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AN ESCAPE TIME FORMULATION FOR SUBGRAPH DETECTION
AND PARTITIONING OF DIRECTED GRAPHS\ast 
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PETER J. MUCHA\P , AND BRAXTON OSTING\| 

Abstract. We provide a rearrangement based algorithm for detection of subgraphs of k vertices
with long escape times for directed or undirected networks that is not combinatorially complex
to compute. Complementing other notions of densest subgraphs and graph cuts, our method is
based on the mean hitting time required for a random walker to leave a designated set and hit
the complement. We provide a new relaxation of this notion of hitting time on a given subgraph
and use that relaxation to construct a subgraph detection algorithm that can be computed easily
and a generalization to K-partitioning schemes. Using a modification of the subgraph detector on
each component, we propose a graph partitioner that identifies regions where random walks live
for comparably large times. Importantly, our method implicitly respects the directed nature of the
data for directed graphs while also being applicable to undirected graphs. We apply the partitioning
method for community detection to a large class of models and real-world data sets.

Key words. escape time, partitioning, bang-bang
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1. Introduction. Subgraph detection and graph partitioning are fundamental
problems in network analysis, each typically framed in terms of identifying a group
or groups of vertices of the graph so that the vertices in a shared group are well
connected or ``similar"" to each other in their connection patterns while the vertices
in different groups (or the complement group) are ``dissimilar."" The specific notion
of connectedness or similarity is a modeling choice, but one often assumes that edges
connect similar vertices, so that, in general, the detected subgraph is dense and the
``communities"" identified in graph partitioning are very often more connected within
groups than between groups (assortative communities). In the present work, we will
propose and analyze a novel and natural subgraph detection model based on escape
times, after surveying briefly some of the major existing paradigms.
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686 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

The identification of subgraphs with particular properties is a long-standing pur-
suit of network analysis with various applications. Dense subgraphs as assortative
communities might represent coordinating regions of interest in the brain [48, 8] or
social cliques in a social network [49]. In biology, subgraph detection plays a role
in discovering DNA motifs and in gene annotation [31]. In cybersecurity, dense sub-
graphs might represent anomalous patterns to be highlighted and investigated (e.g.,
[80]). See [44] for a recent survey and a discussion of alternative computational meth-
ods. As noted there, some of the existing algorithms apply to directed graphs, but
most do not.

In the corresponding computer science literature, much of the focus has been on
approximation algorithms since the dense k-subgraph is NP-hard to solve exactly (a
fact easily seen by a reduction from the k-clique problem). An algorithm that on
any input (G,k) returns a subgraph of order k (that is, k vertices or ``nodes""; note,
we will sometimes refer to the ``size"" of a graph or subgraph to be the number of
vertices, not the number of edges) with average degree within a factor of at most
n1/3 - \delta from the optimum solution, where n is the order of graph G and \delta \approx 1/60 was
proposed in [25]. This approximation ratio was the best known for almost a decade
until a log-density based approach yielded n1/4+\varepsilon for any \varepsilon > 0 [10]. This remains the
state-of-the-art approximation algorithm. On the negative side it has been shown [46],
assuming the exponential time hypothesis, that there is no polynomial-time algorithm
that approximates to within an n1/(log logn)c factor of the optimum. Variations of the
problem where the target subgraph has size at most k or at least k have also been
considered [1].

Depending on the application of interest, one might seek one or more dense sub-
graphs within the larger network, a collection of subgraphs to partition the network
(i.e., assign a community label to each node), or a set of potentially overlapping sub-
graphs (see, e.g., [79]). While the literature on ``community detection"" is enormous
(see, e.g., [27, 28, 29, 60, 63] as reviews), a number of common thematic choices have
emerged. Many variants of the graph partitioning problem can be formalized as a
(possibly constrained) optimization problem. One popular choice minimizes the total
weight of the cut edges while making the components roughly equal in size [64]. An-
other common choice maximizes the total within-community weight relative to that
expected at random in some model [55]. Other proposed objective functions include
ratio cut weight [13], and approximate ``surprise"" (improbability) under a cumulative
hypergeometric distribution [70]. However, most of these objectives are NP-hard to
optimize, leading to the development of a variety of heuristic methods for approximate
partitioning (see the reviews cited above for many different approaches).

Some of the methods that have been studied are based on the Fielder eigenvector
[26], multicommunity flows [42], semidefinite programming [5, 6, 7], expander flows
[4], single commodity flows [38], or Dirichlet partitions [57, 56, 76]. We note, in
particular, the classic WalkTrap method [59], which, similar to the methods presented
in this paper, emphasizes the idea of ``escape"" from communities; though in contrast
to the present work, in addition to its limitation to undirected graphs, WalkTrap is
typically used to identify candidates that are then comparatively evaluated with other
measures (e.g., modularity). A final relevant heuristic is Personal PageRank and its
variants [32], which find localized clusters of ``similar"" nodes in the sense that random
walkers starting as a seed node will visit the ``similar"" nodes relatively frequently on
a particular timescale. This is, of course, different from escape time as such, but
Personal PageRank has been used in various network clustering schemes [33, 21, 78]
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 687

and has been connected theoretically to (sub)graph conductance and spectral graph
theory (e.g., [2]).

Whichever choice is made for the objective and heuristic, the identified communi-
ties can be used to describe the mesoscale structure of the graph and can be important
in a variety of applications (see, e.g., the case studies considered in [63]). Subgraphs
and communities can also be important inputs to solving problems like graph traversal,
finding paths, trees, and flows; while partitioning large networks is often an important
subproblem for complexity reduction or parallel processing in problems such as graph
eigenvalue computations [11], finding stationary distributions [22] breadth-first search
[16], triangle listing [19], PageRank [62], Personalized PageRank [3], and related al-
gorithms [30, 34]. In addition, clustering methods potentially related to our own for
directed graphs have been introduced in [61] using the map equation, as well as in [9]
using Motif Adjacency matrices. More recently, the ideas of doubly stochastic scaling
have been implemented in [40], which potentially could also be useful for discovering
small scale directed features. A review of the results up to 2013 on directed graph
clustering can be found in [45].

Developed in parallel with the many different computational methods for iden-
tifying communities and small dense subgraphs, theoretical results have provided in-
sights about the limits of detecting such structures in various settings, including the
detectability limits for weak community separation in simple stochastic block mod-
els (see, e.g., [23, 54, 68]) and for small cliques planted in random graphs (see, e.g.,
[53, 67]). Of most relevance to the problems we study in the present contribution,
small cliques planted in Erd\H os--R\'enyi graphs of N nodes with mean density \rho are un-
detectable by spectral methods for cliques with fewer than

\sqrt{} 
N\rho /(1 - \rho ) nodes [53].

In the present work, we consider a different formulation of the subgraph detection
problem, wherein we aim to identify a subgraph with a long mean exit time---that is,
the expected time for a random walker to escape the subgraph and hit its complement.
Importantly, this formulation inherently respects the possibly directed nature of the
edges. This formulation is distinct from either maximizing the total or average edge
weight in a dense subgraph and minimizing the edge cut (as a count or suitably nor-
malized) that is necessary to separate a subgraph from its complement. Furthermore,
explicitly optimizing for the mean exit time to identify subgraphs may in some applica-
tions be preferred as a more natural quantity of interest. For example, in studying the
spread of information or a disease on a network, working in terms of exit times is more
immediately dynamically relevant than structural measurements of subgraph densi-
ties or cuts. Similarly, the development of respondent-driven sampling in the social
survey context (see, e.g., [51, 75]) is primarily motivated by there being subpopula-
tions that are difficult to reach (so we expect they often also have high exit times on
the directed network with edges reversed). We thus argue that the identification of
subgraphs with large exit times is at least as interesting---and typically related to---
those subgraphs with large density and or small cut. Indeed, random walker diffusion
on a network and assortative communities are directly related in that the modularity
quality function used in many community detection algorithms can be recovered as
a low-order truncation of a ``Markov stability"" auto-correlation measurement of ran-
dom walks staying in communities [39]. However, the directed nature of the edges is
fully respected in our escape time formulation of subgraph detection presented here
(cf. random walkers moving either forward or backward along edges in the Markov
stability calculation [52] that rederives modularity for a directed network [41]).

