and for free energy
more recently [89]. Such gambling demon [16] effect is
allowed whenever (5(7)) > 0, which is not guaranteed for
arbitrary stopping conditions but possible for wise stopping
strategies, as shown experimentally in Refs. [16,89].

We can obtain further insight on this effect by decom-
posing the intrinsic mismatch cost at fixed times 7 in two
terms, one associated to intervals [0, 7] up to the stopping
time 7 and [7, 7] from the stopping time to the limit time 7;
that is,

(2(7)) = (X(T)) + (A%(z, 7)) 2 0, (50)
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which follows from the fact that 7 is a single-valued
function of the trajectory. Since (X(z)) >0, the above
decomposition implies that, whenever (X(7)) < 0, such a
negative value must be compensated by an incremented
mismatch cost (AX(z, 7)) > (X(z)) incurred in the interval
[T, 7], if no external action is taken on the system at time 7°
to physically stop the dynamics. These considerations will
be valid also in cases where the stopping condition is
structurally imposed through the dynamical evolution of
the computational process, e.g., using absorbing accept
states to “stop” the computation, as it is the case in some
models of DFAs.

The role of absolute irreversibility as captured in the
stronger inequality (39) with —In[1 —T";] > 0 makes more
difficult the observation of negative average intrinsic
mismatch cost, since it would require a higher time-reversal
asymmetry in the dynamical evolution leading to large
distinguishabilities (6(7")) > —In[l1 —T,] [and similarly
for inequality (44)]. Remarkably, however, the examples
explored in Sec. V show how still dissipation can be
reduced at stopping times thanks to a positive time-reversal
asymmetry (5(7°)) > 0, in agreement with Eq. (43) above.
This reduction might be linked to the information needed to
execute the stopping condition 7, similarly to what
happens in feedback control scenarios [90,91]. However,
a general relation between these two quantities remains
unknown.

The second-law inequality at stopping times Eq. (40) can
be further rewritten using Eq. (19) in a form reminiscent of
Landauer’s principle:

—(A(T)) 2 —(ASyy(T)) = (6:(T)),  (51)

where the lhs accounts for the excess entropy flow
dissipated into the environment as a consequence of a
drop in Shannon entropy of the computational states,
—(ASy(T)). Again, whenever (6,(7)) > 0, the above
inequality suggests that the entropy flow to the environ-
ment may be eventually reduced. Here it is also worth
noticing that even in the case in which trajectories are
stopped when returned to the initial state (as in the DFA
example in Sec. V), the average system entropy change at
stopping times, namely, (AS; (7)) = (S¢s(7)) — S(po),
with

(Ses(T)) = =>_p(T)D _prer|T)npr(xr),  (52)
T

X7

is nonzero even when xy = x for all 7, since in general
the distribution p7(x) # po(x), as corresponds to a relax-
ation process.

The second-law inequalities derived above not only can
be applied to assess stochastic stopping times of a compu-
tation, but also to stochastic starting times; see Eqgs. (41)
and (42). This extension allow us to apply our theory to

computations that may “stop” at multiple consecutive times
T,<T,<---<T, (see Sec. V for a particular example
in a DFA) or to the concatenations of simpler computations
that start at a stochastic time, after the previous one is
accomplished. We will further elaborate on the application
of starting times to the computation of concatenated words
with stochastic resetting in Sec. VII.

V. APPLICATION TO DETERMINISTIC
FINITE AUTOMATA

In this section, we analyze minimal yet insightful
examples of computations executed by deterministic finite
automata. A computational task for a DFA starts by it
receiving a sequence of exogenously generated symbols, an
input string or an input word @. As the DFA iteratively
processes the symbols of the input string, it makes
associated transitions among its possible states. Here we
first assume that the sequence of symbols to the DFA
are produced in an independent identically distributed
(i.i.d.) manner and so the time evolution over the DFA
states while processing those strings can be modeled using
a DTMC. Then we will move to the case of input symbols
that are not produced in an i.i.d. manner, but from a
Markovian source. In the following examples, we consider
two minimal DFA models that processes binary strings.
In the first example involving i.i.d. symbol sources, the
DFA under consideration accepts strings which encode
binary numbers divisible by four, e.g., 0 (zero), 100 (four),
1100 (twelve), etc. In the second example, involving non-
1.i.d. sources, we use a DFA that accepts strings which
encode binary numbers divisible by three. In all cases, we
assume that the input string behaves as an information
reservoir [74] whose symbols are not modified by the
computation, hence not leading to further energy or entropy
changes (see Sec. II D).

The state of the DFA when a stopping condition is
reached (e.g., when the DFA enters a designated accept
state) defines a computation that the DFA performs on that
string. However, this computation can be followed by
further processing of input symbols up to a limit time 7
(e.g., the DFA may exit the accept state in forthcoming
iterations). In this sense our results for stopping times can
be applied to various situations, for example, (i) computa-
tions generated by input words of fixed length = where we
ask about the value of thermodynamic quantities when
visiting the accept state for the first (or the nth) time and
(i1) computations that may actually end when visiting the
accept state for some reason (e.g., the accept state is an
absorbing state of the DFA or there exists an external
mechanism that activates when the accept state is reached
to stop the dynamics). In particular, we can always modify
a given DFA by removing all edges of the associated
directed graph that leave an accepting state. This turns the
accept state into an absorbing state (or set of states, if there
is more than one accepting state).
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A. Processing symbols from i.i.d. sources

As mentioned above, consider the DFA from Fig. 1,
initialized to state g, with certainty, and that its compu-
tation starts by processing a stream of binary letters
generated as an ii.d. sequence of 0’s and 1’s, with
po <1 the probability to observe a 0 and p; =1— pg
the probability to observe a 1. Under this assumption, the
time evolution of the DFA’s states follows a DTMC over
four computational states gy, g1, ¢», and g3, with transition
probabilities as indicated in Fig. 2(a). All together, the
Markov chain associated with the DFA’s dynamics is
characterized by its initial state,

po=[1 0 0 OF. (53)

with § denoting here matrix transposition, and the transition
matrix

po 0 py O

0 0

L A A (54)
0 po 0 po
0 pr 0 py

It follows that for r = 1 we have

PlZWPo:[Po pi 0 O]T’ (55)

whereas for larger times ¢ > 2,

)
pt:WZPO:[P% PoP1 PoPi p%} =  (56)

i.e., the dynamics already reaches the stationary state at the
second iteration.

For computing the auxiliary dynamics for this DFA’s
DTMC, we would need to identify the reference distribu-
tion r(x) appearing in Eq. (15) as the prior y(x) minimizing
the mismatch cost sum in Eq. (8) or v(x) leading to its
minimum in Eq. (13). For simplicity, here we assume
r(x) = z(x), the stationary state of the DFA dynamics.
This is a reasonable assumption as long as the induced
DTMC is aperiodic, irreducible, and 7z has full support over
the computational states. As discussed before, since X
becomes nonextensive in time in this case, there are reasons
to expect minimal dissipation in the steady state (see also
Refs. [92-94]).

The auxiliary dynamics starts in p, = p,, which can take
two possible values depending on the value of the final
maximum time of the computation z: If 7 = 1, we have
po = p1, whereas for 7 > 2, we have p, = z. Following
Eq. (15) for the transition probability, with r = z, the
stationary distribution given in Eq. (56), we obtain the
transition matrix associated with the auxiliary dynamics:

po po 0 O

- 0O O

W— Po  Po ’ (57)
ri pi O 0
0 0 pi P

as illustrated in Fig. 2(b). It then follows that for compu-
tations ending at 7 =1 we have p, = Wp, = Wp, =
[Po 0 p, 0]". On the other hand, since by construction,
the auxiliary dynamics Eq. (15) will always preserve the
steady state for r = ¥ = r, it follows that in the case 7 > 2,
the auxiliary dynamics is stationary at all times ¢, that is,
7,0 = W'p, = Wiz = x, with 7 given by Eq. (56).

The intrinsic mismatch cost in Eq. (18), evaluated over a
trajectory X[, reduces in this case to the (discrete-time)
stochastic nonadiabatic EP:

7—1
Z(X[0) = Z {lnpt(x‘) _ 1npt+l(xt+1)

| wl(x) m(Xiy1)
= ln'[j:((;oo)) —In pﬂf((;cf)) , (58)

with x, € X = {qy, 1, ¢», g3} for all z, which depends only
on the initial and final states.

