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NEWTON POLYGONS AND RESONANCES OF MULTIPLE
DELTA-POTENTIALS

KIRIL DATCHEV, JEREMY L. MARZUOLA, AND JARED WUNSCH

ABSTRACT. We prove explicit asymptotics for the location of semiclassical
scattering resonances in the setting of h-dependent delta-function potentials on
R. In the cases of two or three delta poles, we are able to show that resonances
occur along specific lines of the form Im z ~ —yhlog(1/h). More generally, we
use the method of Newton polygons to show that resonances near the real
axis may only occur along a finite collection of such lines, and we bound the
possible number of values of the parameter . We present numerical evidence
of the existence of more and more possible values of + for larger numbers of
delta poles.

1. INTRODUCTION

We consider certain “leaky” semiclassical quantum systems where most of the
energy escapes to infinity but some h-dependent fraction is trapped. In such set-
tings, it has often been observed that strings of resonances occur along curves
Im z ~ —vhlog(1/h) for certain values of 7 related to the geometry. This has been
observed, with varying degrees of precision, in scattering with nonsmooth poten-
tials on the real line [14], [18]; scattering by multiple delta singularities in R3 [17];
scattering between a corner and an analytic obstacle [5]; scattering on a manifold
with conic singularities 7], |10/, [13]; and scattering by thin barriers, modeled by
h-dependent J-potentials [6], [11]. In some of these settings where the geometry
of trapping is relatively simple, e.g., [5], [6], the structure of all resonances near
the real axis can be precisely understood, with one or more strings of resonances
occurring at

(1) Imz ~ —vhlog(1/h),

for certain values of v and no others present. More generally, however, the picture is
muddier, with some information known about O(hlog(1/h))-width resonance-free
regions near R and in some cases about existence of a limited region in which the
resonances are distributed as in ().

Here we analyze a situation in which the geometry of trapping is complicated
enough to generate multiple strings of resonances of the form (I), and moreover
for that structure to vary interestingly as we tune the parameters of the problem.
This is the situation of several thin barriers on R, modeled by potentials of the
form h'*8§(z), B > 0. One dimensional problems with delta function barriers have
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been studied before in [2] Section I1.2], [6], [8], [12], [15], [16] but only the second
reference considered our asymptotic regime, and that only in a very special case.
In the case of two and three delta poles, we are able to analyze the distribution of
resonances very precisely: in the former case, there is a single curve of resonances
near the real axis with Im z ~ —yhlog(1/h) (Theorem[I); in the latter, there may
be either one or two such families instead (Theorem [3)). In particular, in the latter
case there is one family if the deltas all have equal strength. In [17] Appendix A],
Zerzeri computes resonances of multiple delta poles in R? and finds analogously
that they are all asymptotic to a single logarithmic curve.

In the more general case of IV §-potentials, we are able to constrain the locations
of resonances by analyzing the secular determinant that governs their locations
in terms of its Newton polygon. We show (Theorem [7) that in any set Imz >
—Mhlog(1/h) there may be no more than 2~ ~!—1 possible values for the parameter
v in (), and that all such possible values may be simply expressed in terms of the
various strengths 8 of the potential poles and differences of distances among them.

2. GENERAL SETUP

Consider the semiclassical Hamiltonian on the real line

N
P=-h0}+V(x), V(x)=) Vis(x—=z;), h>0,
j=1

where 71 < - < 2, and each V; = C;h**Pi for some C; € R\ {0} and 3, > 0.
A resonant state u is an outgoing distributional solution to

(2) (=h*02 +V — 2%)u =0,

and a resonance is a value of z € C for which a resonant state exists. More
explicitly, define I; for j = 0,...,N, by Iy = (—oo,z1], I; = [zj,2j41] when
1<j<N-1,and Iy = [xy,+00). If (2) holds in the sense of distributions, then
u = v;reizx/h + v e =/ on I;, with appropriate continuity and jump conditions
(which we state in (3) and (4)) at each z;. Such a solution w is outgoing if it is
not identically zero and if vy = v = 0. See Section 2.1 et seq. of [9] for an
introduction to resonances.

For to hold we need u to be continuous at each x;, i.e., the continuity
condition is

(3) _vj—_lefisz/h o U;—_1€+isz/h + ,Uj—efisz/h + ,U;-€+isz/h = 0.

Moreover, v’ must have a jump at each z; so that (h?02 + z?)u contains a multiple
of 6(z — x;) which equals Vju(z;)é(x — x;). That leads to the jump condition

hz ‘ , . .
(4) ad (Ujf_lefzzxj/h _ U;r_leJrzzmj/h _ ,Ujfefzzacj/h + Uj+e+zzacj/h>

+ ij(vj—e—imjz/h + vj—j-e—l-isz/h) =0.