From an optimization point of view, the method presented here can be viewed as a
rearrangemnet method or a Merriman--Bence--Osher (MBO) scheme [47] as applied to
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688 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

Poisson solves on a graph. Convergence of MBO schemes is an active area of research
in a variety of other scenarios; see [18, 35] in the case of continuum mean curvature
flows, [15, 74] in a graph Allen--Cahn type problem, and [36] for a volume constrained
MBO scheme on undirected networks. Similarly, proving convergence rates for our
algorithm by determining quantitative bounds on the number of interior iterations
required for a given \varepsilon is an important question for the numerical method and its
applications to large data sets. Importantly, the method for subgraph detection that
we develop and explore, and then extend to a partitioner, is inherently capable of
working on directed graphs without any modification. Also, searching for related
graph problems where this type of rearrangement algorithm for optimization can be
applied will be an important endeavor.

1.1. A new formulation in graphs. Let G= (V,E) be a (strongly) connected
graph (undirected or directed; we use the term ``graph"" throughout to include graphs
that are possibly directed), with adjacency matrix A with element Aij indicating pres-
ence/absence (and possible weight) of an edge from i to j. We define the (out-)degree
matrix D to be diagonal with values Dii =

\sum 
j Aij . For weighted edges in A this

weighted degree is typically referred to as ``strength,"" but we will continue to use the
word ``degree"" throughout to be this weighted quantity. Consider the discrete time
Markov chain Mn for the random walk described by the (row stochastic) probabil-
ity transition matrix, P := D - 1A. The exit time from S \subset V is the stopping time
TS = inf\{ n\geq 0 :Mn \in Sc\} . The mean exit time from S of a node i is defined by EiTS

(where Ei is the expectation if the walker starts at node i) and is given by vi, where
v is the solution to the system of equations

(I  - P )SSvS = 1S ,(1.1a)

vSc = 0 ,(1.1b)

where the subscript S represents restriction of a vector or matrix to the indices in S.
The average mean escape time (MET) from S is then

\tau (S) =
1

| V | 
\sum 
\nu \in V

v\nu ,(1.2)

representing the mean exit time from S of a node chosen uniformly at random in the
graph (noting that v\nu = 0 for \nu \in Sc). We are interested in finding vertex sets (of
fixed size) having large MET, as these correspond to sets that a random walker would
remain in for a long time. Thus, for fixed k \in N, we consider the subgraph detection
problem,

max
S\subset V
| S| =k

\tau (S).(1.3)

Multiplying (1.1a) on the left by D, we obtain the equivalent system

Lv= d on S,(1.4a)

v= 0 on Sc ,(1.4b)

where L =D  - A is the (unnormalized, out-degree) graph Laplacian, e is the vector
of 1's, and d = De is the out-degree vector. We denote the solution to (1.4) by
v = v(S). While this problem could be viewed as an interesting problem in and of
itself, the authors are unaware how to locate optimizers of such a problem without
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 689

using NP--hard algorithms. As a result, we propose below a regularized version of
(1.3) for which we can develop efficient optimization algorithms. To regularize, for
\varepsilon > 0, we will consider the approximation to (1.4),\bigl[ 

L+ \varepsilon  - 1(1 - \phi )
\bigr] 
u= d,(1.5)

where \phi is a vector and action by (1 - \phi ) on the left is interpreted as multiplication
by the diagonal matrix I  - diag(\phi ). Note that for (1  - \phi )(v) > 0 for any v \in V ,
L + \varepsilon  - 1(1  - \phi ) is invertible since the kernel of L is given by then vector of all 1's,
denoted by e from henceforward. We denote the solution u= u\varepsilon . Formally, for \phi = \chi S ,
the characteristic function of S, as \varepsilon \rightarrow 0, the vector u\varepsilon \rightarrow vS where vS satisfies (1.4).
We can also define an associated approximate MET,

E\varepsilon (\phi ) :=
1

| V | 
\| u\varepsilon \| \ell 1(V ) =

1

| V | 

\bigm\| \bigm\| \bigm\| \bigl[ L+ \varepsilon  - 1(1 - \phi )
\bigr]  - 1

d
\bigm\| \bigm\| \bigm\| 
\ell 1(V )

,(1.6)

where as \varepsilon \rightarrow 0, we have that E\varepsilon (\chi S)\rightarrow 1
| V | \| vS\| \ell 1(V ) = \tau (S). We then arrive at the

following relaxed subgraph detection problem:

max
0\leq \phi \leq 1
\langle \phi ,1\rangle =k

E\varepsilon (\phi ),(1.7)

which we solve and study in this paper. For small \varepsilon > 0, we will study the relationship
between the subgraph detection problem (1.3) and its relaxation (1.7).

We are also interested in finding node partitions with high MET in the following
sense: Given a vertex subset S \subset V , a random walker that starts in S should have
difficulty escaping to Sc and a random walker that starts in Sc should have difficulty
escaping to S.1 This leads to the problem maxV=S\amalg Sc \tau (S) + \tau (Sc). More generally,
for a vertex partition, V =\amalg \ell \in [K]S\ell with [K] = \{ 1,2, . . . ,K\} , we can consider

max
V=\amalg \ell \in [K]S\ell 

\sum 
\ell \in [K]

\tau (S\ell ).(1.8)

Unfortunately, (1.8) is trivially maximized when all nodes fall in the same partition
element, giving an infinite MET. In subsection 2.2.2, we argue that the alternative
formulation that tries to solve

min
V=\amalg \ell \in [K]S\ell 

\sum 
\ell \in [K]

1

1 + \delta | V | \tau (S\ell )
,(1.9)

where \delta > 0 is more appropriate. Similar to the subgraph detection problem, an
algorithm for efficient optimization of (1.9) is unknown to the authors. Hence, we seek
a regularized version where we can similarly compute optimizers using combinatorially
simple, scalable methods. The solution embodies the idea that in a good partition
a random walker will transition between partition components very infrequently. A
first approximation to (1.8) is

max
V=\amalg \ell \in [K]S\ell 

\sum 
\ell \in [K]

E\varepsilon (\chi S\ell 
).(1.10)

1This assumption of symmetry is perhaps not always necessary in applications, and there is
nothing mathematically necessary about it. The advantage of this assumption is that it allows us to
consider high escape time partitions without privileging one partition element over another.
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690 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

We can make an additional approximation by relaxing the constraint set. Define the
admissible class

\scrA K =

\left\{   \{ \phi \ell \} \ell \in [K] : \phi \ell \in R| V | 
+ and

\sum 
\ell \in [K]

\phi \ell = 1

\right\}   .

Observe that the collection of indicator functions for any K-partition of the vertices
is a member of \scrA K . Furthermore, we can see that \scrA K

\sim = (\Delta K)| V | , where \Delta K is the
unit simplex in K dimensions. Thus, the extremal points of \scrA K are precisely the
collection of indicator functions for a K-partition of the vertices. For \delta > 0, a relaxed
version of the modified graph partitioning problem (1.9) can be formulated as

min
\{ \phi \ell \} \ell \in [K]\in \scrA K

\~E\delta ,\varepsilon 

\bigl( 
\{ \phi \ell \} \ell \in [K]

\bigr) 
, where \~E\delta ,\varepsilon 

\bigl( 
\{ \phi \ell \} \ell \in [K]

\bigr) 
=

K\sum 
i=1

1

1 + \delta | V | E\varepsilon (\phi i)
.

(1.11)

For small \varepsilon > 0, we will study the relationship between the graph partitioning prob-
lem (1.9) and its relaxation (1.11). An important feature of (1.11) is that it can
be optimized using rearrangement methods that effectively introduces a volume nor-
malization for the partition sets, while optimization of (1.8) results in favoring one
partition being full volume. We will discuss this further in section 2.2.2 below.

