
1.  Introduction and Motivation
The inner magnetosphere is regarded as the region surrounded by geomagnetic shells with an equatorial radius 
of ∼7 Earth radii. It is composed of three populations of charged particles: (a) high-energy particles (≳MeV) 
trapped in the inner and outer radiation belts; (b) median-energy particles (∼10–100s keV) drifting around the 
Earth to form the ring current; and (c) low-energy particles (<few eV) originating from the ionosphere and coro-
tated with the Earth to form the plasmasphere. The investigations of space hazards have focused on high-energy 
electrons causing deep-dielectric charging when their fluxes are significantly enhanced for a substantial length 
of time and median-energy electrons depositing their charge on spacecraft surfaces, which can lead to discharges 
that damage electronics. Though not directly responsible for spacecraft hazards, low-energy particles provide the 
background medium for current flow and electromagnetic wave propagation, phenomena which affect the spatial, 
temporal and spectral distributions of damaging particles.

One of the fundamental space plasma parameters, plasma frequency, is proportional to the square root of electron 
density [𝐴𝐴 𝐴𝐴pe(kHz) = 8.98

√

𝑛𝑛𝑒𝑒 (cm−3) ]. Based on the kinetic plasma theory, ne is obtained from the integration of 
the phase space density, in which cold plasmas with energy < few eV are the primary contributor. However, it is 
very difficult to measure in situ ne directly due to the varying spacecraft potential that may distort the ambient 
plasma density count provided by onboard particle sensors (e.g., Pfaff et al., 1998). Radio wave instruments such 
as the low-power resonance relaxation sounder (e.g., Fung et al., 2022) that detect plasma responses at character-
istic frequencies (plasma fpe, cyclotron harmonics nfce, and the upper hybrid fuh = 𝐴𝐴

√

𝑓𝑓 2
pe + 𝑓𝑓 2

ce ) are less susceptible 
to the spacecraft-induced effects. The long-duration responses are attributed to slowly propagating electrostatic 
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waves (Muldrew, 1972) reaching out 1,000+ meters into the surrounding plasma where instrument effects are 
negligible. The very-low-impact indirect ne measurements are also provided by passive radio detectors of the 
distinct noise band near the upper hybrid resonance fuh (e.g., LeDocq et al., 1994; Mosier et al., 1973) that, when 
observed, provides a few percent accurate fpe in combination with the evaluated cyclotron frequency fce (Benson 
et al., 2004).

The Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) flight mission was 
carried out from 25 June 2019 to 31 May 2021. The primary objective was to study the propagation of artificial 
space-based very low frequency (VLF) waves and their interaction with energetic particles in the radiation belts and 
slot region (McCollough et al., 2022). Ray tracing techniques (e.g., Reid et al., 2022) have been well established 
to study the propagation of electromagnetic waves; however, this type of model requires two fundamental plasma 
parameters to determine the ray path: plasma (fpe) and cyclotron frequencies (fce). These parameters are required not 
just locally, but in a global sense to characterize wave propagation. Moreover, these two parameters are crucial for 
determining the index of refraction and the diffusion coefficient of radiation belt models (Albert, 2005). Cyclotron 
frequencies can be determined from the magnetic field magnitudes [fce(kHz) = 2.7386 × 10 −2B(nT)] measured from 
the Vector Fluxgate Magnetometer (VMAG) on DSX with high accuracy or obtained from modeled fields when 
in situ measurements are not available. In this work, passive spectrograms from the Narrow-Band Receiver (NBR, 
Reinisch et al., 2023) onboard DSX are automatically inspected for fuh signatures of banded emissions to yield an 
accurate fpe in combination with VMAG measurements. We note that the local fce and fpe can also be determined 
from local resonance measurements of active spectrograms (e.g., Figure 28 in Reinisch et al., 2023). Due to limited 
resources and because it requires a case-by-case examination, the active spectrogram is not discussed here; however, 
the method developed from our study can be applied to extract resonance traces from the active spectrogram as well.

The severe scarcity of plasmaspheric observations that require sophisticated space-borne equipment flown to 
high-altitude orbits has been confining advances in empirical and semi-empirical modeling of the plasmasphere. 
Even nowadays, a widespread notion is that the accuracy of resulting models greatly depends on the availability 
of training data (e.g., Zhelavskaya et al., 2021). To illustrate the challenges, we will briefly review important 
discoveries, relevant model developments, and underlying sensor measurements of the plasmasphere.

A historical review of the early plasmasphere research can be found in Lemaire and Gringauz (1998). In 1966, the 
terms plasmasphere and plasmapause were introduced by Carpenter (1966) and Angerami and Carpenter (1966). 
Various empirical models have been developed based on data collected from different satellite missions. For 
example, Berchem and Etcheto (1981) deduced from ISEE-1 observations that the radial distribution of equato-
rial ne varies as a power law of the radial distance from the Earth. The equatorial ne inside and outside the plas-
mapause, as well as the location of plasmapause, based on the ISEE 1 satellite has been reported by Carpenter 
and Anderson (1992). The global core plasma (GCP) model, an amalgam of density models in the inner magne-
tosphere, was released by Gallagher et al. (2000). Based on CRRES observations, empirical plasmasphere and 
trough density models were published by Sheeley et  al.  (2001), and plasmapause models were reported by 
Moldwin et al. (2002) and O’Brien and Moldwin (2003). Denton et al. (2004) reported an electron density model 
utilizing data collected from the Polar spacecraft. Based on the Radio Plasma Imager (RPI) measurements on the 
IMAGE satellite, a field-aligned distribution of the plasmaspheric electron density was published by Ozhogin 
et al. (2012). Most recently, the statistics and empirical models of plasmapause from the Van Allen Probes (VAP) 
mission were published by Ripoll et al. (2022). Hartley et al. (2023) published an empirical plasma density model 
in the inner zone (1 < L < 3) based on VAP and Arase observations.

