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NEWTON POLYGONS AND RESONANCES OF MULTIPLE

DELTA-POTENTIALS

KIRIL DATCHEV, JEREMY L. MARZUOLA, AND JARED WUNSCH

Abstract. We prove explicit asymptotics for the location of semiclassical
scattering resonances in the setting of h-dependent delta-function potentials on
R. In the cases of two or three delta poles, we are able to show that resonances
occur along specific lines of the form Im z ∼ −γh log(1/h). More generally, we
use the method of Newton polygons to show that resonances near the real
axis may only occur along a finite collection of such lines, and we bound the
possible number of values of the parameter γ. We present numerical evidence
of the existence of more and more possible values of γ for larger numbers of
delta poles.

1. Introduction

We consider certain “leaky” semiclassical quantum systems where most of the
energy escapes to infinity but some h-dependent fraction is trapped. In such set-
tings, it has often been observed that strings of resonances occur along curves
Im z ∼ −γh log(1/h) for certain values of γ related to the geometry. This has been
observed, with varying degrees of precision, in scattering with nonsmooth poten-
tials on the real line [14], [18]; scattering by multiple delta singularities in R3 [17];
scattering between a corner and an analytic obstacle [5]; scattering on a manifold
with conic singularities [7], [10], [13]; and scattering by thin barriers, modeled by
h-dependent δ-potentials [6], [11]. In some of these settings where the geometry
of trapping is relatively simple, e.g., [5], [6], the structure of all resonances near
the real axis can be precisely understood, with one or more strings of resonances
occurring at

(1) Im z ∼ −γh log(1/h),

for certain values of γ and no others present. More generally, however, the picture is
muddier, with some information known about O(h log(1/h))-width resonance-free
regions near R and in some cases about existence of a limited region in which the
resonances are distributed as in (1).

Here we analyze a situation in which the geometry of trapping is complicated
enough to generate multiple strings of resonances of the form (1), and moreover
for that structure to vary interestingly as we tune the parameters of the problem.
This is the situation of several thin barriers on R, modeled by potentials of the
form h1+βδ(x), β > 0. One dimensional problems with delta function barriers have
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been studied before in [2, Section II.2], [6], [8], [12], [15], [16] but only the second
reference considered our asymptotic regime, and that only in a very special case.
In the case of two and three delta poles, we are able to analyze the distribution of
resonances very precisely: in the former case, there is a single curve of resonances
near the real axis with Im z ∼ −γh log(1/h) (Theorem 1); in the latter, there may
be either one or two such families instead (Theorem 3). In particular, in the latter
case there is one family if the deltas all have equal strength. In [17, Appendix A],
Zerzeri computes resonances of multiple delta poles in R3 and finds analogously
that they are all asymptotic to a single logarithmic curve.

In the more general case of N δ-potentials, we are able to constrain the locations
of resonances by analyzing the secular determinant that governs their locations
in terms of its Newton polygon. We show (Theorem 7) that in any set Im z ≥
−Mh log(1/h) there may be no more than 2N−1−1 possible values for the parameter
γ in (1), and that all such possible values may be simply expressed in terms of the
various strengths β of the potential poles and differences of distances among them.

2. General setup

Consider the semiclassical Hamiltonian on the real line

P = −h2∂2
x + V (x), V (x) =

N∑

j=1

Vjδ(x− xj), h > 0,

where x1 < · · · < xN , and each Vj = Cjh1+βj for some Cj ∈ R \ {0} and βj > 0.
A resonant state u is an outgoing distributional solution to

(2) (−h2∂2
x + V − z2)u = 0,

and a resonance is a value of z ∈ C for which a resonant state exists. More
explicitly, define Ij for j = 0, . . . , N , by I0 = (−∞, x1], Ij = [xj , xj+1] when
1 ≤ j ≤ N − 1, and IN = [xN ,+∞). If (2) holds in the sense of distributions, then
u = v+j e

izx/h + v−j e
−izx/h on Ij , with appropriate continuity and jump conditions

(which we state in (3) and (4)) at each xj . Such a solution u is outgoing if it is
not identically zero and if v−N = v+0 = 0. See Section 2.1 et seq. of [9] for an
introduction to resonances.

For (2) to hold we need u to be continuous at each xj , i.e., the continuity
condition is

(3) −v−j−1e
−ixjz/h − v+j−1e

+ixjz/h + v−j e
−ixjz/h + v+j e

+ixjz/h = 0.

Moreover, u′ must have a jump at each xj so that (h2∂2
x + z2)u contains a multiple

of δ(x− xj) which equals Vju(xj)δ(x− xj). That leads to the jump condition

hz

i

(
v−j−1e

−izxj/h − v+j−1e
+izxj/h − v−j e

−izxj/h + v+j e
+izxj/h

)

+ Vj(v
−
j e

−ixjz/h + v+j e
+ixjz/h) = 0.