1.2. Outline of this paper. In section 2, we lay the analytic foundation for
rearrangement methods for both the subgraph detection and partitioning problems.
We prove the convergence of the methods to local optimizers of our energy functionals
in both cases and establish the fact that our numerical methods improve the energy
in the desired fashion. To begin, we establish properties of the gradient and Hessian
of the functionals E\varepsilon (\phi ) for vectors 0\leq \phi \leq 1. Then, using those properties, we intro-
duce rearrangement methods for finding optimizers and prove that our optimization
schemes improve the energy. Then, we discuss how to adapt these results to the par-
titioning problem. Lastly, we demonstrate how one can easily add a semisupervised
component to our algorithm.

In section 3, we apply our methods to a variety of model graphs, as well as some
empirical data sets to assess their performance. In the subgraph setting, we consider
how well we do detecting communities in a family of model graphs related to stochas-
tic block models, made up of a number of random Erd\H os--R\'enyi (ER) communities of
various sizes and on various scales. The model graphs are designed such that the over-
all degree distribution is relatively similar throughout. We demonstrate community
detectability and algorithm efficacy thresholds by varying a number of parameters
in the graph models. We also consider directed graph models of cycles connected to
ER graphs, on which our methods perform quite well. For the partitioners, we also
consider related performance studies over our model graph families, as well as on a
large variety of clustering data sets.

We conclude in section 4 with a discussion including possible future directions
and applications of these methods.

2. Analysis of our proposed methods. In this section, we first analyze the
relaxed subgraph detection problem (1.7) and the relaxed graph partitioning problem
(1.11). Then, we propose and analyze computational methods for the problems. As
noted above, we assume throughout that the graph is (strongly) connected.
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 691

2.1. Analysis of the relaxed subgraph detection problem and the re-
laxed graph partitioning problem. For fixed \varepsilon > 0 and \phi \in [0,1]| V | , denote the
operator on the left-hand side (LHS) of (1.5) by L\phi :=D - A+ 1

\varepsilon (1 - \phi ).

Lemma 2.1 (discrete maximum principle). Given the regularized operator L\phi and
a vector f > 0, we have (L - 1

\phi f)\nu > 0 for all \nu \in V . Without strong connectivity, this
result still holds (with > replaced by \geq ) as long as there are no leaf nodes.

Proof. Writing L\phi =
\bigl( 
D+ 1

\varepsilon (1 - \phi )
\bigr) 
 - A, we observe that

L - 1
\phi =

\Biggl( \biggl( 
D+

1

\varepsilon 
(1 - \phi )

\biggr) \Biggl( 
I  - 

\biggl( 
D+

1

\varepsilon 
(1 - \phi )

\biggr)  - 1

A

\Biggr) \Biggr)  - 1

=

\Biggl( 
I  - 

\biggl( 
D+

1

\varepsilon 
(1 - \phi )

\biggr)  - 1

A

\Biggr)  - 1\biggl( 
D+

1

\varepsilon 
(1 - \phi )

\biggr)  - 1

=
\infty \sum 

n=0

\Biggl[ \biggl( 
D+

1

\varepsilon 
(1 - \phi )

\biggr)  - 1

A

\Biggr] n\biggl( 
D+

1

\varepsilon 
(1 - \phi )

\biggr)  - 1

.

Since all entries in the corresponding matrices are positive (by strong connectivity),
the result holds.

For simplicity of notation in the following derivations, we denote the potential as
X := \varepsilon  - 1(1 - \phi ) as well as using X and diag X interchangeably where needed. We
can then consider the related energy functional

E(X) :=
\bigm\| \bigm\| \bigm\| [L+X]

 - 1
d
\bigm\| \bigm\| \bigm\| 
\ell 1(V )

= \| u\| \ell 1(V ).(2.1)

In particular, with this choice of notation, E(X) =E\varepsilon (\phi ).

Lemma 2.2. The gradient of E(X) with respect to X is given by

\nabla E = - u\odot v,(2.2)

where \odot denotes the Hadamard product and

u= (L+X) - 1d, v= (L+X) - T e,(2.3)

and here and throughout we take A - T = (A - 1)T . The Hessian of E(X) with respect
to X is then given by

H =\nabla 2E = (L+X) - 1 \odot W + (L+X) - T \odot WT ,(2.4)

where

W := u\otimes v,

where \otimes is the Kronecker (or outer) product.

Proof. Write ej as the indicator vector for the jth entry. First, differentiating
(2.3) with respect to Xj , we compute

(L+X)
\partial u

\partial Xj
= - ej \odot u =\Rightarrow \partial u

\partial Xj
= - \langle ej , u\rangle (L+X) - 1ej .
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692 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

Taking the second derivative, we obtain

(L+X)
\partial 2u

\partial Xj\partial Xk
= - ej

\biggl\langle 
ej ,

\partial u

\partial Xk

\biggr\rangle 
 - ek

\biggl\langle 
ek,

\partial u

\partial Xj

\biggr\rangle 
= ej\langle ek, u\rangle 

\bigl\langle 
ej , (L+X) - 1ek

\bigr\rangle 
+ ek\langle ej , u\rangle 

\bigl\langle 
ek, (L+X) - 1ej

\bigr\rangle 
,

which implies that

\partial 2u

\partial Xj\partial Xk

=
\bigl\langle 
ej , (L+X) - 1ek

\bigr\rangle 
\langle ek, u\rangle (L+X) - 1ej +

\bigl\langle 
ek, (L+X) - 1ej

\bigr\rangle 
\langle ej , u\rangle (L + X) - 1ek.

By the maximum principle (Lemma 2.1), u is positive and we can write E(X) =
\| u\| \ell 1(V ) = \langle e,u\rangle . Thus, the gradient is

\partial E

\partial Xj
=

\biggl\langle 
e,

\partial u

\partial Xj

\biggr\rangle 
= - \langle (L+X) - T e, ej\rangle \langle u, ej\rangle ,

or in other words

\nabla XE = u\odot v

for u and v as in (2.3).
For the Hessian, we have

\partial 2E

\partial Xj\partial Xk
=

\biggl\langle 
e,

\partial 2u

\partial Xj\partial Xk

\biggr\rangle 
=
\bigl\langle 
ek, (L+X) - 1ej

\bigr\rangle 
\langle u, ej\rangle \langle ek, v\rangle +

\bigl\langle 
ej , (L+X) - 1ek

\bigr\rangle 
\langle v, ej\rangle \langle ek, u\rangle .

Thus, the Hessian can be written

H =\nabla 2E = (L+X) - 1 \odot W + (L+X) - T \odot WT ,

where

W := u\otimes v,

as claimed.

Remark 2.3. If L is symmetric, the above statements can be simplified greatly to
give

H =\nabla 2E = (L+X) - 1 \odot (W +WT ),

where

W +WT := u\otimes v+ v\otimes u=
1

2
(u+ v)\otimes (u+ v) - 1

2
(u - v)\otimes (u - v).

Proposition 2.4. Fix some X\infty > 0. For f > 0 fixed, let u satisfy (L+X)u= f .
The mapping X \mapsto \rightarrow E(X) = \| u\| \ell 1(V ) is strongly convex on \{ X\infty \geq X \geq 0, X \not = 0\} .

Proof. We wish to show that

E(X) = eT (L+X) - 1d
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 693

is convex on [0,X\infty ]n (excluding the origin) for fixed constant X\infty . Defining \~X =
D+X and using the identity L=D - A, this is equivalent to

eT ( \~X  - A) - 1d

being convex on \{ V : di +X\infty \geq \~Xi \geq di\} . Expanding, we have

eT
\Bigl( 
I  - \~X - 1A

\Bigr)  - 1
\~X - 1d= eT

\infty \sum 
k=0

\Bigl( 
\~X - 1A

\Bigr) k
\~X - 1d.