Comprehensive physics-based plasmaspheric models coupled with the ionosphere began to blossom in the 1980s. 
Due to the dense ionosphere, fluid approaches are most common when computational power is limited. For 
example, the Field Line Interhemispheric Plasma (FLIP) model solves the continuity and momentum equations 
for major species (Richards & Torr, 1988). The Dynamic Global Core Plasma Model (DGCPM) developed by 
Ober et al. (1997) solved a continuity equation for the flux tube content of cold ions with a simple convection 
field model. The time-dependent 3-dimensional plasmaspheric model, SAMI3 (Huba & Krall, 2013), solved for 
three major ion species and electron temperature equation with an empirical electric field model. Moreover, a 
3-dimensional dynamic kinetic plasmaspheric model was developed by Pierrard and Stegen (2008). The kinetic 
development of plasmaspheric modeling was reviewed by Pierrard et al. (2009).

Due to the popularity of the Kalman filter, the data assimilative models of the plasmasphere have been devel-
oped. For example, Jorgensen et al. (2011) adopted DGCPM (Ober et al., 1997) with a simple data assimilation 
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approach driven by KP to produce time-dependent plasmaspheric density profiles. Driven by GPS total electron 
content (TEC) observations, Nikoukar et al. (2015) published a data assimilation technique to specify plasmas-
pheric density based on an empirical GCP model (Gallagher et al., 2000) and an ionospheric data assimilation 
four-dimensional (IDA4D) algorithm (Bust et al., 2004). However, this type of model is not mature enough for 
real-time prediction because space-based measurements are limited for ingestion and model-produced outputs do 
not have sufficient data for comprehensive validation.

Recently, the fast expansion of neural networks has enabled the development of machine learning-based plas-
maspheric models (Ace, 2021; Bianco et al., 2023; Chu et al., 2017a, 2017b; Huang et al., 2022; Zhelavskaya 
et al., 2017, 2018, 2021) to predict global plasma density in the inner magnetosphere. The accuracy of these models 
was found to be greatly dependent on the training data quality and availability. The conventional feed-forward 
neural network (NN) architectures could faithfully represent the training data set and capture the large-scale 
plasmasphere features such as plume dynamics and nightside erosion. However, their inductive reasoning over 
no-coverage areas and during geomagnetic storm events was subpar, leading to the “grey box” hybrid approach 
(Kroll, 2000) that employs feed-forward NNs to initialize and configure a physics-based model (Zhelavskaya 
et al., 2021).

Given the importance of the data collection for building and validating the plasmaspheric models, we concen-
trated on the task of reducing the DSX NBR passive spectrograms to the actionable information of the extracted 
plasma frequency readings. This task requires a human vision model to interpret the spectrogram images automat-
ically. Although semi-automated tools have been developed to extract upper hybrid resonance traces from wave 
spectrograms for many satellite missions (e.g., Benson et al., 2004; Denton et al., 2012; Goldstein et al., 2014; 
Kurth et al., 2015; Obana et al., 2021; Trotignon et al., 2010) after the data were downloaded and collected, they 
require significant attention from trained operators or scientists as a human-in-the-loop requiring impractical 
investments of time and effort. Additionally, should a reliable fully automated fpe evaluation become feasible, 
it would become a viable candidate for onboard implementation to provide plasma density monitoring in real-
time during future flight missions. Such operational capability is instrumental to adaptive mission planning and 
spacecraft situation awareness.

Although algorithms for extracting fuh and fce signatures from passive spectrograms have been previously proposed 
and tested (e.g., Webb et al., 2007), the rapid growth of the convolution neural network (CNN) solutions in the 
deep learning domain of computer science has brought new possibilities for adopting well-established pattern 
recognition and image classification tools to extract signatures from complicated images. Recently, Hasegawa 
et al. (2019) and Matsuda et al. (2020) utilized residual networks (ResNet) to automatically determine and evalu-
ate the electron density from the Plasma Wave Experiment (PWE) onboard Arase.

The model architecture used for our investigation is demonstrated in Section 3. In order to provide “truth” data 
for training and validation purposes, ne are obtained from a traditional semi-automated extraction as described in 
Section 2. Our secondary objective is to release the fundamental plasma parameters (fpe & fce) for the entire DSX 
mission to benefit model development and other scientific research. Section 4 compares the test results from our 
trained model with the truth data and other model outputs. Compared with other scientific satellite missions, the 
duration of the DSX flight mission is very short (<2 years) with many data gaps. Image classification models 
require a large amount of training images with labeled masks. We took advantage of the VAP mission from 2012 
to 2019 to develop a synthetic image generator as described in Section 5. Finally, a summary with suggested 
future development is discussed in Section 6.

2.  Data Description and Image Processing
2.1.  DSX Data Description

After over a decade of delays, the DSX spacecraft was launched into a 6,000 × 12,000 km orbit with 42° inclina-
tion and 5.28 hr orbital period. Spacecraft orbit information in 10 s resolution for the entire mission utilized in this 
paper are calculated based on the Two-Line Element (TLE) set from Space-Track applying the Simplified General 
Perturbations 4 (SGP4) propagator adopted in the AE9/AP9/SPM software (Roth, 2022). The geomagnetic param-
eters, such as McIlwain's L-shell (Lm), magnetic local time (MLT), and magnetic field strength, are included in a 
standard output. The magnetic field is produced based on an internal field from the International Geomagnetic 
Reference Field (IGRF, Thébault et al., 2015) plus a quiet external field from Olson and Pfitzer (1974). Magnetic 
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latitudes (MLAT) are calculated in Solar Magnetic (SM) coordinates. The data are organized orbit-by-orbit from 
perigee to the next perigee. We refer to this data set as the predicted magnetic ephemeris.