(4)

To bring the continuity and jump conditions (3) and (4) to a more manageable
form, we now require z '= 0, set

(5) Υj =
Vj

2izh
=

Cjhβj

2iz
,

and take
w = e−iz/h, y+j = v+j e

ixjz/h, y−j = v−j e
−ixj+1z/h.
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NEWTON POLYGONS AND RESONANCES OF DELTA-POTENTIALS 2011

These are the values of the amplitudes immediately following interaction with the
potential poles.

Let %j = xj+1 − xj = |Ij |. Our continuity and jump equations (3) and (4) now
read {

−y−j−1 − y+j−1e
i"j−1z/h + y−j e

i"jz/h + y+j = 0,

y−j−1 − y+j−1e
i"j−1z/h + y−j e

i"jz/h(−1− 2Υj) + y+j (1− 2Υj) = 0.

Adding these equations yields

(6) y+j = Tje
i"j−1z/hy+j−1 +Rje

i"jz/hy−j

with

(7) Tj =
1

1−Υj
, Rj =

Υj

1−Υj
.

Subtracting 1− 2Υj times the first from the second yields likewise

(8) y−j−1 = Tje
i"jz/hy−j +Rje

i"j−1z/hy+j−1.

In the extreme cases j = 0 or N we simply get the special cases where there is no
reflection:

y+N = TNei"N−1z/hy+N−1

and
y−0 = T1e

i"1z/hy−1 .

Note that these components are completely determined by the others.

3. Logarithmic strings for two and three deltas

In this section we consider the simpler cases N = 2 and N = 3, in which our
description of the resonances is more complete.

3.1. Two deltas. Let N = 2, and put %1 = %.

Theorem 1. All resonances obeying 1/2 ≤ |z| ≤ 2 and Re z > 0 are given by

(9) zk =
πhk

%
− i

β1 + β2

2%
h log(1/h) +O(h),

for some positive integers k. Moreover, for any δ such that δ < 1 and δ ≤
min(β1,β2) we have

(10) Re zk =
πh

%

(
k +

H(C1C2)

2
+O(hδ)

)
,

where H is the Heaviside function, and

(11) Im zk =
h

2%

(
− (β1 + β2) log(1/h) + log

( |C1C2|%2

4π2h2k2

)
+O(hδ)

)
.

Proof. In this case we have

y+1 = R1e
i"z/hy−1 , y−1 = R2e

i"z/hy+1 ,

and so resonances occur if and only if

(12) e−2i"z/h = R1R2.

Take the logarithm of both sides of (12) and multiply through by ih/2% to get

(13) z =
ih

2%
log(R1R2) +

πhk

%
,
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where k is an integer. Substituting

(14) log(R1R2) = log
( −C1C2hβ1+β2

4z2(1−Υ1)(1−Υ2)

)
= −(β1 + β2) log(1/h) +O(1),

into (13) gives

z =
πhk

%
− i

β1 + β2

2%
h log(1/h) +O(h).

It is clear that if πhk ≤ %/3 or πhk ≥ 3% then the right hand side is not in
{z ∈ C : (z > 0 and 1/2 ≤ |z| ≤ 2} for h small. Hence, to establish (9), is enough
to prove that, for h small enough, if k is such that %/3 ≤ πhk ≤ 3%, then (13) has
a unique solution z in the half-annulus A = {z ∈ C : (z ≥ 0 and 1/4 ≤ |z| ≤ 4}.

For this we apply Rouché’s theorem (the Corollary of Section 5.2 of [1]) with
f(z) = z − 1

"πhk and g(z) = ih
2" log(R1R2) on the half-annulus A (note that g is

analytic on A by Corollary 2 of Section 4.4 of [1]). Since f(z) = 0 obviously has
a unique solution in A, it is enough to check that |g(z)| < |f(z)| on ∂A. For that,
note that on ∂A we have |f(z)| ≥ 1/12 and use (14).

Finally, to get (10) and (11), note that (12), (14) yield z2= π2h2k2

"2 +O(h log(1/h));
since Υj = O(hβj ),

log(R1R2) = log
( −C1C2hβ1+β2

4z2(1−Υ1)(1−Υ2)

)

= −(β1 + β2) log(1/h) + log
(−C1C2%2

4π2h2k2

)
+O(hδ).

Inserting this into (13) yields (10), (11). !

3.2. Three deltas. For N = 3 we use w = e−iz/h and write

y−2 = R3w
−"2y+2 , y+1 = R1w

−"1y−1 ,

and plugging those into the equations for y+2 and y−1 gives

y+2 = R1T2w
−2"1y−1 +R2R3w

−2"2y+2 ,

y−1 = R1R2w
−2"1y−1 + T2R3w

−2"2y+2 .

These equations have a nontrivial solution if and only if

R1R
2
2R3w

−2"1−2"2 −R1R2w
−2"1 −R1T

2
2R3w

−2"1−2"2 −R2R3w
−2"2 + 1 = 0.

Since T2 = R2 + 1, another way to write this is

(15) w2"1+2"2 −R1R2w
2"2 −R2R3w

2"1 −R1(1 + 2R2)R3 = 0.