Since the sum of convex functions is convex, it is enough to show that

eT
\Bigl( 
\~X - 1A

\Bigr) k
\~X - 1d

is convex for each k > 0. For fixed k, and using the fact that e, d, and A are
nonnegative, the preceding term is a nonnegative linear combination of terms of the
form

F (x) =
\prod 
i

x - \alpha i
i .

Therefore, we seek to show that F is convex when all entries are positive for any
\alpha = (\alpha 1, . . . , \alpha n) with each \alpha j \geq 0 and at least one \alpha j > 0 for 1 \leq j \leq n.2 To prove
this, we check whether the Hessian is strictly positive definite. Computing second
derivatives gives

\partial 2F

\partial Xi\partial Xi
(X) = F (X)\alpha i(\alpha i + 1)X - 2

i

and

\partial 2F

\partial Xi\partial Xj
(X) = F (X)\alpha i\alpha jX

 - 1
i X - 1

j .

So the Hessian of F is

F (X)
\bigl[ 
(\alpha X - 1)(\alpha X - 1)T +diag(\alpha X - 2)

\bigr] 
,

which is positive semidefinite, being the sum of positive semidefinite matrices.3

To prove positive definiteness (rather than semidefiniteness), recognize that the
k = 0 term contributes a term to the Hessian of the form DX - 2, which is strictly
positive definite on the domain in question. This proves strong convexity.

Proposition 2.4 gives that \phi \rightarrow E\varepsilon (\phi ) is strongly convex on R| V | 
+ , so \{ \phi \ell \} \ell \in [K] \mapsto \rightarrow 

\~E\varepsilon 

\bigl( 
\{ \phi \ell \} \ell \in [K]

\bigr) 
is also convex on \scrA K . The following corollary is then immediate.

Corollary 2.5 (Bang-bang solutions). Every maximizer of (1.7) is an extreme
point of \{ \phi \in [0,1]| V | : \langle \phi ,1\rangle = k\} , i.e., an indicator function for some vertex set S \subset V
with | S| = k.

Thus, in the language of control theory, Corollary 2.5 shows that (1.7) is a bang-
bang relaxation of (1.3) and that (1.11) is a bang-bang relaxation of (1.8).

2Note, f(x, y) = xy is not convex, but x - 1y - 1 is convex for x, y > 0.
3The first term is positive semidefinite (PSD) since it is the outer product of a nonnegative vector

with itself, and the second term is PSD since it is diagonal with positive entries.
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694 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

Corollary 2.6. Since the set of values (x1, . . . , xn) \in Rn
+ with which we are

concerned is convex and E is C2 in X, the resulting Hessian matrix H is positive
definite.

Remark 2.7. Note that though the Hadamard product of two positive definite
matrices is positive definite, Corollary 2.6 is not obvious from the structure of the
Hessian, given that the matrix W is indefinite when u and v are linearly independent.
As a result, this positive definiteness is strongly related to the structure of the L+X
matrix and its eigenvectors.

2.2. Optimization scheme.

2.2.1. Subgraph detector. We solve (1.7) using rearrangement ideas as fol-
lows. After initializing S (randomly in our experiments), we use the gradient (2.2) to
find the locally optimal next choice of S, and then iterate until convergence (typically
< 10 iterations in our experiments). More explicitly, we follow these steps:

Lu+ \varepsilon  - 1(1 - \chi S0)u= d,(2.5)

LT v+ \varepsilon  - 1(1 - \chi S0)v= 1.(2.6)

The update, S1, then contains those nodes \ell that maximize u\ell v\ell .
Pseudocode for this approach is given in Algorithm 1, which has the following

ascent guarantee.

Algorithm 1 Subgraph detector.

Input S0 \subset V .
while St \not = St - 1 do

Solve (2.5) and (2.6) for u and v.
Assign vertex \ell to subgraph S1 if \nabla \phi E is optimized. That is, solve the following

subproblem:

max
| S| =k

\sum 
\ell \in S

u(\ell ) \cdot v(\ell ).(2.7)

(Note that (2.7) is easily solved by taking the k indices corresponding to the
largest values of u(\ell ) \cdot v(\ell ), breaking ties randomly if needed.)
Reset now, building on S1 \subset V accordingly and repeat until Sn = Sn - 1.

end while

Proposition 2.8. Every nonstationary iteration of Algorithm 1 strictly increases
the energy E\varepsilon . Algorithm 1 terminates in a finite number of iterations.

Proof. Let S0 and S1 be the vertex subsets for successive iterations of the method.
Define W1,0 = \chi S1  - \chi S0 . Assuming W1,0 \not = 0, by strong convexity (Theorem 2.4) and
the formula for the gradient (2.2), we compute

E\varepsilon (\chi S1)>E\varepsilon (\chi S0) +
1

\varepsilon 
\langle W1,0, uv\rangle (2.8a)

=E\varepsilon (\chi S0) +
1

\varepsilon 

\Biggl( \sum 
i\in S1

uivi  - 
\sum 
i\in S0

uivi

\Biggr) 
(2.8b)

\geq E\varepsilon (\chi S0).(2.8c)
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 695

Thus, the energy is strictly increasing on nonstationary iterates. Since we assume
that V is a finite size vertex set and the rearrangement method increases the energy,
it cannot cycle and hence must terminate in a finite number of iterations.

To avoid hand-selection of \varepsilon , we always set \varepsilon = C/\| L\| F , where \| L\| F is the
Frobenius norm of the graph Laplacian and C > 1 is typically set at C = 50 to make
sure \varepsilon allows communication between graph vertices. If C is chosen to take a different
value below, we will highlight those cases. Theoretically, this choice of \varepsilon is appropriate
so that in L+ 1

\varepsilon (1 - \phi ) the perturbation is on roughly the same scale as the Laplacian
itself and is thus neither negligible nor dominating. In Figure 10, we illustrate that
in empirical cases the partitioner performance is fairly stable with respect to \varepsilon in this
range.

2.2.2. Graph partitioner. Given the success of the energy (1.6), one might
na\"{\i}vely consider partitioning the graph by maximizing an energy of the form

(S1, S2, . . . , SK) \mapsto \rightarrow 
K\sum 
i=1

[E\varepsilon (\chi Si
)].(2.9)

It can be seen that this energy does not properly constrain the volumes of each
partition component and the solution of this problem merely puts all the vertices in
a single component. Indeed, when \varepsilon \rightarrow 0, this is the sum of mean escape times of the
partition components, which is maximized when one partition component contains
the entire graph (since the escape time is then infinite). Thus, the above formulation
is inadequate without a volume constraint.

As a second attempt, we considered a partition energy of the form

(S1, S2, . . . , SK) \mapsto \rightarrow 
K\sum 
i=1

[| V | E\varepsilon (\chi Si
)] - 1,(2.10)

since the inverses penalize putting all nodes into the same partition by making the
resulting empty classes highly costly. Intuitively, this energy functional provides an
effective volume normalization of the relative gradients (similar to a K-means type
scheme). However, while in practice this functional appears to work reasonably well
on all graph models considered here, we were unable to prove, upon analysis of the
Hessian, that rearrangements based on such an algorithm are bang-bang like the
subgraph detector.

Finally, as an alternative, we consider the partition energy

\~E\delta ,\varepsilon (S1, S2, . . . , SK) =
K\sum 
i=1

[1 + \delta | V | E\varepsilon (\chi Si
)] - 1.(2.11)

Applied to functions, \phi j : V \rightarrow [0,1], instead of indicator functions, we consider

\~E\delta ,\varepsilon (\phi 1, \phi 2, . . . , \phi K) =
K\sum 
i=1

[1 + \delta | V | E\varepsilon (\phi i)]
 - 1.(2.12)

We then have that

\nabla \phi j
\~E = - \delta 

[1 + \delta | V | E\varepsilon (\phi i)]2
\nabla \phi j

(| V | E\varepsilon (\phi j))(2.13)
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696 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

making the Hessian consist of blocks of the form

\nabla 2
\phi j

\~E = - \delta 

[1 + \delta | V | E\varepsilon (\phi i)]2
\nabla 2

\phi j
(| V | E\varepsilon (\phi j))(2.14)

+ 2
\delta 2

[1 + \delta | V | E\varepsilon (\phi i)]3
(\nabla \phi j (| V | E\varepsilon (\phi j)))(\nabla \phi j (| V | E\varepsilon (\phi j)))

T .