The primary data set was collected from NBR, a component of the Transmitter, Narrowband receiver, and Tuner 
circuitry (TNT) suite (Reinisch et al., 2023). NBR is a proven low-noise heritage analog receiver design from the 
Radio Plasma Imager (RPI, Reinisch et al., 2000) on the NASA IMAGE spacecraft. A fixed bandwidth of 300 Hz 
could be tuned at any frequency, scanning through the frequency range with desirable steps for environmental 
plasma wave measurements or in sync with the transmission frequency and steps for sounding measurements. 
In fact, we initially used passive spectrograms from RPI to test a simple convolution neural network (Su & 
Carilli, 2023) because the wave data with corresponding fpe and fce are publicly available through the Coordinated 
Data Analysis Web (CDAWeb). Closer inspection of the CDAWeb data set revealed data noise due to the auto-
matic analysis mishaps and notable time mismatches. Yet, after removal of ∼1/3 of available fpe and fce values, our 
initial test (Su & Carilli, 2023) was satisfactory, paving the way to adopt more sophisticated network architectures 
reported herein.

An original NBR passive spectrogram per orbit is displayed in Figure 1 as an example. Interested readers can 
refer to a collection of articles regarding the geospace electromagnetic waves and radiation by Labelle and 
Treumann  (2006). The y-axis of Figure 1 represents the frequency sweep from 3 to 1,000 kHz in logarithm. 
The first spectrogram began on 8 August 2019. Ideally, there should be 3009 complete orbits by the end of the 
mission on 31 May 2021. Due to data gaps, only 1467 orbital spectrograms (∼49%) are available including partial 

Figure 1.  A NBR passive spectrogram based on the frequency sweep from 3 to 1,000 kHz. The wave amplitude in the logarithm is represented by color according to 
the color bar. The thin white stripes are not considered as data gaps because they do not exceed a critical time length, and are filled in using an interpolation algorithm 
during the image processing step in Section 2.2. Two discrete resonance traces are visible: (1) the upper hybrid resonance near 300 kHz (∼2.5 in log scale); and (2) the 
gyroresonance near 60 kHz (∼1.8 in log scale).
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orbits. ∼46% of available spectrograms have data gaps ranging from <10% to >90% of an orbit; however, we still 
include those partial spectrograms as long as the fuh resonance traces are visible by human inspection to maximize 
the number of data points in our study.

In order to extract ne values from the fuh resonance trace, the fce determination is required. The data used in this 
paper are based on level-1 VMAG records with 0.05 s resolution (20 Hz). A sliding window of 10 s is used to 
smooth high-resolution measurements prior to application. Due to data gaps or unrealistic values, ∼7.6% of 
magnetic field data associated with available NBR spectrograms are filled with modeled values. A systematic 
comparison between VMAG and IGRF + OP77Q values was performed: the difference between measurements 
and modeled values is ∼1.5% on average over all data. The largest average difference over an orbit (3.7%) is 
shown in Figure 2. The differences are typically larger when the field magnitudes are smaller, that is, further 
away from the Earth and/or closer to the magnetic equator. The plasma frequency derived from 𝐴𝐴

√

𝑓𝑓 2

uh
− 𝑓𝑓 2

ce is 
displayed in Figure 2c, where fuh was extracted based on the procedures described in Section 2.2. The percentage 

Figure 2.  (a) A fce comparison between VMAG measurements (red) and IGRF + OP77Q modeled values (black) in 
10 s resolution over one DSX orbit. (b) The percentage of fce difference between measurements and modeled values 
∆fce = 100% × |fceVMAG − fceIGRF + OP77Q|/fceIGRF + OP77Q. The averaged orbital difference is labeled on top of panel (b). (c) A fpe 
comparison between values derived from VMAG (red) and IGRF + OP777Q (black). (d) The percentage difference between 
fpe measurements and modeled values, where the y-axis is in log scale. The averaged orbital difference in linear scale is label 
on top of panel (d).
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of fpe difference is shown in Figure 2d. Although DSX could reach large L-shells, its apogee is ∼2.88 RE where 
the Earth's internal magnetic field dominates. For missions without in situ magnetometers such as IMAGE, 
the modeled magnetic fields are reasonable alternatives with relatively good approximations in the plasmas-
phere  based on our investigation.

2.2.  Image Processing

As seen in Figure 1, the wave amplitudes from the original frequency sweeps are cluttered with other unrelated 
radio emissions. For image recognition, removing unnecessary information to bring out the pattern of interest is 
the first step. Based on the study shown in Figure 2, the minimum of fce is typically greater than 30 kHz along the 
DSX orbit. It is safe to remove man-made and natural waves below 30 kHz, because fuh should always be above 
or equal to fce. A typical frequency set of 339 steps was chosen from 30 kHz to 1 MHz independent of time. The 
base-10 logarithmic frequency is defined as the image's y-axis.

The second step is removing or minimizing horizontal stripes attributed to the narrowband observatory noise 
and external fixed-frequency signals. A selective background intensity can be estimated by manually examining 
the passive spectrograms, focusing on locations without wave activity. If the 30th percentile of intensities for a 
frequency step over an orbit is above the background level, intensities of an entire frequency step are subtracted 
by the 30th percentile level with a lower limit of the background value. This is not the only way to remove 
constant noise lines (see, e.g., Galkin et al., 2005); however, it is quick to run through available spectrograms 
above 30 kHz for the entire mission without adjusting parameters after it was initially set.

The third step is to determine the resolution of the image's x-axis. For image segmentation, all training, valida-
tion, and test images should have the same size and dimension. However, the actual cadence of the passive-mode 
NBR measurements varied on orbit, depending on the mission science plan, with the highest 5-s resolution in the 
survey mode. In order to keep the computational training time reasonable on a 24 GB Nvidia Quadro RTX 6000 
Graphics Processing Unit (GPU), a user defined resolution, 1,000 time steps per image (ΔT < 20 s), is selected 
for each satellite orbit. In addition, the intensity range is reduced to a 0–254 byte table, while 255 is reserved for 
pixels without data.