Having obtained the system probability distribution at all
times for the original and auxiliary dynamics, we are now
ready to compute thermodynamic quantities at stopping
times. In particular, we consider the family of stopping times

7 =min(7 ,7), (59)

with 7 fixing atime horizon and 7| > 1 the first time the DFA
returns to the accept state g, hence accepting a word as a
multiple of four (including “0”). From numerical simula-
tions, we obtained sample histograms for the stopping time 7°
given by Eq. (59) for three different choices of the limit time
7; see Fig. 3. There we observe the first peak at 7 = 1 in the
three plots, corresponding to the cases where the first
incoming symbol is “0” and the word is then accepted. In
order to allow longer accepted words we need 7 > 2, such
that 7| = 3 (accepting four “100”) or 7| = 4 (accepting
twelve “11007), etc. Note, however, that with the stopping
condition given in Eq. (59), we do not capture the acceptance
of some of the multiples of four like, e.g., eighth “1000,”
since the stopping condition would already be verified at
previous symbol of the string, “100,” corresponding to four.
The same happens for any other accepted number to which an
arbitrary number of zeros are attached at the end. For
assessing the acceptance of such numbers, extra stopping
conditions such as 7 ,, i.e., the nth time the DFA resturns to
the accept state ¢, are needed (see example in Sec. V C).

For all trajectories in which 7 = 7| <z, i.e., the word is
accepted before the limit time 7 is reached, we have
X7, = qo, the accept state, and thus
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FIG. 3. Stopping-time statistics for the DFA recognizing binary
numbers divisible by four, obtained from 10* numerical simu-
lations of the DTMC sketched in Fig. 2, with initial state g, and
an absorbing accept state set also at g,. Simulations are done by
feeding the DFA with i.i.d. binary sequences with probability of
observing the letter 0 given by po=0.9, obtained from
Monte Carlo simulations of the discrete-time Markov chain
sketched in Fig. 2(c).

—lnpo llezl

X(7T,)=-1 = 60
1) ==mpra) = { 0 LT @

and the stochastic distinguishability in Eq. (29) is

-1 if 7, =1
5T(Tl)zlin'(%):{ o B (61)

Pe-1,(q0) 0 it 7, 22,

where we used the fact that (by construction) 7 > 7| > 1
and, hence, p,_7, = 7.

If however 7| > 7, the dynamics stops at the maximum
time 7 = 7, independently of the state x,, and we obtain

e O BN
z(x;) —2Inp, ifr>2.

Note that the case 7 > 2 is independent of x, because the
system has already reached its stationary state, and thus
Y(7) = —Inz(qy) = —=21n p, for all x, # g,. On the other
hand, the stochastic distinguishability verifies &,(z) = 0
since py = p, always.

Using the above calculations we obtain the average
intrinsic mismatch cost at the stopping time Eq. (59) for all
T>2as

(X(T)) = (po—2)In po 2 0. (63)

which follows from

T

(X(T)) ==P(T) = )Inpy =Y P(T) =1)2Inpy

=2
- P(Tl > 1)21np0
= —poInpy— (1 = py)2In p,
= (po —2)In p, (64)

where we have used P(7,=1)=p, and, thus,
P(T,>1)=1-py. In addition, using Eq. (61), we
obtain the average stochastic distinguishability at the
stopping time Eq. (59) for all 7 > 2:

(6:(T)) = =poIn po 2 0, (65)

where again we have used P(7; = 1) = p,. Note that the
above expressions also remain valid in the limit of large
input word lengths, 7 — 0.
To tackle the contribution from absolute irreversibility at
stopping times, it is convenient to first identify which
trajectories contribute to I', in Eq. (36). These are trajec-
tories that are stopped at 7 < 7 (either with or without
reaching ¢,) and have zero probability to occur in the
original dynamics. Note that the original dynamics is a
Markov chain with initial state py(x) = &, ,,. The set of
absolutely irreversible trajectories at stopping times con-
sists of two sets: (i) trajectories that do not start in g, and
reach g, with 7 < 7 in the original dynamics and (ii) tra-
jectories of length 7 that do not start at g, and do not reach
qo in the original dynamics.
Let us now flesh out the list of such trajectories Xy 7]
classified by the value of 7 for the special case 7 = 2.
(1) ¢,qo reaches the accept state at 7 = 1, yet it has
zero probability to occur in the original dynamics
with py(g,) = 0.

(i1) ¢,¢.q0 and g3q,q, reach the accept state at 7 = 2,
yet they have zero probability to occur in the original
dynamics since py(q;) = po(q3) = 0.

(i) 9192915 919392 919393> 9291925 9291935 939291
439392, and g3q3q; are stopped at 7 = 2 without

reaching the accept state. They have zero probability

in the original dynamics because their initial state is

different from ¢.
All the sequences listed above are such that they would halt
the computation at the stopping time 7 = min(7 |, 2); they
have nonzero probability in the auxiliary dynamics but zero
probability in the original dynamics. In order to calculate
the absolute irreversibility correction term I', in Eq. (36),
we thus need the probability of the above trajectories to
occur in time-reversed order in the auxiliary dynamics.
More precisely, one needs to compute P(@X[OJ—]) multi-

plied by p,_r(x7)/pr(x7) = n(x7)/p7(*7), Which in this

021026-16



THERMODYNAMICS OF COMPUTATIONS WITH ABSOLUTE ...

PHYS. REV. X 14, 021026 (2024)

case is equivalent to modifying their initial condition to
n(x7), i.e., to compute the following path probabilities:

P(90. 92190)7(90) = Pip1-

P(flo 92, q1190)7(q0) = oPl Do
P(Qo 92 q3190)7(q0) = o P1 Pi
P(q1.92.q1l91)7(q1) = pop1 P1 Po.
P(q1. 92 g3191)7(q1) = pop1 P1 P1»
P(92. 91, 92192)7(42) = pop1 Po P1»
P(Qz 3. 43192)7(q2) = pop1 P1 P1s
P(Qz 3. 1192)7(q2) = pop1 P1 Po
P(q3. 93, 93|93)7(q3) = pT p1 P1s
P(q3.93.01193)7(q3) = pi P1 Po.
p(%ﬂu@zk]a)”(%) = P% Po P1- (66)

Summing up all the contributions in Eq. (66) leads us to the
absolute irreversibility contribution [cf. Eq. (36) for the
general formula]:

[y = popi(po + pg +4p1po + 4p7) + pi

=1-p3. (67)

Combining all the terms above, we observe that for the
stopping time 7 = min(7 {,2):

—(62(7))

In other words, the second law at stopping times given by
Eq. (39) is saturated over the stopping time given by
Eq. (59) for 7 = 2, as it is illustrated in Fig. 4 for different
values of the probability of incoming zeros p,. As can be
appreciated in this figure, the positive sign of the term
(6,(T)) > 0 implies that the intrinsic mismatch cost at
stopping times (X(7)) = —21n py + pg In py, see Eq. (65),
is smaller than its value at fixed times,

(7)) = —In[l -] (68)

(5(2)) = —2In py > (X(T)), (69)
in spite of the presence of the absolute irreversibility
contribution with T,. For 7>2, we have I', <T),,
which follows by combining the equality in Eq. (68)
with the generic bound in Eq. (39). In any case, the
inequality (2(z)) > (£(7)) holds for any limit time
for this example.