To bring the continuity and jump conditions (3) and (4) to a more manageable
form, we now require z # 0, set
Vi _ G

T ;= =
(5) J 2izh 21z

and take

_ _—iz/h + _ 4+ ixiz/h - _ . — _ —ixiyt1z/h
w=e /, yj—vjeJ/, y; =v;e i1z/h
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NEWTON POLYGONS AND RESONANCES OF DELTA-POTENTIALS 2011

These are the values of the amplitudes immediately following interaction with the
potential poles.
Let {; = zj41 — xj; = |I;|. Our continuity and jump equations (3) and (4) now
read
_yj__l _ y;'_leiéjflz/h + y]—elejz/h + y;‘ — 0,
Yjq = Y€ oy elaF (=1 = 20 5) 4+ y (1 - 275) = 0.

Adding these equations yields

(6) y;r — Tjeie]'flz/hy;—_l + Rjeleyz/hyj—
with

1 T,
™) T = ’

R, = .
1-7;" "7 1-7y
Subtracting 1 — 27 times the first from the second yields likewise

(8) yj_—l _ Tjeizjz/hyj— + Rjewj,lz/hy;r_l'
In the extreme cases j = 0 or N we simply get the special cases where there is no
reflection: ‘
y]—l\-] _ TNezﬁN,lz/hy]—i—[_l
and

yo = Tae'*Myr.
Note that these components are completely determined by the others.

3. LOGARITHMIC STRINGS FOR TWO AND THREE DELTAS

In this section we consider the simpler cases N = 2 and N = 3, in which our
description of the resonances is more complete.

3.1. Two deltas. Let N = 2, and put ¢/, = /.

Theorem 1. All resonances obeying 1/2 < |z| <2 and Rez > 0 are given by
_mwhk 1+ B
) T T Ty

for some positive integers k. Moreover, for any 0 such that § < 1 and § <
min(f1, f2) we have

hlog(1/h) + O(h),

hy  H(CC
(10) Rez), = %(k+ %

where H is the Heaviside function, and

+0(n")),

h C1Co|?
(11) Im 2, = i ( — (81 + B2) log(1/h) + log (%) + O(h6)>.

Proof. In this case we have

yf— = Rlez[Z/hyl_a Yy = RQ@MZ/hyii_a
and so resonances occur if and only if
(12) e~ 22/ — RiRs.
Take the logarithm of both sides of and multiply through by ih/2¢ to get
ih mhk
(13) Y log(R1R%2) + 7
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where k is an integer. Substituting

_Clc2h/31+52
422(1 - Tl)(l — TQ)

(14)  log(RRz) = log ( ) = =(B1+ ) Log(1/h) + O(1),

into (I3) gives

Tk B B b yoe(1h) + O(h).
14 20
It is clear that if mhk < ¢/3 or whk > 3¢ then the right hand side is not in
{z€ C: Rz >0and 1/2 < |z| < 2} for h small. Hence, to establish (9), is enough
to prove that, for h small enough, if k is such that ¢/3 < whk < 3¢, then (I3) has
a unique solution z in the half-annulus A = {z € C: Rz > 0 and 1/4 < |z| < 4}.
For this we apply Rouché’s theorem (the Corollary of Section 5.2 of [1]) with
f(2) = z— Lrhk and g(2) = ZLlog(RiR2) on the half-annulus A (note that g is
analytic on A by Corollary 2 of Section 4.4 of [1]). Since f(z) = 0 obviously has
a unique solution in A, it is enough to check that |g(2)| < |f(z)| on OA. For that,
note that on A we have |f(z)| > 1/12 and use (14).
Finally, to get (I0) and (1), note that (12)), (I4) yield 2% = “22‘22’“2 +O(hlog(1/h));
since YT; = O(h%9),

z =

—C1CyhPrth2 )

log(R1R2) = log (422(1 - T)(1-172)

= —(B1+ B2) log(1/h) + log (2 + O(h?).
Inserting this into yields (10), (0T). O

3.2. Three deltas. For N = 3 we use w = e~ "*/" and write
Yy = Raw "yd,  yf = Riw"yp,
and plugging those into the equations for y; and y; gives
y5 = RiTow *1y; + RoRsw ™22y,
Y, = Rlew_%lyl— + Tgng_2£2y;r.
These equations have a nontrivial solution if and only if
RiR2Rsw™ 21722 — RiRyw™ 2 — RiT?Ryw 2722 — RyRyw ™22 +1 = 0.
Since Ty = Ry 4 1, another way to write this is

(15) w281+2e2 — R1R2w2£2 — R2R3w2€1 — Rl(l + 2R2)R3 =0.

If the delta functions are equally spaced, this can be solved using the quadratic
formula and works out similarly to the case of two deltas.