If the delta functions are equally spaced, this can be solved using the quadratic
formula and works out similarly to the case of two deltas.

Theorem 2. If %1 = %2 = %, then there are positive real numbers γ+ and γ− (which
may or may not be distinct, depending on %, β1, β2, β3), such that all resonances
obeying 1/2 ≤ |z| ≤ 2 and Re z > 0 are given by

z+k =
πhk

%
− iγ+h log(1/h) +O(h), z−k =

πhk

%
− iγ−h log(1/h) +O(h),

for some positive integers k.
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Simple explicit formulas for the γ± can be obtained either by elaborating the
calulation in the proof of Theorem 2 (which is a more complicated version of the
one in Theorem 1), or as special cases of the ones in Theorem 3. More precise
asymptotics for the real and imaginary parts of z±k , as in (10) and (11), follow as
in the proof of Theorem 1.

Proof. By the quadratic formula, (15) is equivalent to

(w2" − r−)(w
2" − r+) = 0,

where

r± =
1

2

(
(R1 +R3)R2 ±

√
(R1 +R3)2R2

2 + 4R1(1 + 2R2)R3

)
.

By the same argument as in the proof of Theorem 1 we get strings of resonances

z±k =
πhk

%
+

ih

2%
log r±,

where log r± = −γ±% log(1/h) +O(1) for some γ± > 0.
There are various ways to choose the βj so as to make either γ+ '= γ− or γ+ = γ−.

For example, if β1 + 2β2 < β3, then R3 = O(R1R2
2h

δ) for some δ > 0, and thus
r± = 1

2 (R1R2 ±R1R2 +O(R1R2hδ)), and γ+ '= γ−.
On the other hand, if for example β1 < β3 < β1+2β2, then we get r± ∼ ±

√
R1R3

and hence γ+ = γ−. !
Theorem 3 gives necessary conditions on the logarithmic curves the resonances

can approach when %1 is not necessarily equal to %2.

Theorem 3. Let %1, %2, β1, β2, β3 be given. Let h1, h2, . . . be a sequence of
positive numbers tending to 0. Let z = z(hj) be a sequence of resonances such
that z = ho(1) (i.e. such that z(hj) = ef(hj) for some f : (0, h1] → C obeying
|f(h)| = o(log(1/h))) and Im z ≥ −Mh log(1/h) for some positive M . Then this
sequence has a subsequence such that

(16)
Im z

h log(1/h)
→ −γ,

for some γ ∈ {γ+, γ−}, where γ+ and γ− are determined as follows:

(1) If β3%1 − β2%1 − β2%2 ≤ β1%2 ≤ β2%1 + β2%2 + β3%1, then

γ+ = γ− =
β1 + β3

2%1 + 2%2
.

(2) If β3%1 − β2%1 − β2%2 > β1%2, then

γ+ =
β3 − β2

2%2
> γ− =

β1 + β2

2%1
.

(3) If β2%1 + β2%2 + β3%1 < β1%2, then

γ+ =
β1 − β2

2%1
> γ− =

β2 + β3

2%2
.

Remark 4. Note that because the resonances of −h2∂2
x + V (−x) are the same as

the resonances of −h2∂2
x + V (x), it is no loss of generality to make the simplifying

assumption

(17) β3%1 ≤ β1%2.
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Then the three cases of the theorem reduce to the following two:

(1) If β1%2 ≤ β2%1 + β2%2 + β3%1, then

γ+ = γ− =
β1 + β3

2%1 + 2%2
.

(2) If β2%1 + β2%2 + β3%1 < β1%2, then

γ+ =
β1 − β2

2%1
> γ− =

β2 + β3

2%2
.

One can interpret (2) as corresponding to the case in which the middle delta is
strong enough to split the interval (x1, x3) at x2, and (1) as corresponding to the
case in which it is not.

Note also that in each of the limiting situations β1 → ∞ or β2 → ∞, which each
correspond to one of the delta functions becoming vanishingly small, the resonances
converge to those of a two-delta problem as in Theorem 1.

Proof. As noted above, we may without loss of generality proceed under the as-
sumption (17), and show the simpler version of the theorem in Remark 4.

After passing to a subsequence, we have Im z/h log(1/h) → −γ for some γ ∈
[−∞,M ], and so w = hγ+o(1). By the reflection coefficient formulas (5) and (7)

and using z = ho(1), we have Υj = Cj

2i h
βj+o(1) and hence Rj = hβj+o(1), and thus

the resonance equation (15) implies that γ > 0.
Next, we eliminate y−1 and y+2 from (6) and (8), the equations for the y±j , by

writing

y−2 = R3w
−"2y+2 , y+1 = R1w

−"1y−1 ,

which gives

y+2 = R1T2w
−2"1y−1 +R2R3w

−2"2y+2 ,

y−1 = R1R2w
−2"1y−1 + T2R3w

−2"2y+2 .