The fourth step, the most labor-intensive step, is to label the image as accurately as possible for model training 
and internal validation processes. The labeled mask also provides the “truth” data for the final test process and 
the comparison with other model outputs. This step is similar to a traditional method, which extracts fuh by human 
vision. LabelMe is a 3rd party software developed in Python for the purpose of image labeling. It is easy to install 
and operate. Users can draw arbitrary polygons around the features of interest and save the coordinates to a struc-
tured ASCII JSON data format. Because fuh lines are often very faint, three sets of modeled densities described 
in Section 5 and the IGRF + OP77Q magnetic field model, as well as three sets of fuh, are plotted for each orbit 
next to the image to guide human vision when marking the polygon. Human bias might result from this process, 
however, it is still more accurate than any model output. The polygon is not required to be precise, hence, it is 
much faster than clicking on the actual feature. An algorithm was then developed to extract the maximum inten-
sity of each time step within the polygon to determine the feature of interest, also known as the mask in  image 
segmentation. From our initial exercises, we learned that test results are better if finer features are labeled in the 
training process. Hence, the mask associated with each image is constructed based on one pixel per time step. The 
width of one vertical pixel is ∼0.0043 in log10 kHz (i.e., ∼1% spectral resolution, Δf/f) corresponding to ∼0.0086 
in log10 cm −3 (i.e., ∼2% density resolution, Δn/n.) A criterion is also set that the maximum intensities within 
the polygon should be a factor of 5 or higher than those from nearby pixels in the frequency axis for each time 
step. There is no interpolation between marked pixels to prevent an artificial smooth plasmapause. Finally, we 
made use of fce described in Section 2.1 as the lower limit of the final fuh mask. An image of 339 × 1,000 pixels 
with associated mask is shown in Figure 3 as an example, where 339 and 1,000 are the number of bins in the y 
(frequency) and x (time) axes, respectively. Due to the strong auroral kilometric radiations on the top right corner 
of Figure 3a, the upper hybrid resonance is unidentifiable. Therefore, the human vision intentionally ignored that 
region when marking the polygon. In order to minimize potential mistakes in image processing, the pixel coor-
dinates of each mask were converted back to frequency and time and plotted on top of the original spectrogram, 
such as Figure 1, for inspection. This final inspection/verification also prevents bugs in developing complex 
algorithms. Data and image processing algorithms described in Section 2 were developed in Interactive Data 
Language (IDL) except for the utilization of LabelMe.

 1944799x, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

S007907 by U
niversity O

f C
olorado Libraries, W

iley O
nline Library on [22/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Radio Science

SU ET AL.

10.1029/2023RS007907

7 of 20

2.3.  VAP Data Description

The VAP mission, formerly known as the Radiation Belt Storm Probes (RBSP, Stratton et al., 2013), launched 
on 30 August 2012, was a NASA science mission to study the radiation belts. It consisted of two spacecraft A & 
B with 618 × 31,414 km orbit, 10.2° inclination, and 8.95 hr orbital period. RBSPB was deactivated on 19 July 
2019 before the start of DSX scientific operation in August of the same year, while RBSPA was deactivated on 
18 October 2019. The scientific objectives of the VAP mission (Mauk et al., 2013) overlap with DSX. Several 
conjunction events between DSX and RBSPA were executed, although these are not the focus of this paper. 
Instead, we took advantage of the long mission duration with ∼14 satellite years from two spacecraft to exercise 
deep learning models.

The primary VAP data set was obtained from High Frequency Receiver (HFR) spectra level-2 data in survey 
mode from 10 to 400 kHz. HFR is one component of the Electric and Magnetic Field Instrument Suite and 
Integrated Science (EMFISIS, Kletzing et  al.,  2013). An example of a HFR survey spectrogram is shown in 
Figure 4. Reported HFR spectrograms are not as noisy as those from DSX/NBR data; hence, we did not perform 
a noise reduction procedure. Six-second density and other parameters inferred by digitizing the traces on the 
spectrograms are publicly available as EMFISIS level-4 data. The magnetic ephemeris were calculated from 
various external magnetic field models, and the OP77Q version was adopted in our study. All VAP data described 
in this paper were downloaded from CDAWeb. From the level-2 data, the HFR spectrograms for every available 
orbit form the images, and associated fuh masks were extracted from the level-4 data. We note that the accuracy 
of the reported EMFISIS level-4 data is higher compared to reported IMAGE/RPI densities; however, ∼10% of 

Figure 3.  (a) An example after image processing procedures described in Section 2.2 corresponds to Figure 1. (b) The labeled mask associated with panel (a).
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available EMFISIS density data were removed in our study due to an obvious mismatch between the spectrogram 
and reported fuh by human inspection. The mismatched orbits with start and stop times are provided in Data 
Set S1. We greatly encourage readers who use the public data to double-check the data, especially for scientific 
researches and publications, because unintentional errors can occur to any manual process. Readers can refer to 
Kurth et al. (2015) regarding potential fuh identification errors. Combining both A and B spacecraft, 7532 image 
and mask sets remain for our exercise corresponding to 7.7 satellite years. In order to reduce computational train-
ing time, each image is reduced to 82 × 100 pixels, where 82 is the number of reported HFR frequency steps and 
100 is the number of bins in the x (time) axis. The vertical resolution is ∼0.0208 in log10 kHz, while the horizontal 
resolution is ∼320 s. The reported HFR survey mode has a time resolution of ∼6.5 s. The CONGRID function in 
IDL was used to shrink the size of a time array. An example is shown in Figure 5.

3.  Model Architecture and Hyperparameters
Our initial exercise was performed on a simple neural network with only three convolution layers trained on 
IMAGE/RPI images (Su & Carilli, 2023). Each image was decomposed into subimages using a sliding window 
setup. The results were encouraging, prompting for a more sophisticated network. Next, 50 convolution layers 
of residual networks, ResNet50, developed for deep residual learning in image recognition (He et al., 2015) was 
trained on VAP/HFR images. We finally settled on U-Net, a CNN developed for biomedical image segmenta-
tion, because it outperforms a sliding window setup with a shorter runtime. Since the development of U-Net in 
2015, various versions have been shared publicly. A PyTorch version of U-Net without architecture modification 
is adopted for our investigation. Interested readers can refer to the original paper by Ronneberger et al. (2015) 
regarding the model architecture. Although these networks are suitable for multi-class labels, only one class, the 
fuh mask, is necessary for our problem.