Theorem 2. If {4 = {5 = {, then there are positive real numbers v4 and y— (which
may or may not be distinct, depending on ¢, 1, B2, B3), such that all resonances
obeying 1/2 < |z| <2 and Rez > 0 are given by

whk

ivyhlog(1l/h) + O(h), z, = - iv_hlog(1/h) + O(h),

whk
14

for some positive integers k.

+
2, =
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NEWTON POLYGONS AND RESONANCES OF DELTA-POTENTIALS 2013

Simple explicit formulas for the v+ can be obtained either by elaborating the
calulation in the proof of Theorem [2] (which is a more complicated version of the
one in Theorem [I), or as special cases of the ones in Theorem [3] More precise
asymptotics for the real and imaginary parts of sz, as in and (11), follow as
in the proof of Theorem 1]

Proof. By the quadratic formula, is equivalent to
(W —r )P = ry) =0,

where

1
ri = L((B1 + Ry)Ro £ \J(Ry + BaP RS + AR (14 2R) R, ).

By the same argument as in the proof of Theorem[I]we get strings of resonances

2= mhk + th lo
k= Ty Y, g7+,
where logry = —y1llog(1/h) + O(1) for some v+ > 0.

There are various ways to choose the 3; so as to make either v, # vy_ or y4 = ~_.
For example, if 81 + 202 < f33, then Rz = O(RyR3h%) for some 6 > 0, and thus
T4+ = %(RlRQ + RiRy + O(RlRQh(S)), and Y+ 75 Y—.

On the other hand, if for example 3; < 83 < 1+202, then we get 7+ ~ +v/R1R3
and hence vy =v_. O

Theorem [3] gives necessary conditions on the logarithmic curves the resonances
can approach when ¢; is not necessarily equal to £5.

Theorem 3. Let {1, {5, B1, B2, B3 be given. Let hy, ha, ... be a sequence of
positive numbers tending to 0. Let z = z(h;) be a sequence of resonances such
that z = h°W (i.e. such that z(h;) = ef) for some f: (0,h1] — C obeying
[f(h)| = o(log(1/h))) and Imz > —Mhlog(1/h) for some positive M. Then this
sequence has a subsequence such that

Imz
hlog(1/h)
for some v € {y4+,v-}, where v+ and y_ are determined as follows:

(1) If B3ly — Baly — Pals < Brly < Paly + Paly + Psly, then

B1 + B3
201 + 244 '

(16) - -7,

T+ =7-=

(2) If B3ty — Baly — Poly > Prla, then
:ﬂs—ﬂ2> :51-1-52-

T+ 205 Y- 20,
(3) If Baly + Bols + B3ly < Pila, then
_ B1 — B2 _ B2 + B3
7 261 - 262 '

Remark 4. Note that because the resonances of —h?92 + V(—x) are the same as
the resonances of —h292 + V (z), it is no loss of generality to make the simplifying
assumption

(17) Baly < Bils.
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Then the three cases of the theorem reduce to the following two:
(1) If Byly < Baly + Baly + Baly, then

_ . _ BtBs
T+ =7 201 + 244 '
(2) If Baly + Pals + B3l < B1ls, then
_ BB _Baths
T+ 20, Y- 50y

One can interpret (2) as corresponding to the case in which the middle delta is
strong enough to split the interval (z1,z3) at z2, and (1) as corresponding to the
case in which it is not.

Note also that in each of the limiting situations 8; — oo or 83 — oo, which each
correspond to one of the delta functions becoming vanishingly small, the resonances
converge to those of a two-delta problem as in Theorem [T]

Proof. As noted above, we may without loss of generality proceed under the as-
sumption (I7), and show the simpler version of the theorem in Remark [4l
After passing to a subsequence, we have Imz/hlog(1/h) — —~ for some v €
[—00, M], and so w = hYt°(), By the reflection coefficient formulas and
and using z = h°(), we have T; = g—ghﬁﬁo(l) and hence R; = h%7°(1) and thus
the resonance equation implies that v > 0.
Next, we eliminate y; and y; from (6) and (8), the equations for the yj-t, by
writing
y; = Rsw "y, yi = Riw Yy,
which gives
y3 = RiTow *y; + RoRyw2y7
yr = RiRyw 2y, + ToRsw*%y3 .

We now substitute w = K7W T = h°W and R; = hPiToL),

That gives
(18) y; — hﬁ1—2€1’¥+0(1)y; + hﬂ2+53—2£2'y+o(1)y;’
(19) Yy, = h51+52—2€1’y+0(1)y1— 4 hBB_QeQ'H—O(l)y;.