We now substitute w = hγ+o(1), Tj = ho(1), and Rj = hβj+o(1).
That gives

y+2 = hβ1−2"1γ+o(1)y−1 + hβ2+β3−2"2γ+o(1)y+2 ,(18)

y−1 = hβ1+β2−2"1γ+o(1)y−1 + hβ3−2"2γ+o(1)y+2 .(19)

We now consider three cases according to whether the y+2 terms on the left and on
the right of (18) have comparable sizes or whether one dominates the other.

Case I. If the sizes are comparable, i.e., if

(20) β2 + β3 − 2%2γ = 0

then we use (15), and observe that the w2"1+2"2 and R2R3w2"1 terms both equal
hβ2+β3+2"1γ+o(1), R1R2w2"2 = hβ1+2β2+β3+o(1), and R1(1 + 2R2)R3 = hβ1+β3+o(1).
So the w2"1+2"2 and R2R3w2"1 terms need to be at least as big as the R1(1+2R2)R3

term, and they need to cancel one another; the former condition means we need
β2 + β3 + 2%1γ ≤ β1 + β3, i.e., by (20), β2%2 + β2%1 + β3%1 ≤ β1%2.

Case II. If the term on the right is dominant, i.e., if β2 + β3 − 2%2γ < 0, then
(18) becomes

y+2 = hβ1−β2−β3+2"2γ−2"1γ+o(1)y−1 ,
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which, inserted into (19), gives

y−1 = hβ1+β2−2"1γ+o(1)y−1 + hβ1−β2−2"1γ+o(1)y−1 = hβ1−β2−2"1γ+o(1)y−1 .

Hence 0 = β1 − β2 − 2%1γ, or γ = β1−β2

2"1
. This requires (β2 + β3)%1 < (β1 − β2)%2.

Case III: If the term on the left is dominant, i.e., if β2+β3−2%2γ > 0, then (18)
becomes

y+2 = hβ1−2"1γ+o(1)y−1 ,

which, inserted into (19), gives

y−1 = hβ1+β2−2"1γ+o(1)y−1 + hβ1+β3−2"1γ−2"2γ+o(1)y−1 .

Of these three terms, two must be of the same size and the other must be no bigger.
We accordingly have three subcases.

Subcase 1: If the term on the left is the small one, then β1+β2−2%1γ = β1+β3−
2%1γ − 2%2γ ≤ 0. That means γ = β3−β2

2"2
and we require β1%2 + β2%2 + β2%1 ≤ β3%1.

This contradicts (17).
Subcase 2: If the first term on the right is the small one, then 0 = β1+β3−2%1γ−

2%2γ ≤ β1+β2−2%1γ. That means γ = β1+β3

2"1+2"2
, and then we need (β2+β3)(%1+%2) >

(β1 + β3)%2 ≥ (β3 − β2)(%1 + %2) which is equivalent to β2%1 + β2%2 + β3%1 > β1%2 ≥
β3%1 − β2%1 − β2%2.

Subcase 3: If the second term on the right is the small one, then 0 = β1 + β2 −
2%1γ ≤ β1 +β3 − 2%1γ− 2%2γ. That means γ = β1+β2

2"1
and we require %2(β1+β2) ≤

(β3 − β2)%1. This contradicts (17).
In summary, under the assumption (17), we have three possible values of γ, each

with a corresponding necessary condition on the coefficients:

• If γ = β2+β3

2"2
, then β2%1 + β2%2 + β3%1 ≤ β1%2.

• If γ = β1−β2

2"1
, then β2%1 + β2%2 + β3%1 < β1%2.

• If γ = β1+β3

2"1+2"2
, then β1%2 < β2%1 + β2%2 + β3%1.

The conclusions of the theorem follow from these. !

4. N deltas

In this section we generalize the observations in the special cases of two and three
delta-poles to the general case of N poles: the main tool, as before, is simply exami-
nation of the leading terms in the (generally transcendental) equations determining
their location. To aid in understanding those terms, we begin by introducing the
machinery of Newton polygons, a traditional tool in the study of resolution of plane
algebraic curves which also applies in the setting studied here.

4.1. Newton polygons. Here we explore how Newton polygons apply to the anal-
ysis of equations of a form generalizing e.g. (15) which (as we will show below) arise
in the study of the more general case. In particular, let

p(h,w) =
N∑

j=0

hνj+o(1)wλj ,

where all exponents νj , λj are real and nonnegative. Note, we take the polygon
to contain the semi-infinite horizontal and vertical segments, which seems to differ
slightly from standard conventions in the Newton Polygon literature.
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Definition 5. The Newton polygon is of p is the boundary of the convex hull of
the union of the first quadrants displaced to have vertices at the points (νj ,λj):

∂ Conv
N⋃

j=0

((νj ,λj) + [0,∞)2).

See Figure 1 for an example, and see [4, Section 8.3] for the classical algebro-
geometric theory of Newton polygons.