Note, the first term is negative definite (by Proposition 2.4 and its proof) and the
second term is O(\delta 2). Therefore, for \delta sufficiently small, this Hessian is negative
definite, proving that \~E is concave with respect to \phi j . In practice, we find that taking
\delta = \varepsilon is sufficient both for having a negative definite Hessian and generating good
results with respect to our rearrangement scheme. As such, we will generically take
\delta = \varepsilon henceforward. Expansion on optimality of our choice of \delta is a topic for future
work, but a sweep over a range of \delta values demonstrated that the outcomes were
quite similar for \delta of this scale with respect to \varepsilon . The number of iterations required
to converge and thus the overall time of implementing the algorithm could differ for \delta 
sufficiently small, but not the overall purity measure of the examples we considered.

Our approach to the node partitioner is largely analogous to that of the subgraph
detector, with the exception that we use classwise \ell 1 normalization when comparing
which values of u \odot v at each node. In detail, the algorithm is presented in Algo-
rithm 2. It is a relatively straightforward exercise applying the gradient computation
for E\varepsilon (Si) from Proposition 2.4 to prove that the energy functional (2.10) will decrease
with each iteration of our algorithm as in Proposition 2.8.

2.2.3. Semisupervised learning. In cases where we have a labeled set of nodes
T with labels \^\phi v \in \{ 0,1\} indicating whether we want node i to be in the subgraph
(\^\phi v = 1) or its complement ( \^\phi v = 0), we can incorporate this information into our
approach as follows.

For the subgraph detector, we use E\varepsilon ,\lambda ,T (\phi ) = E\varepsilon (\phi ) + \lambda 
\sum 

v\in T (\phi v  - (1 - \^\phi v))
2.

Then the rearrangement algorithm needs to be modified at step 3 of Algorithm 1 to
become: Assign vertex \ell to subgraph S1 if \nabla \phi E is optimized:

Algorithm 2 Graph partitioner.

Input \vec{}S = \{ S0
1 , . . . , S

0
K\} a K partition of V .

while \vec{}St \not = \vec{}St - 1 do
For j = 1, . . . ,K, solve the equations

Luj + \varepsilon  - 1(1 - \chi S0
j
)uj = d,

LTvj + \varepsilon  - 1(1 - \chi S0
j
)vj = 1.

Normalize uj =
uj

(1+\varepsilon \| uj\| \ell 1 )
2 , vj = vj .

Assign vertex \nu to \vec{}St+1
j where

j = argmax\{ u1 \cdot v1(\nu ), . . . ,uK \cdot vK(\nu ),\} 

(that is, optimize \nabla \phi E) breaking ties randomly if needed.
Set t= t+ 1.

end while
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 697

max
| S| =k

1

\varepsilon 

\sum 
\ell \in S

u(\ell ) \cdot v(\ell ) + 2\lambda 
\sum 
v\in T

[\chi S(v) - (1 - \^\phi v)],

where \chi is the binary-valued indicator function. This again is solved by picking the
largest elements (we break ties by picking the lowest-index maximizers if needed).
Since the energy is still convex, the energy still increases at each iteration.

For the K-partitioner, we have a labeled set of nodes Ti with labels \^\phi i,v \in \{ 0,1\} 
for i= 1, . . . ,K indicating whether we want node v to be in partition element i, with\sum 

i
\^\phi i,v = 1 for v \in \cup iTi. We can incorporate this information into our approach by

modifying the energy to be the concave functional

\~E\varepsilon ,\lambda (\phi 1, . . . , \phi K) = \~E\varepsilon (\phi 1, . . . , \phi K) - \lambda 
\sum 
v\in T

K\sum 
j=1

(\phi j,v  - (1 - \^\phi j,v))
2(2.15)

with the gradient rearrangement being appropriately modified.

3. Numerical results. We test the performance of these algorithms both on
synthetic graphs and an assortment of ``real-world"" graphs. For the synthetic tests, we
use a particular set of undirected stochastic block models which we call the MultIsCale
K-block Escape Ensemble (MICKEE), designed to illustrate some of the data features
which our algorithms handle. A MICKEE graph consists of N nodes partitioned into
K + 1 groups of sizes N1, . . ., NK , and NK+1 = N  - 

\sum K
j=1Nj , where N1 < N2 <

\cdot \cdot \cdot < NK < NK+1 (see the 2-MICKEE schematic in Figure 1). The nodes in the
first K groups induce densely connected ER subgraphs (from which we will study
escape times) while the last group forms a sparsely connected ER background graph.
Each of the K dense subgraphs is sparsely connected to the larger background graph.
The goal is to recover one of the planted subgraphs, generally the smallest. In our
experiments, a na\"{\i}ve spectral approach often found one of the planted graphs, but we
know of no way to control which subgraph is recovered. In particular, the spectral
method is often drawn to larger-scale clusters when multiple scales are present. Our
subgraph detector method, in contrast, can be directed to look at the correct scale to
recover a specific subgraph, as we will demonstrate in the 2-MICKEE example (i.e.,
with two planted subgraphs).

Fig. 1. Schematic of a 2-MICKEE graph, with three dense subgraphs that are randomly con-
nected to each other. Our subgraph detectors can identify the target subgraph, ignoring other planted
subgraphs at different scales. Our partitioner correctly identifies each subgraph as a partition ele-
ment, regardless of the scale.
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698 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

We explore a number of variations on the basic MICKEE theme, including (1)
making the large subgraph have a power law degree distribution (with edges drawn
using a loopy, multiedged configuration model), (2) adding more planted subgraphs
with sizes ranging across several scales, (3) adding uniformly random noise edges
across the entire graph or specifically between subgraphs, and (4) varying the edge
weights of the various types of connections. For brevity, we refer to a MICKEE graph
with K planted subgraphs (not including the largest one) as a K-MICKEE graph.

3.1. Subgraph detection. We explore the performance of Algorithm 1 using
four benchmarks, which emphasize (1) noise tolerance, (2) multiscale detection, (3)
robustness to heavy-tailed degree distributions, and (4) effective use of directed edges,
respectively. In each of these tests, the target subgraph is the smallest planted sub-
graph.

Robustness to noise. In Figure 2 we visualize results from Algorithm 1 on
3-MICKEE graphs, varying the amount and type of noise. While it is possible to get
a bad initialization and thus find a bad local optimum the subgraph detector usually
finds the target exactly, except in the noisiest regime (which occurs roughly at the
point where the number of noise edges is equal to the number of signal edges).

Range of scales. We generated 2-MICKEE graphs with varying sizes of the
subgraphs relative to each other and the total mass. We take 1500<N < 2500 for the
total size and vary the percentage of smallest planted subgraph as .02N \leq N1 \leq .15N
with N2 = 2N1. Here, the intergroup edge density was set to .01 (in-subgraph-degree
values between 0.01N (1  - 3p) for .02 < p < .15) with mean intergroup edge weight
.05 compared to intragroup edge weights of 1. We used this framework to assess the
detectability limits of sizes of the smallest components, and numerically we observe
that small communities are quite detectable using our algorithm. Using the best result
over five initializations, we were able to detect the smallest community over the entire
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(a) Average of 5 runs.
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(b) Best of 5 runs.