When p, approaches 1 (words with a high number
of zeros) the dynamics cannot escape from the initial
state g, and the steady state z becomes equal to the
initial distribution pg. In this limit, the DTMC dynamics
becomes fully stationary and, hence, the intrinsic mismatch
cost becomes zero for every trajectory, the time-reversal

6

0.2 0.4 0.6 0.8
Probability of symbol 0 (po)

FIG. 4. Tllustration of analytical results for the second law at
stopping times applied to the discrete-time Markov chain model
of the DFA recognizing binary strings whose length is a multiple
of four [see Fig. 2(a)]. Here the computation stops at 7 =
min(7 {, 7) for the limit time z = 2, or earlier if the accept state is
reached in one iteration. Symbols represent analytical results for
the averages at the stopping time for the relevant thermodynamic
quantities: intrinsic mismatch cost (nonadiabatic entropy pro-
duction) (X(7)), given by Eq. (63) for prior equal to the
stationary probability (blue filled squares); minus the stochastic
distinguishability —(5,(7)), given by Eq. (65) (blue dotted line);
fixed-time nonadiabatic entropy production (2(z)) evaluated over
trajectories of the same length 7 =2 (open symbols); and the
absolute irreversibility contribution —In[l —T], given by
Eq. (36) (blue dashed line). The blue solid line is given by the
sum —(5,(7")) — In[1 — T',] which in this example equals (£(7)),
thus saturating the second law Eq. (39). The horizontal black
thick line is set to zero as a reference value.

asymmetry is lost, and the absolute irreversibility is no
longer present, leading to a drop in the three quantities on
the rhs of Fig. 4. As we move away from that limit, the
mismatch cost increases (both at stopping and fixed times),
signaling the energetic costs incurred by the computational
task, which grow as p, decreases. This can be justified by
the fact that the dynamics on the DTMC spreads more
easily over all computational states as p; increases [see
Fig. 4(a)], leading to a greater distinction between initial
and steady-state distributions. In this case we also observe
nonzero stochastic distinguishability and an increasingly
large absolute irreversibility term. In the limit py — 0
(words with a high number of ones) accepting a word
becomes almost impossible, and hence the stopping occurs
most probably at the maximum time 7 ~ 7, leading again
to zero stochastic distinguishability. We notice that in this
limit 7z tends to localize at state g3 and, hence, it would lead
to (X(z7)) — oo, which is not physically meaningful. The
catch point is that in this limit the fixed point z7 would not
be equal to the prior x4 or v anymore.
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B. Uniform prior
We now implement the analysis in Sec. VA for a
different setting, where the strings are generated i.i.d.
and we consider the same four-states DFA, now with a
uniform prior distribution over its states:

r=[1/4 1/4 1/4 1/4]. (70)

The evolution of » under W after one iteration yields

r=Wr=[py/2 pi/2 po/2 pi/2]". (71)

Because r changes after one iteration, we write X as in

Eq. (19) for z > 0,

po(x0) |
+

)
p‘[ (x‘[) =0

r(x,)

Z(X[O,T]) =In (72)

where the first term is the system entropy change
ASqy(X[) and the second term is the nonequilibrium
potential A¢(xp ) in Eq. (21). Unlike for the stationary
prior, now this term is extensive with time [cf. Eq. (58)].
Note that in this case X is no longer equal to the nonadibatic
EP associated with the stochastic trajectory X(g ).

The uniform distribution is not invariant under the
map W; hence the intrinsic mismatch cost X associated
with a stochastic trajectory X(q 4 is extensive with time. This
implies that, unlike for the case of stationary prior (see
Sec. VA), the averages of X at fixed times 7z as well as at
stopping times with limit time 7 [of the form of Eq. (59)]
will crucially depend on z. This is also the case for any
other choice for the prior distribution which differs from the
stationary distribution.

In Fig. 5 we show the intrinsic mismatch cost (X(7)) at
the stopping time 7 = min(7 |, 7) for the DFA with the
uniform prior for two different values of z, and compare it
with the case of stationary prior, Eq. (63). We observe that
the uniform prior leads to higher values for the intrinsic
mismatch cost for high values of p,, while for low p,
values the tendency can be inverted. However, when
increasing 7 sufficiently we always obtain a lower cost
for the stationary prior, as expected from its nonextensivity.
Indeed we observe a tendency for the mismatch cost at
stopping times (X(7)) to saturate when increasing the limit
time 7, in contrast with the linear scaling of (X(7)) with 7.
In Appendix H we confirm this point by studying in more
detail the scaling behavior of these two quantities as a
function of 7.

We test the sandwich inequality in Eq. (46) comprising
the upper and lower bounds to (X(7)) in Egs. (43)
and (44), respectively. As can be appreciated in Fig. 5,
both inequalities provide useful bounds that become tighter
for small z, and are simultaneously saturated at the point
po = 1/2. This example also reveals that again there is a
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FIG. 5. Numerical results for the average intrinsic mismatch
cost (£(7)) (symbols) at stopping times 7 = min(7 ,7) with
uniform prior, evaluated for the DFA in Fig. 2(a) processing
i.i.d. binary input data, as a function of the probability of input
symbol 0. We used different limit times: 7 = 5 (blue filled squares),
and 7 = 14 (red filled circles). The solid lines correspond to the
lower bound predicted by Eq. (44) and given by D(py||p.) —
(6.(T)) for T =5 (blue solid line), and 7 = 14 (red solid line),
while the dashed lines are the corresponding upper bounds in
Eq. (43), (X(7)) — (5,(7)) for same values of z. Averages are
estimated from 10* numerical simulation for each parameter value.
The thick gray line is the average cost at stopping times for
stationary prior 7, see Eq. (63) and Fig. 4, and the vertical dashed
line is set to py = 1/2 as areference value. Inset: (2(7)) — (X(7))
(solidline) and (5,(7)) (dashed line) as a function of p, forz = 14.
The horizontal dotted line is set to zero as a reference value.

reduction of intrinsic costs at stopping times with respect
to fixed times; that is, (X(z)) > (X(7)) holds over the
entire parameter range of probability of symbol 0, p,
and the limit time 7z, as shown in the inset of Fig. 5.
This reduction is guaranteed by a positive value of the
stochastic distinguishability (6(7")) > 0 in the range p, >
1/2 [cf. Eq. (43)], but, interestingly, it is also verified even

for (6(7)) < 0 as it happens for p, < 1/2.

C. Beyond i.i.d. sources

Thus far we have analyzed the statistics of a DFA
processing inputs generated by a source of i.i.d. bits, which
induces a Markovian dynamics for the time evolution of the
computational states. This is, however, one of the simplest
possible computational processes, as, e.g., regular languages
recognized by DFAs are often composed of correlated words.
To illustrate the applicability of our theory to computing
thermodynamic costs of DFAs processing arbitrary strings
from arbitrary languages, it is mandatory to consider DFAs
processing non-i.i.d. sequences.

In processing a generic non-i.i.d. sequence, the dyna-
mics over the computational states of a DFA is in general a
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and denoted by p(i|j) := p;; for i, j = {0, 1}. They satisfy
Poo + Pio = 1 and py; + p;; = 1. Ordering the computa-
tional states’ distribution as p, = [p;(¢o,0),p;(q;,0),

Pi(42,0).p:(q0.1).pi(q1. 1), pi(q2.1)], we obtain a 6 x 6
transition matrix given by

(poo 0 0 poy O 07
0 0 poo O 0 pg
W= 0 pw O 0 po O (73)
0 po O 0O pu O
Po O 0 pu O 0
L O 0 po O 0 pipd

FIG. 6. (a) Minimal DFA that accepts binary multiples of three
with three states z;, = {qq, ¢, ¢»} with same start and accept
state g,. (b) Associated DTMC, where the automaton processes
input strings generated by a non-i.i.d. source of input symbols
with probabilities depending only on the last processed symbol
b, ={0,1}. See Eq. (73) for the corresponding transition
probability matrix.

non-Markovian process. However, one can extend the
computational state space such that our formalism can
be applied. For the analysis in this section it is important to
mention the distinction between the “computational states”
of the DTMC computational state space X’ and the states of
the DFA. In particular, we refer to states of the DFA (as in
the usual TCS definition) as logical states of the DFA, and
remind that with computational states we refer to the sets of
variables which describe the entire state space for a
computational process of interest, as introduced in Sec. II.
Now consider that the (process generating the) input
string itself is a DTMC characterized by time-independent
transition probabilities p(b;|b;) for the (i 4+ 1)th bit to be
equal to b;,; = {0, 1} given that the ith symbol (bit) of the
string is b; = {0, 1}. In this case, the logical state of, e.g., a
three-state DFA z, = {q¢, 41, 49>} processing this input
string is not a DTMC, although by constructing the
computational state space as the Cartesian product of z, =
{40, 91, 4>} and b, = {0, 1}, we encode the current com-
putational state x, = {z,, b,} as the logical state of the DFA
z, and the most recent input symbol fed to the DFA b,. In
this case, one is left with a DTMC with six possible
computational states, for which our formalism can be
readily applied to tackle the thermodynamic properties.
As an example, we consider the minimal DFA that
accepts binary multiples of 3, shown in Fig. 6(a), leading to
the DTMC represented in Fig. 6(b). The probabilities to
obtain input bits 0 or 1 given the last input symbol are fixed

We choose as the initial condition the probability distri-
bution:

po=[1/2 0 0 1/2 0 O], (74)

with initial equal probabilities over the DTMC states
corresponding to ¢, as the DFA start state and zero
otherwise. We assume that the underlying entropy produc-
tion is minimized for the uniform prior,

r=1[1/6 1/6 1/6 1/6 1/6

1/6]F.  (75)

which is transformed, after one iteration, into ¥ = Wr:

¥ =1a/6 a/6 a/6 b/6 b/6 b/6]T, (76)
with a = poy + po; and b == po + py;.