Figure 4.  An example of waves survey HFR spectrogram from 10 to 400 kHz.
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Our problem, similar to many biomedical images, is training the model to minimize the error between predicted 
and labeled masks. Stochastic gradient descent (SGD) has been proven to be an efficient and effective optimi-
zation method in recent deep learning advances. Adam (Kingma & Ba, 2015) is adopted as the optimization 
algorithm in our study. The name Adam came from Adaptive moment estimation in combination of two popular 
methods: adaptive gradient algorithm (AdaGrad) and root mean square propagation (RMSProp adopted in the 
original PyTroch U-Net package). Adam requires only first-order gradients with little memory requirement. The 
PyTorch version is straightforward to implement. A smaller learning rate for the convolution layers is often used 
in practice when applying SGD. Although a thorough parameter search was not performed, the magic learning 
rate, 3 × 10 −4, is selected throughout our study based on our initial analysis by varying the rate slightly up and 
down for comparison.

For a single-class problem, a combination of the binary cross-entropy and dice losses (also known as a combo 
loss) has been adopted in the original PyTorch U-Net package. We learned that the selection of the loss functions 
is crucial in order to increase the prediction accuracy, because the weighting parameters are adjusted/updated 
to reduce the loss in each evaluation. Loss functions are an active research area, and many functions are shared 
publicly by the community. Ma (2020) presented a systematic taxonomy to sort existing loss functions for image 
segmentation into four categories: (a) distribution-based loss, such as the cross-entropy loss; (b) region-based 
loss, such as the dice and Tversky losses; (c) boundary-based loss, such as the Hausdorff distance loss; and (d) 
compound loss, that is, a combination of different types of loss functions. A comprehensive comparison of differ-
ent loss functions and various combinations is not the focus of this manuscript, however, we took the suggestion 
from Ma that using compound loss functions is a better choice overall. After trying a few combinations and 
parameters, we settled on the weighted sum of the binary focal cross-entropy loss, the focal Tversky loss, and the 
Hausdorff morphological erosion loss.

We adopted the Kornia version of the focal loss function (Binary Focal LossWithLogits), which is a variant of 
the binary cross entropy loss by down-weighting the contribution of easy examples enabling learning of harder 
examples. The focal loss (−α(1 − p) γlog(p), where p is the model's estimated probability) is parameterized by 
α and γ, which control the class weights and degree of down-weighting of easy-to-classify pixels, respectively 
(Yeung et al., 2021). The focal loss simplifies to the binary cross-entropy loss when γ = 0. α = 0.6 and γ = 2 are 
used in our study.

The Tversky index, TI = TP/(TP + αFP + βFN), is closely related to the dice score, where TP, FP, and FN repre-
sent true positives, false positives and false negatives. TI enables optimization for output imbalance by assigning 
weights α and β to FP and FN, respectively. TI simplifies to the dice score when α = β = 0.5. When the dice 
loss function is applied to class imbalanced problems, the resulting segmentation often exhibits high precision, 
TP/(TP + FP), but low recall scores, TP/(TP + FN). Assigning a greater weight to FN usually results in a better 

Figure 5.  An image (a) and mask (b) set for image segmentation exercise corresponding to the survey spectrogram shown in Figure 4.
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balance of precision. Hence, α = 0.3 and β = 0.7 are set for our study, as suggested by Yeung et al. (2021). The 
focal Tversky loss is defined as (1 − TI) γ, where γ > 1 increases the degree of focusing on harder examples. The 
focal Tversky loss simplifies to the Tversky loss when γ = 1. Because the governing equation is easy to apply, 
the algorithm of the focal Tversky loss function with γ = 2 used in our study was simply modified from the dice 
loss function included in the original PyTorch U-Net package. The predicted mask during each iteration was 
converted to a sigmoid function between 0 and 1 before calculating the loss.

In mathematics, the Hausdorff distance (HD) measures how far two subsets of a metric space are from each other. 
It is widely used in evaluating medical image segmentation methods, and is selected as our prediction metrics. 
However, existing segmentation methods do not attempt to reduce HD directly. Karimi and Salcudean (2019) 
proposed three methods to estimate HD loss from the segmentation probability maps produced by a convolution 
neural network. We apply morphological erosion on the difference between the true and predicted segmenta-
tion maps described in Section II.C of Karimi and Salcudean. The parameter α determines how strongly larger 
segmentation errors are penalized, while the parameter K denotes the total number of erosions. We adopted the 
class HausdorffERLoss as part of the HausdorffLoss package shared by PatRyg99 on GitHub. As reported by 
Karimi and Salcudean, α = 2 and K = 10 are used for our study.

We developed the HD metrics based on the Euclidean distance transform function included in SciPy. This func-
tion calculates the distance transform of the input by replacing each non-zero element with its shortest distance to 
any zero-valued element. The HD maps with non-zero elements from predicted and true masks are combined to 
obtain the mean value with 95% confidence interval (𝐴𝐴 𝒔𝒔 + 𝟏𝟏.𝟗𝟗𝟗𝟗𝝈𝝈∕

√
∑

𝒊𝒊
𝒔𝒔𝒊𝒊 ) representing the symmetric point-wise 

distance between two masks, where si, 𝐴𝐴 𝒔𝒔 , and σ represent each non-zero distance, the averaged distance, and its 
standard deviation, respectively. The unit of si is the image pixel; hence, the resulting values are associated with 
the image resolution.