Lemma 6. Consider the equation

(21) p(h,w) ≡
N∑

j=0

hνj+o(1)wλj = 0,

where all exponents νj , λj are real and nonnegative. Suppose that, for all j ≥ 1,
we have νj > ν0 and λj < λ0. Fix any M > 0. Then any sequence of roots of
the equation w = w(h) for h ∈ (0, 1) with |w|−1 = O(h−M) has a subsequence that
asymptotically satisfies (as h ↓ 0)

log |w| ∼ γ log h

where −1/γ is one of the finitely many nonzero slopes occurring in the Newton
polygon of p.

Proof. Say we have a family of solutions w = w(h) with h ↓ 0 and (without
loss of generality) with |w|−1 ≤ h−M . Then since log |w| ≥ M log h, the ratio
log |w|/ log h lies in (−∞,M), hence along a subsequence, log |w|/ log h converges
to γ ∈ [−∞,M ].

We first rule out the case γ ≤ 0, much as in the proof of Theorem 3. If γ ≤ 0
then for any ε > 0, |w| > hε for h sufficiently small. Hence for all j ≥ 1, choosing ε
sufficiently small yields

hνj+o(1)|w|λj

hν0+o(1)|w|λ0
≤ hνj−ν0+o(1)h−ε(λ0−λj) → 0.

Thus the term in p given by hν0+o(1)wλ0 is dominant, and it cannot be cancelled
by the other terms and hence (21) cannot hold. Hence we may take γ > 0 finite
and assume, passing to our subsequence, that log |w| = (γ + o(1)) logh.

Then

(22)
N∑

j=0

hνj+γλj+o(1) = 0.

If the minimum exponent νj + γλj occurring in the sum is unique, then as h ↓ 0,
the term hνj+γλj+o(1) dominates all other terms in the sum for h sufficiently small,
hence (21) again cannot hold. So the minimum exponent in (22) must occur in at
least two terms, say j and k; in particular, then,

νj + γλj = νk + γλk,

and γ = −(νk − νj)/(λk − λj) is the negative reciprocal of the slope of the line
connecting these two points.

We claim that the minimality of the exponent

ρ ≡ νj + γλj = νk + γλk
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further entails that the segment (νj ,λj)(νk,λk) is in the Newton polygon, which
will complete our characterization of γ as the negative reciprocal of the slope of a
segment of the Newton polygon. To see this, we first observe that minimality of ρ
means for every i, ρ ≤ νi + γλi. Since for every s ∈ R,

ρ = sνj + (1− s)νk + γ(sλj + (1− s)λk)

the point s(νj ,λj) + (1− s)(νk,λk) cannot lie in the quadrant (νi,λi) + (0,∞)2, as
this would imply ρ > νi + γλi. Thus we have shown that minimality of ρ means
that the interior of every quadrant (νi,λi) + [0,∞)2 lies above the line

L ≡ {s(νj ,λj) + (1− s)(νk,λk) : s ∈ R},

hence the convex hull of the quadrants (νi,λi) + [0,∞)2 lies entirely in the closed
half-space above L. Since the segment (νj ,λj)(νk,λk) of L does lie in the convex
hull of the vertices, it must be in the Newton polygon, as asserted. !

4.2. Analysis of the secular determinant. We now employ the method of New-
ton polygons introduced above to analyze the case of N delta poles; the main prob-
lem is to find a good description of the secular determinant arising in the equations
for a putative resonant state.

In the following, we employ multiindex notation for combinations of exponents
βj (j = 1, . . . , N) and lengths %j (j = 1, . . . , N), e.g. writing σ · β =

∑
j σjβj .

Note that our result on this general case of N deltas, like our Theorem 3 on three
arbitrarily spaced deltas, focuses on resonances in a narrower region of C than in
Theorems 1 and 2: the imaginary part is a priori O(h log(1/h)).

Theorem 7. Consider the Hamiltonian on the real line

P = −h2∂2
x + V (x), V (x) =

N∑

j=1

Vjδ(x− xj),

where x1 < · · · < xN , and each Vj = Cjh1+βj for some Cj ∈ R and βj > 0.
Let z = z(hj) be a sequence of resonances such that z = ho(1) (as in Theorem

3) and Im z ≥ −Mh log(1/h) for some positive M . Then this sequence has a
subsequence such that Im z ∼ −γh log(1/h) where γ is one of at most 2N−1 − 1
values. All possible values of γ are positive numbers of the form

σ+ · β − σ− · β
2(α+ · %− α− · %)

for some σ± ∈ {0, 1, 2}N and α± ∈ {0, 1}N−1, where %j = xj+1 − xj .

Remark 8. As of the publication of this paper, Theorem 7 has been considerably
refined in work of Brady [3], who obtains sharp estimates on the number of values
of γ that may arise.

Proof. Setting w = e−iz/h, we recall that the condition Im z ≥ −Mh log(1/h) yields
|w|−1 ≤ h−M .

We collect the components (y−1 , y
+
1 , . . . , y

−
N−1, y

+
N−1) into a vector, which lies in

the nullspace of AN − I where AN is the 2(N − 1)× 2(N − 1) matrix given by the
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equations (6), (8):




0 R2w
−!1 T2w

−!2 0 0 . . . 0 0 0

R1w
−!1 0 0 0 0 . . . 0 0 0

0 0 0 R3w
−!2 T3w

−!3 . . . 0 0 0

0 T2w
−!1 R2w

−!2 0 0 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 0 0 0 . . . 0 0 RNw−!N−1

0 0 0 0 0 . . . TN−1w
−!N−2 RN−1w

−!N−1 0




.