We now consider three cases according to whether the y;~ terms on the left and on
the right of (I8) have comparable sizes or whether one dominates the other.
Case 1. If the sizes are comparable, i.e., if

(20) B2+ B3 — 2Ly =0
then we use (I5), and observe that the w?1+22 and Ry Rzw?“ terms both equal
h/32+33+2€1’7+0(1)’ R1R2w252 — h51+2/32+/33+0(1)’ and Rl(l + 2R2)R3 = pP1+B3+o(1)
So the w2722 and Ry Rzw?** terms need to be at least as big as the Ry (142R2)R3
term, and they need to cancel one another; the former condition means we need
Bo + Bs + 201y < B1 + B3, ie., by @20, Bala + B2l + Bals < Bila.

Case II. If the term on the right is dominant, i.e., if 8y 4+ 83 — 202y < 0, then

becomes

y;— — pA —52—/53+2327—2317+0(1)y1— ,
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which, inserted into (19), gives
Y = h51+52—2517+0(1)y— + h51—52—2517+0(1)y1— _ h51—52—251’y+0(1)y1—_

Hence 0 = 1 — B — 2017y, or v = ’81 . This requires (82 + f3)¢1 < (81 — B2)la.
Case III: If the term on the left is domlnant, i.e., if By + B3 — 203y > 0, then (I8)
becomes
yé’_ — hﬁ1—2€1’y+0(1)y1—’

which, inserted into (19), gives

Yy = h61+52—2€1’7+0(1)y; + h51+53—2€17—232’7+0(1)y;‘
Of these three terms, two must be of the same size and the other must be no bigger.
We accordingly have three subcases.

Subcase 1: If the term on the left is the small one, then 51+ s —2¢1y = 1+ 83—
201y — 203y < 0. That means v = B 52 and we require 310y + Bals + Bol1 < B3ly.
This contradicts (I7).

Subcase 2: If the first term on the right is the small one, then 0 = 51483 —201v—
205y < B1+82—2¢1~y. That means v = 2211?22, and then we need (82+33)(¢1+¥2) >
(B1+ B3)la > (B3 — B2)(£1 + £2) which is equivalent to Baly 4 Baly + B3ly > Bily >
B3l — Baly — Bals.

Subcase 3: If the second term on the right is the small one, then 0 = 81 + 82 —
201y < 81+ B3 — 201y — 2057y. That means v = ﬁ“L'BQ and we require f5(51 + f2) <
(B3 — P2)¢1. This contradicts (7).

In summary, under the assumption (I7), we have three possible values of ~, each
with a corresponding necessary condition on the coefficients:

o Ify= 62+’83 , then Boly + Baly + B3l < Bils.
o If vy = ﬁ 52 , then Boly + Bals + B3l < B1ls.
o If y= 2/21522, then B0y < Baly + B2la + Bsly.

The conclusions of the theorem follow from these. O

4. N DELTAS

In this section we generalize the observations in the special cases of two and three
delta-poles to the general case of N poles: the main tool, as before, is simply exami-
nation of the leading terms in the (generally transcendental) equations determining
their location. To aid in understanding those terms, we begin by introducing the
machinery of Newton polygons, a traditional tool in the study of resolution of plane
algebraic curves which also applies in the setting studied here.

4.1. Newton polygons. Here we explore how Newton polygons apply to the anal-
ysis of equations of a form generalizing e.g. which (as we will show below) arise
in the study of the more general case. In particular, let

N
w) = Z prito(L) i
j=0

where all exponents v, A; are real and nonnegative. Note, we take the polygon
to contain the semi-infinite horizontal and vertical segments, which seems to differ
slightly from standard conventions in the Newton Polygon literature.
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Definition 5. The Newton polygon is of p is the boundary of the convex hull of
the union of the first quadrants displaced to have vertices at the points (v}, A;):

N
8 Conv |_J ((v5,A;) + [0, 00)?).
j=0
See Figure [1] for an example, and see [4] Section 8.3] for the classical algebro-
geometric theory of Newton polygons.

Lemma 6. Consider the equation
N

(21) p(h,w) = Z priteMyAi =,
§=0

where all exponents v;, A; are real and nonnegative. Suppose that, for all j > 1,
we have v; > vy and A\j < Xg. Fiz any M > 0. Then any sequence of roots of
the equation w = w(h) for h € (0,1) with |w|~! = O(h=M) has a subsequence that
asymptotically satisfies (as h ] 0)

log |w| ~ vlogh

where —1/~ is one of the finitely many nonzero slopes occurring in the Newton
polygon of p.

Proof. Say we have a family of solutions w = w(h) with A | 0 and (without
loss of generality) with |w|™! < h=™. Then since log|w| > M logh, the ratio
log |w|/log h lies in (—oo, M), hence along a subsequence, log|w|/logh converges
to vy € [—o0, M].