Fig. 2. Accuracy of Algorithm 1 as a function of mean intersubgraph degree (the mean taken
over the nodes of the target subgraph) and mean weight of the intercomponent edges (not including
nonedges) for 3-MICKEE graphs with planted subgraphs of sizes 80, 160, and 240 nodes, with a
total of 1,000 nodes in the entire graph. The expected in-subgraph-degree is fixed at 20.8 (with intra-
component edge weights given by 1). (Therefore, if we define the mixing parameter as the typical
proportion of a node's edges that are not in that node's community, the mixing parameter for the
target subgraph ranges from .19 on the left to .72.) Intergroup edge weights are drawn from a normal
distribution with maximum ranging from .01--.25. As long as the noise level is not too high, the
subgraph detector finds the smallest planted subgraph despite the presence of ``decoy"" subgraphs at
larger scales. This may be contrasted with spectral clustering, which is attracted to the larger scales.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

2/
24

 to
 1

52
.2

.1
76

.2
42

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 699

range and we did so reliably on average as well. Since the resulting figure would
thus not be terribly informative for this range, we forego including a similar heat
plot over this range of parameters. These results are not surprising in light of known
results about the detectability limit in the related setting of small dense (unweighted)
subgraphs in ER graphs. In particular, as elucidated in [67], which synthesizes prior
results in the literature, when the random background graph is of density \rho and the
dense subgraph is of density \rho r, spectral methods are unable to detect dense subgraphs
with fewer than

\sqrt{} 
N\rho (1 - \rho )/(\rho r - \rho ) nodes. We thus expect that the small subgraphs

in our MICKEE graph numerical examples under the parameters studied here are
above the detectability threshold, because by comparison to the (seemingly slightly
more difficult) case of planting a dense subgraph inside an ER graph the different edge
weights we use here would effectively increase the (\rho r  - \rho ) denominator, decreasing
the size of the smallest detectable dense subgraph. Nevertheless, while the smaller
subgraphs are theoretically detectable (to both our method and to the na\"{\i}ve spectral
approach), as noted above the spectral method is often drawn to larger-scale clusters
when multiple scales are present.

Heavy-tailed degree distributions. For the results in Figure 3, we use a
power law degree distribution in the largest component of 3-MICKEE graphs with
N1 = 80,N2 = 160,N3 = 240, and N = 1000. Surprisingly (at least to us), smaller
power law exponents (corresponding to more skewed degree distributions) actually
make the problem much easier (whereas adding noise edges had little effect). We
conjecture that this is because, in the presence of very high-degree nodes, it is difficult
to have a randomly occurring subgraph with high mean escape time, since connections
into and out of the hubs are difficult to avoid.

Directed edge utilization. In Figure 4 we consider the problem of detecting
a directed cycle appended to an ER graph. The graph weights have been arranged
so that the expected degree of all nodes is roughly equal. There are many edges
leading from the ER graph into the cycle, with only one edge leading back into the
ER graph. This makes the directed cycle a very salient dynamical feature, but not
readily detectable by undirected (e.g., spectral) methods. We considered a large
number of cycle sizes relative to the ER graph and with a proper choice of \varepsilon , we were

0.005 0.01 0.015 0.02 0.025 0.03

Inter-Edge Density

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

P
o

w
e

r 
L

a
w

 D
is

tr
ib

u
ti
o

n
 E

x
p

o
n

e
n

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Average of 5 runs.
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(b) Best of 5 runs.

Fig. 3. Accuracy of Algorithm 1 on a 3-MICKEE graph with a power law distribution as a
function of the power law exponent and intercluster edge density. We observe a robustness to both
the exponent and density (especially in the right panel) up to a sharp cutoff around 3.4. Note the
low exponents (typically considered to be the harder cases) are actually easier in this problem.
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700 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

Fig. 4. A directed ER graph with a directed cycle appended. Note that there is only one edge
(in the upper left) leading from the cycle to the ER graph, with many edges going the other direction
from the ER graph to the cycle. The cycle nodes have the same expected degree as the ER nodes, yet
a random walker would naturally get stuck in the cycle for a long time. Detecting such a dynamical
trap is a challenge for undirected algorithms, but Algorithm 1 detects it consistently over a wide
range of cycle lengths and ER graph sizes.
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(a) True mean exit time.
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(b) Regularized energy.

Fig. 5. The score of the optimal subgraph found with Algorithm 1. Both plots have clear shifts
near k = 50 corresponding to the smallest component and k = 100 corresponding to the second
smallest component. This suggests that the size of natural subgraphs within a given graph can be
detected from breaks in the subgraph scores as the size of the target in Algorithm 1 varies.

able to detect the cycle in all cases. Thus, this detector finds directed components
very robustly due to the nature of the escape time.

Variation over choice of \bfitN 1. In Figure 5, we consider how the Mean Exit
Time as well as the regularized energy in (1.6) behaves as we vary the constrained
volume of our algorithm. We considered a 2-MICKEE graph with N1 = 50, N2 = 100,
and N = 1000. We took the baseline ER density .03 and the intergroup edge density
was set to .025 with mean intergroup edge weight .1.

In summary, we find that the subgraph detector is able to robustly recover planted
communities in synthetic graphs and is robust to a range of application-relevant
factors.

3.2. \bfitK -partition method. We will now consider the performance of Algorithm
2 in a variety of settings. Throughout, we will give heat plots over the variation of
the parameters to visualize the purity measure of our detected communities from our
ground-truth smallest component of the graph, over five iterations of the algorithm.
The purity measure is

1

N

K\sum 
k=1

max
1\leq l\leq K

N l
k

for N l
k the number of data samples in cluster k that are in ground truth class l.
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(a) Average of 5 runs.
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(b) Best of 5 runs.

Fig. 6. The purity measure for Algorithm 2 on 3-MICKEE graphs. We vary the density of the
interregion edges and their edge weights. We observe robust (usually perfect) detection over a range
of these parameters, with a sharp cutoff (especially in the left panel) when the noise levels grow too
high, suggesting that detection is still possible beyond this cutoff, but the energy landscape has more
bad local optima beyond this point. The left side of each figure corresponds to a mixing parameter of
.11, and the right side corresponds to .57. The mixing parameter is obtained by mapping the x-axis
through x\rightarrow x/(40 + x).

In Figure 6 we consider a heat plot of the purity measure for a 4-partition of a 3-
MICKEE graph using delocalized connections with N1 = 80,N2 = 160,N3 = 240, and
N = 1000, varying the density of the intercomponent edge connections (0<\rho < .1) and
the mean weight of the intercomponent edges (0 <\Delta < .125). We vary over number
and strength of connecting edges between components and consider the purity measure
as output. The base ER density was set to .04.

In addition, we have tested Algorithm 2 on MICKEE graphs with varying sizes
of the components relative to each other and the total mass where the connec-
tions between ER graphs include more random edges with weak connection weights.
Figure 7 shows results from testing the algorithm on 2-MICKEE graphs with vary-
ing sizes of the components relative to each other and the total mass. We take
1500 < N < 2500 for the total size and vary the percentage of smallest planted sub-
graph as .02N \leq N1 \leq .15N with N2 = 2N1. Here, the intergroup edge density was
set to .025 with mean intergroup edge weight .05. The question addressed in this
experiment is how small can we get the components and still detect them? We heat
map the average purity measure varying the number of vertices in the graph and the
relative size of the smallest subgraph (i.e., N1/N).

We similarly consider the partitioning problem on a version of the 3-MICKEE
graph with power law degree distribution in the largest component, using delocalized
connections with N1 = 80,N2 = 160,N3 = 240, and N = 1000. Figure 8 provides a \rho  - q
plot for results from varying the density (.001 < \rho < .03) of the edge-density of con-
nections between the components of the graph, using a power law degree distribution
for the largest component with exponent (2.1\leq q\leq 4).

3.2.1. Graph clustering examples. We consider the family of examples as in
[81] and compare the best presented purity measures from that paper to a number
of settings using our algorithms. Since some of these examples are by their nature
actually directed data sets, throughout we computed both the directed and undi-
rected adjacency matrix representations as appropriate to test against. We ran the
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(a) Average of 5 runs.
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(b) Best of 5 runs.