The general pattern is that of a pentadiagonal matrix with zeros on the diagonal
and overlapping blocks

(
0 0 Rj+1w−"j Tj+1w−"j+1

Tjw−"j−1 Rjw−"j 0 0

)
,

which arises in the rows y−j , y
+
j and columns y+j−1, y

−
j , y

+
j , y

−
j+1.

Note that in the base case N = 2 we get the matrix
(

0 R2w−"1

R1w−"1 0

)

and

(23) det(A2 − I) = 1−R1R2w
−2"1 .

We claim that just as in this example, we always get only even powers of w−"j , i.e.
that we may, more generally, express

(24) det(AN − I) =
∑

α∈{0,1}N−1

aαw
−2α·"

where the coefficients aα are composed of (unspecified) sums of products of Tj and
Rj ’s. This will follow from the following more general lemma.

Lemma 9. Let WN be a 2(N − 1)× 2(N − 1) matrix of the form




σ1 R2w
−!1 T2w

−!2 0 0 . . . 0 0 0

R1w
−!1 σ2 0 0 0 . . . 0 0 0

0 0 σ3 R3w
−!2 T3w

−!3 . . . 0 0 0

0 T2w
−!1 R2w

−!2 σ4 0 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 0 0 0 . . . 0 σ2N−3 RNw
−!N−1

0 0 0 0 0 . . . TN−1w
−!N−2 RN−1w

−!N−1 σ2N−2





where each σj ∈ {0,−1}. Then detWN is of the form.

(25)
∑

α∈{0,1}N−1

aαw
−2α·"

where each aα is a sum of products of Tj and Rj’s.

The greater generality of taking σj terms on the diagonal rather than all −1’s is
of no interest except that it enables the following inductive proof to work.

Proof of Lemma. The result holds for N = 2 since we get σ1σ2 − R1R2w−2"1 .
We now proceed inductively. For brevity we denote an entry of the form Riw−"j

or Tiw−"j simply Lj (as we will never employ any cancellation among terms, the
ambiguity in the index i and the difference between Ti and Ri are of no importance);
we also write± to be independent and completely unimportant signs in the following
computation. We simply need to show that each Lj appears in each summand in
the determinant either not at all or as L2

j .

Licensed to Univ of N C at Chapel Hill. Prepared on Wed May 22 21:09:22 EDT 2024 for download from IP 152.2.176.242.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEWTON POLYGONS AND RESONANCES OF DELTA-POTENTIALS 2019

In our abbreviated notation, we now have

WN =





σ1 L1 L2 0 0 . . . 0 0 0
L1 σ2 0 0 0 . . . 0 0 0
0 0 σ3 L2 L3 . . . 0 0 0
0 L1 L2 σ4 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . 0 σ2N−3 LN−1

0 0 0 0 0 . . . LN−2 LN−1 σ2N−2





.

Decomposing WN by cofactors in the first column yields

(26)

σ1 det





σ2 0 0 0 . . . 0 0 0
0 σ3 L2 L3 . . . 0 0 0
L1 L2 σ4 0 . . . 0 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 . . . 0 σ2N−3 LN−1

0 0 0 0 . . . LN−2 LN−1 σ2N−2





− L1 det





L1 L2 0 0 . . . 0 0 0
0 σ3 L2 L3 . . . 0 0 0
L1 L2 σ4 0 . . . 0 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 . . . 0 σ2N−3 LN−1

0 0 0 0 . . . LN−2 LN−1 σ2N−2





≡ σ1 detBN − L1 detCN .

We deal with these terms as follows. Decomposing BN further by cofactors in its
first row gives a single term that equals σ1σ2 times the determinant of a matrix of
the form WN−1, which by the inductive hypothesis is a sum of terms of the form
coefficient times L2α2

2 . . . L2αN−1

N−1 with αj ∈ {0, 1}; hence this term is of the desired
form.

Likewise, decomposing detCN by cofactors in the first column gives, from the
top left L1 entry, a term L2

1 times a term of the form detWN−1, hence yields a
sum of terms L2

1L
2α2
2 . . . L2αN−1

N−1 by the inductive hypothesis. Finally the L1 entry
in position (3, 1) gives a term

L2
1 det





L2 0 0 . . . 0 0 0
σ3 L2 L3 . . . 0 0 0
0 0 σ5 L3 L4 . . . 0
0 L2 L3 σ6 0 . . . 0
...

...
...

...
. . .

...
...

0 0 0 . . . 0 σ2N−3 LN−1

0 0 0 . . . LN−2 LN−1 σ2N−2





≡ L2
1 detDN .