4.  Results and Comparison
As described in Section 2.1, there are a total of 1467 image and mask sets including partial spectrograms with 
data gaps from the DSX mission. Thirty-two images from the end-of-mission (EOM) period between 22 and 
31 May 2021 are reserved as the test data set. The remaining 1435 sets from 9 August 2019 to 21 May 2021 are 
randomly separated into two parts for training and validation, respectively. The batch size is a hyperparameter 
of gradient descent that defines the number of training samples to work through before the model's internal 
parameters are updated. It can be one of the crucial steps to reach model's peak performance. Within the 
training set, 10 images per batch were selected for our exercise. Due to limited GPU memory, higher numbers 
(>10) of batch have not been tested. However, results based on 10 images/batch are better than those from 1 
or 5 image(s)/batch.

The number of epochs is a hyperparameter which defines the number times that the learning algorithm works 
through the entire training/validation set. The training runtime over 20 epochs took ∼130 min on a 24 GB Nvidia 
GPU. The training results from each epoch were saved and tested on EOM images. While the probability values 
are between 0 and 1 in the model, the minimum probability value to consider a predicted mask pixel is set at 0.5. 
The minimum averaged HD value defines the epoch of the best-case scenario in our study. The mean HDs with 
95% confidence interval as a function of epoch from two exercises are shown in Figure 6. These two exercises 
have the same training/validation samples and hyperparameters.

The model generally reaches the best-case scenario faster with increasing numbers of training samples. Due to 
limited DSX data, all available data were included in our exercise, for example, 1425 training and 10 validation 
samples. We note that the training results are different each time when the model was executed with the same 
hyperparameters, because the weighting parameters are updated internally based on the combination of weighted 
losses during each evaluation. However, the minimum averaged HD typically reaches ∼5 with the same set of 
training/validation samples. It is noted that the number of samples for these exercises is very small compared to 
other CNN applications, ideally millions of image samples with 5% reserved for validation and 10% for testing. 
By increasing the number of validation samples with decreasing training samples, the model performance with 
limited test samples is not noticeably improved in our exercises.

Based on the best-case scenario marked as the red circle in Figure 6, we present one test case with the median 
averaged HD value, 2.056 ± 0.318, from 20 completed spectrograms of the 32 test samples in Figure 7. The 
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digitized images on Panels (a)–(c) are the same, but the black dots in Figures 7b and 7c represent the labeled true 
mask (also shown as the black dots in Figure 7d) and predicted mask (also shown as the blue dots in Figure 7d), 
respectively. We note that the predicted mask can report multiple frequency pixels per time step.  The final 
predicted values shown as the red dots in Figure 7d are extracted from the pixel with the maximum intensity or the 
higher frequency pixel if the intensities are the same. The final predicted values are then converted to predicted ne 
as a function of time to compare with the “true” ne obtained from the semi-automatic feature extraction described 
in Section 2.2 (i.e., Figure 8c.)

The comparisons between different model outputs to the true logarithmic ne are shown in Figure 8. The x-axis 
of all three panels represents the truth data, while the y-axes in Figures 8a–8c represent predicted values from 
the empirical model (Ozhogin et al., 2012) based on IMAGE/RPI data, the updated neural network-based 
plasmaspheric model (Chu et al., 2017b) trained from VAP/EMFISIS data, and the U-Net trained from DSX/
NBR data, respectively. The diagonal dashed blue line represents the ideal scenario when the predicted values 
match the truth values. The red lines present the 17th and 83rd percentiles of the data points, approximately 
the standard deviation of distributions. The prediction efficiency for each comparison is labeled on top of 
each panel.

PE = 1 −
MSE

𝜎𝜎2
𝑜𝑜

= 1 −

[

1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
(𝑝𝑝𝑖𝑖 − 𝑡𝑡𝑖𝑖)

2
]

∕

[

1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1

(

𝑡𝑡𝑖𝑖 − 𝑡𝑡
)2
]

�

where the mean square error (MSE) is calculated between the predicted and truth ne, while the standard deviation 
(σo) is obtained from the distribution of truth data. We note that PE calculated in Figure 8c includes only points 
with coexisting true and predicted values. For this reason, the HD associated with the morphology is selected as 
our model metric rather than MSE.

The predictions from the U-Net shown in Figure 8c are the closest to the truth, because the model is trained 
from a data set of the same instrument in a similar space environment of test images. A conclusion can be 
inferred from our experience that image segmentation would fail if the model were trained from images based 

Figure 6.  The statistics of Hausdorff distance with 95% confidence interval as a function of training epoch from two 
different exercises, where the circles represent the mean value, while the vertical bars indicate the 95% confidence interval. 
The red and orange circles represent the minimum mean HD values, that is, the best training scenario, of each exercise.
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on different instruments and environments of test images. The predicted ne from the Chu model saturates at 
∼1,700 cm −3, because the highest frequency of the VAP/HFR only reached 400 kHz, but DSX/NBR measured up 
to 1 MHz. Moreover, the magnetic latitude coverage of VAP was smaller than that of DSX due to the difference 
in inclination of the satellites. We note that Hartley et al. (2018) obtained higher densities above the HFR limita-
tion based on plasmaspheric hiss observations of VAP. The Arase data are planned to be included in the training 
exercise of the Chu model in the near future.

Although NBR has its heritage from IMAGE/RPI, the IMAGE's orbits (1,000 × 46,000 km with 90° inclination 
and 14.27 hr orbital period) dramatically differed from DSX's. Unsurprisingly, the Ozhogin empirical model 
based on IMAGE/RPI data statistics did not perform as well as the U-Net. We demonstrated that U-Net is a 
powerful tool in deep learning of image segmentation. By deciphering space wave instrument data based on 
supervised learning, satisfactory results can be obtained even with limited training samples.