Using the above definitions we can compute X(7) in
Eq. (18), at arbitrary fixed times. Moreover, in order to
evaluate thermodynamic quantities at stopping times, we
embrace again the family of stopping times 7 =
min(7,7) with 7 the fixed time horizon and 7| > 1 the
first time the DFA returns to the accept state g, for
either b = {0, 1}.

We show numerical results in Fig. 7, where (2(7)),
together with the corresponding upper and lower bounds
given by Eq. (46), are plotted as a function of the
probability py; =1 — p;; to obtain symbol O after a
symbol 1, for different values of pgy =1— p;g. Again
we obtain relevant bounds on the intrinsic mismatch cost at
stopping times, which, interestingly, become tightest when
Poo = 1= poi, L.e., when poy = pyy and pig = po;. This
corresponds to the situation in which the input sequence is a
Markovian process with homogeneous stationary proba-
bilities, p§ = p{' = 1/2. The fact that our bounds become
tight for homogeneous input sequences was also observed
for the i.i.d. example (see Fig. 5) and makes us conjecture
that this phenomenon may be generic to correlated input
sequence, maybe also non-Markovian.

As also commented for the previous examples, however,
using a stopping time of the form 7 = min(7 |, 7) allows
us to describe computation times for the DFA to reach the
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FIG. 7. Numerical results for the intrinsic mismatch cost
(2(7)) with uniform prior for the DFA in Fig. 6(a) processing
Markovian input strings, as a function of the input symbol
transition probability. Here 7 = min(7 ,7), with 7 the first
return time to any of the states (gq,0) or (gg, 1), and =15 a
prescribed limit time. Symbols are numerical estimates for
(£(7)) obtained from 10* numerical simulations, for two
different values of the transition probability py, of the input
string containing two consecutive zeros (see legend). Solid
lines are estimates from the numerical simulations of the
quantity D(pyl|p,) — (6.(T)), confirming the lower bound given
by Eq. (44).

accept state for the first time. That corresponds to the
acceptance of only some of the multiples of three, e.g., “0”
(zero), “117” (three), “1001” (nine), but not other multiples
like “110” (six) or any other word that already contains an
acceptable prefix. In order to explore thermodynamic costs
associated to these words, we now consider more general
stopping times 7 = min(7 ,, 7), where 7, is the nth time
the DFA returns to the accept state. Therefore, 7, is related
with the acceptance of words like “110” (six) or “10010”
(eighteen), while 75 corresponds to accept words like
“1100” (twelve), among many others.

In Fig. 8 we plot (X(7)) with 7 =min(7,,7) as a
function of the return time to the accept state, n = 1, 2, 3, 4,
5. We notice that different behaviors are obtained depend-
ing on the choice of input symbols probabilities, p(, and
Po1, leading to either increasing values of the intrinsic
mismatch cost or a nonmonotonic behavior. Interestingly,
considering different stopping times allows us to test
inequality (42) for two stopping times, which is shown
in the inset of Fig. 8 for 7, = min(7,_;,7) and 7, =
min(7 ,, ) as a function of n > 1. In particular, we observe
that the mismatch cost between consecutive returning times
to the accept state can be eventually negative for specific
choices of parameters (probabilities pgn and pg;), that is,
(AX(T,,T,-1)) <0forn=23,4,5, owing to a reduction
in the associated stochastic distinguishability and despite
having (2(7)) > 0 at fixed times.

(X (min(7n, 7))

0.5t

FIG. 8. Intrinsic mismatch cost up to the second, third, fourth,
and fifth accepted word. Numerical results for (X(min(7 ,,7)))
with uniform prior, with 7, the nth return time to the accept
states, and 7 = 40 a prescribed limit time. Results are obtained
for the DFA in Fig. 6(a) processing Markovian input strings,
as a function of the n input symbol transition probability, for
parameter values poy = 0.25, pg; = 0.4 (open symbols) and
Poo = 0.25, po; = 0.75 (filled symbols). The lines are estimates
from the numerical simulations of the quantity D(pyl|p.) —
(6,(T)) for pgy = 0.25, py; = 0.4 (red dashed line) and for
Poo = 0.25, po; = 0.75 (red solid line). Inset: mismatch cost
between returning times (AX(7,,7,_)) := (X(min(7,,7))) —
(Z(min(7 ,_;,7))) (red circles) and —[(5,(min(7,,7))) —
(6,(min(7 ,_;,7)))] (red solid line) as a function of n; see
Eq. (42). The horizontal dotted line is set to zero as a reference
value.

VI. UNIVERSAL EQUALITIES
AND INEQUALITIES
FOR ACCEPTANCE PROBABILITIES

Our formalism can be further applied to address other
issues in computer science theory, beyond automata liter-
ature, and besides second laws and fluctuation theorems
at stopping times. Both in this section and in Sec. VII we
develop further theoretical predictions for key statistical
properties of interest for computer science that may inspire
numerical and experimental illustrations of future work.
An example that we develop in this section is using
our formalism to establish universal equalities and inequal-
ities concerning the probabilities of acceptance or rejection
of sets of distinct bit sequences when a given DFA is
implemented. In what follows we focus on a specific choice
of such sets, namely, (1) the set of all strings or trajectories
that end in an accept state before the limit time 7 versus
(2) the set of all trajectories that do not end in an accept
state before the limit time z. However, we emphasize that
this formalism can be generalized to arbitrary pairs of sets
of trajectories, by specifying suitable filtrations as done in
martingale approaches.
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Thus we will explore a class of simple examples of
“acceptance” statistics for binary words of length 7 > 2 that
are processed by a computer. We will use the notation
accept to signify that a computer reaches a prescribed
accept state before the limit time 7, and reject otherwise.
The probabilities P,(z) denote the probability for the
computer to have reached the accept state within [0, 7],
and P.(r) = 1 — P,(r) the probability for the complemen-
tary. Recall that for simple computer architectures (e.g.,
DFAs processing i.i.d. binary strings), P,(z) and P,(z) can
often be evaluated analytically or with Monte Carlo sim-
ulations. The approach we reveal below is complementary
to Monte Carlo approaches in such simple computations;
however, we highlight its usefulness in revealing how such
accept or reject statistics are related to thermodynamic
quantities. Note that here those thermodynamic quantities
can be used as a tool of calculation, determined completely
by the computer update function and the distribution over
input words. In particular, they need not correspond to any
“real” thermodynamic quantities that one would measure in
the laboratory. That is, our formalism provides a way to
derive the relative probabilities of accepting or rejecting
a string while sidestepping the conventional technical
difficulties found in the traditional approaches to this
issue [95,96]. On the other hand, one can also interpret
the results presented below as a way for obtaining infor-
mation about the intrinsic thermodynamic costs of compu-
tations by looking at the acceptance probabilities (of
languages solved by machines), which might be calculated
by other means, such as Monte Carlo approaches.

So we consider again a stopping time 7 = min(7 |, 7),
which signifies the first time that the computer reaches the
accept state 7 ; or the limit 7 in the case that the accept state
is not visited before 7. So 7 < 7 if a word of length 7 — 1 is
accepted by the computer. Otherwise, 7 = z, if the word is
not accepted before 7. The probabilities that a word of
length 7 — 1 is accepted or not are then given by

P,(7) =P(T <71), (77)
P(t)=1-P(7T <7)=P(T =1), (78)

respectively. We now make use of our formalism to derive
bounds for P,(z) and P.(z) in terms of thermodynamic
quantities.