Now exchanging the first two rows of DN gives another matrix of the form WN−1

but where the (2, 2) entry is necessarily 0 (rather than allowed to be −1). Thus by
induction, this term is also of the desired form. Note that it was this last case that
necessitated allowing the more general σj entries on the diagonal in the inductive
hypothesis. This completes the proof of the lemma. !
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We have now established (24). Recall that the coefficients aα are of the form of
± products of reflection and transmission coefficients Tj and Rj given by (7), with
Υj given by (5). In the region z = ho(1), we have Υj = hβj+o(1), hence

(27)
Tj = 1 + hβj+o(1),

Rj = hβj+o(1),

which implies that the terms aα are all of the form hµ+o(1) for some values of µ
given by sums of powers βj occurring in the reflection coefficients Rj . Since each Rj

appears in at most two rows, we note that the only possibilities for the appearance
of Rj in a coefficient aα are as R

σj

j with σj ∈ {0, 1, 2}.
We have now established that the equation

det(AN − I) = 0

is of the form

(28)
∑

α∈{0,1}N−1

hµα+o(1)w−2α·" = 0.

We now claim further that all terms except the term 1 are of the form hµα+o(1)w−2α·"

where α '= 0 and µα > 0. By (27), this follows from Lemma 10. As above we use
the notation Li to be either Tiw−"j for some i, j, or Riw−"j .

Lemma 10. Every term in the secular determinant det(AN − I) except the diag-
onal term 1 is of the form RjEw−α·" where E is some product of reflection and
transmission coefficients and α '= 0.

In other words, each nonconstant term has at least one reflection coefficient and
a negative power of w.

Proof. We again work by induction. By (23), the result certainly holds for N = 2.
Cofactor decomposition as above in the first column then yields

det(AN − I) = (−1) detBN −R1w
−"1 detCN .

Since detCN is a sum of product of reflection and transmission coefficients and
negative powers of w, the second term certainly satisfies the desired conclusion, so
we need only examine the first. The matrix BN is given by

BN =





−1 0 0 0 . . . 0 0 0

0 −1 R3w
−!2 T3w

−!3 . . . 0 0 0

T2w
−!1 R2w

−!2 −1 0 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 0 0 . . . 0 −1 RNw
−!N−1

0 0 0 0 . . . TN−1w
−!N−2 RN−1w

−!N−1 −1




.

Cofactor expansion in the first row now allows us to write detBN = − det(BN−1), a
secular determinant of the same form as det(AN − I), hence the lemma now follows
by induction. !

Now we return to the representation (28) of the secular determinant. Multiplying
through by w2|"| (with |%| ≡

∑
%j in multiindex notation) gives an equation with

positive powers of w :

(29)
∑

α∈{0,1}N−1

hµα+o(1)w2(|"|−α·") = 0.

Licensed to Univ of N C at Chapel Hill. Prepared on Wed May 22 21:09:22 EDT 2024 for download from IP 152.2.176.242.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEWTON POLYGONS AND RESONANCES OF DELTA-POTENTIALS 2021

Here the leading powers µα are all sums of powers arising in the delta potentials of
the form

µ = σ · β
for σ ∈ {0, 1, 2}N . Moreover by the preceding lemma there is a “leading” term
h0w2|"|, with all other terms having both a higher power of h and a lower power of
w.

Thus Lemma 6 applies to show that any sequence of solutions to this equation
with |w|−1 = O(h−M ) has a subsequence with log |w| ∼ γ log h for γ a strictly
negative reciprocal slope arising in the Newton polygon associated to the function
(29). Since there are at most 2N−1 distinct powers of w in this equation there are
at most 2N−1 − 1 nonzero finite slopes in the Newton polygon, and γ may only
take the negative reciprocal of one of these values. Note further that owing to our
characterization of the exponents of h and w, all γ’s are thus of the form

σ+ · β − σ− · β
2(α+ · %− α− · %)

for some σ± ∈ {0, 1, 2}N and α± ∈ {0, 1}N−1.
Now given

log |w| ∼ γ log h

and w = e−iz/h we of course get

Im z ∼ −γh log(1/h)

as desired. !
Remark 11. It is instructive to compare the general result of Theorem 7 to the
special cases of two and three poles analyzed above. In the case of two delta poles,
Theorem 7 correctly implies that as h ↓ 0 there can be at most a single curve of
resonances Im z ∼ −γh log(1/h) within any set Im z > −Mh log(1/h) with M fixed.
In the case of three deltas, however, the bound given by this theorem is that there
can be at most 3 such curves, while Theorem 3 shows that 2 is in fact the sharp
maximum number of resonance lines. This discrepancy is clearer if we examine
the Newton polygon for (15): recalling that Rj ∼ Cjhβj we see that the vertices
involved are

(β1 + β3, 0), (β2 + β3, 2%1), (β1 + β2, 2%2), (0, 2%1 + 2%2).