We first rule out the case v < 0, much as in the proof of Theorem [3] If v < 0
then for any € > 0, |w| > h* for h sufficiently small. Hence for all j > 1, choosing e
sufficiently small yields

hrito(l) \w|>‘j

R bt B vi—vo+o(l)p—€e(Xo—A;)
ool [y o < hriTvo h—cAo — 0.

Thus the term in p given by h*0T°(Myw?o is dominant, and it cannot be cancelled
by the other terms and hence cannot hold. Hence we may take v > 0 finite
and assume, passing to our subsequence, that log |w| = (v + o(1)) log h.

Then

N
(22) D hratAste) =,

j=0
If the minimum exponent v; + yA; occurring in the sum is unique, then as h | 0,
the term hY 7 +°(1) dominates all other terms in the sum for A sufficiently small,
hence (21) again cannot hold. So the minimum exponent in (22)) must occur in at
least two terms, say j and k; in particular, then,

Vi +9A; = vk + 7k,

and v = —(v, — v;)/(Ax — A;) is the negative reciprocal of the slope of the line
connecting these two points.
We claim that the minimality of the exponent

p=Vi+ YN = vk + YAk
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further entails that the segment (v, A;)(vk, Ax) is in the Newton polygon, which
will complete our characterization of v as the negative reciprocal of the slope of a
segment of the Newton polygon. To see this, we first observe that minimality of p
means for every ¢, p < v; + vA\;. Since for every s € R,

p=svj+(1—s)vp+7(sAj+ (1 —95)\)

the point s(vj, A;) + (1 — s)(vg, Ax) cannot lie in the quadrant (v;, A;) + (0,00)?, as
this would imply p > v; + vA;. Thus we have shown that minimality of p means
that the interior of every quadrant (v;, \;) + [0,00)? lies above the line

L={s(vj,\;)+ (1 —5)(vk, ) : s € R},

hence the convex hull of the quadrants (v, \;) + [0,00)? lies entirely in the closed
half-space above L. Since the segment (v, A;)(vg, Ax) of L does lie in the convex
hull of the vertices, it must be in the Newton polygon, as asserted. O

4.2. Analysis of the secular determinant. We now employ the method of New-
ton polygons introduced above to analyze the case of N delta poles; the main prob-
lem is to find a good description of the secular determinant arising in the equations
for a putative resonant state.

In the following, we employ multiindex notation for combinations of exponents
B (j=1,...,N) and lengths ¢; (j =1,...,N), e.g. writing o - 8 = Zj o;jp;.

Note that our result on this general case of N deltas, like our Theorem [3]on three
arbitrarily spaced deltas, focuses on resonances in a narrower region of C than in
Theorems[T]and[2} the imaginary part is a priori O(hlog(1/h)).

Theorem 7. Consider the Hamiltonian on the real line

N
P=-1*92+V(x), V(x)=)Y Vid(z—ux;),
j=1

where x1 < -+ < x5, and each V; = C;h**Pi for some C; € R and B; > 0.

Let z = z(hj) be a sequence of resonances such that z = h°V) (as in Theorem
and Imz > —Mhlog(1/h) for some positive M. Then this sequence has a
subsequence such that Imz ~ —vyhlog(1/h) where ~y is one of at most 2N~ — 1
values. All possible values of v are positive numbers of the form

ot -f—0c"-f
2t L —a= -0

for some o0& € {0,1,2}Y and o* € {0,1}V "L, where {; = x4 — z;.

Remark 8. As of the publication of this paper, Theorem [7] has been considerably
refined in work of Brady (3], who obtains sharp estimates on the number of values
of v that may arise.

Proof. Setting w = e~%*/" we recall that the condition Im z > —Mhlog(1/h) yields
lw|=! <=M,

We collect the components (y;,yi, ...,y _1,Ya_,) into a vector, which lies in
the nullspace of Ay — I where Ay is the 2(N — 1) x 2(N — 1) matrix given by the

Licensed to Univ of N C at Chapel Hill. Prepared on Wed May 22 21:09:22 EDT 2024 for download from IP 152.2.176.242.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2018 K. DATCHEV, J. L. MARZUOLA, AND J. WUNSCH

equations (@), (8):

0 Row t1  Towt2 0 0 0 0 0
Riw 1 0 0 0 0 0 0 0

0 0 0 Ryw ™2 Tyw %3 0 0 0

0 Tow £l Rowt2 0 0 0 0 0

0 0 0 0 0 0 0 Ryw tN-1

0 0 0 0 0 co. Tyaw N—2 Ry wiN-1 0

The general pattern is that of a pentadiagonal matrix with zeros on the diagonal
and overlapping blocks

0 0 Rj+1w_éj Tj+1w_81+1
Tyw= -1 Rjw=% 0 0 ’

which arises in the rows y;, y;r and columns y;-“_l, Y; y;f, Yig1-
Note that in the base case N = 2 we get the matrix

0 ng_él
le—£1 0
and

(23) det(Az — I) =1- RlRQ’UJ*Qel.