Using our fluctuation theorem at stopping times with
absolute irreversibility, Eq. (35), (M. (7)) =1-T},, we
expand its lhs into terms corresponding to accepted and
rejected words as

P(e)(M(T)|T <7) + P(t)(M(T)|T =), (79)
with (A(7)|c(7)) = E[A(T)|c(7)] being the conditional

average of functional A over trajectories x|y 7] given that the
condition ¢(7') is fulfilled over the stopping time 7. Upon

using P,(7) = 1 — P,(7), the decomposition Eq. (79) gives
us the following relation between the acceptance proba-
bility and the averages of the supermartingale M, (7) at
stopping times:

1T, - (M,(T)|T = 1)

PO = 00T <o - T =9

(80)

Equality (80) generalizes analytical expressions obtained in
previous works for absorption probabilities [13,19,97] by
including the absolute irreversibility contribution I',. As
can be appreciated in Eq. (80), since I'; > 0, the role of
absolute irreversibility is to decrease the acceptance prob-
ability P, () of a word of length 7 — 1 by the DFA. This can
be intuitively understood from the fact that starting com-
putation from a restricted set of initial states can only
decrease the velocity at which the computational state space
is explored, and hence the probability to reach a generic
stopping condition before time z.

Since P,(z) is a well-defined probability [i.e., 0 <
P,(7) < 1], we further obtain from Eq. (80) that one of
the two following chain inequalities holds:

(MAT)IT <7) 2 1T, > (M(DIT =2),  (81)
(M(T)|T =2) 2 (M(T)|T <7) 2 1-T, 20, (82)

which provide us constraints on the values of M, (7) for
generic 7 of the form 7 = min(7 , 7).

Analogously, we can exploit the second-law inequality at
stopping times Eq. (44), namely, (Z(7)) > —(5.(7)) +
D(po||p.), to derive universal bounds for the finite-time
acceptance probability. Indeed, the average of the left-hand
side of this equation at the stopping time 7 = min(7 , 7)
can also be decomposed into two terms, accounting,
respectively, for accepted and rejected words of maximum
length 7 — 1:

(S(T) +6,(T)) = P,(0)C,(x) + P,Ci(x).  (83)
where we have introduced the conditional averages,

Cu(7) = (X(T) +6.(T)IT < 7), (84)

Ci(r) = E(T)IT = 7). (85)

Note that in Eq. (85) we have used the fact that §,(7) = 0.
We refer to these two conditional averages as the average
thermodynamic costs associated with the acceptance and
rejection of words of length 7 — 1, respectively.

Combining Egs. (44) and (83) we obtain the two
following lower and upper bounds for the acceptance
probability,

D(polip:) = Ci(7)

N TERCN

(86)
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valid whenever C,(7) > C,(7), and similarly

C:(z) = D(pollp-)
Ci(zr) = Cu(r)

Py(7) < (87)
valid in the complementary case when C.(z7) > C,(7).
These bounds express a constraint on the acceptance
probability of a word with maximum length 7 — 1 in terms
of the average costs associated with the accepted and
rejected words as defined in Egs. (84) and (85), and the KL,
divergence between the initial distribution of the computa-
tional state and the final distribution of the computational
state under the auxiliary dynamics [see Eq. (45)].

Equation (86) provides a meaningful bound whenever its
rhs is non-negative and smaller than one, i.e., when
C,(7) > D(py||p;) = C.(z). On the other hand, the bound
Eq. (87) is meaningful when C,(7) < D(po||p.) < C.(7).
We expect the first condition to be satisfied if the
probability of accepted words is large enough so that the
associated cost C,(r) is larger than the cost of rejected
words C,(7). So we expect the bound Eq. (86) to be helpful
for parameter values of the DFA and distribution over input
words in which the acceptance rate is high. On the contrary,
when the probability of rejected words is large enough, we
expect C,(7) to be larger than C,(7), and the bound Eq. (87)
to be useful when the acceptance rate is low.

The above relations in Egs. (80), (86), and (87) con-
cerning the acceptance probability of a word can also be
applied to any finite-horizon stopping time of the form
7 = min(7 ., 7), where 7 . represents the time at which a
given arbitrary condition c is verified for the first time, e.g.,
the first time the accept state is reached twice, or the first
time the accept state is reached after passing through any
other arbitrary state (or sequence of them). Thus there is an
ample flexibility in choosing the stopping condition 7,
including the logical composition of any other set of
conditions; e.g., ¢ = ¢; U ¢, giving the first time either
condition c¢; or condition ¢, is verified, or ¢ = ¢; N ¢, for
the fist time both ¢; and ¢, are simultaneously verified.

VII. CONCATENATING RUNS OF A DFA
WITH STOCHASTIC RESETTING

In this section we further elaborate on how our results
would be applied to sequences of computations separated
by a reset of the dynamics which implements concatenated
computational rounds. This is an interesting avenue where
our results might be fruitfully combined in the future with
the powerful analytical tools from the framework of
stochastic resetting [35,98—102]. Let us consider a random
sequence of symbols fed into a computer,

000U010111L010..., (88)

where LI is a blank symbol that flags the beginning of a
new computation. For the example sequence Eq. (88), a
computation starts at the random starting time 7 g, = 5

and ends at the stochastic ending time 7.4 = 10 just
before the next blank symbol arrives, thus generating the
input word “010111.” During this computation, the com-
puter begins computing at 7 ,; = 4 from its start state, and
ends the computation either in an accept state or in another
logical state.

Now, stochastic starting times can be reformulated as
stochastic stopping times [see also our results concer-
ning multiple stopping times, Eq. (41)]. In particular, here
the starting time 7 4, is the first appearance of a blank
symbol L. Whenever the probability of a blank symbol
pu > 0 is greater than zero, then it is guaranteed that
P(T g < o0) = 1; i.e., there is a limit time 7 that is a
finite global upper limit to 7 4. This is the setting which
would correspond to, e.g., stochastic starting times that
are drawn from distributions with bounded support, say
from Bernoulli or binomial distributions. Under such mild
assumptions, it is then possible to establish thermodynamic
constraints for computations starting at stochastic times.

Supposing p,, > 0, we outline how the stopping-time
fluctuation relations derived in our work can be applied to a
computation of the example sequence Eq. (88). First, we let
the computer processes the sequence “000,” which implies
visiting the accept state at least once. At time ¢ = 3, the
computer may or may not be in the start state depending on
its update rules. Next, at + = 4, the state of the computer is
reset to its start state from whichever state x5 it occupies at
the previous time instance. Upon this, the computer
processes the string 010111 before the arrival of the next
blank symbol, during which the logical state may or may
not have reached the accept state. This leaves us with
an ordered sequence of stopping times: Ty =0, 7,=

. 1 1 1 . 2 2
mln<Tz(lciept7 Tf)lgnk)’ T2 = Tf)lzznk’ 73 - mln(Te(lcgepU Téleznk) ’

T, = T{jgnk, ..., T, = 7, which obey

To<T | <T)<T3<T;<-<Ty (89

Here above we have denoted by 7" g?cept the first return time
to the accept state during the computation of the ith word.

Similarly, Tt()’izmk is the stochastic arrival time of the ith

blank symbol. While the stochastic times T;’C)wpt have the
same structure as the stopping times considered throughout
our work, the times Té’l:nllg can be seen as stochastic starting
times, which are also examples of stopping times for which
our formalism applies.

Figure 9 provides an illustration of a DFA processing
an i.i.d. sequence of bits interspersed by blank symbols.
The DFA processing the symbols recognizes binary words
multiples of four, as in the examples of Sec. V. Assuming
time-independent probabilities p,, p;, and p,, for the
occurrence of 0, 1, and blank L symbols, respectively
(with py+ p; + py=1), the DTMC associated with
this computation can be represented by a discrete-time
stochastic resetting process (see Fig. 9). In such processes,
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FIG. 9. An application of stochastic resetting to computer
science. Top: illustration of a random tape of binary symbols
interspersed by blank symbols that are processed during a
computation. Bottom: discrete-time Markov chain associated
with the deterministic finite automaton recognizing binary words
multiple of four [see Fig. 1(c)] with stochastic resetting to the start
state. Along a stochastic computation, resetting takes place when
a blank symbol is recognized by the DFA. For the model
illustrated here, we have assumed that words are drawn from
i.i.d. sequences with probabilities p, p;, and p of 0,1 and blank
symbols, respectively, with p, + p; + p, = 1; however, more
complex scenarios could be envisaged in future work.

resetting takes place from each logical state to the start state
qo at a stochastic starting time. This requires a suitable
description of computation whose transition matrices
include resetting events. For the DFA example considered
here, such transition matrix takes the form

PotpPu Pu PotPu  Pu
0 0

W— D1 D1 . (90)
0 Po 0 Po

0 p]O 0 pl()

cf. Eq. (54) for the case where no resetting takes place,
corresponding to p,, = 0. The DTMC described by the
transition matrix Eq. (90) allows one to study multiple
realistic computational scenarios where X at stochastic
starting and stopping times can be efficiently tackled.
For example, one may consider that the processing of
the input string by the DFA is a nonequilibrium stationary
process with resetting and apply results from the martingale
theory for stationary processes (see Chap. 7 in Ref. [19]).
Alternatively, one can apply the formalism in this work to
establish bounds for the intrinsic mismatch costs of the
computation between the first and the nth arrival of a blank
symbol, from the nth blank symbol to the (n + 1)th one,
etc. [see Eq. (42)], similarly to Sec. Vc.