A priori, this many vertices could yield a Newton diagram with 3 nonvanishing finite
slopes, hence we conclude naively from Theorem 7 that there could be at most 3
possible values of γ. Note, encouragingly, that the form of the secular determinant
established in the proof of Theorem 7 is indeed giving the sharp overall form of
the equation (15). But it turns out on closer inspection of the equation that not
every possible Newton polygon can arise here. In particular, under the assumption
(17) (which we recall is always valid up to reversing the x-coordinate), the vertex
(β1 + β2, 2%2) always lies strictly above the line (0, 2%1 + 2%2, 0)(β1 + β3, 0), hence
cannot lie in the Newton polygon. Thus there can be either two or one nonzero
finite slopes in the Newton polygon, depending on whether (β2+β3, 2%1) lies below
or above this line; this is determined by the condition

β1%2 ≷ β2%1 + β2%2 + β3%1,

i.e. agrees with the analysis of the cases in Remark 4. (See Figure 1.)
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(0, 2%1 + 2%2)

(β1 + β3, 0)

(β1 + β2, 2%2)

(β2 + β3, 2%1)

Figure 1. Newton polygon for the case N = 3. The Newton
polygon is the union of the dashed lines forming the boundary of
the shaded region. The point (β1 + β2, 2%2) does not lie on the
boundary of the shaded region, i.e., is not in the Newton polygon.
This depicts the case β2%1 + β2%2 + β3%1 < β1%2, which guaran-
tees that (β2 + β3, 2%1) does lie in the Newton polygon, hence two
distinct nonzero finite slopes arise.

5. Some numerical studies and discussion of the results

We can program the secular determinant matrix AN = AN (z) from the proof of
Theorem 7 into the software programMathematica, and study the resulting complex
equations

(30) det(I −AN (z)) = 0.

Resonances occur at solutions to (30). It is particularly informative to plot the
argument of the left hand side of (30); then poles become clear points about which
the phase angle winds. Such plots allow us to numerically observe the results
in Theorems 1, 2, and 3 in the case of 2 or 3 delta functions, and to test the
bounds of what we can prove in the general case in Theorem 7. Our findings
are presented in Figure 2 and Figure 3 respectively. Throughout, we have taken
h = 10−6 and plotted the argument on a region of the complex plane such that
1− 3h < Re z < 1 + 3h and −3h < Im z < 0.

In Figure 2, we observe that for N = 2, we have one line of resonances as in
Theorem 1. This line is demonstrated in the top image with β1 = 1, β2 = .5,
x1 = −10 and x2 = 5

√
2, which give

Im z ∼ − β1 + β2

2(x2 − x1)
h log(1/h) ≈ −6 · 10−7.

Meanwhile for N = 3, we can choose β1,β2,β3 such that we are either in the setting
of Theorem 3, Case (1) (bottom left) or Theorem 3, Case (2) (bottom right). In
these cases, we took x1 = −5, x2 = 0, x3 = 3

√
2, with β1 = β2 = β3 = 1 and hence

Im z ∼ − β1 + β3

2(x3 − x1)
h log(1/h) ≈ −3 · 10−7,
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Figure 2. (Top) A plot showing the resonances arising in the
setting of N = 2 delta functions, and a legend for the plot showing
the correspondence between colors and complex arguments of the
left hand side of (30). (Bottom) The cases of N = 3 delta functions
in the setting of one line of resonances from Theorem 3, Case (1)
(Left) and two lines of resonances from Theorem 3, Case (2)
(Right).

Figure 3. (Top) A plot showing the resonances arising in the
setting of N = 5. (Bottom) The cases of N = 6. In both cases, by
varying values of β and %, we can generate either multiple resonance
lines or only one line.

for the image on the left and β1 = .9,β2 = .1,β3 = 1 and hence

Im z+ ∼ − β3 − β2

2(x3 − x2)
h log(1/h) ≈ −1.5 · 10−6,

Im z− ∼ − β1 + β2

2(x2 − x1)
h log(1/h) ≈ −1.4 · 10−6,

for the image on the right. These plots match the results of our theorem perfectly.
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In Figure 3, we demonstrate that in the case of either N = 5 or N = 6, we can
achieve a variety of outcomes. Indeed, setting βj = 1 for all j, we observe what
appears to be a single line of resonances looking at the figures on the left. Selecting
β values that lead to different interaction strengths, we convincingly observe three
resonance lines in the top right plot computed with x1 = −5, x2 = −

√
2, x3 = 0,

x4 = 2
√
2, x5 = 7 and β1 = 1, β2 = .6, β3 = .1, β4 = .6, β5 = 1. A similar

result holds for 6 δ functions in the bottom right plot using x1 = −7, x2 = −2
√
2,

x3 = −π/4, x4 =
√
2, x5 = e, x6 = 5 and β1 = 1, β2 = .1, β3 = .5, β4 = .2, β5 = .5,

β6 = 1.
We thus observe that while it does appear possible to generate multiple strings

of resonances, the 2N−1 − 1 upper bound of Theorem 7 may be far from optimal.
Indeed, it is intriguing that in the case when all β values are equal, the numerical
findings are that there is only one string of resonances. Hence there may, for
instance, be symmetry reductions that allow us to dramatically improve the bounds
on the number of resonance lines.
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