We claim that just as in this example, we always get only even powers of w™
that we may, more generally, express

(24) det(Ay — 1) = z aqw 2t
a€{0,1}N-1

0 s
i i.e.

where the coefficients a,, are composed of (unspecified) sums of products of 7; and
R;’s. This will follow from the following more general lemma.

Lemma 9. Let Wy be a 2(N — 1) x 2(N — 1) matriz of the form

o1 Row ™1 Thw ™2 0 0 0 0 0
Riw 1 oo 0 0 0 0 0 0

0 0 o3 Ryw 2 Tyw s 0 0 0

0 Tow 1 Row ™2 o4 0 0 0 0

0 0 0 0 0 0 CaN—3 Ryw ¢N-1

0 0 0 0 0 L. Ty_w N2 Ry jw TN CoN_2

where each oj € {0,—1}. Then det Wy s of the form.
(25) Z aqw= 2t

ac{0,1}N-1

where each an s a sum of products of T and R;’s.

The greater generality of taking o; terms on the diagonal rather than all —1’s is
of no interest except that it enables the following inductive proof to work.

Proof of Lemma. The result holds for N = 2 since we get 0,00 — Ry Row ™2,

We now proceed inductively. For brevity we denote an entry of the form R;w ™%
or Tyw™% simply L; (as we will never employ any cancellation among terms, the
ambiguity in the index ¢ and the difference between T; and R; are of no importance);
we also write £ to be independent and completely unimportant signs in the following
computation. We simply need to show that each L; appears in each summand in
the determinant either not at all or as L?.
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In our abbreviated notation, we now have

op Lh Ly 0 0 0 0 0
Ly o2 0 0 O 0 0 0
0 0 03 L2 L3 0 0 0
Wy=|0 L1 Ly o4 0 0 0 0
0 0 0 0 0 e 0 09N -3 LN_1
0 0 0 0 0 e LN_2 LN_1 O2N—-2
Decomposing Wy by cofactors in the first column yields
oo 0 O 0 ... 0 0 0
0 o3 L2 L3 ‘e 0 0 0
Ll L2 04 0 e 0 0 0
g1 det . . . .
0 0 0 0 e 0 02N -3 LN—l
0 0 0 0 e LN,Q LN,1 O2N—-2
(26) Ly Ly 0 0 ... 0 0 0
0 03 L2 L3 oo 0 0 0
L1 L2 04 0 e 0 0 0
— L1 det . . . . .
0 0 0 0 “e 0 O2N -3 LN_1
0 0 0 0 e LN_2 LN—l 09N —2

=01 detBN — L1 detC’N.

We deal with these terms as follows. Decomposing By further by cofactors in its
first row gives a single term that equals o109 times the determinant of a matrix of
the form Wy _1, which by the inductive hypothesis is a sum of terms of the form
coefficient times L3%2 ... L?VO‘_Nfl with o € {0,1}; hence this term is of the desired
form.

Likewise, decomposing det Cy by cofactors in the first column gives, from the
top left L; entry, a term L? times a term of the form det Wy _1, hence yields a
sum of terms L3L3%2 ... L?\?ffl by the inductive hypothesis. Finally the L; entry

in position (3, 1) gives a term

Ly 0 0 ... 0 0 0
o3 La Lz ... 0 0 0
0 0 05 L3 L4 0
L2det | 0 L2 Lz o5 0 0 | =L2det Dy.
0 0 0 0 02N -3 LN—l
0 0 0 LN_2 LN—l O2N—-2

Now exchanging the first two rows of Dy gives another matrix of the form Wy _;
but where the (2, 2) entry is necessarily 0 (rather than allowed to be —1). Thus by
induction, this term is also of the desired form. Note that it was this last case that
necessitated allowing the more general o; entries on the diagonal in the inductive
hypothesis. This completes the proof of the lemma. O
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We have now established (24). Recall that the coefficients a,, are of the form of
+ products of reflection and transmission coefficients 7 and R; given by (7), with
T, given by (B). In the region z = h°), we have Y; = h%+°() hence

T] =1 + hﬁj+o(1)7

(27) R, = ntol),

which implies that the terms a, are all of the form A**+°() for some values of 1
given by sums of powers 3; occurring in the reflection coefficients R;. Since each R;
appears in at most two rows, we note that the only possibilities for the appearance
of Rj in a coefficient a,, are as R}’ with o; € {0,1,2}.
We have now established that the equation
det(A N — I ) =0
is of the form
(28) > hpetelly el — g,
a€e{0,1}N -1
We now claim further that all terms except the term 1 are of the form hteto(1)qy—2a-t

where o # 0 and p, > 0. By (21), this follows from Lemmal[IQl As above we use
the notation L; to be either Tyw =% for some 1,], Or Riw™ 4.