Figure 7.  (a) The digitized test image for the time period between 01:17:00 and 06:23:20 UTC on 25 May 2021. The image 
is repeatedly shown in panels (b) and (c). (b) The labeled mask (black dots) plotted on top of the test image. (c) The predicted 
mask plotted on top of the test image. (d) Comparison between predicted (blue) and true mask (black), while the final 
predicted pixel per time step is represented by the red dots.
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5.  Synthetic Image Generator
Feature-learning image recognizers such as CNN have been criticized for their lower accuracy in identifying 
previously unseen or excessively noisy feature examples, highlighting the importance of preparing the training 
data set. From our experience, three primary bottlenecks in building a sufficiently large collection of training 
spectrogram images were identified: (a) data availability; (b) exhaustive human labor in identifying features from 
training images; and (c) the noises, that is, the environmental background or instrument noise which is labeled 
as “0” on the mask.

We propose to utilize existing empirical models combined with statistical distributions derived from large data 
sets to help resolve the bottlenecks. An algorithm capable of generating realistic synthetic images with labeled 
fuh would provide an unlimited data supply for advanced training. Although each empirical model has inherent 
limitations, we are able to generate various versions of synthetic fuh traces using a combination of density models 
to acquire fpe and the IGRF + OP77Q model to obtain fce.

Model 1: Ozhogin et al. (2012) represents a smooth field-aligned plasmaspheric density profile without a plas-
mapause. This model is driven by L-shell and MLAT.

Model 2: Densities in the plasmasphere, plasmapause and plasma trough are prescribed by Carpenter and 
Anderson (1992). This model is driven by 5 parameters: L-shell, MLT, day of the year, KP index in the preceding 
24 hr, and 13-month averaged sunspot number. Densities in the dusk sector and at L < 2.25, which are not spec-
ified, can be filled in by Model 1.

Model 3: Sheeley et al. (2001) estimate densities in the plasmasphere and plasma trough; however, plasmapause 
locations are not specified. This model is driven by L-shell and MLT. Densities at L < 3 or L > 7 can be filled in 
by Model 2. The inner and the outer plasmapause boundaries can be determined from Moldwin et al. (2002) and 
O’Brien and Moldwin (2003). Moldwin et al.’s model is driven by MLT and the maximum KP from the previous 
12 hr. We adopted the simplest format of O’Brien and Moldwin, which is only driven by MLT, although more 
sophisticated inputs can be specified by max(KP) between −36 and −2 hr, log10|min(Dst)| from the previous 24 hr, 
or log10[max(AE)] from the previous 36 hr.

The VAP mission (2012–2019) carrying two identical wave receiver suites was selected as our choice of statis-
tical analysis because of its large data volume as described in Section 2.3. Data set 1 is based on the fuh signal 
intensity and neighboring pixels of relative intensities as a function of L-shell. Intensities of the remaining pixels 
from all available spectrograms are binned as a function of frequency, LM, MLT, and MLAT. Because the wave 
behaviors are different above and below fuh, two sets of statistics are generated: one above the fuh curves (Data set 
2); another below (Data set 3). We note that the histogram of each bin cannot be represented by any analytical 
function; however, the percentiles of distributions can be interpreted to represent geomagnetic activity levels 
without including other indices.

Figure 8.  (a) Ozhogin empirical model prediction versus true logarithmic densities. (b) Chu neural network prediction versus true densities. (c) U-Net prediction versus 
true density. The red lines represent the 17th and 83rd percentiles of distributions. The time period of data is from May 21 to 31 2021, covering 32 satellite orbits.
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With Data sets 2 and 3 and numerous random processes, synthetic images can be generated to represent back-
ground broadband waves without fuh resonance based on VAP magnetic ephemeris. Independently from the 
background spectrogram, synthetic fuh as a function of time for each orbit is generated by randomly perturb-
ing outputs from Models 1–3. Similar to the magic eraser concept of recent Pixel smartphones, the locations 
of synthetic fuh with neighboring pixels are erased from the background image, and replaced by randomly 
perturbed statistics of Data set 1 based on the perturbed model frequencies. Other discrete or narrow band 
signals, such as multiple gyro-harmonics or a faint signal below fuh, can be randomly added according to 
modeled frequencies. Currently, instrument noise has not been included in our synthetic generator, except the 
consistent noise in the statistics. Instrument noise is typically uniform and easier to remove from real images 
or add to the synthetic generator. Three synthetic images representing different percentile levels are shown in 
Figure 9 as examples. Although synthetic images might still look artificial by human vision from experienced 
scientists, our intention is to explore whether the computer vision trained by an U-Net is able to distinguish 
between fake and real images.

The U-Net was trained from two sets of images: (Exercise I) 7382 real images based on actual VAP satellite 
measurements and (Exercise II) 8955 synthetic images with VAP orbital information from the generator. 10% 
of the images were randomly selected for internal validation. The model hyperparameters are the same as those 
described in Sections 3 and 4. Trained models from both exercises were tested on the same 150 real images not 
included in the first training set of images. Although there are more training images in these exercises, the training 
runtime took ∼60 min for 8–10 epochs on the same video card because the image resolution 82 × 100 is much 
lower than those presented in Section 4. Two cases of 150 test samples from the best scenarios are demonstrated 
in Figure 10.

The average and median HDs from 150 test images of Exercise I are 0.853 and 0.675, respectively, while 2.244 
and 1.682 resulted from Exercise II. Quantitatively, results from Exercise II epoch 3 are ∼2.6 times worse than 
those from Exercise I epoch 7. The metrics of mean HD with an associated 95% confidence interval as a function 
of epoch for these two exercises are displayed in Figure 11.

The synthetic image generator is also modified to utilize the statistics of DSX/NBR data with DSX orbital 
information, however, the results trained from fake images are ∼8 times worse than those trained from real 
NBR images (not shown). One of the reasons may be due to a much smaller volume of the NBR data set. Our 
exercise implies that synthetic images are less sophisticated than real images from nature. Although we have not 
completely resolved the bottlenecks in machine learning, we demonstrate that a generator based on probabilities 
and randomization may be a good starting point for a generative adversarial network (GAN).