VIII. DISCUSSION

In this work we have shown how to extend stochastic
thermodynamics to describe the minimal costs associated

with a computer processing with a stochastic halting
time, processing strings of arbitrary length. Our formalism
applies to computations described by discrete-time Markov
chains over a set of computational states that may have
restricted initial conditions, unidirectional links, and start
and/or stop at a stochastic time. We obtain quantifiers,
which are collectively dubbed as the intrinsic mismatch
cost of a computation, that lower bound the entropy
production incurred by the computer and that can be
formulated at the fluctuating level. A key insight here is
that these quantifiers, which provide a tool to probe the
entropy production associated with computations at stop-
ping times, can be entirely obtained from the DTMC
evolution and the prior, without further details about their
physical implementation. Note that such an intrinsic cost is
independent of the internal energy of the computational
states, x, € X', which can indeed be assumed to be equal for
every computational state and constant over time. Still,
nonzero entropy production through the irreversible dis-
sipation of heat into the environment will be in general
incurred for any physical computer which implements a
given computation over such set of states.

Putting forward the modern martingale formalism of
stochastic thermodynamics, we also unveiled a plethora of
universal fluctuation relations and inequalities that are valid
for the broad class of computations analyzed in this work.
We obtained a main fluctuation theorem, Eq. (35), valid
for settings which include arbitrary stopping times, unidi-
rectional transitions, and absolute irreversibility. In doing
that, we have extended the martingale theory for stochastic
thermodynamics to account for this additional source of
irreversibility in generic situations, which we expect to have
broad applicability in nonequilibrium thermodynamics.

The rigor and flexibility of our theory for stopping times
allowed us to formulate and interpret several second-law-
like inequalities [Egs. (39)-(44)] at stochastic stopping
times, as well as relations for the probabilities of acceptance
or rejection of input data by a computer in terms of
thermodynamic quantities [equality (80) and inequalities
(86) and (87)]. In particular, the second-law inequalities
(39) and (44) provides us useful lower bounds on the
minimum dissipation incurred by a generic computation
stopping at an arbitrary stopping time, while Eq. (43)
establishes formally how stopping times can be used to
reduce the thermodynamic costs of a computation by
means of time-reversal symmetry breaking. Moreover,
we have also shown the relevance of accounting for
absolutely irreversible sequences in providing accurate
bounds for the intrinsic mismatch cost of the computa-
tion. In this sense, the bound we derived in Eq. (39) with
the absolute irreversibility term I, is tighter, with res-
pect to the alternative bound in Eq. (44). However,
computing I, might be challenging depending on the
setting considered, especially for large limit times z. On
the contrary, the alternative bound in Eq. (44) would be
much easier to compute (as it depends only on two
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probability distributions), while still providing a mean-
ingful bound in all examples explored here.

The framework developed in this paper can be readily
applied for assessing thermodynamic costs of computations
in a broad range of models of relevance in computer science
theory, including—but not being limited to—deterministic
finite automata. Our results apply to every computation
implemented by a synchronous digital computer and
remains valid independently of how the computational
variables are defined. In particular, they can include already
processed input symbols (as in non-iid DFAs), stacks (as in
pushdown automata models), or even entire words written
on arandom access tape (as in Turing machines). Hence our
results provide a tool to classify abstract computational
machines by their intrinsic (unavoidable) thermodynamic
costs. Applying our framework to more complex models of
computational machines such as pushdown automata or
Turing machines halting at stochastic times is a natural step
following the investigation initiated here.

Our results are amenable of experimental testing using
state-of-the-art techniques in line with previous tests of
Landauer’s principle [25,103,104] and other experimental
platforms in stochastic thermodynamics [105] in setups
ranging from colloidal particles [106] and nanoscale
devices [107,108] to biopolymers [91]. Regarding the
determination of the prior, in some cases the experimen-
talist will have designed the system in a sufficiently detailed
manner such that it is possible to calculate the prior, or at
least approximate it with reliable numerical estimates. In
other cases, the experimentalist can estimate the prior by
repeatedly running the system and observing the resultant
behavior. In any case, our results have nonzero lower
bounds that apply no matter what the prior is.

It would also be very interesting in the future to extend
the framework developed here by combining analytical
tools from stochastic resetting (e.g., renewal theory and
first-passage-time ideas [109]) with computer science
methods. This will allow us to obtain tight bounds for
the statistics of starting time and entropy production
bounds in specific models of DFAs and TMs processing
regular languages, as follows from the ideas sketched in
Sec. VII. Also, we note that even if current digital devices
are very close to periodic, they are not exactly so. In other
words, they are some first-order perturbation away from
being periodic, which suggests other avenues for future
work. In general, the prior is a function of the physical
process implementing the computation. For example, it is a
function of the time-dependent rate matrix in the case of a
CTMC. Given this, we might be able to use the envelope
theorem (often used in game theory) to calculate how much
the prior can change under first-order perturbations away
from an exactly periodic process. That in turn might allow
us to modify Eq. (13) to involve some infinitesimal first-
order perturbation parameter ¢ characterizing how much
the process differs from being exactly periodic.

However, the results developed in this paper also pro-
vide new insights in the field of nonequilibrium thermo-
dynamics. An important consequence of our work is the
finding that the auxiliary dynamics introduced in Eq. (15)
is suitable to treat processes at stopping times that may
have unidirectional transitions and absolute irreversibility,
hence making our framework applicable to generic sit-
uations where local detail balance is broken. Similar
auxiliary dynamics has been invoked in the literature
such as so-called “dual,” ‘“dual-reversed, or ‘“‘adjoint”
dynamics, in the context of fluctuation theorems; see,
e.g., Refs. [20,41,52,82,110,111]. In particular, as shown
above, if the process admits a well-behaved stationary
solution, we can obtain from X the so-called nonadiabatic
(or excess) entropy production [52,72]. Within such sce-
nario, our work is another brick in the wall of recent
progress highlighting the role of nonadiabatic entropy and
excess heat in characterizing the efficiency [112] and
calorimetry [113,114] of active nonequilibrium systems.

We also expect our results to have potential applications
outside statistical mechanics and computer science, e.g., in
biological physics, for instance, within the field of bio-
molecular computation [115], enzyme kinetics [116], and
information processing in biology [117]. As a minimal
model, consider a minimal Michaelis-Menten scheme for
enzyme kinetics in which an enzyme E transforms a
substrate molecule S into a product molecule P. A typical
assumption is that the conversion of the substrate into a
product takes place through an irreversible chemical

Kt i
reaction, E + S k\——‘] ES XE + P, where k;’s here are suit-
1

able transition rates. Within this model, the enzyme’s
state during enzymatic cycles follows a continuous-time
Markov jump process with one irreversible transition. In
previous works, the presence of the irreversible transition
has been circumvented by considering virtual processes
with a very slow transition rate. However, our formalism
can be readily applied to describe the stochastic thermo-
dynamics of such enzymatic reaction, inasmuch as that it
does not require the presence of bidirectional transitions.
Similarly, we expect our formalism to be suitable to
describe fluctuations of biological populations in processes
that include totally irreversible transitions such as cell-fate
decisions [118,119], cell death, and apoptosis [120], among
others. For such systems, our approach puts forward recent
approaches to estimate dissipation developed within in the
field of active matter [121-123] which did not contemplate
the presence of unidirectional transitions which are
commonplace in biophysical modeling [124,125].
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APPENDIX A: RESIDUAL COST

Suppose we are given a physical process which imple-
ments a single-valued function f over a space X. The
islands of f are defined as the elements of the partition of X
given by the preimages of f. Formally, if we write the
image of f as f(X), the islands of f are the sets
{fUx):xe f(X)}. We write the set of islands of a
function f as L(f).