Lemma 10. FEvery term in the secular determinant det(An — I) except the diag-
onal term 1 s of the form RjEw’O"e where E is some product of reflection and
transmission coefficients and o # 0.

In other words, each nonconstant term has at least one reflection coefficient and
a negative power of w.

Proof. We again work by induction. By (23), the result certainly holds for N = 2.
Cofactor decomposition as above in the first column then yields
det(Ax — I) = (—1)det By — Ryw ™" det Cy.

Since det C'y is a sum of product of reflection and transmission coeflicients and
negative powers of w, the second term certainly satisfies the desired conclusion, so
we need only examine the first. The matrix By is given by

—1 0 0 0 . 0 0 0
0 -1 Ryw ™2  Tywfs .. 0 0 0
Tow ¥l  Row™¢2 -1 0 . 0 0 0

By=

0 0 0 0 . 0 -1 Ryw ¢N-1

0 0 0 0 co. Ty_w N-2 Ry w iN-1 =)
Cofactor expansion in the first row now allows us to write det By = —det(By_1), a
secular determinant of the same form as det(Ay — I), hence the lemma now follows
by induction. O

Now we return to the representation of the secular determinant. Multiplying
through by w?/l (with |¢| = 3" ¢; in multiindex notation) gives an equation with
positive powers of w :

(29) Z pHato(l), 2([l—a-t) _
ae{O,l}Nfl
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Here the leading powers i, are all sums of powers arising in the delta potentials of
the form

p=o-p
for o € {0,1,2}". Moreover by the preceding lemma there is a “leading” term
ROw?¥l with all other terms having both a higher power of h and a lower power of
w.

Thus Lemma [6] applies to show that any sequence of solutions to this equation
with |w|=™! = O(h™™) has a subsequence with log|w| ~ ~ylogh for v a strictly
negative reciprocal slope arising in the Newton polygon associated to the function
[9). Since there are at most 2V =1 distinct powers of w in this equation there are
at most 2V~! — 1 nonzero finite slopes in the Newton polygon, and v may only
take the negative reciprocal of one of these values. Note further that owing to our
characterization of the exponents of A and w, all 7’s are thus of the form

ot -B—0" -8
2t -l—a= -0
for some oF € {0,1,2}" and o € {0, 1}V 1.

Now given
log |w| ~ vlogh
and w = e~**/" we of course get
Imz ~ —~vhlog(1/h)
as desired. 0

Remark 11. Tt is instructive to compare the general result of Theorem [7] to the
special cases of two and three poles analyzed above. In the case of two delta poles,
Theorem [7] correctly implies that as h | 0 there can be at most a single curve of
resonances Im z ~ —yhlog(1/h) within any set Im z > —Mhlog(1/h) with M fixed.
In the case of three deltas, however, the bound given by this theorem is that there
can be at most 3 such curves, while Theorem [3] shows that 2 is in fact the sharp
maximum number of resonance lines. This discrepancy is clearer if we examine
the Newton polygon for (I5): recalling that R; ~ C;h” we see that the vertices
involved are

(B1+ B3,0), (B2 + B3,201), (B1+ B2,2la), (0,201 + 205).

A priori, this many vertices could yield a Newton diagram with 3 nonvanishing finite
slopes, hence we conclude naively from Theorem [7] that there could be at most 3
possible values of 7. Note, encouragingly, that the form of the secular determinant
established in the proof of Theorem [7|is indeed giving the sharp overall form of
the equation (I5). But it turns out on closer inspection of the equation that not
every possible Newton polygon can arise here. In particular, under the assumption
(I7) (which we recall is always valid up to reversing the xz-coordinate), the vertex
(B1 + B2, 20s) always lies strictly above the line (0,2¢; + 2¢5,0)(81 + 33,0), hence
cannot lie in the Newton polygon. Thus there can be either two or one nonzero
finite slopes in the Newton polygon, depending on whether (85 + 3, 2¢1) lies below
or above this line; this is determined by the condition

Bily 2 PBaly + Bals + B3ty
i.e. agrees with the analysis of the cases in Remark [4] (See Figure[T])
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4

< (0, 201 + 262)

\

‘\ o (/81 +/8272£2)

N (B + B, 200)

~
~
~
~

~~*~ (Bl +B3a0)

~
roy

N
x4

FicUre 1. Newton polygon for the case N = 3. The Newton
polygon is the union of the dashed lines forming the boundary of
the shaded region. The point (51 + f2,2¢2) does not lie on the
boundary of the shaded region, i.e., is not in the Newton polygon.
This depicts the case B2l + Bols + B3l < (143, which guaran-
tees that (82 + Ps,2¢1) does lie in the Newton polygon, hence two
distinct nonzero finite slopes arise.