Fig. 7. The purity measure for the partitioner acting on a 2-MICKEE graph with the fraction
of nodes in the smaller planted subgraph varying, along with the size of the graph. We observe a
generally robust partitioning.
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(b) Best of 5 runs.

Fig. 8. Purity achieved by Algorithm 2 on 3-MICKEE graphs with a power law degree distribu-
tion, varying the exponent of the power law and inter-subgraph edge density. We observe generally
robust partitioning (especially in the right panel).

K-partitioner over a variety of scenarios for both cases. In all these runs, we chose
the value of K to agree with the metadata (we avoid term ``ground truth,"" as the
node labels themselves may be noisy or not the only good interpretation of the data).
However, we note that our algorithm also does a good job in a variety of settings se-
lecting the number of partitions to fill without precisely providing this correct number
a priori.

For our study, we consider a number of various options for the algorithm. First,
the initial seeding sets were chosen either uniformly at random or using K-means
on the first K-eigenvectors of the graph Laplacian. We consider the best result over
10 outcomes. In addition, we considered a range of values of \varepsilon , all of which were
a multiplicative factor of the inverse of the Frobenius norm of the graph Laplacian,
denoted \| L\| Fro, which sets a natural scaling for separation in the underlying graph.
See, for instance, the related choice in [57]. We computed a family of partitions for
\varepsilon = 50\nu /\| L\| Fro, where \nu = e.2\ell with  - 50 < \ell < 50. Finally, we also considered the
impact of semisupervised learning by toggling between \lambda = 0 and \lambda = 106 in (2.15)
with 10\% of the nodes being included in the learning set. Clearly, there are many
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 703

ways we might improve the outcomes, by, for instance, increasing the number and
method of initialization and refining our choices of \varepsilon or \lambda ; nevertheless, we see under
our current choices that our algorithm performs well over a range of such parameters,
as reported in Table 1. In Figure 9, for these 45 datasets, we plot the graph edge
count vs. the median time per iteration for our graph partitioning algorithm. The
main cost per iteration is the preconditioned GMRES solves.

For each data set in Table 1, we report the best outcome using directed adjacency
matrices to build the Graph Laplacian using both the K-means and random initial-
izations but with no semisupervised learning (Directed); the best outcome using sym-
metrized adjacency matrices to build the Graph Laplacian using both the K-means
and random initializations but with no semisupervised learning (Undirected); the best
outcome when SemiSupervised Learning is turned on over any configuration (Semisu-
pervision), the K-means only outcome (K-means only) and the best data from all the
experiments reported in [81] (best from [81]). Our results promisingly demonstrate
that our algorithm is very successful in many cases in discovering large amounts of
community structure that aligns with the metadata in these explicit data sets. Given
that our communities are all built around random walks in the graph, it is not clear
that all ground-truth designated communities would align well with our methods. For
example, we note that our results do not align well with the metadata in the POL-
BLOGS data set, but since this particular dataset is known to have multiple types of
unaligned clustering structure present (for example, partisan split and core-periphery
structure), the lack of alignment with one set of node metadata should not generally
be understood as failure to capture ``the"" correct partition. A major takeaway from
the table, however, is that in several examples we see that using the directed nature
of the data provides better agreement with the metadata (as indicated by the green
cells). Perhaps most striking in the table is that the best run of our algorithm, even
without semisupervised learning, provides better agreement with the metadata than
[81] for many of the data sets.

As a statistical summary of our findings, we had in total 39 directed datasets and
6 undirected data sets that came from a variety of domains (image, social, biological,
physical, etc.). The networks are sized between 35 nodes and 98, 528 nodes, having
2--65 classes per network. Among directed networks, 21 data sets gave highest purity
with the metadata with semisupervised learning turned on, while 13 have the best
result from [81], and 2 have K-means only best. For 9 total data sets (green in
the table), the directed version of our algorithm is more closely aligned with node
metadata than the symmetrized undirected version, while 5 are tied (yellow) and for
25 the undirected method is more closely aligned (orange). When [81] is best, the
median gap from our result with semisupervised learning is .05. When our algorithm
with semisupervised learning is best, the median gap from [81] is .05. There is no clear
relationship between data domain and performance or node count and performance.
However, semisupervision generally did improve the results the most with a smaller
class count (median 3) versus [81] (median 20).

When the directed algorithm aligns more closely with node metadata than the
undirected version, the median gap is 0.03. Interestingly, five of the datasets where
directed was more aligned with node metadata were images or sensor data, with the
two largest gaps (.07 and .09) being digit datasets. When undirected was more closely
aligned with node metadata, the median gap was 0.06, with the largest gap being .29,
for the 20NEWS dataset. When semisupervision improves over our method (max of
directed and undirected performance), the median improvement is .06, and the max
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Table 1
Purity measure table. (Table in color online.)
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U
nd
ire
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ed

Se
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rv
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K
-m
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ly

B
es
t
fro
m
[8
1]