6.  Summary and Discussion
The investigation demonstrated in this paper reveals a potential application of computer vision in deciphering 
wave instrument data to derive fpe, one of the most important space plasma parameters, in real time. To date, 
we have performed tests using various CNNs, and U-Net has been proven to outperform methods with a sliding 
box setup with a quicker runtime. Moreover, the choice of loss functions is critical to improve the prediction 

Figure 9.  Based on VAP/HFR data statistics, synthetic images generated from (a) Model 1, (b) Model 2, and (c) Model 3.
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accuracy. Satisfactory results are obtained from a weighted sum of the binary focal cross-entropy loss, the 
focal Tversky loss, and the Hausdorff morphological erosion loss. New and improved networks and numerical 
codes are continuously being developed and shared by the deep learning community. Interested readers are 
encouraged to perform further evaluations by incorporating off-the-shelf packages or developing their own 
algorithms.

Although less than 1 year of NBR data are available due to data gaps and human bias may not be completely 
avoided, the fpe and fce distributions for the entire DSX mission are acquired as the byproduct of our image 
processing algorithms, including semi-automated fuh extraction routines. Approximately 100 human hours were 
required to extract the fuh feature based on a more traditional semi-automated algorithm. By comparison, it would 
take 13 min on a 24 GB Nvidia GPU to completely analyze 1467 orbits of 339 × 1,000 spectrograms based on 
a trained deep-learning model. Figures 12a–12c summarize the density distribution as a function of LM, MLAT, 
and MLT, respectively, while Figures 12d–12f display fce distributions. Data forming Figure 12, more accurate 
than any model output, are included as the Data Set S2 to benefit future machine-learning training and testing, 
empirical, physics-based, and assimilative model development and validation, or any scientific research requiring 
fundamental plasma parameters.

Figure 10.  Two test images from actual measurements are shown in panels (a) and (c). The corresponding labeled masks are represented by black squares in panels (b) 
and (d), while the predicted masks are represented by the red and blue dots of Exercises I and II, respectively.
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We encourage the space science community to continue seeking and developing generative adversarial 
networks which may be trained to distinguish between fake and real images, and eventually be utilized to 
mass produce realistic synthetic images. The probability approach described in Section 5 may serve as an 
initial guess solution to assist the network in converging on a final solution more rapidly in order to reduce 
computational time. Self-supervised or unsupervised learning without human-annotated labels, an active 
area of artificial intelligence research, may be able to resolve the machine learning bottlenecks, although 
the methodology is more complex and results may not be as accurate as supervised learning in the current 
state-of-the-art.

Although many empirical, physics-based, assimilative, and machine learning-based space environment models 
have been developed, in situ measurements are the most accurate way to obtain the fundamental plasma param-
eters. Multi-satellite missions require enormous resources in development, in operation, and for analysis. With 
additional development and refinement, we propose that our proof-of-concept study may be matured to a level 
suitable for incorporation into onboard signal processing units of future wave receivers. With a flexible onboard 
software design, the latest trained model could be updated easily during flight as the instruments continuously 
collect new data to improve training results. In addition, the automatically derived plasma frequencies could 
be directly downlinked and fed into any assimilative model, significantly improving nowcast/forecast accuracy. 
While expecting 100% accuracy may not be realistic, the goal is to make incremental progress toward reducing 
the requirement for human labor and the potential for human-in-the-loop induced operational errors during future 
missions.

Figure 11.  The mean HD with 95 confidence interval as a function of epoch for Exercises I (black) and II (blue). The 
minimum HD, that is, the best scenario, is marked by a red dot for each exercise.
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Data Availability Statement
The VAP and IMAGE wave data with associated electron densities, cyclotron frequencies, and satellite ephemeris 
were downloaded from the Coordinated Data Analysis Web (CDAWeb) hosted by the NASA Space Physics Data 
Facility (SPDF) (n.d.), https://cdaweb.gsfc.nasa.gov.The EMFISIS level-4 data were downloaded with filename 
“rbsp-x-density_emfisis-l2_yyyymmdd_v1.5.xx.cdf,” while the HFR survey level-2 data were downloaded with 
filename “rbsp-x_hfr-spectra-emfisis-l2_yyyymmdd_v1.x.x.cdf.” The 13-month averaged sunspot numbers were 
obtained from the Royal Observatory of Belgium (n.d.), https://www.sidc.be/silso/newdataset and the KP indices 
were obtained from the World Data Center for Geomagnetism, Kyoto University (n.d.), https://wdc.kugi.kyoto-u.
ac.jp/kp. TLEs of DSX were downloaded from Space-Track.org. (n.d.), https://space-track.org, and the predicted 
magnetic ephemeris from the orbit propagator was generated from the software included in AE9/AP9/SPM (n.d.), 
https://www.vdl.afrl.af.mil/programs/ae9ap9/. The image processing and all figures shown in this manuscript 
were generated using IDL, while CNNs were adapted and developed in Python. The third-party software in 
Python used in this study are described in the text and their sources are included in references. Milesial. U-Net: 
Semantic segmentation with PyTorch (n.d.), https://github.com/milesial/Pytorch-UNet; PatRyg99. Hausdorf-
fLoss (n.d.), https://github.com/PatRyg99/HausdorffLoss. Wkentaro. Labelme: Image polygonal annotation with 
Python (n.d.), https://github.com/wkentaro/labelme.

Figure 12.  The distribution of electron density log10(ne) with respect to (a) L-shell, (b) MLAT, and (c) MLT. The bin sizes 
are 0.025 for log10(ne), 0.02 for LM, 1° for MLAT, and 0.375 hr for MLT. The fce distribution with respect to (d) L-shell, (e) 
MLAT, and (f) MLT. The bin sizes are 1.1125 kHz for fce and 0.04 for LM. The MLAT and MLT bins are the same as those in 
(b) and (c), respectively. The colorbar represents the number of data points in each bin.
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