5. SOME NUMERICAL STUDIES AND DISCUSSION OF THE RESULTS

We can program the secular determinant matrix Ay = An(z) from the proof of
Theorem[7]into the software program Mathematica, and study the resulting complex
equations

(30) det(I — An(2)) = 0.

Resonances occur at solutions to (30). It is particularly informative to plot the
argument of the left hand side of (30); then poles become clear points about which
the phase angle winds. Such plots allow us to numerically observe the results
in Theorems and [3] in the case of 2 or 3 delta functions, and to test the
bounds of what we can prove in the general case in Theorem [l Our findings
are presented in Figure|2| and Figure |3| respectively. Throughout, we have taken
h = 1075 and plotted the argument on a region of the complex plane such that
1-3h<Rez<1+3hand —3h <Imz < 0.

In Figure 2] we observe that for N = 2, we have one line of resonances as in
Theorem This line is demonstrated in the top image with 81 = 1, 82 = .5,
1 = —10 and x5 = 5\/5, which give

Bt b

Imz ~
(2 — 1)

hlog(1/h) ~ —6-107".

Meanwhile for N = 3, we can choose (31, 82, 83 such that we are either in the setting
of Theorem [3] Case (1) (bottom left) or Theorem [3] Case (2) (bottom right). In
these cases, we took x1 = =5, o =0, x3 = 3v/2, with b1 = Py = B3 =1 and hence

hlog(1/h) ~ —3-1077,
(s — 1) g(1/h)
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-3.x1076
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-2.x1078 |

-25x1070 [
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FIGURE 2. (Top) A plot showing the resonances arising in the
setting of N = 2 delta functions, and a legend for the plot showing
the correspondence between colors and complex arguments of the
left hand side of (30). (Bottom) The cases of N = 3 delta functions
in the setting of one line of resonances from Theorem [3] Case (1)
(Left) and two lines of resonances from Theorem [3] Case (2)

(Right).
0F oF
-5.x1077 | ;
-5.x1077
~1.x1078
-1.5x1078 | -1.x1078
—2.x1078 |
-15x1078 |
~25x1076 |
-3.x10°6 ~2.x1078
0.999997 0.999998 0.999999 1.000000 1.000000 1.000000 1.000000 0.9

0F
-5.x1077 |
~1.x1078 |
-1.5x1078 |
-2.x1078 |

-25x1070

-3.x

0

-5.x1077 |

-1.x1078

-15x1078 |

-6

99998 0.999999 1.000000 1.000000 1.000000

1078 ~2.x10
0.999997 0.999998 0.999999 1.000000 1.000000 1.000000 1.000000 0999998  0.999999 1.000000 1.000000 1.000000

FI1GURE 3. (Top) A plot showing the resonances arising in the
setting of N = 5. (Bottom) The cases of N = 6. In both cases, by
varying values of § and ¢, we can generate either multiple resonance
lines or only one line.

for the image on the left and 5y = .9, 82 = .1, 83 = 1 and hence

Bz — B2 -6

Imzy ~—————"hlog(l/h) ~ —1.5-10"",
S gy M es(1/P)

B1 + B2 _6

Imz_. ~—————="hlog(l/h) ~ —1.4-10"",
Sia M os(1/)

2023

for the image on the right. These plots match the results of our theorem perfectly.
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In Figure[3] we demonstrate that in the case of either N =5 or N = 6, we can
achieve a variety of outcomes. Indeed, setting §; = 1 for all j, we observe what
appears to be a single line of resonances looking at the figures on the left. Selecting
B values that lead to different interaction strengths, we convincingly observe three
resonance lines in the top right plot computed with 1 = =5, xo = —V2, z3 = 0,
2y =2V2, x5 =Tand B =1, Bo = 6, B3 = .1, By = .6, B5 = 1. A similar
result holds for 6 § functions in the bottom right plot using z1 = —7, zo = —2v/2,
x3:—7r/4,m4:\/§,1:5:e,x6:5andﬂ1 =1,062=".1,83=.5,084= .2, f5 = .5,
Bs = 1.

We thus observe that while it does appear possible to generate multiple strings
of resonances, the 2¥~1 — 1 upper bound of Theorem [7] may be far from optimal.
Indeed, it is intriguing that in the case when all 5 values are equal, the numerical
findings are that there is only one string of resonances. Hence there may, for
instance, be symmetry reductions that allow us to dramatically improve the bounds
on the number of resonance lines.
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