Directed data

MNIST Digit 70,000 0.00 10 0.85 0.78 0.98 0.84 0.97

VOWEL Audio 990 0.01 11 0.35 0.32 0.44 0.34 0.37

FAULTS Materials 1,941 0.00 7 0.44 0.42 0.49 0.39 0.41

SEISMIC Sensor 98,528 0.00 3 0.60 0.59 0.66 0.58 0.59

7Sectors Text 4,556 0.00 7 0.27 0.26 0.39 0.26 0.34

PROTEIN Protein 17,766 0.00 3 0.47 0.46 0.51 0.46 0.50

KHAN Gene 83 0.06 4 0.59 0.59 0.61 0.59 0.60

ROSETTA Gene 300 0.02 5 0.78 0.78 0.81 0.77 0.77

WDBC Medical 683 0.01 2 0.65 0.65 0.70 0.65 0.65

POLBLOGS Social 1,224 0.01 2 0.55 0.55 0.59 0.51 NA

CITESEER Citation 3,312 0.00 6 0.28 0.29 0.49 0.25 0.44

SPECT Astronomy 267 0.02 3 0.79 0.80 0.84 0.79 0.79

DIABETES Medical 768 0.01 2 0.65 0.67 0.74 0.65 0.65

DUKE Medical 44 0.11 2 0.64 0.68 0.73 0.52 0.70

IRIS Biology 150 0.03 3 0.87 0.90 0.97 0.67 0.93

RCV1 Text 9,625 0.00 4 0.35 0.40 0.62 0.32 0.54

CORA Citation 2,708 0.00 7 0.33 0.39 0.50 0.32 0.47

CURETGREY Image 5,612 0.00 61 0.23 0.29 0.33 0.22 0.28

SPAM Email 4,601 0.00 2 0.64 0.70 0.73 0.61 0.69

GISETTE Digit 7,000 0.00 2 0.87 0.94 0.97 0.81 0.94

WEBKB4 Text 4,196 0.00 4 0.42 0.53 0.66 0.40 0.63

CANCER Medical 198 0.03 14 0.49 0.55 0.54 0.45 0.54

YALEB Image 1,292 0.00 38 0.44 0.54 0.52 0.41 0.51

COIL-20 Image 1,440 0.00 20 0.74 0.85 0.78 0.82 0.81

ECOLI Protein 327 0.02 5 0.79 0.83 0.81 0.81 0.83

YEAST Biology 1,484 0.00 10 0.46 0.53 0.54 0.47 0.55

20NEWS Text 19,938 0.00 20 0.20 0.49 0.62 0.16 0.63

MED Text 1,033 0.00 31 0.50 0.54 0.54 0.48 0.56

REUTERS Text 8,293 0.00 65 0.60 0.69 0.75 0.60 0.77

ALPHADIGS Digit 1,404 0.00 6 0.42 0.48 0.48 0.46 0.51

ORL Face 400 0.01 40 0.76 0.82 0.76 0.78 0.83

OPTDIGIT Digit 5,620 0.00 10 0.90 0.93 0.91 0.90 0.98

PIE Face 1,166 0.00 53 0.53 0.66 0.62 0.51 0.74

SEG Image 2,310 0.00 7 0.54 0.64 0.59 0.51 0.73

UMIST Face 575 0.01 20 0.74 0.71 0.67 0.67 0.74

PENDIGITS Digit 10,992 0.00 10 0.82 0.73 0.82 0.83 0.87

SEMEION Digit 1,593 0.00 10 0.86 0.82 0.77 0.81 0.94

AMLALL Medical 38 0.13 2 0.92 0.95 0.94 0.95 0.92

IONOSPHERE Radar 351 0.01 2 0.77 0.77 0.85 0.85 0.70
Undirected data
POLBOOKS Social 105 0.08 3 0.83 0.85 0.85 0.82 0.83
KOREA Social 35 0.11 2 1.00 1.00 1.00 0.71 1.00
FOOTBALL Sports 115 0.09 12 0.94 0.93 0.90 0.93 0.93
MIREX Music 3,090 0.00 10 0.21 0.24 0.27 0.12 0.43
HIGHSCHOOL Social 60 0.10 5 0.82 0.85 0.83 0.82 0.95
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ESCAPE TIME PARTITIONING FOR DIRECTED GRAPHS 705

Fig. 9. Timing for one iteration of our graph partitioner. The slope of roughly one suggests
a roughly linear scaling law, which supports the argument that our approach is scalable to large
datasets, as expected.

improvements were .22 and .20. There is no obvious relationship between edge density
and algorithm performance.

We have discussed the output of a variety of experiments on a large number of
data sets, but we also want to discuss their dependence upon the \varepsilon parameter and the
percentage of nodes that are learned in the energy (2.15). To that end, we consider the
output purity measure for some representative data sets and look at the outputs over
a range of epsilon parameters and percentages of learning. In this case, we considered
only the K-means initialization for consistency and simplicity of comparison. For the
\varepsilon sweep, we recall that we considered the range \varepsilon = 50\nu /\| L\| Fro, where \nu = e.2\ell with
 - 50< \ell < 50. In Figure 10 we show the variation in the purity measure with \varepsilon for a
small graph (FOOTBALL), a medium sized graph (OPTDIGITS), and a large graph
(SEISMIC). Similarly, in Figure 11 we visualize how results vary with the fraction of
supervision (nodes with labels provided) under semisupervised learning, for the same
graphs, with \nu = .6, .8,1.0,1.2,1.4,1.6,1.8.

4. Discussion. Throughout our study we emphasize that our methodology op-
erates fundamentally on the possibly directed nature of the underlying graph data.
Considering the Index of Complex Networks [20] as a representative collection of
widely-studied networks, we note that (as of our writing here) 327 of the 698 entries
in the Index contain directed data. Whereas there are undoubtedly settings where
one can ignore edge direction, there are inevitably others where respecting direction
is essential. By formulating a strategy for subgraph detection and graph partitioning

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

2/
24

 to
 1

52
.2

.1
76

.2
42

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



706 BOYD, FRAIMAN, MARZUOLA, MUCHA, AND OSTING

10
-6

10
-4

10
-2

10
0

10
2

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Football

10
-6

10
-4

10
-2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Optdigits

10
-6

10
-4

10
-2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Seismic

Fig. 10. Purity measures for three selected data sets as a function of the scale parameter \nu =
| | L| | \mathrm{F}\mathrm{r}\mathrm{o}

50
\varepsilon . In all three panels, we observe a stable range (on a log scale) where purity is stably

nontrivial, and in the left panel, there are two such scales.

inherently built on processes running on the directed graph, we avoid the need for
any post hoc modifications to try to respect directed edges. In particular, our method
nowhere relies on any correspondingly undirected version of the graph, avoiding pos-
sible information lost in symmetrizing.

While we expect that our formulation of escape times can be useful in general,
including for undirected graphs, our proper treatment of the directed graph data
should prove especially useful. For example, the directed follower v. following na-
ture of some online social networks (e.g., Twitter) is undoubtedly important for
understanding the processes involved in the viral spread of (mis)information. As
shown by [77] (and extended by [43]), the community structure is particularly impor-
tant for identifying the virality of memes specifically because a meme that ``escapes""
(in our present language) its subgraph of origin is typically more likely to continue to
propagate. Another application where directed escape times could be relevant is in
detecting the (hidden) circulation of information, currency, and resources that is part
of coordinated adversarial activity, as explored, for example, in [37, 50, 66].

To close, we highlight two related thematic areas for possible future work that we
believe would lead to important extensions on the methods presented here.

4.1. Connection to distances on directed graphs. In previous work of the
present authors [12] along with Weare, we construct a symmetrized distance function
on the vertices of a directed graph. We recall the details briefly here, which is based
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Fig. 11. Purity measures on three selected data sets as a function of the fraction of supervision
(nodes with labels provided) under semisupervised learning. We observe that supervision can either
consistently help (as in the right panel) or can have inconsistent effects (as in the left and middle
panels). One possible explanation for this is that there may be multiple clustering structures present
in the data, and it takes a lot of supervision to force the partitioner to switch to a partition aligned
with the metadata indicated by the supervision, rather than a different clustering structure that is
better from the perspective of the optimizer.

somewhat upon the hitting probability matrix construction used in umbrella sam-
pling [24, 69]. For a general probability transition matrix P , we denote the Perron
eigenvector as P \prime \phi = \phi . Let us define a matrix M such that Mij = Probi[\tau j < \tau i],
the probability that for a random walker starting from site i the hitting time of j is
less than the time it takes to return to i. Then, it can be proved that (see [24, 69])
M \ast diag(\phi ) (with appropriate scaling) gives a natural symmetrization of and a met-
ric on the nodes of a (possibly directed, strongly connected) graph. Here, ``natural""
means that it encodes the structure of arbitrarily long cycles in a balanced way that is
useful for detecting various dynamics-related structures, as in the ER+cycle example;
Figure 4. A natural question to pursue is whether parsing the directed network with
this approach to create the symmetrized Ahp matrix, then applying our clustering
scheme can be used to effectively detect graph structures in a more robust manner.
In particular, comparison of our clustering scheme versus K-means studies of the
distance structure should be an important direction for future study.

4.2. Continuum limits. The methods presented here have a clear analog in
the continuum setting to the motivated problems in the continuum discussed in the
introduction. The primary continuum problem is related to the landscape function,
or torsion function, on a subdomain prescribed with Dirichlet boundary conditions,
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 - \Delta uS = 1S , uS | \partial S = 0.(4.1)

This is known as the mean exit time from a set S of a standard Brownian motion
random walker; see [58, Chapter 7]. Correspondingly, for a domain \Omega with Neumann
boundary conditions (to make life easier with graphs) and some 0<\alpha < 1, we propose
the following optimization:

max
S\subset \Omega ,| S| =\alpha | \Omega | 

\int 
S

uS dx ,(4.2)

meaning that we wish to maximize the exit time of a random walker from a given
subdomain. Through the Poisson formula for the mean exit time, we have that

\int 
uS =

( - \Delta uS , uS), allowing us to frame things similarly via a Ginzburg--Landau like penalty
term for being in a set S,

min
0\leq \phi \leq 1\int 
\phi =\alpha | \Omega | 

min\int 
u=1

1

2
( - \Delta uS , uS) +

1

2\varepsilon 
\langle u, (1 - \phi )u\rangle .

Analysis of optimizers for such a continuum problem and its use in finding subdomains
and domain partitions is one important direction for future study. Related results in
a continuum setting have been studied, for instance, in [14, 17], but the regularization
of this problem seems to be new and connects the problem through the inverse of the
Laplacian to the full domain and its boundary conditions. Following works such as
[56, 65, 71, 72, 73, 82], an interesting future direction would be to prove consistency
of our algorithm to these well-posed continuum optimization problems.
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