In this appendix we will expand the residual cost R ()
arising in Eq. (11) in terms of islands, discuss some
properties of the residual cost, and then justify why this
cost can be ignored in our investigation in this paper. For
simplicity we will restrict attention to the case where the
linear term F' in Eq. (8) is expected entropy flow generated
in a process, so that C(7) is the EP generated in the process
up to time 7. However, all of the discussion extends to other
choices of F, with the obvious modifications.

Equation (11) provides entropy production as a sum of
two terms, the mismatch cost and the residual cost, where
R(z) corresponds to the residual cost. For any conditional
distribution G, and any island ¢ € L(G), we define the prior
within that island as [126]

0oin € argmin C(z), (A1)
o:supp(e) €A

where the subscript means that ¢ is a distribution whose
support is restricted to the unit simplex over the island c,
A, viewed as a subset of the state space ). The associated
minimum EP in that island is written as

¢ ()= min Cq).

A2
min o:supp(e) €A, (A42)

Now introduce an arbitrary distribution over islands g(c)
and define

(A3)

Omin = Z Q(C)Qrcnin'

ceL(G)

Then the residual EP of the physical process that imple-
ments G is

R() = Y pel€)Con(r), (A4)

as shown in Ref. [126]. Therefore, the EP for the process
starting with distribution g, is

D(GQOHGQmin) + Z ( )Crcnm

ceL(G)

C(T) - D(QOHQmin) -
(A5)

Since expected EP C(7) is non-negative, by definition the
residual cost of any island c, C;;,, is non-negative. So the
total residual cost given by an expectation over all islands,
which is the residual cost for the entire thermodynamic
process characterized by G, is also non-negative. Like
priors, residual costs of islands in general will differ from
one cost function C to the next.

In general, as the iteration ¢ of a periodic process
changes, the distribution p,(c¢) over the islands ¢ will
change. Therefore so will the associated total expected
residual cost. However, since that total residual cost is
always non-negative, all the lower bounds on EP in the
main text that consider only mismatch cost apply. This is
true even if the residual costs of the islands are strictly
positive. In particular, Eq. (14) will still be a lower bound
on the EP generated in the process.

On the other hand, if we write down the formula for
minimal total residual cost which is analogous to Eq. (14),
minimizing over the residual costs of each island, we just
get zero, by taking those costs to all equal zero. So unless
we fix the physical details underlying the process, and
therefore fix the residual costs of the islands to be strictly
positive, our analysis of lower bounds is not changed by the
existence of residual costs. This is why such quantities are
ignored in the main text.

As a final comment, note that in general both the prior
and residual costs will vary with z. However, the same
mismatch cost formula bounds dissipation for any such
choice of 7, once one plugs in the appropriate prior. This
need not be true for residual cost, in the sense that the
islands might change for different choices of 7.

APPENDIX B: TRAJECTORY-LEVEL
MISMATCH COST

Define [G,0](y) as the distribution ¢ evolved through the
(linear) dynamics G up to time #, and then evaluated at state
y € ). Using this, we can define a trajectory-level version
of mismatch cost (and associated instance-level version) as

mg,(Yjo.q) = In [::({;)3)} -l [m}

7—1
ln( tQO t) )
~ \[Gi0min] ()
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By construction, the expected value of m,, (Y [0,1]) over all
trajectories Yo ;) equals the (ensemble level) mismatch cost
M(py) given in Eq. (10). In the context of inclusive
thermodynamics, such definitions allowed the derivation
of fluctuation theorems for mismatch cost [49].

APPENDIX C: ENTROPY PRODUCTION BOUNDS
FROM DISCRETE-TIME EVOLUTION OVER
COMPUTATIONAL STATES

We focus on the case in which the cost function C(z)
introduced in Eq. (8) corresponds to the entropy produc-
tion; that is, we identify F as the entropy flow due to heat
exchange of the system with (one or several) heat baths, and
under the eventual presence of nonconservative forces [3].
In the case in which the continuous-time periodic process is
also Markovian, that is, it can be described with a set of rate
matrices Kj;(7) associated to the different reservoirs, the
entropy flow F will take the form presented in Eq. (9).
Otherwise, the explicit expression of the entropy flow F
might be more involved [127-129].

In any case, the average entropy production in the
continuous-time physical process can be written in terms
of a Kullback-Leibler divergence between path probabil-
ities of trajectories yj ; = {y,/0 <7 <7} in the extended
state space, y, €Y, and their time-reversed counterparts
OY(o;) = {V:—|0 < 1 < 7} as [64,130,131]

C(7) = (Swi(7)) = D[P(y0.4)IP(®y(o.9)].  (C1)
where P and P stand for the probability measures in the
forward and time-reversed driven processes, respectively.

By introducing the trajectories X[o, = Xq, X1, ..., X, On
discrete-time, visible space dynamics with corresponding
probability P(x| ) as introduced in Eq. (7), we can bound
the above Kullback-Leibler divergence as

(Swot(7)) = D[P(y0.0) IP(®ypo.)]
= D[P(¥jo.|X[0.1) IP(®y[oOX9)]
+ D[P(X[o) || P(©x[ )]
> D[P(x(0.4)[|1P(Ox ()] =t (Sie(7)) (C2)

where we used chain rule for Kullback-Leibler divergence
to write the second equality and denoted the coarse-grained
path probabilities for forward and time-reversed driving
pI‘OtOCOlS by P(X[O 7] f dy[O T]P( Yoo, T]) H;:O 6()7” - X”)
and P(®XOT deOT ®y[0‘r])H 5(yn _xn)’ res-
pectively.

The quantity (S, (7)) defined in the rhs of Eq. (C2) is
a coarse-grained version of the average entropy produc-
tion defined only over the DTMC dynamics and reduced

state space X' verifying (S, (7)) > (Sii(7)). We can now
decompose the coarse-grained entropy production (S, (7))

into the sum of mismatch and residual costs as in Eq. (11) at
the DTMC level. In particular, by assuming that all non-
computational degrees of freedom y, € X are reinitialized
to their starting values in every cycle of the periodic
computational process, the prior probability minimizing
S'tm in a single cycle will be the same for all cycles and can
be easily obtained from marginalization of the fine-grained
pI'iOI' Qmin(y) as ﬂ(x) - Zy%X Qmin(y)'

As a consequence, the coarse-grained DTMC mismatch
cost over a single cycle of the process reads:

M(p,) =D (€3)

(pdllu) = D(pyr||l') = 0

with u' the prior distribution evolved during a single
iteration of the DTMC, 4/ = Wyu. Analogously R(p,) =

Buulpr)) = M(p) = min,, (Su(p,)) 2 0 represents  the
residual costs during a smgle iteration, which corresponds
to the entropy production when the computational system
starts the evolution in distribution x. Hence for every single
iteration (S, (p,)) = M(p,) + R(p,), from which it fol-
lows that the above mismatch cost provides a lower bound
to the average entropy production during a single cycle.
Finally, by summing the mismatch costs per iteration
Eq. (C3) over all iterations up to the final time 7z, we
recover Eq. (12) for the sum of mismatch costs during the
entire computation (that we dub intrinsic mismatch cost),
which verifies the chain inequality:

—_

—

M(p,) £ <Stot<1)> < {(Seot(7))s (C4)

i
o

t

hence providing a lower bound on the average entropy
production during the entire computation.

APPENDIX D: STRICT POSITIVITY OF THE
MISMATCH COST SUM GIVEN BY Eq. (12)

Here we provide a proof of the strict positivity of the
mismatch cost sum in Eq. (12); that is, M(p,) > 0.

We know that, in general, D(pq||u) — (Gp0||G/,¢) =0if
and only if py = u. However, if in fact G is not logically
invertible, and yet py = pu, then Gpy # u. This means
that either D(p||u) — D(Gpo||Gu) =0 or D(Gpy|lu) —
D(G?py||Gu) = 0—but not both. Therefore, so long as
G is not logically invertible, the sum in Eq. (12) is not zero.

APPENDIX E: PROOF OF THE
SUPERMARTINGALE PROPERTY Eq. (33)

Here we provide a detailed proof of the supermartingale
property of the process M_(r) defined by Eq. (30):

(M (7)[X ) = Z

X1 €F ac

P(Xpq|Xp.q)M:(r)  (E1)
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P(®X[0,T])
P (X [O.z])

P(®X[0,r])

— e Y

X414 € Fac
Pei(X;)

P (@X[m])]
cFa Pe—i(X;)

X114 €Fac

— 0|1 -

X[IAI.‘[

]
=M. (0)[1 = a,(1)] < M(1). (E3)
To obtain Eq. (E3) we first used the definition of
conditional probability in Eq. (El) to derive Eq. (E2).
We then multiplied and divided by P(©X( ), in order to
obtain the e >} multiplicative factor. After that we
expanded the remaining probabilities P(®X,) in the
numerator and P(©X o0.) in the denominator, and multi-
plied the resulting expression with p,(x,)/p,—.(x;) to
obtain the expression involving M,(t) [recall the defi-
nition of M. (¢) in Eq. (29)]. Finally, we transformed
the sum to involve F,;, the complementary filtration
of Fac, and invoked the fact that ZX[,_,]G FP (X)X
P(x,_i|x;)...P(x;|x;41) =p,_(x;) when the sum is taken
over the complete set of trajectories F.

APPENDIX F: STOPPING-TIMES FLUCTUATION
THEOREM WITH ABSOLUTE
IRREVERSIBILITY IN Eq. (35)

In this appendix we give a detailed proof of the main
stopping-times fluctuation theorem with absolute irrevers-
ibility presented in Eq. (35). For the proof, it is convenient
to split the filtration F into subsets of filtrations F(*)
containing all trajectories that are stopped at time ¢, i.e.,
for which M (¢) = M (7). We taket = 0, 1, ..., 7, where 7
is the maximum allowed time. Note that we enforce the
dynamics to stop at 7 if not previously done [however, one
can later take 7 — oo whenever M (7) remains bounded].
Therefore, we have F = F(U y ... U F@. Now, in anal-

ogy to the previous appendix, we define for each (discrete)
(1)

instant of time ¢ the sets Fy. and FX% of trajectories
that are both stopped at ¢ and which are either allowed
[P(X[0,0) >0 or P(X)o,) = P(®X) =0] or forbid-
den only in the 0r1g1nal dynamics [P(X[,) =0 with
P(©X|y,) > 0], respectively. This implies that F 0 =

.7:X>C U FX; at any 1 =0,1,...,7. Then we have

a

+Z Z Xjo.) M (t)a (1)
=0 X[O-I]G}-Ac
=1 _7T+Z Z P(X[O,t])MT(t)aT(t> (Fl)
=0 Xog€Fie

I_’(G)X[oy,]) =1-I, (F2)

—1- Z

=0 Xy e

where we used the fluctuation theorem at fixed times with
absolute irreversibility, cf. Eq. (24), and in the last line we
defined the correction term for stopping times:

r,= IXT;X > P(@X[Oﬂ)% >0, (F3)

0 €F

summing up the probabilities for all the (reversed) stopped
Al trajectories.
To reach Eq. (F2) from Eq. (F1) we used

Z Z P(X[O,t])MT(t)ar(t)
=0 Xog € Fie
2 P(GX[OJ]) D
=2 2. oy . 2. POXu)
=0 X, € FU. AT X €Fa
: P(®X o) [ -
= Z ﬁ |:/)‘r—t(Xt) - Z P(®X(t,r])]
e M Ter e
- D p‘[—l(Xl) D
= > P(OX) X) Y. POXpy)
=0 X0 e FY o o4& ac
T _ _1_ X
-3 Y Pexg)” (; ),) 47,
=0 X e FiL e
‘ - p._(X
_ Z P(@X[o,])pf i I)‘H/T
=0 X[ ]e}_(,) I(Xf)
0.1 Al
= _F‘[ —|— 7/,[, (F4)
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where in the last line we used that 7 EPC uF X} = F and
Zf:o ZX[O_,]eﬂ’) P(G)X[O,t])pr—t(Xl)/pt(Xt) =1, since the
trajectories are stopped with certainty in the interval
[0.7] and P(®X)p.—(X,)/p:(X,) is a normalized path
probability.

APPENDIX G: ORDERED STOPPING-TIMES
FLUCTUATION RELATION IN Eq. (37)

In this appendix we derive the stopping-times fluctuation
relation for two ordered stopping times in Eq. (37) via
Doob’s optional sampling theorem. Let us start by consid-
ering a finite but otherwise generic stopping time 7 of the
form in Eq. (28), such that 0 <7 < 7. Doob’s optional
sampling theorem for supermartingales reads [88] (see also
Ref. [19]):

(A(T)[xpp.) < A(min{T,}), (G1)
where A is a supermartingale over the trajectories X(g ).

In the following we will apply Eq. (G1) to the
supermantingale process M,(t) = e >(=%() introduced
in Eq. (30), for two ordered stopping times 7; and 7,
such that P(7, > 7 ;) = 1. In this case we have

(M (T»)[xp.1)) £M(T)), (G2)
where we called 7, = 7 and 7, = min{7, t}. Note that
above x|y, can be replaced by x|y 7, since 7 <t by

construction and Eq. (G1) is valid for any generic ¢ < 7.
The average over stopping times of M,(7 ;) then verifies:

> > P(xor) TO)MA(T,) X7,

T1=0Xpp.1y]

— (MT>)), (G3)
where we used that 7, > 7, and Eq. (G2) to reach the
inequality. The last line follows from the fact that we are
summing the conditional average over all possible trajec-
tories for stopping times 7 ; between 0 and 7 ,. Finally, by
replacing in Eq. (G3) the explicit expression for M, (¢) in
Eq. (30), we directly recover Eq. (37). The inequality in
Eq. (G3) is saturated either for 7, =7, or when the

supermartingale M () becomes a martingale, that is, in the
absence of absolute irreversibility.

APPENDIX H: SCALING OF THERMODYNAMIC
AVERAGES WITH LIMIT TIME
IN THE DFA EXAMPLE

As pointed in Sec. V B for the minimal DFA in Fig. 2(a),
we observe a tendency for the intrinsic mismatch cost at
stopping times (X(7)) to saturate when increasing the limit
time 7. This is in stark contrast with the scaling behavior of
the fixed-time average (X(r)) with 7.

In this appendix we provide extra numerical evidence
for the scaling behavior of mismatch cost at stopping and
fixed times, which is shown in Fig. 10. There we observe
that indeed the average intrinsic mismatch cost at fixed
times scales linearly with 7, that is, (X(7)) ~ 7, as illustrated
in the inset of Fig. 10. Moreover, we obtain that (X(z))/r
decreases monotonically with 7 up to a saturating positive
value, yet its scaling behavior is rather insensitive to
the statistics of the input strings (see open symbols in
Fig. 10). This point makes us question whether the
fixed-time average (X(7)), or its rate per iteration (X(z))/z,
is a suitable indicator of the thermodynamic costs of
the computation. On the other hand, when considering
the stopping-times average (X(7)), we observe a sub-
linear scaling at moderate values of the limit time, i.e.,
(X(7)) ~ 7%, with |a| < 1, reaching a plateau at large 7 (see
filled symbols in Fig. 10).

251

151

Mismatch cost per computation

5 10 15 20
Limit time, 7

FIG. 10. Numerical results for the intrinsic mismatch cost with
uniform prior as a function of the limit time 7. We show three
different values of the probability of symbol 0: p, = 0.75 (blue
squares), po = 0.5 (red circles), and py = 0.3 (green diamonds).
Filled symbols correspond to the stopping-time average (X(7)).
We include for comparison the corresponding fixed-time ensem-
ble average rate (X(z))/z without absorbing conditions (open
symbols). The open symbols in the inset show the value of
(%(z)). Parameters of the simulations are as in Fig. 5.
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We also find that (3(7)) is more sensitive than (X(z))/z
to the value of p, for all values of 7z explored in our
simulations. This reveals that the intrinsic mismatch cost
at stopping times (£(7)) is a suitable quantity to quantify
the average performance of a computation accomplished
at a stochastic time. For example, the sensitivity of
(X(7)) to string statistics could be fruitfully exploited as
a probe of the performance of a DFA in processing different
regular languages, an exciting avenue that we leave for
future work.
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